&

Formal i i
Methods University of Twente
& Tools Enschede - The Netherlands

O——0

Interpreting a successful testing process:

risk and actual coverage

Mariélle Stoelinga, Mark Timmer
University of Twente

34 |EEE International Symposium on
Theoretical Aspects of Software Engineering

July 31, 2009

@ Introduction

© The WFS Model

© Risk

@ Other Applications

© Limitations and Possibilities

@ Conclusions and Future Work

Interpreting a successful testing process: risk and actual coverage Jul. 31,2009 2 /17

Introduction — Testing

Why testing?

@ Software becomes more and more complex
@ Research showed that billions can be saved by testing better

@ No need for the source code (black-box perspective)

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 3 /17

Introduction — Testing

Why testing?

@ Software becomes more and more complex

@ Research showed that billions can be saved by testing better

@ No need for the source code (black-box perspective)

Model-based testing

@ Precise and formal

@ Automatic generation and evaluations of tests

@ Repeatable and scientific basis for product testing

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 3 /17

Introduction — Risk and coverage

Why do we need risk and coverage?

@ Testing is inherently incomplete
@ Testing does increase our confidence in the system
@ A notion of quality of a test suite is necessary

@ Two fundamental concepts: risk and coverage

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 4 /17

Introduction — Risk and coverage

Why do we need risk and coverage?

@ Testing is inherently incomplete
@ Testing does increase our confidence in the system
@ A notion of quality of a test suite is necessary

@ Two fundamental concepts: risk and coverage

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 4 /17

Introduction — Risk and coverage

Why do we need risk and coverage?

@ Testing is inherently incomplete
@ Testing does increase our confidence in the system
@ A notion of quality of a test suite is necessary

@ Two fundamental concepts: risk and coverage

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 4 /17

Introduction — Risk and coverage

Why do we need risk and coverage?

@ Testing is inherently incomplete

@ Testing does increase our confidence in the system
@ A notion of quality of a test suite is necessary
°

Two fundamental concepts: risk and coverage

Informal calculation

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 4 /17

Introduction — Risk and coverage

Why do we need risk and coverage?

@ Testing is inherently incomplete
@ Testing does increase our confidence in the system
@ A notion of quality of a test suite is necessary

@ Two fundamental concepts: risk and coverage

Informal calculation

Coverage: 1% = 46%

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 4 /17

Introduction — Risk and coverage

Why do we need risk and coverage?

@ Testing is inherently incomplete
@ Testing does increase our confidence in the system
@ A notion of quality of a test suite is necessary

@ Two fundamental concepts: risk and coverage

Informal calculation
. 6 0
Coverage: 13 = 46%

Risk: 7-0.1-$10 = $7

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 4 /17

Introduction — Existing approaches

@ Statement coverage @ State/transition coverage

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 5 /17

Introduction — Existing approaches

@ Statement coverage @ State/transition coverage

Limitations:

@ all faults are considered of equal severity

@ likely locations for fault occurrence are not taken into account

@ syntactic point of view

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 5 /17

Introduction — Existing approaches

@ Statement coverage @ State/transition coverage

Limitations:

@ all faults are considered of equal severity

@ likely locations for fault occurrence are not taken into account

@ syntactic point of view

Existing risk measures

@ Bach @ Amland

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 5 /17

Introduction — Existing approaches

@ Statement coverage @ State/transition coverage

Limitations:

@ all faults are considered of equal severity

@ likely locations for fault occurrence are not taken into account

@ syntactic point of view

Existing risk measures

@ Bach @ Amland

Limitations:
@ Informal

@ Based on heuristics

@ Only identify testing order for components

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 5 /17

Introduction — Preliminaries

Starting point: semantic coverage

Previous work by Brandan Briones, Brinksma and Stoelinga
@ System considered as black box
@ Semantic point of view

o Fault weights

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 6 /17

Introduction — Preliminaries

Starting point: semantic coverage

Previous work by Brandan Briones, Brinksma and Stoelinga
@ System considered as black box
@ Semantic point of view

o Fault weights

Labelled transition systems

10ct? 20ct?

() teal{)

coffee! coffee!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 6 /17

Introduction — Preliminaries

Starting point: semantic coverage

Previous work by Brandan Briones, Brinksma and Stoelinga
@ System considered as black box
@ Semantic point of view

o Fault weights

Labelled transition systems

coffee! coffee!

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 6 /17

Introduction — Preliminaries

Starting point: semantic coverage

Previous work by Brandan Briones, Brinksma and Stoelinga
@ System considered as black box
@ Semantic point of view

o Fault weights

Labelled transition systems

coffee! coffee!

10ct? coffee! 20ct? teal §

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 6 /17

Introduction — Preliminaries

Starting point: semantic coverage

Previous work by Brandan Briones, Brinksma and Stoelinga

@ System considered as black box
@ Semantic point of view

o Fault weights

Labelled transiton systems

10ct?

'

coffee! coffee!

0 coffeel\ teal

10ct? coffee! 20ct? teal § fail O fail

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 6 /17

Introduction — Preliminaries

Starting point: semantic coverage

Previous work by Brandan Briones, Brinksma and Stoelinga

@ System considered as black box
@ Semantic point of view

o Fault weights

Labelled transiton systems

10ct?

'

coffee! coffee!

0 coffeel\ teal

10ct? coffee! 20ct? teal § fail O fail

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 6 /17

Introduction — Preliminaries

Starting point: semantic coverage

Previous work by Brandan Briones, Brinksma and Stoelinga

@ System considered as black box
@ Semantic point of view

o Fault weights

Labelled transiton systems

10ct?

'

coffee! coffee!

0 coffeel\ tea!

10ct? coffee! 20ct? teal § fail O fail

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 6 /17

Introduction — Preliminaries

Starting point: semantic coverage

Previous work by Brandan Briones, Brinksma and Stoelinga

@ System considered as black box
@ Semantic point of view

o Fault weights

Labelled transiton systems

10ct?

'

coffee! coffee!

0 coffeel\ teal

10ct? coffee! 20ct? teal § fail O fail

Interpreting a successful testing process: risk and actual coverage Introduction Jul. 31,2009 6 /17

The WFS Model — Weighted Fault Specifications

Weighted fault specification

A WFS™ consists of
@ An LTS (expected system behaviour)
@ An error function (probability of faults)
@ A weight function (severity of faults)

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 7 /17

The WFS Model — Weighted Fault Specifications

Weighted fault specification

A WFS™ consists of
@ An LTS (expected system behaviour)
@ An error function (probability of faults)
@ A weight function (severity of faults)

coffee! coffee!

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 7 /17

The WFS Model — Weighted Fault Specifications

Weighted fault specification

A WFS™ consists of
@ An LTS (expected system behaviour)
@ An error function (probability of faults)
@ A weight function (severity of faults)

Perr (10ct? coffee!) = 0.02
Perr(20ct? teal) = 0.03

coffee! coffee!

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 7 /17

The WFS Model — Weighted Fault Specifications

Weighted fault specification

A WFS™ consists of
@ An LTS (expected system behaviour)
@ An error function (probability of faults)
@ A weight function (severity of faults)

Perr (10ct? coffee!) = 0.02
Perr(20ct? teal) = 0.03

w(e) =10
| I w(10ct?) =15
coffee! coffee! w(10ct? coffee!l) =9.5

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 7 /17

The WFS Model — Fault Weight

0

10ct? . 20ct?
@.@@

coffee! coffee!

w(e) =10
w(10ct?) =15
w(10ct? coffeel) = 9.5

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 8 /17

The WFS Model — Fault Weight

)

10ct? ' 20ct?
@.@@

coffee! coffee!
w(e) =10
w(10ct?) =15
w(10ct? coffeel) = 9.5

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 8 /17

The WFS Model — Fault Weight

)

10ct? ' 20ct?
@.@@

coffee! coffee!
20ct?

w(e) =10
w(10ct?) =15
w(10ct? coffeel) = 9.5

coffee!
10ct? \ 20ct?

S1 S0 2

coffee! tea!

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 8 /17

The WFS Model — Fault Weight

)

10ct? ' 20ct?
@.@@

coffee! coffee!
20ct?

w(e) =10
w(10ct?) =15
w(10ct? coffeel) = 9.5

coffee!
10ct? \ 20ct?

S1 S0 2

coffee! tea!

Fault weight: 10 + 15 =25

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 8 /17

The WFS Model — Fault Weight

coffee! coffee!
?
20Ct. W(€) — 10
|
coffeel w(10ct?) = 15
10ct? \ 20ct?
w(10ct? coffeel) = 9.5
S1 S0 2
coffee! tea!
1)

Fault weight: 10 + 15 =25

(We are only interested in whether a fault can
occur, not in which one)

Interpreting a successful testing process: risk and actual coverage The WFS Model Jul. 31,2009 8 /17

Definition

Given a test suite T and a passing execution E, we define
risk(T, E) = E[w(Impl) | observe E]

i.e., the fault weight still expected to be present after observing E.

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 9 /17

Definition

Given a test suite T and a passing execution E, we define
risk(T, E) = E[w(Impl) | observe E]

i.e., the fault weight still expected to be present after observing E.

Observe:

risk((), ()) =

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 9 /17

Definition

Given a test suite T and a passing execution E, we define
risk(T, E) = E[w(Impl) | observe E]

i.e., the fault weight still expected to be present after observing E.

Observe:

risk({), ()) = Y w(o) - perr(0)

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 9 /17

Risk

Q

10ct?

.

coffee! coffee!

0 coffeel\ tea!

fail pass fail

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Risk

@

10ct?

Y

coffee! coffee!

0 coffeel\ tea!

fail pass fail

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Risk

@

10ct?

Y

coffee! coffee!

0 coffeel\ tea!

fail pass fail

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Risk

@

10ct?

Y

coffee! coffee!

0 coffeel\ tea!

fail pass fail

Nondeterministic output behaviour yields difficulties.

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Risk

@

10ct?

Y

coffee! coffee!

0 coffeel\ tea!

fail pass fail

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Risk

1)
10ct? ' 20ct?

0 Q@ OTO

coffee! coffee!
10ct?

¥ 20ct?

0 coffeel\ tea!

fail pass fail

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

risk((), () = 3 w(0) - pers(o)

[

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Risk

@

10ct?

Y

coffee! coffee!

0 coffeel\ tea!

fail pass fail

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

risk(T,E) = > w(0) - perr() + F(10ct?)
o#10ct?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Risk

@

10ct?

Y

coffee! coffee!

0 coffeel\ tea!

fail pass fail

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

risk(T,E) = > w(0) - perr(0) + F(10ct?)
o#10ct?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Risk

@

10ct?

Y

coffee! coffee!

0 coffeel\ tea!

fail pass fail

Nondeterministic output behaviour yields difficulties.

How to calculate risk (expected fault presence)?

risk(T, E) = Z w (o) - perr(c) + w(10ct?) - Plerror after 10ct? | E]
o#10ct?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 10 /17

Weighted Fault Specifications (revisited)

Weighted fault specification

A WES consists of
@ An LTS (expected system behaviour)

@ An error function (probability of faults)
@ A weight function (severity of faults)

@ A failure function (probability of failure in case of fault)

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 11 /17

Weighted Fault Specifications (revisited)

Weighted fault specification

A WEFS consists of
@ An LTS (expected system behaviour)

@ An error function (probability of faults)
@ A weight function (severity of faults)

@ A failure function (probability of failure in case of fault)

5
10ct? () 20ct?

coffee! coffee!

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 11 /17

Weighted Fault Specifications (revisited)

Weighted fault specification

A WEFS consists of
@ An LTS (expected system behaviour)

@ An error function (probability of faults)
@ A weight function (severity of faults)

@ A failure function (probability of failure in case of fault)

1)
10ct? ' 20ct? pfail(e) =1.0
9.@@ Prail(10ct?) = 0.5
coffee! coffee!

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 11 /17

Risk

O 5

10ct? 10ct? ' 20ct?
¥ oW OO
coffee! coffee!

0 coffeel\ tea!

fail pass fail
risk(T, E)
= Z w(o) « perr(0) + w(10ct?) - Plerror after 10ct? | E]
o#10ct?

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 12 /17

Risk

O 5

10ct? 10ct? ' 20ct?
¥ oW OO
coffee! coffee!

0 coffeel\ tea!

fail pass fail

risk(T, E)
= Z w(o) « perr(0) + w(10ct?) - Plerror after 10ct? | E]
o#10ct?
= D w(0) pen(0) +
o#10ct?
(1 — prain(10ct?)) - Perr(10ct?)
(1 — prait(10ct?)} perr(10ct?) + (1 — perr(10ct?))

w(10ct?) -

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 12 /17

risk(T, E) = E[w(Impl) | observe E]

Calculation of risk
risk(T, E) = risk((), ()) —

(1 — pfaﬂ(a))Obs(U’E) : perr(U))

¢;E W(O-)‘ perr(a) N (1 - pfail(a))Obs(a’E) : perr(a) +1- Perr(U)

with obs(o, E) the number of observations in E after o.

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 13 /17

risk(T, E) = E[w(Impl) | observe E]

Calculation of risk

risk(T, E) = risk((), ()) —
Z W(U)' <perr(0) -

o€cE

(1 - Pfail(U))Obs(U’E) : perr(U)
(1 - pfail(a))Obs(a’E) : perr(a) +1-— Perr(a)

with obs(o, E) the number of observations in E after o.

Although risk((), ()) = >_, w(0) - perr(0) is an infinite sum, it can
be calculated smartly:

o w defined by truncation: the sum is already finite

@ w defined by discounting: system of linear equations

Interpreting a successful testing process: risk and actual coverage Risk Jul. 31,2009 13 /17

Other Applications

Compute test suite quality in advance

e Estimate correct system behaviour

@ Compute expected risk after passing the test suite

Interpreting a successful testing process: risk and actual coverage Other Applications Jul. 31,2009 14 /17

Other Applications
Compute test suite quality in advance

e Estimate correct system behaviour

@ Compute expected risk after passing the test suite

<

Optimisation

@ Find the optimal test suite of a given size

@ Apply history-dependent backwards induction
(Markov Decision Theory)

Interpreting a successful testing process: risk and actual coverage Other Applications Jul. 31,2009 14 /17

Other Applications
Compute test suite quality in advance

e Estimate correct system behaviour

@ Compute expected risk after passing the test suite

V.

Optimisation

@ Find the optimal test suite of a given size

@ Apply history-dependent backwards induction
(Markov Decision Theory)

Actual Coverage

@ Only consider the traces that were actually tested
@ Use error probability reduction as coverage measure

@ Methods very similar to risk

Interpreting a successful testing process: risk and actual coverage Other Applications Jul. 31,2009 14 /17

Limitations and Possibilities

Probabilities might be hard to find, but
@ We show what can be calculated, and the required ingredients

@ We facilitate sensitivity analysis

@ To compute numbers, we have to start with numbers. ..

Interpreting a successful testing process: risk and actual coverage Limitations and Possibilities Jul. 31,2009 15 /17

Limitations and Possibilities

Probabilities might be hard to find, but

@ We show what can be calculated, and the required ingredients

@ We facilitate sensitivity analysis

@ To compute numbers, we have to start with numbers. ..

It looks like we need many probabilities and weights, but

@ The framework can be applied at higher levels of abstraction

e Compute risk based on error / failure probabilities of modules

v

Interpreting a successful testing process: risk and actual coverage Limitations and Possibilities Jul. 31,2009 15 /17

Conclusions and Future Work

@ Formal notion of risk

@ Both evaluation of risk and computation of optimal test suite

@ Easily adaptable to be used as a coverage measure

Interpreting a successful testing process: risk and actual coverage Conclusions and Future Work Jul. 31,2009 16 /17

Conclusions and Future Work

Main results

@ Formal notion of risk

@ Both evaluation of risk and computation of optimal test suite

@ Easily adaptable to be used as a coverage measure

Directions for Future Work

o Validation of the framework: tool support, case studies

@ Dependencies between errors

@ On-the-fly test derivation

Interpreting a successful testing process: risk and actual coverage Conclusions and Future Work Jul. 31,2009 16 /17

uestio

©

risk and actual coverage Jul. 31,2009 17 /17

Interpreting a successful testing proces:

