Flipper 2.0

A Pragmatic Dialogue Engine for Embodied Conversational Agents

Jelte van Waterschoot
j.b.vanwaterschoot@utwente.nl
University of Twente
Enschede, Netherlands

Dennis Reidsma
d.reidsma@utwente.nl

University of Twente
Enschede, Netherlands

Merijn Bruijnes
m.bruijnes@utwente.nl
University of Twente
Enschede, Netherlands

Daniel Davison
d.p.davison@utwente.nl
University of Twente
Enschede, Netherlands

Dirk Heylen
d.k.j.heylen@utwente.nl
University of Twente
Enschede, Netherlands

Jan Flokstra
jan.flokstra@utwente.nl
University of Twente
Enschede, Netherlands

Mariét Theune
m.theune@utwente.nl
University of Twente
Enschede, Netherlands

ABSTRACT

We present a new dialogue engine called Flipper 2.0 (Flipper) which
aims to help developers of embodied conversational agents (ECAs)
to quickly and flexibly create dialogues. Flipper provides a techni-
cally stable and robust dialogue management system to integrate
with other components of ECAs such as behaviour realisers. We
compare Flipper with state-of-the-art dialogue design systems. We
describe the details of our dialogue engine, how it handles dialogue
management and how it supports the authoring of dialogues. We
demonstrate the use of the dialogue engine with examples of design
patterns and discuss practical applications. Finally we give recom-
mendations on the cases in which it is beneficial to use Flipper.

CCS CONCEPTS

+ Human-centered computing — Natural language interfaces;
Systems and tools for interaction design; User interface toolkits;
« Information systems — Open source software;

KEYWORDS

dialogue manager, dialogue engine, dialogue design, pragmatics,
embodied conversational agent

ACM Reference Format:

Jelte van Waterschoot, Merijn Bruijnes, Jan Flokstra, Dennis Reidsma, Daniel
Davison, Mariét Theune, and Dirk Heylen. 2018. Flipper 2.0: A Pragmatic
Dialogue Engine for Embodied Conversational Agents. In Proceedings of the
18th Annual Conference on Intelligent Virtual Agents. ACM, Sydney, NSW,
Australia, 8 pages. https://doi.org/10.1145/3267851.3267882

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IVA °18, November 2018, Sydney, Australia

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6013-5/18/11.

https://doi.org/10.1145/3267851.3267882

1 INTRODUCTION

The task of building multi-modal dialogue systems for embod-
ied conversational agents (ECAs) in large multi-partner research
projects is not trivial. Such systems need to handle complex, emer-
gent, multi-modal dialogues, be continuously responsive, and deal
with unpredictable user input. The reality is that in such projects
the dialogue system consists of, and interfaces with, several spe-
cialised components from different partners, each with their own
technical framework. The ideal dialogue system has two dimen-
sions: it needs to (1) support researchers to achieve the complexity
of the emerging dialogues that current projects strive for; and (2)
support the quick creation of (partially) functional prototypes that
can demonstrate and/or evaluate the effect of design choices or of
prospective technical components on the ECA early in the project.

The first version of Flipper was used for performing dialogue
management in the SEMAINE! project [22]. We have upgraded Flip-
per to navigate the abovementioned two dimensions and present
Flipper 2.02, a declarative language and interpreter specifically de-
signed to quickly and iteratively create a dialogue manager for an
ECA. Towards that goal we have designed Flipper with the follow-
ing capabilities. (1) With Flipper, basic dialogues can be created
with minimal overhead. (2) Flipper can switch between (a) dele-
gating a task to an external specialised component (e.g. sensor
interpretation or decision making); and (b) simulating prospec-
tive external components from within the dialogue templates as
a temporary placeholder until the component exists. (3) Flipper
supports choosing along the spectrum between (a) robust, scalable
and well-defined declarative models of dialogues; and (b) pragmatic
‘hacking-stuff-together’ and ‘wizarding’ to try out the effects of cer-
tain dialogue paradigms before actually modelling them properly.
This can help early in the project to show how a dialogue with the
ECA will emerge. It also helps to make decisions that are informed
by the reality of the distributed ECA technology that is available or
that will be developed. Early demonstrations demand a pragmatic

!https://semaine-db.eu/
2From now on, Flipper 2.0 is denoted as Flipper

https://doi.org/10.1145/3267851.3267882
https://doi.org/10.1145/3267851.3267882

IVA *18, November 2018, Sydney, Australia

approach while at some point the pragmatic developments and the
lessons learned need to be consolidated into an ECA system that is
robust and scalable. (4) Information in Flipper can be stored in a per-
sistent database which enables, for instance, a robust consistency
between interactions over time. (5) Flipper can process information
from input sensors in parallel, handle decision making, and create
and send output, making the ECA continuously responsive in a
dialogue. (6) Flipper can communicate with external components; it
currently supports seven middleware communication platforms and
it is easy to add other methods of communication. (7) Finally, over
the course of several national and international research projects
we have created a set of ‘design patterns’. In these design patterns
we show how we solve in a robust and scalable way the typical situ-
ations and technical problems that occur when creating a dialogue
system. We will make these available together with the software
and highlight some in this paper.

In Section 2 we explain our view on dialogue systems and discuss
related work on dialogue management and designing dialogues. In
Section 3 we discuss the technical details of Flipper. In Section 4
we show some examples and design patterns of using the dialogue
engine. In Section 5 we point at some work that has been done with
Flipper in ongoing and earlier research projects. Finally, we discuss
the current limitations and future development of the dialogue
engine in Section 6 and present our conclusions in Section 7.

2 BACKGROUND

ECAs consist of multiple technical components that can be roughly
divided into three ‘pillars of tasks’: sense, think, and act. In an
interaction, ‘sensing’ components are tasked with processing and
interpreting the human’s language and social signal behaviour
(e.g. the user’s mouth corners move up, meaning a smile). This
information is used by the agent to ‘think’ about the behaviour of
the user (e.g. the user liked the joke I just told) in order to decide
what is an appropriate response in the context (e.g. laugh with
the user to create rapport). This response behaviour is displayed
(‘acted’) by the body of the ECA. Each component in each pillar
has a distinct task that it performs in order for an ECA to function
in a social interaction.

We distinguish within the ‘thinking’ component of an ECA a
division of three parts: a dialogue engine, a dialogue manager and
dialogues. The dialogue manager is the part of an ECA that deals
with how the agent behaves in an interaction. It is a collection of
rules that control the flow and state of the conversation [12]. It does
so in response to the input of the user, and the goals and beliefs of
the ECA. The dialogue engine is the machinery with which it is
possible to create a dialogue manager. This can be done in a regular
programming language, or in a system that interprets declarative
dialogue specifications to control a dialogue, or a mixture of the
two. Authors of dialogues are then required to write content (a
dialogue structure within the domain that the agent knows about
and can converse about and that contains all the behaviours that
the agent can decide to do) and add this to the dialogue system.
Together, the dialogue engine, dialogue manager and dialogues
make up the complete dialogue system.

Choosing a tool to develop dialogues for your ECA has a great
impact on the type of interaction. An overview of different tools

J. van Waterschoot et al.

that are currently available is provided in Table 1. We review seven
aspects of each dialogue design tool: information processing, the
interface to author dialogues, the support for linking an embodied
agent, the design paradigm, how dialogue control is organised,
the support for different types of interaction management and the
inclusion of design patterns for authoring dialogues.

Information processing is the way in which the context of the
dialogue is stored and processed. In most tools this is captured in
either states or a network. A state-based approach is easier to inter-
pret and for authoring dialogues, than a network-based approach.
However, if you have much data available, a network would be
very convenient to capture all relevant information without explic-
itly stating what is relevant. Flipper uses information-state update
rules, similar to the approaches in TrindiKit [12] and the VHToolkit
[10]. The information state update approach is useful for keeping
control of the dialogue flow without declaring all possible dialogue
states. Commercial cloud-based services such as LUIS.AI, Wit.ai,
DialogFlow, Watson, Lex and Recast.ai all use a neural network
for processing the information®, which is a useful approach for
learning from large datasets containing text or conversations [2, 4].

Interface of Authoring is the process of designers creating in-
teractions for their ECA. The accessibility of authoring is important
for designers to use your tool. The VHToolkit, with the NPCEditor
[14], Visual SceneMaker [7] and HALEF [17], with OpenVoiceXML,
provide a graphical user interface for editing the dialogue. Other
tools, like Flipper, IrisTK [21] and OpenDial [15] use a declarative
way of defining the dialogue in XML. In the commercial cloud-
services, designers can use a web-interface to author dialogues,
where they provide user input and an appropriate agent response,
marking the intents and entities in the utterances. In the VHToolkit
[10], WAMI [9] and Flipper scripting is also possible for less re-
stricted authoring.

Embodiment is an ECA’s capability to perform both verbal and
non-verbal behaviours. Most of the tools support this and it is a
necessity for developing an ECA. IrisTK [21], Visual SceneMaker [7]
and the VHToolkit [10] come packed with an embodiment. Others,
like RavenClaw [1], Disco [19], OpenDial [15] and Flipper have
interfaces available for embodiment. The commercial tools are
harder to link to an embodiment, due to the restricted intent-entity
mapping. HALEF [17] is less suitable for embodiment, due to its
focus on telephone-conversation.

Developing dialogues can be done via a bottom-up pragmatic ap-
proach, a more theory-driven robust manner or a mixed approach,
which are the design paradigms. PyDial [24] and the commer-
cial tools like DialogFlow are more on the pragmatic side of the
design paradigm scale, for quickly developing content with conver-
sational data. Tools like RavenClaw [1] and Disco [19] require a
theory-driven approach due to their hierarchical way of processing
information and have only limited conversational data available.
The emphasis of Flipper is on using a pragmatic approach when
starting to develop dialogues, though for more complex dialogues
theory-driven development is also possible, similar to the design
paradigm in OpenDial[15].

The dialogue control can be either single or distributed (multi-
agent) [6]. In IrisTK [21] a single component is responsible for the

3uis.ai, wit.ai, dialogflow.com, ibm.com/watson/, aws.amazon.com/lex/ and recast.ai

luis.ai
wit.ai
dialogflow.com
ibm.com/watson/
aws.amazon.com/lex/
recast.ai

Flipper 2.0

IVA ’18, November 2018, Sydney, Australia

Table 1: An overview of different dialogue design tools. For each tool is listed which architecture is used for information
processing, the authoring method for dialogues, the embodiment support, the design paradigm, the possibility for interaction
management and whether the tool supplies design patterns.

Information Authoring . Design Dialogue Interaction Design
Tool . Embodiment .
Processing Interface Paradigm Control Management Patterns
DialogFlow, Wit.ai, LI.JIS‘al, Neural Web—mterface for . No Pragmatic Single No No
Watson, Lex, Recast.ai network intent-entity mapping
RavenClaw Hierarchical Dlal(?gue t ask Yes Theory-driven Sl.ngl'e or Yes No
plan based specification distributed
Disco Hierarchical Hlerar?hlcal free Yes Theory-driven Single Yes No
task based authoring
VHToolkit Information NP.C Edltor FLoReS, Yes Pragmatic Sl.ngl'e or Yes No
state update scripting distributed
IrisTK Statecharts St.atecharts m Yes Pragmatic Single Yes Some
IrisFlow
Statistical Ontologi
PyDial aushiea o (.)gles, - Yes Pragmatic Single No No
network user simulation
Probabilistic infor- P ti
OpenDial roPabiushe mior Probabilistic rules Yes ragmatic or Single Yes Some
mation state update theory-driven
HALEF Any VoiceXML No Pragmatic Distributed ~ Yes No
TrindiKit Information Formal . Yes Theory-driven S}ngl‘e o Yes Some
state update declaration distributed
WAMI Frame-based Scripting Yes Pragmatic Single Yes No
Scenefl d Sing],
Visual SceneMaker Statecharts cene O\.V an Yes Pragmatic %ng Ae or Yes Some
Scenescript distributed
Flipper 2.0 Information Rul.es,‘ Yes Pragmatic. or S'%ngl'e or Yes Yes
state update scripting theory-driven distributed

dialogue flow, maintaining transparency of changes in the dialogue
state. In complex dialogues a single component for dialogue control
can be a bottleneck. RavenClaw [1], the VHToolkit [10] and Flipper
are capable of distributed control, using separate components, for
example, for backchanneling and deliberate conversation.

During a conversation with an ECA, turn-taking and backchan-
neling are important for a coherent conversation; this is called
interaction management. The commercial tools only support
rigid turn-by-turn dialogues; there is no managing of other turn be-
haviour like pauses or interruptions. Flipper has a structure similar
to RavenClaw [1] and IrisTK [21] to support both simple turn-by-
turn behaviour as well as more dynamic turn-taking.

Most dialogue design tools provide a description of their tool and
simple examples to run the software. However, an underestimated
aspect is how precisely to design the dialogues themselves: which
design patterns a designer of dialogues could use. IrisTK [21]
and Visual SceneMaker [7] do provide dialogue flow patterns for
authors but design patterns on the higher level dealing with sensory
input or behaviours are not provided. These design patterns help
authors with fast decision making of prototyping their ECA. In this
paper we describe multiple types of design patterns that are helpful
in developing dialogues in Flipper.

3 FLIPPER

Flipper is a dialogue engine for pragmatic yet robust dialogue man-
agement that is applicable in many domains, and has reusable
design patterns. Designers of ECAs can use the dialogue engine to

quickly create dialogue systems that can be as complex as they like.
The software is open-source and available on GitHub.*

The main concepts in Flipper are the information state and declar-
ative templates written in XML. The information state can be
pre-defined, created at runtime, and/or updated on-the-go. It stores
interaction-related information and data in a hierarchical tree-based
structure. The information state is represented in JSON format, mak-
ing it human readable and easy to integrate with other dialogue
components that support working with JSON data structures. List-
ing 1 shows an example information state. In this example the data
structure’s top-level root node ‘is’ has a child node ‘agent’ which
stores information such as the name of the user, the last recognised
user utterance, the current user emotion, and the dialogue history.
Nodes in the information state can be accessed in Flipper by navigat-
ing the tree-based data structure using dot notation. For example,
the user’s name can be accessed through ‘is.agent.userName’.
Flipper can be linked to a PostgreSQL database to create a per-
sistent information state. This means that the information state
can be restored to a previous valid information state that exists in
the database. Such a persistent information state can be used, for
example, to track interactions with a user over multiple sessions.

The data structure stored in the information state is queried and
updated using templates. Templates can be grouped and organised
in different files according to their related functionality. Each tem-
plate consists of preconditions and effects. Preconditions are sets
of rules that describe when a template should be executed. Effects
are the associated updates to the information state. Listing 2 shows

4GitHub link: https://github.com/hmi-utwente/flipper-2.0

https://github.com/hmi-utwente/flipper-2.0

IVA *18, November 2018, Sydney, Australia

an example template that checks whether a user is present. If so,
the user is personally greeted. Using the information state from
Listing 1, this template will result in the agent saying the following
greeting: “Hello, Alan! Nice to meet you!”

Preconditions and effects are evaluated using the Nashorn Java-
Script Engine, which supports up to ECMAScript 5.1. In Flipper,
JavaScript expressions and functions can be used as an impera-
tive addition to the declarative template approach. Finally, Flipper
exposes Java objects to be used within templates for further inte-
gration with existing (external) software modules.

{ "is" : { "agent" : {

"userPresent" : true,

"userName" : "Alan",

"userSpeech" : "hello what can you do",
"userEmotion" : "happy",

"history": {

"greetByAgent" : false,
"greetByUser" : false
Iy

Listing 1: An example information state that stores the
agent’s knowledge of the interaction.

<template id="hello_world">
<preconditions>
<condition>is.agent.userPresent</condition>
</preconditions>
<effects>
<assign is="is.agent.say'">
"Hello "+is.agent.userName+"! Nice to meet you!"
</assign>
</effects>
</template>

Listing 2: Example template where the agent greets the user.

3.1 Transaction Model

The dialogue engine uses a transaction model to ensure reliabil-
ity. According to Gray and Reuter [8, p. 6], a transaction is [...] a
collection of operations on the physical and abstract application state.
In Flipper, the check of the preconditions in all templates and exe-
cution of their associated effects is considered as one transaction.
A transaction is complete when it is successfully committed to a
database.

In each transaction, the conditions of all templates are checked on
a frozen information state. The effects of the templates that are true
are executed consecutively. If all effects are executed successfully,
the updated information state is committed to the database. If one
of the effects fails, all processed effects in the current transaction
are rolled back and the information state is restored to the previous
state, which is retrieved from the database. Template checking
occurs in recurring intervals. A limit can be set on the frequency
with which templates are checked. For example, with a frequency of
20 Hz all templates are checked once every 50 ms. Setting a higher
frequency may result in a more responsive system, while setting a
lower frequency leads to a lower system load.

J. van Waterschoot et al.

4 CREATION OF A DIALOGUE MANAGER

The first important thing to think about when designing dialogues
is the information flow of the dialogue. What type of information
is needed from the user and when? What type of information is
required for the agent? What should the agent do and when? Which
behaviours need to be displayed and when? Here we explain how
to create a dialogue system with Flipper and showcase some design
patterns using the ‘sense, think, act’ metaphor.

4.1 Sensing

An interactive ECA needs sensory input from the user. This infor-
mation needs to be put into the information state so that concurrent
processes can use it. Flipper itself does not contain sensing com-
ponents, but projects that include them are available for download
(c.f. Section 5).

To receive sensory input from auxiliary devices or software
modules we have developed a ‘middleware’ component. This com-
ponent is a wrapper around existing off-the-shelf messaging and
communication services. Currently Flipper supports wrappers for
ActiveMQ, ROS, YARP, Apollo/STOMP, TCP/IP, UDP and USB. Our
middleware component listens to messages on a supported com-
munication channel and then places them in the information state.
When such messages are received in JSON format they can directly
be stored in the information state; otherwise the message has to be
preprocessed into a JSON format first.

Once the sensory information has been placed in the information
state it has to be processed to determine the impact on the dialogue
flow. To prevent templates from processing the same sensor infor-
mation twice accidentally, we suggest the following design patterns
for dealing with sensory input in Flipper.

As a first simple approach, each template could be required to
have an effect that negates its own precondition, such as in Listing 3,
where the parameter is.agent.userExpressionEvent is set from
smile to none. A template could remove the sensor input from
the information state once it has processed it. Although this is a
pragmatic and quick solution it is not a scalable approach for the
long term. Also, it results in verbose templates. When the impact
of a new sensor value should be more multi-faceted, one could
construct a template file with a collection of templates that first
dump the raw input in a temporary information state variable and
then successively process the input. Separating the multiple effects
of the new sensor input into multiple templates keeps the templates

<template id="soc_respond_to_smile" conditional="true">
<preconditions>
<condition>
is.agent.userExpressionEvent === "smile"
</condition>
</preconditions>
<effects>
<assign is="is.agent.fml.template">"smile_return"</assign>
<assign is="is.agent.userExpressionEvent">"none"</assign>
</effects>
</template>

Listing 3: Example of a template that removes input once it
has been processed.

Flipper 2.0

<template id="1">

<preconditions>
<condition>is.sensor.userExpressionEvent === "smile"
</condition>
<condition>is.sensor.userGesture === "waving"
</condition>

</preconditions>

<effects>
<assign is="is.agent.fml.template">"smile_and_wave_return
</assign>

</effects>

</template>

<!-- Many more templates could reside here, each triggering

on a combination of is.sensor.userExpressionEvent and

other preconditions-->

<template id="x">

<preconditions>
<condition>is.sensor.userExpressionEvent === "smile"
</condition>
<condition>is.weatherStation.currentWeather === "sunny"
</condition>

</preconditions>

<effects>
<assign is="is.agent.speak">"Beautiful day today!"
</assign>

</effects>

</template>

<template id="last">

<preconditions>
<condition>is.sensor.userExpressionEvent !== "neutral"
</condition>

</preconditions>

<effects>
<assign is="is.sensor.userExpressionEvent">"neutral"
</assign>

</effects>

</template>

Listing 4: Quick design pattern for dealing with a sensory
input event. The top templates are triggered by a user’s de-
tected facial expression and other sensor information. The
last template ‘cleans up’ the sensory input to make sure ac-
tions based on such sensory input are only processed once.

relatively clean and readable. The execution order of templates is
always defined by the order of templates in the template file. A
final template can do a cleanup of the raw sensory input once
the other templates have finished. See Listing 4 for an example of
such a template file. However, this solution is useful only when
developing small behaviours, because with multiple template files
it is impossible to be sure which template is executed last.
Another design pattern for dealing with sensory input is to keep
track of a history of sensory input and check against time or sensor
value index whether the input has been processed already. This
can be done by either keeping track of an index or a timestamp.
The downside of this approach is that it creates more overhead
(more memory consumption) and is more complex to implement
than the other two pragmatic approaches. However, for robust and
scalable systems where you cannot be sure which other template
sets might have access to the same information, this last approach

IVA ’18, November 2018, Sydney, Australia

<template id="add new">

<preconditions>
<condition>isNew(is.sensor.userEmotion)</condition>

</preconditions>

<effects>
<assign is="is.agent.history.emotions">
addToArray(is.agent.history.emotions,

is.sensor.userEmotion)

</assign>

</effects>

</template>

<template id="remove old">

<preconditions>
<condition>isFull(is.sensor.userEmotion)</condition>
</preconditions>

<effects>
<assign is="is.agent.history.emotions">

removeHeadArray(is.agent.history.emotions)

</assign>

</effects>

</template>

Listing 5: Complex design pattern for dealing with input.

is a necessity. Listing 5 shows an example of templates dealing
with sensory input in this way. We emphasize that each of these
solutions can be applicable in a specific case and that each pattern
is a good approach for working with Flipper depending, among
other things, on which stage of development the dialogue system
is in.

<template id="soc_sal_returnsalutation" conditional="true">

<preconditions>
<condition>!is.agent.greetByAgent</condition>
<condition>is.agent.userEmotion === "happy"</condition>

<condition>containsKeyword(is.agent.userSpeech,
["hello","hi"])</condition>
</preconditions>
<effects>
<assign is="is.agent.fml.template">
"social_salutation_return"</assign>
<assign is="is.agent.fml.parameters['var.name']">
is.agent.userName</assign>
<assign is="is.agent.fml.parameters['emotion.em1']">
is.agent.userEmotion</assign>
<assign is="is.agent.greetByAgent">true</assign>
</effects>
</template>

Listing 6: Example of a set of templates returning a user’s
happy greeting.

4.2 Thinking

Information from the input can be used by the agent to ‘think” about
it in order to determine an appropriate response in the current
dialogue context. This is done in what we call ‘dialogue behaviour
templates’. An example of a dialogue behaviour template is shown
in Listing 6. This template covers the situation when a user has not

IVA *18, November 2018, Sydney, Australia

<template id="behaviour">
<preconditions>

J. van Waterschoot et al.

<condition>is.agent.behaviours.length !== 0</condition>

</preconditions>
<effects>
<behaviour name="executeBehaviour">

<object class="behaviourRealiser" persistent="behaviourRealiser"></object>

<arguments>

<value class="String" constant="<bml id='bml1' xmlns='http://www.bml-initiative.org/bml/bml-1.0"
character="'Alice'><gaze id='gazel' target='PERSON1'/></bml>"/>

</arguments>
</behaviour>
</effects>
</template>

Listing 7: Template sending a String message in BML format with gaze behaviour to a behaviour realiser.

previously been greeted by the agent, the user is currently happy,
and the user has said ‘hello’ or ‘hi’. In this case the agent should
return the greeting with a friendly face, including the user’s name.

We encourage designers to make a distinction between high-level
and low-level interaction templates. This recommendation follows
Lemon et al. [13], who describe their dialogue design approach as
creating high-level dialogue (content) moves, but also handling low-
level (management) phenomena like turn-taking, back channelling,
and grounding. Turn-taking for example can be done by a state-
machine which regulates turns based on current speech activity
of the user and agent. By using this conceptual division between
content and management templates —a design distinction only;
Flipper does not register a formal distinction between the two—
some management templates can be reused in different ECAs and
different projects. For example, components that contain low-level
information state updates for turn-taking and back channelling
are applicable in multiple domains and can be used in each agent
that requires it, whereas high-level content templates are often not
reusable as they contain domain-specific content.

4.3 Acting

We have also developed modules for Flipper that use our middle-
ware component to communicate with the behaviour realiser of
an embodied conversational agent. These modules can send both
Behavioural Markup Language (BML) and Functional Markup Lan-
guage (FML) [27]. Inside Flipper, the parameters for the behaviours
need to be determined and set accordingly in a valid BML or FML
representation, depending on the behaviour realiser.

A pragmatic way to deal with agent behaviours is to specify
BML or FML strings directly inside templates. Listing 7 shows an
example of this. The behaviourRealiser is a Java module specifi-
cally designed for sending BML and FML behaviours of the agent
via our middleware component to an external behaviour realiser.

An alternative approach is to create a list of BML or FML be-
haviours. These behaviours can be loaded in the dialogue system
from the file system. Authors can use existing BML behaviours ac-
companying the Flipper software or create their own. Additionally,
these behaviours can be parametrised and the parameters can be
filled using the information from the information state (see Cafaro et
al. [3]). In Listing 6 the assignments of is.agent.fml.parameters

include setting the name of the user interacting with the system and
the emotion of the user. Once the parameters are set, the behaviour
can be sent through our middleware component to a (BML or FML
compliant) behaviour realiser, as shown in Listing 8.

4.4 Advanced Dialogue Behaviour

Authors might require extra functionality in the design of their
dialogues. As the dialogue engine evaluates the templates with
JavaScript, it is easy to add existing JavaScript libraries or JavaScript
code to perform logic that is cumbersome to express in (declarative)
templates. One example applicable to an embodied conversational
agent is a function that checks certain keywords in an utterance
(shown in Listing 9). Other useful JavaScript functionalities are
behavioural generators, calculating the appropriate intensity of
an emotion of an agent, and timers necessary to know when to
perform certain behaviours.

When JavaScript is not expressive enough or when the JavaScript
becomes too large to author or maintain, Java classes can be instan-
tiated and integrated in the dialogue engine. Complex functions
can be delegated to Java objects that have been created from within
the Flipper template collection. This further extends the capabili-
ties and flexibility of Flipper. Examples of useful Java modules are
the StanfordCoreNLP for natural language understanding [16] and
BML translators such as ASAP for behaviour generation [26].

Connecting with non-Java external components can be done by
sending messages across a middleware channel, as mentioned ear-
lier. Information can be exchanged between such external compo-
nents and dialogues, and retrieved from or stored in the information
state. For instance, external reasoners, knowledge bases or natural
language generators can interface with Flipper via the supplied
middleware and use a separate template file for the handling of
their input and output to keep the system modular and reusable.
Additionally, this connectivity includes external components that
are not ‘traditional’ embodiments for conversational agents, for
example a tablet that displays information or an external device
(e.g. a coffee machine) that is started automatically when the user
requests this in the dialogue with the ECA.

Flipper 2.0

<template id="executeBehaviour">
<preconditions>

IVA ’18, November 2018, Sydney, Australia

<condition>is.agent.fml !== ""</condition>

</preconditions>
<effects>
<behaviour name="executeBehaviour">

<object class="behaviourRealiser" persistent="behaviourRealiser"></object>

<arguments>

<value class="String" is="is.agent.fml" is_type="JSONString"/>

</arguments>
</behaviour>

<assign is="is.agent.fml">""</assign>

</effects>
</template>

Listing 8: Template that takes an FML request plus its parameters and passes it to the behaviourRealiser module for execution.

function containsKeyword(utterance, keywords){
var word;
list = utterance.split(" ");
for(word in list){
var key;
for(key in keywords){
if(keywords[key] === list[word]){
return true;
13}

return false;

}

function addToArray(array, value){
array.push(value);
return array;

}

function removeHeadArray(array){
array.shift();
return array;

3

Listing 9: Example JavaScript functions, one that checks for
keywords in a user utterance, and two for addition and re-
moval operations in arrays.

5 USE-CASES

In this section we discuss some of the projects that have used Flipper
in developing their agent(s). The projects use different types of input
and output modalities that are connected to the dialogue engine.

In the ARTA-VALUSPA project, a multi-modal information pro-
viding agent was developed [25]. Users can ask the agent questions
about a specific domain and the agent tells stories to the users. The
agent also includes an emotional model that determines whether
the agent likes or dislikes the user, based on the user’s (non-) ver-
bal responses. Turn-management, behaviour generation and the
emotional model are handled by Flipper templates, whereas exter-
nal components are used for natural language understanding and
(non-) verbal behaviour realisation.

In another project involving multi-agent parties, an external
module for synchronisation of behaviours was developed and in-
tegrated with Flipper templates to create social gaze behaviour
based on saliency [11]. Saliency indicates what is important during
interactions; for example, most gazes will be directed towards the
speaker in the current interaction [20].

The Snoozle project aimed at helping people sleep using an
interactive pillow that lured people to bed. Flipper was used to steer
the multi-modal behaviour of the pillow [28]. This is an example
where a non-humanoid agent is controlled by Flipper.

Some of the proposed design patterns result from lessons learned
in projects using the first version of Flipper [22]. In the R3D3 project,
Flipper was used for steering the turn and emotive behaviour of a
receptionist robot combined with a virtual agent [23]. In the DE-
ENIGMA project, involved with child-robot interaction, Flipper
was used to control the behaviour (speech, facial expressions and
gestures) of an emotionally expressive robot. Additionally, modules
were developed for a dialogue logger and a dialogue tree within
Flipper [5]. Finally, in another child-robot interaction project called
EASEL, Flipper was used to control actuated physical learning
materials as well as a tablet displaying the GUI of an educational
game [18].

6 FUTURE WORK

Flipper 2.0 is under active development in the context of several
European research projects. We are working on creating a debug-
ging functionality that will give insight into exactly what state
the dialogue is in and when certain information state updates will
be applied. Additionally, we want to supply Flipper 2.0 with basic
modules for an operational ECA to have a prototype system ready
out of the box. The DE-ENIGMA project will be updated to use
Flipper 2.0 and another project called Council of Coaches® already
uses Flipper 2.0 in its prototype. The Council of Coaches project
focuses on coaching dialogues using a virtual multi-agent platform.

Flipper currently has no graphical user interface for editing the
required templates. An editor for modifying template files is on its
way, to prevent users from making syntax errors.

Shttp://council-of-coaches.eu/

IVA *18, November 2018, Sydney, Australia

One might think that the rule-based approach used in Flipper is
too simple for designing a dialogue system. However, we see ma-
chine learning possibilities for the dialogue engine as well. Speech
and text oriented approaches using machine learning often require
the collection of conversations or the authoring of input/output
behaviour. Similarly for Flipper, an author could collect information
state mappings between sensory input and user behaviours that
map to certain agent behaviours, or author information states and
behaviours to let a computer learn the most appropriate agent be-
haviour over time. Another option is to connect external machine
learning models for specific low-level management tasks such as
turn-taking and use this information in high-level templates.

Scalability might be a problem if many update rules need to
be integrated. However, we view the reusability of modules as
one particular case of scalability for designing dialogues. In the
case where an author designs a dialogue system that needs large
amounts of data and is open-domain, we suggest to use Flipper for
low-level interaction dialogue strategies in combination with, for
instance, a cloud-based commercial tool or PyDial.

7 CONCLUSION

We have provided some insight into the development process of
dialogues for embodied conversational agents (ECAs) in complex
projects, and have presented Flipper 2.0: a tool that makes it easy
to quickly and iteratively create dialogues for ECAs, meeting the
demands of such projects. This tool is particularly useful for people
creating dialogues who need to get started quickly, with workable
and pragmatic dialogue patterns, yet need to have the possibility
to extend their efforts into a complex, multi-faceted, responsive,
multi-modal dialogue system.

8 ACKNOWLEDGEMENTS

This project has received funding from the European Union’s Hori-
zon 2020 research and innovation program under grant agreements
No. 645378 and No. 688835, and the European Union 7th Framework
Program (FP7-ICT-2013-10) EASEL under the grant agreement No.
611971.

REFERENCES

[1] Dan Bohus and Alexander I Rudnicky. 2003. RavenClaw: Dialog management
using hierarchical task decomposition and an expectation agenda. In Eighth
European Conference on Speech Communication and Technology.

[2] Daniel Braun, Adrian Hernandez-Mendez, Florian Matthes, and Manfred Langen.
2017. Evaluating natural language understanding services for conversational
question answering systems. In 18th Annual SIGdial Meeting on Discourse and
Dialogue. 174-185.

[3] Angelo Cafaro, Merijn Bruijnes, Jelte van Waterschoot, Catherine Pelachaud,
Mariét Theune, and Dirk Heylen. 2017. Selecting and Expressing Communicative
Functions in a SAIBA-Compliant Agent Framework. In Intelligent Virtual Agents.
73-82.

[4] Massimo Canonico and Luigi De Russis. 2018. A comparison and critique of
natural language understanding tools. In Cloud Computing 2018. 110-115.

[5] Pauline Chevalier, Jamy Jue Li, Eloise Ainger, Alyssa M. Alcorn, Snezana Babovic,
Vicky Charisi, Suncica Petrovic, Bob Rinse Schadenberg, Elizabeth Pellicano, and
Vanessa Evers. 2017. Dialogue design for a robot-based face-mirroring game to
engage autistic children with emotional expressions. In International Conference
on Social Robotics. 546—555.

[6] Adam Cheyer and David Martin. 2001. The Open Agent Architecture. Autonomous
Agents and Multi-Agent Systems 4, 1-2 (March 2001), 143-148. https://doi.org/10.
1023/A:1010091302035

[7] Patrick Gebhard, Gregor Mehlmann, and Michael Kipp. 2012. Visual SceneMaker
— a tool for authoring interactive virtual characters. Journal on Multimodal User
Interfaces 6, 1-2 (2012), 3-11.

J. van Waterschoot et al.

[8] Jim Gray and Andreas Reuter. 1992. Transaction processing: concepts and tech-

niques. Elsevier.

Alexander Gruenstein, lan McGraw, and Ibrahim Badr. 2008. The WAMI toolkit

for developing, deploying, and evaluating web-accessible multimodal interfaces.

In 10th International Conference on Multimodal Interfaces. 141-148.

Arno Hartholt, David Traum, Stacy C. Marsella, Ari Shapiro, Giota Stratou, Anton

Leuski, Louis-Philippe Morency, and Jonathan Gratch. 2013. All together now:

Introducing the Virtual Human Toolkit. In Intelligent Virtual Agents. 368-381.

Jan Kolkmeier, Merijn Bruijnes, Dennis Reidsma, and Dirk Heylen. 2017. An

ASAP Realizer-Unity3D bridge for virtual and mixed reality applications. In

Intelligent Virtual Agents. 227-230.

Staffan Larsson and David Traum. 2000. Information state and dialogue manage-

ment in the TRINDI Dialogue Move Engine Toolkit. Natural Language Engineering

1, 1(2000), 1-17.

Oliver Lemon, Lawrence Cavedon, and Barbara Kelly. 2003. Managing dialogue

interaction: A multi-layered approach. In 4th Annual SIGdial Meeting on Discourse

and Dialogue.

Anton Leuski and David Traum. 2011. NPCEditor: A tool for building question-

answering characters. In International Conference on Language Resources and

Evaluation (LREC). 2463-2470.

Pierre Lison. 2015. A hybrid approach to dialogue management based on proba-

bilistic rules. Computer Speech and Language 34, 1 (2015), 232-255.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J.

Bethard, and David McClosky. 2014. The Stanford CoreNLP natural language

processing toolkit. In ACL 2014, System Demonstrations. 55-60.

Vikram Ramanarayanan, David Suendermann-Oeft, Alexei V Ivanov, and Keelan

Evanini. 2015. A distributed cloud-based dialog system for conversational appli-

cation development. In 16th Annual SIGdial Meeting on Discourse and Dialogue.

432-434.

Dennis Reidsma, Vicky Charisi, Daniel Davison, Frances Wijnen, Jan van der

Meij, Vanessa Evers, David Cameron, Samuel Fernando, Roger Moore, Tony

Prescott, Daniele Mazzei, Michael Pieroni, Lorenzo Cominelli, Roberto Garofalo,

Danilo De Rossi, Vasiliki Vouloutsi, Riccardo Zucca, Klaudia Grechuta, Maria

Blancas, and Paul Verschure. 2016. The EASEL project: Towards educational

human-robot symbiotic interaction. In Living Machines 2016: Biomimetic and

Biohybrid Systems. 297-306.

Charles Rich and Candace L. Sidner. [n. d.]. Using collaborative discourse Theory

to partially Automate dialogue tree authoring. In Intelligent Virtual Agents. 327—

340.

Kerstin Ruhland, Christopher E Peters, Sean Andrist, Jeremy B Badler, Norman I

Badler, Michael Gleicher, Bilge Mutlu, and Rachel McDonnell. 2015. A review of

eye gaze in virtual agents, social robotics and HCI: Behaviour generation, user

interaction and perception. In Computer Graphics Forum, Vol. 34. 299-326.

Gabriel Skantze and Samer Al Moubayed. 2012. IrisTK: a statechart-based toolkit

for multi-party face-to-face interaction. In 14th International Conference on Mul-

timodal Interaction. 69-76.

Mark Ter Maat and Dirk Heylen. 2011. Flipper: An information state component

for spoken dialogue systems. In Intelligent Virtual Agents. 470-472.

Mariét Theune, Daan Wiltenburg, Max Bode, and Jeroen Linssen. 2017. R3D3 in

the Wild: Using A Robot for Turn Management in Multi-Party Interaction with a

Virtual Human. In IVA Workshop on Interaction with Agents and Robots: Different

Embodiments, Common Challenges.

Stefan Ultes, Lina M. Rojas Barahona, Pei-Hao Su, David Vandyke, Dongho Kim,

Inigo Casanueva, Pawet Budzianowski, Nikola Mrksi¢, Tsung-Hsien Wen, Milica

Gasic, and Steve Young. 2017. PyDial: A multi-domain statistical dialogue system

toolkit. In ACL 2017, System Demonstrations. 73-78.

[25] Michel Valstar, Tobias Baur, Angelo Cafaro, Alexandru Ghitulescu, Blaise Potard,
Johannes Wagner, Elisabeth André, Laurent Durieu, Matthew Aylett, Soumia
Dermouche, et al. 2016. Ask Alice: an artificial retrieval of information agent. In
18th International Conference on Multimodal Interaction. 419-420.

[26] Herwin van Welbergen, Ramin Yaghoubzadeh, and Stefan Kopp. 2014. AsapRe-

alizer 2.0: The next steps in fluent behavior realization for ECAs. In Intelligent

Virtual Agents. 449-462.

Hannes Vilhjalmsson, Nathan Cantelmo, Justine Cassell, Nicolas E Chafai,

Michael Kipp, Stefan Kopp, Maurizio Mancini, Stacy Marsella, Andrew N Mar-

shall, Catherine Pelachaud, et al. 2007. The behavior markup language: Recent

developments and challenges. In Intelligent Virtual Agents. 99-111.

[28] Jered Vroon, Cristina Zaga, Daniel Davison, Jan Kolkmeier, and Jeroen Linssen.
2017. Snoozle-A robotic pillow that helps you go to sleep: HRI 2017 Student
Design Competition. In Companion of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction. 399-400.

[

[10

[11

=
N

(13

[14

[15

[16

=
=

(18

[19

)
=

[21

[22

[23

[24

[27

https://doi.org/10.1023/A:1010091302035
https://doi.org/10.1023/A:1010091302035

	Abstract
	1 Introduction
	2 Background
	3 Flipper
	3.1 Transaction Model

	4 Creation of a Dialogue Manager
	4.1 Sensing
	4.2 Thinking
	4.3 Acting
	4.4 Advanced Dialogue Behaviour

	5 Use-cases
	6 Future work
	7 Conclusion
	8 Acknowledgements
	References

