
Interpreting a successful testing process:
risk and actual coverage

Mariëlle Stoelinga, Mark Timmer
University of Twente

3rd IEEE International Symposium on

Theoretical Aspects of Software Engineering

.
July 31, 2009

Contents

1 Introduction

2 The WFS Model

3 Risk

4 Other Applications

5 Limitations and Possibilities

6 Conclusions and Future Work

Interpreting a successful testing process: risk and actual coverage Jul. 31, 2009 2 / 17

Introduction – Testing

Why testing?

Software becomes more and more complex

Research showed that billions can be saved by testing better

No need for the source code (black-box perspective)

Model-based testing

Precise and formal

Automatic generation and evaluations of tests

Repeatable and scientific basis for product testing

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 3 / 17

Introduction – Testing

Why testing?

Software becomes more and more complex

Research showed that billions can be saved by testing better

No need for the source code (black-box perspective)

Model-based testing

Precise and formal

Automatic generation and evaluations of tests

Repeatable and scientific basis for product testing

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 3 / 17

Introduction – Risk and coverage

Why do we need risk and coverage?

Testing is inherently incomplete

Testing does increase our confidence in the system

A notion of quality of a test suite is necessary

Two fundamental concepts: risk and coverage

•

•

•

•
•

•
•

•

•

•

•
•

•

Informal calculation

Coverage: 6
13 = 46%

Risk: 7 · 0.1 · $10 = $7

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 4 / 17

Introduction – Risk and coverage

Why do we need risk and coverage?

Testing is inherently incomplete

Testing does increase our confidence in the system

A notion of quality of a test suite is necessary

Two fundamental concepts: risk and coverage

•

•

•

•
•

•
•

•

•

•

•
•

•

Informal calculation

Coverage: 6
13 = 46%

Risk: 7 · 0.1 · $10 = $7

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 4 / 17

Introduction – Risk and coverage

Why do we need risk and coverage?

Testing is inherently incomplete

Testing does increase our confidence in the system

A notion of quality of a test suite is necessary

Two fundamental concepts: risk and coverage

•

•

•

•
•

•
•

•

•

•

•
•

•

Informal calculation

Coverage: 6
13 = 46%

Risk: 7 · 0.1 · $10 = $7

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 4 / 17

Introduction – Risk and coverage

Why do we need risk and coverage?

Testing is inherently incomplete

Testing does increase our confidence in the system

A notion of quality of a test suite is necessary

Two fundamental concepts: risk and coverage

•

•

•

•
•

•
•

•

•

•

•
•

• Informal calculation

Coverage: 6
13 = 46%

Risk: 7 · 0.1 · $10 = $7

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 4 / 17

Introduction – Risk and coverage

Why do we need risk and coverage?

Testing is inherently incomplete

Testing does increase our confidence in the system

A notion of quality of a test suite is necessary

Two fundamental concepts: risk and coverage

•

•

•

•
•

•
•

•

•

•

•
•

• Informal calculation

Coverage: 6
13 = 46%

Risk: 7 · 0.1 · $10 = $7

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 4 / 17

Introduction – Risk and coverage

Why do we need risk and coverage?

Testing is inherently incomplete

Testing does increase our confidence in the system

A notion of quality of a test suite is necessary

Two fundamental concepts: risk and coverage

•

•

•

•
•

•
•

•

•

•

•
•

• Informal calculation

Coverage: 6
13 = 46%

Risk: 7 · 0.1 · $10 = $7

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 4 / 17

Introduction – Existing approaches

Existing coverage measures

Statement coverage State/transition coverage

Limitations:

all faults are considered of equal severity

likely locations for fault occurrence are not taken into account

syntactic point of view

Existing risk measures

Bach Amland

Limitations:

Informal

Based on heuristics

Only identify testing order for components

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 5 / 17

Introduction – Existing approaches

Existing coverage measures

Statement coverage State/transition coverage

Limitations:

all faults are considered of equal severity

likely locations for fault occurrence are not taken into account

syntactic point of view

Existing risk measures

Bach Amland

Limitations:

Informal

Based on heuristics

Only identify testing order for components

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 5 / 17

Introduction – Existing approaches

Existing coverage measures

Statement coverage State/transition coverage

Limitations:

all faults are considered of equal severity

likely locations for fault occurrence are not taken into account

syntactic point of view

Existing risk measures

Bach Amland

Limitations:

Informal

Based on heuristics

Only identify testing order for components

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 5 / 17

Introduction – Existing approaches

Existing coverage measures

Statement coverage State/transition coverage

Limitations:

all faults are considered of equal severity

likely locations for fault occurrence are not taken into account

syntactic point of view

Existing risk measures

Bach Amland

Limitations:

Informal

Based on heuristics

Only identify testing order for components

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 5 / 17

Introduction – Preliminaries

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

System considered as black box

Semantic point of view

Fault weights

Labelled transition systems

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

10ct? coffee! 20ct? tea! δ

Test cases

fail fail

x10ct?

δ xcoffee! tea!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 6 / 17

Introduction – Preliminaries

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

System considered as black box

Semantic point of view

Fault weights

Labelled transition systems

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ

10ct? coffee! 20ct? tea! δ

Test cases

fail fail

x10ct?

δ xcoffee! tea!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 6 / 17

Introduction – Preliminaries

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

System considered as black box

Semantic point of view

Fault weights

Labelled transition systems

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ

10ct? coffee! 20ct? tea! δ

Test cases

fail fail

x10ct?

δ xcoffee! tea!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 6 / 17

Introduction – Preliminaries

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

System considered as black box

Semantic point of view

Fault weights

Labelled transition systems

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ

10ct? coffee! 20ct? tea! δ

Test cases

fail fail

x10ct?

δ xcoffee! tea!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 6 / 17

Introduction – Preliminaries

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

System considered as black box

Semantic point of view

Fault weights

Labelled transition systems

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ

10ct? coffee! 20ct? tea! δ

Test cases

fail fail

x10ct?

δ xcoffee! tea!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 6 / 17

Introduction – Preliminaries

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

System considered as black box

Semantic point of view

Fault weights

Labelled transition systems

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ

10ct? coffee! 20ct? tea! δ

Test cases

fail fail

x10ct?

δ xcoffee! tea!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 6 / 17

Introduction – Preliminaries

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

System considered as black box

Semantic point of view

Fault weights

Labelled transition systems

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ

10ct? coffee! 20ct? tea! δ

Test cases

fail fail

x10ct?

δ xcoffee! tea!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 6 / 17

Introduction – Preliminaries

Starting point: semantic coverage

Previous work by Brandán Briones, Brinksma and Stoelinga

System considered as black box

Semantic point of view

Fault weights

Labelled transition systems

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ

10ct? coffee! 20ct? tea! δ

Test cases

fail fail

x10ct?

δ xcoffee! tea!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31, 2009 6 / 17

The WFS Model – Weighted Fault Specifications

Weighted fault specification

A WFS− consists of

An LTS (expected system behaviour)

An error function (probability of faults)

A weight function (severity of faults)

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ
perr(10ct? coffee!) = 0.02

perr(20ct? tea!) = 0.03

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 7 / 17

The WFS Model – Weighted Fault Specifications

Weighted fault specification

A WFS− consists of

An LTS (expected system behaviour)

An error function (probability of faults)

A weight function (severity of faults)

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ

perr(10ct? coffee!) = 0.02

perr(20ct? tea!) = 0.03

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 7 / 17

The WFS Model – Weighted Fault Specifications

Weighted fault specification

A WFS− consists of

An LTS (expected system behaviour)

An error function (probability of faults)

A weight function (severity of faults)

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ
perr(10ct? coffee!) = 0.02

perr(20ct? tea!) = 0.03

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 7 / 17

The WFS Model – Weighted Fault Specifications

Weighted fault specification

A WFS− consists of

An LTS (expected system behaviour)

An error function (probability of faults)

A weight function (severity of faults)

s0s1 s2

10ct? 20ct?

coffee! coffee!

xx.tea!

δ
perr(10ct? coffee!) = 0.02

perr(20ct? tea!) = 0.03

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 7 / 17

The WFS Model – Fault Weight

s ′0 20ct?
s ′1

10ct?

xx.coffee!

Fault weight: 10 + 15 = 25

(We are only interested in whether a fault can
occur, not in which one)

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 8 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

The WFS Model – Fault Weight

s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! coffee!

Fault weight: 10 + 15 = 25

(We are only interested in whether a fault can
occur, not in which one)

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 8 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

The WFS Model – Fault Weight

s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! coffee!

Fault weight: 10 + 15 = 25

(We are only interested in whether a fault can
occur, not in which one)

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 8 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

The WFS Model – Fault Weight

s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! coffee!

Fault weight: 10 + 15 = 25

(We are only interested in whether a fault can
occur, not in which one)

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 8 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

The WFS Model – Fault Weight

s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! coffee!

Fault weight: 10 + 15 = 25

(We are only interested in whether a fault can
occur, not in which one)

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31, 2009 8 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

w(ε) = 10

w(10ct?) = 15

w(10ct? coffee!) = 9.5

Risk

Definition

Given a test suite T and a passing execution E , we define

risk(T ,E) = E[w(Impl) | observe E]

i.e., the fault weight still expected to be present after observing E .

Observe:
risk(〈〉, 〈〉) =

∑
σ

w(σ) · perr(σ)

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 9 / 17

Risk

Definition

Given a test suite T and a passing execution E , we define

risk(T ,E) = E[w(Impl) | observe E]

i.e., the fault weight still expected to be present after observing E .

Observe:
risk(〈〉, 〈〉) =

∑
σ

w(σ) · perr(σ)

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 9 / 17

Risk

Definition

Given a test suite T and a passing execution E , we define

risk(T ,E) = E[w(Impl) | observe E]

i.e., the fault weight still expected to be present after observing E .

Observe:
risk(〈〉, 〈〉) =

∑
σ

w(σ) · perr(σ)

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 9 / 17

Risk

fail pass fail

x10ct?

δ xcoffee! tea!

s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!

s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!
s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!
s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!
s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!
s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

risk(〈〉, 〈〉) =
∑
σ

w(σ) · perr(σ)

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!
s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

risk(T ,E) =
∑

σ 6=10ct?

w(σ) · perr(σ) + f (10ct?)

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!
s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

risk(T ,E) =
∑

σ 6=10ct?

w(σ) · perr(σ) + f (10ct?)

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!
s0s1 s2

10ct? 20ct?

coffee! tea!

δ

s ′0 20ct?
s ′1

10ct?

xx.coffee!

tea! δ

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

risk(T ,E) =
∑

σ 6=10ct?

w(σ) · perr(σ) + w(10ct?) · P[error after 10ct? | E]

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 10 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Weighted Fault Specifications (revisited)

Weighted fault specification

A WFS consists of

An LTS (expected system behaviour)

An error function (probability of faults)

A weight function (severity of faults)

A failure function (probability of failure in case of fault)

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

pfail(ε) = 1.0

pfail(10ct?) = 0.5

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 11 / 17

Weighted Fault Specifications (revisited)

Weighted fault specification

A WFS consists of

An LTS (expected system behaviour)

An error function (probability of faults)

A weight function (severity of faults)

A failure function (probability of failure in case of fault)

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

pfail(ε) = 1.0

pfail(10ct?) = 0.5

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 11 / 17

Weighted Fault Specifications (revisited)

Weighted fault specification

A WFS consists of

An LTS (expected system behaviour)

An error function (probability of faults)

A weight function (severity of faults)

A failure function (probability of failure in case of fault)

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

pfail(ε) = 1.0

pfail(10ct?) = 0.5

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 11 / 17

Risk

fail pass fail

x10ct?

δ xcoffee! tea!

risk(T ,E)

=
∑

σ 6=10ct?

w(σ) · perr(σ) + w(10ct?) · P[error after 10ct? | E]

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 12 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

fail pass fail

x10ct?

δ xcoffee! tea!

risk(T ,E)

=
∑

σ 6=10ct?

w(σ) · perr(σ) + w(10ct?) · P[error after 10ct? | E]

=
∑

σ 6=10ct?

w(σ) · perr(σ) +

w(10ct?) · (1− pfail(10ct?)) · perr(10ct?)

(1− pfail(10ct?))· perr(10ct?) + (1− perr(10ct?))

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 12 / 17

s0s1 s2

10ct? 20ct?

coffee! coffee!

δ

xx.tea!

Risk

Calculation of risk

risk(T ,E) = risk(〈〉, 〈〉)−∑
σ∈E

w(σ)·

(
perr(σ)− (1− pfail(σ))obs(σ,E) · perr(σ)

(1− pfail(σ))obs(σ,E) · perr(σ) + 1− perr(σ)

)

with obs(σ,E) the number of observations in E after σ.

Although risk(〈〉, 〈〉) =
∑

σ w(σ) · perr(σ) is an infinite sum, it can
be calculated smartly:

w defined by truncation: the sum is already finite

w defined by discounting: system of linear equations

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 13 / 17

risk(T ,E) = E[w(Impl) | observe E]

Risk

Calculation of risk

risk(T ,E) = risk(〈〉, 〈〉)−∑
σ∈E

w(σ)·

(
perr(σ)− (1− pfail(σ))obs(σ,E) · perr(σ)

(1− pfail(σ))obs(σ,E) · perr(σ) + 1− perr(σ)

)

with obs(σ,E) the number of observations in E after σ.

Although risk(〈〉, 〈〉) =
∑

σ w(σ) · perr(σ) is an infinite sum, it can
be calculated smartly:

w defined by truncation: the sum is already finite

w defined by discounting: system of linear equations

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31, 2009 13 / 17

risk(T ,E) = E[w(Impl) | observe E]

Other Applications

Compute test suite quality in advance

Estimate correct system behaviour

Compute expected risk after passing the test suite

Optimisation

Find the optimal test suite of a given size

Apply history-dependent backwards induction
(Markov Decision Theory)

Actual Coverage

Only consider the traces that were actually tested

Use error probability reduction as coverage measure

Methods very similar to risk

Interpreting a successful testing process: risk and actual coverage Other Applications Jul. 31, 2009 14 / 17

Other Applications

Compute test suite quality in advance

Estimate correct system behaviour

Compute expected risk after passing the test suite

Optimisation

Find the optimal test suite of a given size

Apply history-dependent backwards induction
(Markov Decision Theory)

Actual Coverage

Only consider the traces that were actually tested

Use error probability reduction as coverage measure

Methods very similar to risk

Interpreting a successful testing process: risk and actual coverage Other Applications Jul. 31, 2009 14 / 17

Other Applications

Compute test suite quality in advance

Estimate correct system behaviour

Compute expected risk after passing the test suite

Optimisation

Find the optimal test suite of a given size

Apply history-dependent backwards induction
(Markov Decision Theory)

Actual Coverage

Only consider the traces that were actually tested

Use error probability reduction as coverage measure

Methods very similar to risk

Interpreting a successful testing process: risk and actual coverage Other Applications Jul. 31, 2009 14 / 17

Limitations and Possibilities

Probabilities might be hard to find, but

We show what can be calculated, and the required ingredients

We facilitate sensitivity analysis

To compute numbers, we have to start with numbers. . .

It looks like we need many probabilities and weights, but

The framework can be applied at higher levels of abstraction

Compute risk based on error / failure probabilities of modules

Interpreting a successful testing process: risk and actual coverage Limitations and Possibilities Jul. 31, 2009 15 / 17

Limitations and Possibilities

Probabilities might be hard to find, but

We show what can be calculated, and the required ingredients

We facilitate sensitivity analysis

To compute numbers, we have to start with numbers. . .

It looks like we need many probabilities and weights, but

The framework can be applied at higher levels of abstraction

Compute risk based on error / failure probabilities of modules

Interpreting a successful testing process: risk and actual coverage Limitations and Possibilities Jul. 31, 2009 15 / 17

Conclusions and Future Work

Main results

Formal notion of risk

Both evaluation of risk and computation of optimal test suite

Easily adaptable to be used as a coverage measure

Directions for Future Work

Validation of the framework: tool support, case studies

Dependencies between errors

On-the-fly test derivation

Interpreting a successful testing process: risk and actual coverage Conclusions and Future Work Jul. 31, 2009 16 / 17

Conclusions and Future Work

Main results

Formal notion of risk

Both evaluation of risk and computation of optimal test suite

Easily adaptable to be used as a coverage measure

Directions for Future Work

Validation of the framework: tool support, case studies

Dependencies between errors

On-the-fly test derivation

Interpreting a successful testing process: risk and actual coverage Conclusions and Future Work Jul. 31, 2009 16 / 17

Questions

Q

u e

s

t

i

o

n

s

Interpreting a successful testing process: risk and actual coverage Jul. 31, 2009 17 / 17

