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ABSTRACTIn human-human communication, dialogue participantsare continuously sending and receiving signals on thestatus of the information being exchanged. These signalsmay either be positive (`go on') or negative (`go back'),where it is usually found that the latter are comparat-ively marked to make sure that the dialogue partner ismade aware of a communication problem. This paper fo-cuses on the users' signaling of information status in hu-man-machine interactions, and in particular looks at therole prosody may play in this respect. Using a corpus of in-teractions with two Dutch spoken dialogue systems, pros-odic correlates of users' discon�rmations were investigated.In this corpus, discon�rmations may serve as a positive sig-nal in one context and as a negative signal in another. Our�ndings show that the di�erence in signaling function isre
ected in the distribution of the various types of discon-�rmations as well as in di�erent prosodic variables (pause,duration, intonation contour and pitch range). The im-plications of these results for human-machine modeling arediscussed. 1. INTRODUCTIONFrom human-human communication it is known that dia-logue participants are continuously sending and receivingsignals on the status of the information being exchanged.This process is often referred to as information grounding([3,13]) and typically proceeds in two phases: a presenta-tion phase in which the current speaker sends a messageto his conversation partner, and an acceptation phase inwhich the receiver signals whether the message came acrossunproblematically or not. In the former case (there is noproblem), the receiver transmits a positive signal (`go on'),in the latter case (there is a problem), he or she sendsa negative signal (`go back'). Various studies of human-human communication (e.g., [11]) revealed that the neg-ative signals are comparatively marked, as if the speakerwants to devote additional e�ort to make the other awareof the apparent communication problem. A plausible ex-planation for this is that missing a negative cue may causebreakdown of the communication.One of the central shortcomings of current spoken dialoguesystems is that they are insu�ciently able to spot commu-nication problems (either resulting from poor recognitionor from incorrect default assumptions) and hence have dif-

�culty in responding to them. We conjecture that the abil-ity of spoken dialogue systems to distinguish between pos-itive and negative cues from the user is linearly correlatedwith the 
uency of the interaction, since these cues provideimportant information about the status of the informationcurrently under negotiation. We have studied a corpus ofhuman-machine dialogues ([14]), obtained with two Dutchtrain time table information systems, in order to �nd outwhich cues people actually use in human-machine com-munication. In a companion to the current paper ([7]) anumber of positive and negative cues have been singled outand their (joined) information potential for spotting com-munication problems was studied. It was indeed foundthat human speakers who converse with a spoken dialoguesystem put more e�ort in `go back' signals than they doin `go on' signals.The current paper focuses on the prosodic features of pos-itive and negative cues. We expect that speakers use moreprosodic e�ort (higher pitch, longer duration, more pauses,marked intonation contours, . . . ) in the case of a `go back'signal than they would for a `go on' signal. To test this hy-pothesis, we concentrated on one type of utterance whichmay serve as a `go back' signal in one context while it servesas a `go on' signal in another context, namely a \no" an-swer to di�erent types of system prompts. To illustratethis, consider the following two questions from the corpusof [14].(1) a. Do you want to go from Eindhoven to Swalmen?b. Do you want me to repeat the connection?Both (1.a) and (1.b) are yes/no questions and to both \no"is a perfectly natural answer. However, the two questionsserve a rather di�erent goal. Question (1.a) is an (explicit)attempt of the system to verify some pieces of informationthat it has recently gathered (the departure and arrivalstation). If the user would respond to this question with a\no" this would de�nitely be a `go back' signal: the user in-dicates that at least one of the system's beliefs is incorrect.Question (1.b), on the other hand, is not an attempt of thesystem to verify its beliefs, and hence it cannot representincorrect system beliefs. A subsequent \no" answer fromthe user thus serves as a `go on' signal. In this way, thetwo types of \no" answers constitute ideal, natural occur-ring, speech materials for investigating the role of prosodyin information grounding, because, being lexically similar



Table 1: Positive vs. negative cuespositive (`go on') negative (`go back')short turns long turnsunmarked word order marked word ordercon�rm discon�rmanswer no answerno corrections correctionsno repetitions repetitionsnew info no new infobut functionally di�erent, they constitute interesting mini-mal pairs from a dialogue perspective. They allow us tocheck whether the various occurrences of this utterancevary prosodically as a function of their context. The cur-rent paper focusses on the hypothesis that the `go back'signals are prosodically marked with respect to the `go on'signals. Before we describe the method used to test thishypothesis (section 3) and the results that were obtained(section 4), we present a brief overview of the context ofthis work.2. EFFORT IN DIALOGUEAs said, [7] is in many ways a companion paper to thecurrent one. The basic assumption of [7] is that both userand system want the dialogue to be �nished successfullyas soon as possible, and that they do not want to spendmore e�ort than necessary for current purposes, in linewith e.g., the Principle of Minimal Collaborative E�ort of[2] or the more general Principle of Least E�ort of [15].Since a spoken dialogue system can never be certain thatit understood the user correctly, it is in constant need ofveri�cation. If a veri�cation question of the system con-tains a problem, users are expected to spend more e�orton their signals in order to prevent complete breakdown ofthe communication. This leads to the distinction betweenpositive and negative cues in table 1. In all cases, thepositive cues can be seen as unmarked settings of the fea-tures. For instance, the default word order in a sentence isunmarked (thus, no topicalization or extraposition). Ad-ditionally, it follows from the Principle of Minimal Collab-orative E�ort that it is a positive signal to present newinformation (which may speed up the dialogue), but notto repeat or correct information (which will de�nitely notlead to a more swift conclusion of the conversation).The central hypothesis of [7] is that users more often em-ploy the `go back' signals when the preceding system ut-terance contains a problem, whereas the `go on' signals areused in response to unproblematic system utterances. Fornearly all of the cues of table 1 this was indeed found.Many of these cues have a high informativity. For in-stance, if the user's answer contains a marked word-order,then it is highly likely that the preceding system utter-ance contained a problem. The downside, however, is thatsome of the highly informative cues occur rather infre-quently. Therefore we also studied boolean combinationsof cues. It turned out that the complex condition \theuser's utterance contains more than eight words or uses amarked word order or contains corrected information" was

Table 2: List of prosodic features and their expected set-tings for positive and negative cuesFeatures : problems problemsBoundary tone low highPitch range low highDuration short longPause short longDelay short longthe overall best cue for spotting communication problems,with a precision and recall of 92%. Recent experimentsusing memory based learning showed that it is possible topredict in 97% of the cases whether or not the precedingsystem utterance was problematic on the basis of the user'sutterance (for more details of these experiments the readeris referred to the appendix). On the one hand, these resultsare certainly encouraging. They show that taking certaincues into account provides a reliable indicator of problems.On the other hand, one has to keep in mind that there is acertain gap between the hand-annotated data used in theexperiments and the raw output of a speech recognitionengine (a word graph).It remains an empirical question to what extent the pos-itive and negative signals from table 1 can be recoveredautomatically from a word graph. It is to be expected thatshifting the analysis from hand-annotated data to wordgraphs will worsen the precision and recall scores for spot-ting communication problems. This implies that there isde�nitely room for improvement. Therefore, one possibleextension to our previous work is to include another setof characteristics of user utterances in our prediction: anumber of prosodic features.To this end, the current paper looks at possible prosodicdi�erences between positive and negative signals, using dif-ferent types of discon�rmations as analysis materials. Aprevious study of repetitive utterances in Japanese human-human dialogues ([11]) showed that speakers more oftenprovide negative signals with marked or prominent pros-odic features than they do with positive signals. Con-sequently, we expect that in human-machine interactionsthe di�erence in signaling function will also be re
ectedin a di�erence in prosodic e�ort ([12]). This expectationis also based on recent work on hyperarticulate speech([8,9,10]), a speaking style which can be seen both as theresult of speech recognition errors and as an importantsource of such errors. Typically, hyperarticulate speechhas an increased pitch and longer duration. All this leadsto the expectations in table 2 regarding prosodic featuresand the predicted settings for positive and negative sig-nals. Apart from testing these hypotheses, we also look atdistributional di�erences between various types of negativeresponses as a function of their dialogue context.3. METHODFor the analysis, a corpus (see [14]) was used consisting of120 dialogues with two speaker-independent Dutch spokendialogue systems which provide train time table informa-



tion. The systems prompt the user for unknown slots,such as departure station, arrival station, date, etc., in aseries of questions. The two systems di�er mainly in veri-�cation strategy (one primarily uses implicit veri�cation,the other only uses explicit veri�cation), length of systemutterances and speech output (concatenated vs. syntheticspeech). Twenty subjects were asked to query both sys-tems via telephone on a number of train journeys. Theywere asked to perform three simple travel queries on eachsystem (in total six tasks). Two similar sets of three quer-ies were constructed, to prevent literal copying of subjects'utterances from the �rst to the second system. The orderof presenting systems and sets was counterbalanced.A random selection of 109 negative answers to yes/no ques-tions from both systems was analysed (7 speakers). If thepreceding yes/no question was a veri�cation of the sys-tem's assumptions (e.g, (1.a) above), the user's discon�rm-ation indicates that the yes/no question contained a prob-lem (due to speech recognition or incorrect assumptions onthe system's part). If the yes/no question was not a veri-�cation (such as example (1.b), but also questions like Doyou want other information? or Do you want informationabout another connection?), then the user's discon�rma-tion just serves as an answer to that question and doesnot indicate problems.Regarding their structure, the users' discon�rmations weredivided into three categories: (1) responses consisting of anexplicit discon�rmation marker \no" (\nee") only (`singleno'), (2) responses consisting of an explicit discon�rmationmarker followed by other words (`no+stu�', Hockey et al.1997), (3) responses containing no explicit discon�rmationmarker (`stu�').The speech data were digitized with a 16 kHz sampling fre-quency. Fundamental frequency (F0) was determined us-ing a method of subharmonic summation (Hermes, 1988).Durations of speech segments and of pauses were measureddirectly in the digitized waveform. The users' responses tothe yes/no questions were analysed in terms of the follow-ing features: (1) type of boundary tone in \no" (high orlow); (2) duration (in ms) of \no"; (3) duration (in ms)of pause after \no" before stu�; (4) duration (in ms) ofpause between system's prompt and user response; (5) F0max (in Hz) at energy peak of major pitch accent in stu�;(6) number of words in stu�. It was our original intentionto also investigate pitch range in the \no" part of the di�er-ent responses, but this turned out to be too di�cult giventhat many of the cases were realized with a low-anchoredpitch accent followed by a high boundary tone (L*H-H%).For these utterances, it was not possible to adequatelymeasure pitch range, given that the F0 maximum in theenergy peak in the pitch accent basically undershoots theperceived pitch range, whereas the real F0 maximum atthe end of the high boundary tone would overshoot it. Seethe discussion of �gure 1 below.4. RESULTSThis section �rst presents the results, and then illus-trates some of the main e�ects with two typical examples.

Table 3: Numbers of negative answers following an un-problematic system utterance (: problem) and followingthose containing one or more problems (problem)Type : problems problems totalno 18 11 29stu� 0 24 24no+stu� 23 33 56total 41 68 109Table 4: Distribution of high and low boundary tones forpositive and negative cuesBoundary tone : problems problems totalLow 32 7 39High 9 37 46total 41 44 85Table 3 gives the distribution of di�erent types of discon-�rmations following either an unproblematic system utter-ance or one which contains one or more problems. A �2test reveals that this distribution is highly signi�cant (�2= 22.146, df = 2, p < 0:001). First, this table shows thatthe minimal response, a single no, is in the majority ofthe cases used as a positive signal. Second, single stu�responses are exclusively reserved for responses followinga system utterance with one or more problems. The ma-jority of the responses to yes/no questions in our data,however, is of the no+stu� type, which may serve eitheras a positive or as a negative cue. The lexical materialin the stu� is quite di�erent for the two signals: for thepositive cases, the subsequent words are mostly some po-lite phrases (\thank you", \that's right"); for the negativecases, the stu� usually is an attempt to correct the inform-ation which is misrecognized or which is wrongly assumedby the system.Table 4 displays the number of high and low boundarytones on the word \no" (for the single no and no+stu�cases) for positive and negative signals. A �2 test revealsthat this distribution is again well above chance level (�2= 33.004, df = 1, p < 0:001). In responses following anunproblematic system question, \no" is generally providedwith a `declarative' L% boundary tone, while in responsesfollowing a problematic question, the \no" generally re-ceives a `question-like' H% boundary tone. These resultsare in agreement with observations in Japanese human-human conversations ([11]).The results for the continuous prosodic features of interestare given in table 5. Taking the utterances of all sub-jects together, a t-test reveals a signi�cant di�erence foreach of these features. The numbers of unproblematic andproblematic utterances are insu�cient and/or unequallydistributed in order to test intra-individual di�erences.However, when looking at the mean within-subject di�er-ences, the �ndings mostly point in the expected direction,thus warranting an overall t-test. For all speakers, themean duration of \no" and of pauses, F0 max in stu�, andthe number of words in stu� are usually higher in prob-lematic than in unproblematic cases.
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Figure 1: No+stu� responses of one speaker to two di�erent yes/no questions from the system: left shows the `go on'utterance \nee dankuwel"(no thanks) and right is the `go back' utterance \nee vanavond" (no tonight).Table 5: Average values for di�erent features of all oc-currences of \no" (single no and no+stu�). Standard de-viations are given between brackets.Feature : problems problemsDuration of \no" (ms)� 226 (83) 343 (81)Preceding pause (ms)� 516 (497) 953 (678)Following pause (ms)�� 94 (93) 311 (426)F0 max in stu� (Hz)�� 175 (37) 216 (46)Words in stu�� 2.61 (3.65) 5.42 (8.14)�p < 0:001, ��p < 0:05Let us recapitulate the �ndings given in table 5. First,negative signals di�er from positive ones, in that the word\no" |when it occurs| in these utterances is comparat-ively longer. Second, compared to positive signals, thereis a signi�cantly longer delay after a problematic systemprompt before users respond. Both results are in line withthe data for Japanese ([11]). Third, in the no+stu� utter-ances, the interval between \no" and the remainder of theutterance is longer following a problematic system utter-ance than following an unproblematic one. Fourth, aftera problematic yes/no question, the stu� part of the an-swer usually contains a high-pitched narrow focus accentto mark corrected information, whereas in the unproblem-atic case the stu� is usually prosodically unmarked. Fi-nally, in reaction to a problem, the stu� part tends to belonger in number of words, which is in agreement with ourprevious, more general �nding ([7]).To illustrate some of these e�ects more clearly, consider�gure 1 which visualizes the waveforms and correspondingF0 contours of two typical discon�rmations produced byone of our speakers, one being a `go on' signal (left), theother a `go back' signal (right). Both utterances consist ofa discon�rmation marker (\no") followed by stu�, but it isclear that they are realized with quite di�erent prosody. Inline with our hypothesis, the word \no" in the `go on' caseis comparatively short (185 ms), it is not provided witha prominent high boundary tone, and it is immediatelyfollowed by the stu� without a clear silence interval. Inaddition, the stu� part of this response does not contain aprominent pitch accent. On the other hand, the utteranceon the right-hand side of the �gure is a `go back' signal

and accordingly contains a relatively long \no" (441 ms),which is produced with a clear high boundary tone, andis followed by a fairly long pause of 762 ms. Note thatthe contour on the word \no" is of the type referred toabove, L*H-H%, which does not permit a straightforwardspeci�cation of pitch range. Also, the stu� contains a clearnarrow focus pitch accent which serves to highlight correc-ted information. What cannot be derived from this �gureis that in the `go back' mode speakers generally tend toproduce their responses after a longer delay than in `goon' mode, and also that the stu� part is generally longerin words in the former case.5. DISCUSSIONThe main �nding of this article can be summarized as fol-lows: in the case of communication problems, speakersput much more prosodic e�ort in their reaction. If thepreceding system utterance contained a problem (either aspeech recognition error or an incorrect default assump-tion), then (1) the user's utterance of the word \no" hasa longer duration, (2) there is a longer pause between thesystem's utterance and the user's reaction, (3) in the caseof a no+stu� answer, the delay between the \no" and thestu� is longer, (4) the stu� part contains a narrow focus,high-pitched (corrective) accent and (5) the stu� containsmore words. Additionally, various distributional di�er-ences between `go on' and `go back' signals were found:for instance, single stu� answers are solely reserved as re-sponses to problematic system utterances and, moreover,users who respond to problematic utterances primarily useH% boundary tones.These �ndings can easily be related to the respective func-tions of the two kinds of discon�rmation. A `go on' dis-con�rmation is simply an answer to the question and doesnot address any underlying assumptions of the system. Inprinciple, a single \no" is a su�cient answer. The stu�is exclusively reserved for politeness phrases, which followmore or less automatically and provide no further inform-ation. This explains the short pauses between the \no"and the stu� as well as the lack of accents in the stu�. If ayes/no question from the system contains a problem, justanswering \no" might be su�cient but is not very cooper-ative. Assuming that the user wants the dialogue to be



over as soon as possible it is more e�cient to immediatelycorrect the system. To do that, single stu� adequatelyserves the purpose, whilst an explicit \no" may be addedto strengthen the problem signalling.The �ndings related to prosodic e�ort are in line with the�ndings of the companion paper [7] in which it was shownthat subjects use the negative (`go back') variants of thefeatures described in table 1 more often when the pre-ceding system utterance contains a problem, whereas thepositive cues (`go on') are more often used in response tounproblematic system utterances. Taking these two res-ults in combination, we have found evidence for the claimthat people devote more e�ort to negative cues on variouslevels of communication.An interesting question is how generalizable the prosodicresults are. We contend that our �ndings are not speci�cfor \no" nor for Dutch nor for the domain of train trav-elling. Support for this is found, for instance, in the re-cent collaboration of the second author with Hirschbergand Litman. One of the �ndings from their study ofAmerican English human-machine dialogues is that ut-terances following speech recognition errors can be reli-ably distinguished from `normal' utterances using a set ofautomatically obtained acoustic/prosodic characteristics(pitch range, amplitude, timing, inter alia). For instance,`corrections' appear to be more prosodically marked thanother utterances (higher, longer, louder, slower, ...), whichis in agreement with our current results.The current analysis suggests that the presence of cuessuch as a prolonged delay before answering or a high-pitched narrow focus accent are good indicators of prob-lems. In combination with the �ndings of [7], the presentresults provide potentially useful information for spokendialogue systems which monitor whether or not the com-munication is in trouble: if a question is followed by auser's utterance which has various marked properties (suchas relatively many words, discon�rmations, corrections,long delays, words with a narrow focus, high-pitched ac-cent), the system can be fairly certain that the informationit tried to verify is not in agreement with the user's inten-tions. If, on the other hand, the user's utterance doesnot contain such features, then it is highly likely that theveri�ed information is correct. Indeed, the memory-basedlearning experiments mentioned in section 2 and furtherdescribed in the appendix show that it is possible to pre-dict in 97% of the cases whether or not the user signalsa communication problem. Knowing whether or not thereare communication problems may be very useful in a num-ber of situations. It can be used as a basis for choosingthe veri�cation strategy employed by the system, but itmay also be a cue to switch to a di�erent recognition en-gine. Levow [8] found that the probability of experiencinga recognition error after a correct recognition is .16, butimmediately after an incorrect recognition it is .44. Thisincrease is probably caused by the fact that speakers usehyperarticulate speech when they notice that the systemhad a problem recognizing their previous utterance.It should be stressed that before such techniques can be
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13. Traum, D.R. (1994), A computational theory of groundingin natural language conversation, Ph.D thesis, Rochester.14. Weegels, M. (1999), Users' (mis)conceptions of a voice-operated train travel information service, IPO AnnualProgress Report, Eindhoven, The Netherlands, pp. 45-52.15. Zipf, G.K. (1949), Human behavior and the principle ofleast e�ort, Addison-Wesley, Cambridge, MA.APPENDIX:MEMORY-BASED ERROR SPOTTINGIn this appendix some experiments with memory-basedlearning techniques for the spotting of communicationproblems are discussed, based on the �ndings of [7].Memory-based learning techniques can be characterizedby the fact that they store a representation of some setof training data in memory, and classify new instances bylooking for the most similar instances in memory. In thecurrent context an instance is the representation of an ut-terance pair using a vector of 14 feature value pairs. The14 features are described in [7]: four represent proper-ties of the systems' questions such as veri�cation strategyand presence or absence of defaults, the ten others rep-resent properties of the users' replies (number of words,(dis)con�rmations, corrections, repetitions etc.). Variousexperiments were carried out on the complete set of 487utterance pairs described in [7], each time training on486 cases and testing on the remaining one (\leave oneout"). The category to be predicted during the test phaseis whether or not there are communication problems. IfX is the test case, a distance metric �(X;Y ) determineswhich group k of cases Y in memory is the most similarto X. The most frequent value for the relevant categoryin k is the predicted value for X. Since some features aremore important than others, a weighting function wi maybe used. In sum: the distance between vectors X and Yof length n is determined by the following equation:�(X;Y ) = nXi=1 wi �(xi; yi) (1)where �(xi; yi) gives a point-wise distance between featureswhich is 1 if xi = yi and 0 otherwise.For the actual experiments we used the IB1-GR algorithmfrom [4]. IB1-GR is a combination of (an extension of)the instance-based learning algorithm IB1 of [1] with gainratio (GR) as weighting function. The gain ratio for afeature i is derived from the information gain for thatparticular feature, computed by looking at the di�erencein uncertainty (entropy) for situations with and withoutfeature i. A consequence of this measure is that featureswhich have a minority of infrequent but highly informativevalues, and a majority of uninformative values (such asmarked versus unmarked word order), tend to have lowinformation gain, and thus mostly play a minor role inclassi�cation. Moreover, the information gain metric hasa tendency to overestimate the bene�ts of features witha large number of values. As an extreme case, considera feature with unique values (for the current domain, an

Table 6: Percentages correct classi�cations (problems/noproblems) obtained using leave-one-out on tokens with theIB1-GR algorithm.Features Percentage correctAll features 97%con�rm + correct 96%correct 90%con�rm 83%utterance identi�cation number between 1 and 487, say).Such a feature will have a maximal information gain, butis useless for value prediction of new cases. The gain ratiometric normalizes the information gain in this respect (forfurther details we refer to [4]).Using the IB1-GR algorithm four experiments were carriedout, in which the number of features stored in memory isvaried. Table 6 displays the results. The baseline strategyis always guessing that there are no problems, which wouldbe correct for 287 of the 487 cases. Thus, the chance levellies at 59%. All experiments went well above this level, thebest results being obtained using all features with 97% cor-rect categorizations. In the data under consideration, thefeatures with the highest gain ratio by far were `con�rm'(whether or not the user's utterance contains a con�rma-tion) and `correct' (the number of slots the user corrects).This means that these features play �rst �ddle when allfeatures are considered. Looking only at these featuresleads to slightly lower percentage of correct predictions(although we should be careful to draw conclusions fromthat, given the relatively small amount of data). Interest-ingly, the two features only perform well in combination,in isolation their respective performances are much lower.The conclusion must be that on the basis of the hand-annotated data it is very well possible to predict whetherthe user signals a communication problem or not. Theresults indicate that the presence of all features is bene-�cial, but the relatively small amount of data does notwarrant any de�nite conclusions in this respect. As notedin the main text: there is a considerable gap between thehand-annotated data and the raw data coming out of aspeech recognition engine. It is expected that it will bequite hard to extract certain feature values automaticallyfrom a word graph (e.g., marked word-order). However,we suspect that other (and more important) features canbe extracted from the word graph automatically providedthat the context (the preceding system utterance) is takeninto account. To �nd out whether this is indeed the case,we intend to redo the experiments in the future with wordgraphs. Additionally, we want to further investigate theusefulness of prosodic cues (boundary tone, duration, F0,pause) for error-spotting, which, we conjecture, are relat-ively easy to extract from the speech signal. It will be veryinteresting to see how the memory-based learning tech-niques will perform when applied directly on the level ofsuch raw data.


