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ABSTRACT

In human-human communication, dialogue participants
are continuously sending and receiving signals on the
status of the information being exchanged. These signals
may either be positive (‘go on’) or negative (‘go back’),
where it is usually found that the latter are comparat-
ively marked to make sure that the dialogue partner is
made aware of a communication problem. This paper fo-
cuses on the users’ signaling of information status in hu-
man-machine interactions, and in particular looks at the
role prosody may play in this respect. Using a corpus of in-
teractions with two Dutch spoken dialogue systems, pros-
odic correlates of users’ disconfirmations were investigated.
In this corpus, disconfirmations may serve as a positive sig-
nal in one context and as a negative signal in another. Our
findings show that the difference in signaling function is
reflected in the distribution of the various types of discon-
firmations as well as in different prosodic variables (pause,
duration, intonation contour and pitch range). The im-
plications of these results for human-machine modeling are
discussed.

1. INTRODUCTION

From human-human communication it is known that dia-
logue participants are continuously sending and receiving
signals on the status of the information being exchanged.
This process is often referred to as information grounding
([3,13]) and typically proceeds in two phases: a presenta-
tion phase in which the current speaker sends a message
to his conversation partner, and an acceptation phase in
which the receiver signals whether the message came across
unproblematically or not. In the former case (there is no
problem), the receiver transmits a positive signal (‘go on’),
in the latter case (there is a problem), he or she sends
a negative signal (‘go back’). Various studies of human-
human communication (e.g., [11]) revealed that the neg-
ative signals are comparatively marked, as if the speaker
wants to devote additional effort to make the other aware
of the apparent communication problem. A plausible ex-
planation for this is that missing a negative cue may cause
breakdown of the communication.

One of the central shortcomings of current spoken dialogue
systems is that they are insufficiently able to spot commu-
nication problems (either resulting from poor recognition
or from incorrect default assumptions) and hence have dif-

ficulty in responding to them. We conjecture that the abil-
ity of spoken dialogue systems to distinguish between pos-
itive and negative cues from the user is linearly correlated
with the fluency of the interaction, since these cues provide
important information about the status of the information
currently under negotiation. We have studied a corpus of
human-machine dialogues ([14]), obtained with two Dutch
train time table information systems, in order to find out
which cues people actually use in human-machine com-
munication. In a companion to the current paper ([7]) a
number of positive and negative cues have been singled out
and their (joined) information potential for spotting com-
munication problems was studied. It was indeed found
that human speakers who converse with a spoken dialogue
system put more effort in ‘go back’ signals than they do
in ‘go on’ signals.

The current paper focuses on the prosodic features of pos-
itive and negative cues. We expect that speakers use more
prosodic effort (higher pitch, longer duration, more pauses,
marked intonation contours, ...) in the case of a ‘go back’
signal than they would for a ‘go on’ signal. To test this hy-
pothesis, we concentrated on one type of utterance which
may serve as a ‘go back’ signal in one context while it serves
as a ‘go on’ signal in another context, namely a “no” an-
swer to different types of system prompts. To illustrate
this, consider the following two questions from the corpus

of [14].

(1) a.

b. Do you want me to repeat the connection?

Do you want to go from Eindhoven to Swalmen?

Both (1.a) and (1.b) are yes/no questions and to both “no”
is a perfectly natural answer. However, the two questions
serve a rather different goal. Question (1.a) is an (explicit)
attempt of the system to verify some pieces of information
that it has recently gathered (the departure and arrival
station). If the user would respond to this question with a
“no” this would definitely be a ‘go back’ signal: the user in-
dicates that at least one of the system’s beliefs is incorrect.
Question (1.b), on the other hand, is not an attempt of the
system to verify its beliefs, and hence it cannot represent
incorrect system beliefs. A subsequent “no” answer from
the user thus serves as a ‘go on’ signal. In this way, the
two types of “no” answers constitute ideal, natural occur-
ring, speech materials for investigating the role of prosody
in information grounding, because, being lexically similar



Table 1: Positive vs. negative cues

POSITIVE (‘go on’) NEGATIVE (‘go back’)
short turns long turns
unmarked word order marked word order

confirm disconfirm
answer no answer
no corrections corrections
no repetitions repetitions
new info no new info

but functionally different, they constitute interesting mini-
mal pairs from a dialogue perspective. They allow us to
check whether the various occurrences of this utterance
vary prosodically as a function of their context. The cur-
rent paper focusses on the hypothesis that the ‘go back’
signals are prosodically marked with respect to the ‘go on’
signals. Before we describe the method used to test this
hypothesis (section 3) and the results that were obtained
(section 4), we present a brief overview of the context of
this work.

2. EFFORT IN DIALOGUE

As said, [7] is in many ways a companion paper to the
current one. The basic assumption of [7] is that both user
and system want the dialogue to be finished successfully
as soon as possible, and that they do not want to spend
more effort than necessary for current purposes, in line
with e.g., the Principle of Minimal Collaborative Effort of
[2] or the more general Principle of Least Effort of [15].
Since a spoken dialogue system can never be certain that
it understood the user correctly, it is in constant need of
verification. If a verification question of the system con-
tains a problem, users are expected to spend more effort
on their signals in order to prevent complete breakdown of
the communication. This leads to the distinction between
positive and negative cues in table 1. In all cases, the
positive cues can be seen as unmarked settings of the fea-
tures. For instance, the default word order in a sentence is
unmarked (thus, no topicalization or extraposition). Ad-
ditionally, it follows from the Principle of Minimal Collab-
orative Effort that it is a positive signal to present new
information (which may speed up the dialogue), but not
to repeat or correct information (which will definitely not
lead to a more swift conclusion of the conversation).

The central hypothesis of [7] is that users more often em-
ploy the ‘go back’ signals when the preceding system ut-
terance contains a problem, whereas the ‘go on’ signals are
used in response to unproblematic system utterances. For
nearly all of the cues of table 1 this was indeed found.
Many of these cues have a high informativity. For in-
stance, if the user’s answer contains a marked word-order,
then it is highly likely that the preceding system utter-
ance contained a problem. The downside, however, is that
some of the highly informative cues occur rather infre-
quently. Therefore we also studied boolean combinations
of cues. It turned out that the complex condition “the
user’s utterance contains more than eight words or uses a
marked word order or contains corrected information” was

Table 2: List of prosodic features and their expected set-
tings for positive and negative cues

Features — PROBLEMS  PROBLEMS
Boundary tone low high
Pitch range low high
Duration short long
Pause short long
Delay short long

the overall best cue for spotting communication problems,
with a precision and recall of 92%. Recent experiments
using memory based learning showed that it is possible to
predict in 97% of the cases whether or not the preceding
system utterance was problematic on the basis of the user’s
utterance (for more details of these experiments the reader
is referred to the appendix). On the one hand, these results
are certainly encouraging. They show that taking certain
cues into account provides a reliable indicator of problems.
On the other hand, one has to keep in mind that there is a
certain gap between the hand-annotated data used in the
experiments and the raw output of a speech recognition
engine (a word graph).

It remains an empirical question to what extent the pos-
itive and negative signals from table 1 can be recovered
automatically from a word graph. Tt is to be expected that
shifting the analysis from hand-annotated data to word
graphs will worsen the precision and recall scores for spot-
ting communication problems. This implies that there is
definitely room for improvement. Therefore, one possible
extension to our previous work is to include another set
of characteristics of user utterances in our prediction: a
number of prosodic features.

To this end, the current paper looks at possible prosodic
differences between positive and negative signals, using dif-
ferent types of disconfirmations as analysis materials. A
previous study of repetitive utterances in Japanese human-
human dialogues ([11]) showed that speakers more often
provide negative signals with marked or prominent pros-
odic features than they do with positive signals. Con-
sequently, we expect that in human-machine interactions
the difference in signaling function will also be reflected
in a difference in prosodic effort ([12]). This expectation
is also based on recent work on hyperarticulate speech
([8,9,10]), a speaking style which can be seen both as the
result of speech recognition errors and as an important
source of such errors. Typically, hyperarticulate speech
has an increased pitch and longer duration. All this leads
to the expectations in table 2 regarding prosodic features
and the predicted settings for positive and negative sig-
nals. Apart from testing these hypotheses, we also look at
distributional differences between various types of negative
responses as a function of their dialogue context.

3. METHOD

For the analysis, a corpus (see [14]) was used consisting of
120 dialogues with two speaker-independent Dutch spoken
dialogue systems which provide train time table informa-



tion. The systems prompt the user for unknown slots,
such as departure station, arrival station, date, etc., in a
series of questions. The two systems differ mainly in veri-
fication strategy (one primarily uses implicit verification,
the other only uses explicit verification), length of system
utterances and speech output (concatenated vs. synthetic
speech). Twenty subjects were asked to query both sys-
tems via telephone on a number of train journeys. They
were asked to perform three simple travel queries on each
system (in total six tasks). Two similar sets of three quer-
ies were constructed, to prevent literal copying of subjects’
utterances from the first to the second system. The order
of presenting systems and sets was counterbalanced.

A random selection of 109 negative answers to yes/no ques-
tions from both systems was analysed (7 speakers). If the
preceding yes/no question was a verification of the sys-
tem’s assumptions (e.g, (1.a) above), the user’s disconfirm-
ation indicates that the yes/no question contained a prob-
lem (due to speech recognition or incorrect assumptions on
the system’s part). If the yes/no question was not a veri-
fication (such as example (1.b), but also questions like Do
you want other information? or Do you want information
about another connection?), then the user’s disconfirma-
tion just serves as an answer to that question and does
not indicate problems.

Regarding their structure, the users’ disconfirmations were
divided into three categories: (1) responses consisting of an
explicit disconfirmation marker “no” (“nee”) only (‘single
no’), (2) responses consisting of an explicit disconfirmation
marker followed by other words (‘no+stuff’, Hockey et al.
1997), (3) responses containing no explicit disconfirmation
marker (‘stuff’).

The speech data were digitized with a 16 kHz sampling fre-
quency. Fundamental frequency (Fp) was determined us-
ing a method of subharmonic summation (Hermes, 1988).
Durations of speech segments and of pauses were measured
directly in the digitized waveform. The users’ responses to
the yes/no questions were analysed in terms of the follow-
ing features: (1) type of boundary tone in “no” (high or
low); (2) duration (in ms) of “no”; (3) duration (in ms)
of pause after “no” before stuff; (4) duration (in ms) of
pause between system’s prompt and user response; (5) Fo
max (in Hz) at energy peak of major pitch accent in stuff;
(6) number of words in stuff. It was our original intention
to also investigate pitch range in the “no” part of the differ-
ent responses, but this turned out to be too difficult given
that many of the cases were realized with a low-anchored
pitch accent followed by a high boundary tone (L*H-H%).
For these utterances, it was not possible to adequately
measure pitch range, given that the Fy maximum in the
energy peak in the pitch accent basically undershoots the
perceived pitch range, whereas the real Fp maximum at
the end of the high boundary tone would overshoot it. See
the discussion of figure 1 below.

4. RESULTS

This section first presents the results, and then illus-
trates some of the main effects with two typical examples.

Table 3: Numbers of negative answers following an un-
problematic system utterance (= PROBLEM) and following
those containing one or more problems (PROBLEM)

Type - PROBLEMS PROBLEMS | TOTAL
no 18 11 29
stuff 0 24 24
no+stuff 23 33 56
TOTAL 41 68 109

Table 4: Distribution of high and low boundary tones for
positive and negative cues

Boundary tone | = PROBLEMS PROBLEMS | TOTAL
Low 32 7 39
High 9 37 46
TOTAL 41 44 85

Table 3 gives the distribution of different types of discon-
firmations following either an unproblematic system utter-
ance or one which contains one or more problems. A y>
test reveals that this distribution is highly significant (x?
= 22.146, df = 2, p < 0.001). First, this table shows that
the minimal response, a single no, is in the majority of
the cases used as a positive signal. Second, single stuff
responses are exclusively reserved for responses following
a system utterance with one or more problems. The ma-
jority of the responses to yes/no questions in our data,
however, is of the no+stuff type, which may serve either
as a positive or as a negative cue. The lexical material
in the stuff is quite different for the two signals: for the
positive cases, the subsequent words are mostly some po-
lite phrases (“thank you”, “that’s right”); for the negative
cases, the stuff usually is an attempt to correct the inform-
ation which is misrecognized or which is wrongly assumed
by the system.

Table 4 displays the number of high and low boundary
tones on the word “no” (for the single no and no+stuff
cases) for positive and negative signals. A x? test reveals
that this distribution is again well above chance level (2
= 33.004, df = 1, p < 0.001). Tn responses following an
unproblematic system question, “no” is generally provided
with a ‘declarative’ 1% boundary tone, while in responses
following a problematic question, the “no” generally re-
ceives a ‘question-like’ H% boundary tone. These results
are in agreement with observations in Japanese human-
human conversations ([11]).

The results for the continuous prosodic features of interest
are given in table 5. Taking the utterances of all sub-
jects together, a t-test reveals a significant difference for
each of these features. The numbers of unproblematic and
problematic utterances are insufficient and/or unequally
distributed in order to test intra-individual differences.
However, when looking at the mean within-subject differ-
ences, the findings mostly point in the expected direction,
thus warranting an overall t-test. For all speakers, the
mean duration of “no” and of pauses, Fy max in stuff, and
the number of words in stuff are usually higher in prob-
lematic than in unproblematic cases.
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Figure 1: No-stuff responses of one speaker to two different yes/no questions from the system: left shows the ‘go on’
utterance “nee dankuwel”(no thanks) and right is the ‘go back’ utterance “nee vanavond” (no tonight).

Table 5: Average values for different features of all oc-
currences of “no” (single no and no+stuff). Standard de-
viations are given between brackets.

Feature — PROBLEMS PROBLEMS
Duration of “no” (ms)* 226 (83) 343 (81)
Preceding pause (ms)”* 516 (497) 953 (678)
Following pause (ms)** 94 (93) 311 (426)
Fo max in stuff (Hz)** 175 (37) 216 (46)
Words in stuff* 2.61 (3.65) 5.42 (8.14)

*p < 0.001, *p < 0.05

Let us recapitulate the findings given in table 5. First,
negative signals differ from positive ones, in that the word
“no” —when it occurs— in these utterances is comparat-
ively longer. Second, compared to positive signals, there
is a significantly longer delay after a problematic system
prompt before users respond. Both results are in line with
the data for Japanese ([11]). Third, in the no+stuff utter-
ances, the interval between “no” and the remainder of the
utterance is longer following a problematic system utter-
ance than following an unproblematic one. Fourth, after
a problematic yes/no question, the stuff part of the an-
swer usually contains a high-pitched narrow focus accent
to mark corrected information, whereas in the unproblem-
atic case the stuff is usually prosodically unmarked. Fi-
nally, in reaction to a problem, the stuff part tends to be
longer in number of words, which is in agreement with our
previous, more general finding ([7]).

To illustrate some of these effects more clearly, consider
figure 1 which visualizes the waveforms and corresponding
Fy contours of two typical disconfirmations produced by
one of our speakers, one being a ‘go on’ signal (left), the
other a ‘go back’ signal (right). Both utterances consist of
a disconfirmation marker (“no”) followed by stuff, but it is
clear that they are realized with quite different prosody. In
line with our hypothesis, the word “no” in the ‘go on’ case
is comparatively short (185 ms), it is not provided with
a prominent high boundary tone, and it is immediately
followed by the stuff without a clear silence interval. In
addition, the stuff part of this response does not contain a
prominent pitch accent. On the other hand, the utterance
on the right-hand side of the figure is a ‘go back’ signal

and accordingly contains a relatively long “no” (441 ms),
which is produced with a clear high boundary tone, and
is followed by a fairly long pause of 762 ms. Note that
the contour on the word “no” is of the type referred to
above, L¥H-H%, which does not permit a straightforward
specification of pitch range. Also, the stuff contains a clear
narrow focus pitch accent which serves to highlight correc-
ted information. What cannot be derived from this figure
is that in the ‘go back’ mode speakers generally tend to
produce their responses after a longer delay than in ‘go
on’ mode, and also that the stuff part is generally longer
in words in the former case.

5. DISCUSSION

The main finding of this article can be summarized as fol-
lows: in the case of communication problems, speakers
If the
preceding system utterance contained a problem (either a
speech recognition error or an incorrect default assump-

tion), then (1) the user’s utterance of the word “no” has

put much more prosodic effort in their reaction.

a longer duration, (2) there is a longer pause between the
system’s utterance and the user’s reaction, (3) in the case
of a no+stuff answer, the delay between the “no” and the
stuff is longer, (4) the stuff part contains a narrow focus,
high-pitched (corrective) accent and (5) the stuff contains
more words. Additionally, various distributional differ-
ences between ‘go on’ and ‘go back’ signals were found:
for instance, single stuff answers are solely reserved as re-
sponses to problematic system utterances and, moreover,
users who respond to problematic utterances primarily use
H% boundary tones.

These findings can easily be related to the respective func-
tions of the two kinds of disconfirmation. A ‘go on’ dis-
confirmation is simply an answer to the question and does
not address any underlying assumptions of the system. In
The stuff

is exclusively reserved for politeness phrases, which follow

principle, a single “no” is a sufficient answer.

more or less automatically and provide no further inform-
ation. This explains the short pauses between the “no”
and the stuff as well as the lack of accents in the stuff. If a
yes/no question from the system contains a problem, just
answering “no” might be sufficient but is not very cooper-

ative. Assuming that the user wants the dialogue to be



over as soon as possible it is more efficient to immediately
correct the system. To do that, single stuff adequately
serves the purpose, whilst an explicit “no” may be added
to strengthen the problem signalling.

The findings related to prosodic effort are in line with the
findings of the companion paper [7] in which it was shown
that subjects use the negative (‘go back’) variants of the
features described in table 1 more often when the pre-
ceding system utterance contains a problem, whereas the
positive cues (‘go on’) are more often used in response to
unproblematic system utterances. Taking these two res-
ults in combination, we have found evidence for the claim
that people devote more effort to negative cues on various
levels of communication.

An interesting question is how generalizable the prosodic
results are. We contend that our findings are not specific
for “no” nor for Dutch nor for the domain of train trav-
elling. Support for this is found, for instance, in the re-
cent collaboration of the second author with Hirschberg
and Litman. One of the findings from their study of
American English human-machine dialogues is that ut-
terances following speech recognition errors can be reli-
ably distinguished from ‘normal’ utterances using a set of
automatically obtained acoustic/prosodic characteristics
(pitch range, amplitude, timing, inter alia). For instance,
‘corrections’ appear to be more prosodically marked than
other utterances (higher, longer, louder, slower, ...), which
is in agreement with our current results.

The current analysis suggests that the presence of cues
such as a prolonged delay before answering or a high-
pitched narrow focus accent are good indicators of prob-
lems. In combination with the findings of [7], the present
results provide potentially useful information for spoken
dialogue systems which monitor whether or not the com-
munication is in trouble: if a question is followed by a
user’s utterance which has various marked properties (such
as relatively many words, disconfirmations, corrections,
long delays, words with a narrow focus, high-pitched ac-
cent), the system can be fairly certain that the information
it tried to verify is not in agreement with the user’s inten-
tions. If, on the other hand, the user’s utterance does
not contain such features, then it is highly likely that the
verified information is correct. Indeed, the memory-based
learning experiments mentioned in section 2 and further
described in the appendix show that it is possible to pre-
dict in 97% of the cases whether or not the user signals
a communication problem. Knowing whether or not there
are communication problems may be very useful in a num-
ber of situations. It can be used as a basis for choosing
the verification strategy employed by the system, but it
may also be a cue to switch to a different recognition en-
gine. Levow [8] found that the probability of experiencing
a recognition error after a correct recognition is .16, but
immediately after an incorrect recognition it is .44. This
increase is probably caused by the fact that speakers use
hyperarticulate speech when they notice that the system
had a problem recognizing their previous utterance.

It should be stressed that before such techniques can be

used in practice, the gap between the hand-annotated and
interpreted data used in the analyses and the raw data
which comes out of a speech recognition engine has to be
bridged. We certainly do not wish to claim that all the
cues discussed here and in [7] can be extracted automat-
ically from a word graph. However, we conjecture that
many cues, and certainly the most important ones, can
be extracted automatically. To see whether this is indeed
the case we intend to redo the experiments described here
with word graphs. As said, it is likely that the percentage
of cases correctly classified as problems will decrease. The
prosodic cues discussed in this paper may provide a means
of compensating for this loss of accuracy.
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APPENDIX:
MEMORY-BASED ERROR SPOTTING

In this appendix some experiments with memory-based
learning techniques for the spotting of communication
problems are discussed, based on the findings of [7].
Memory-based learning techniques can be characterized
by the fact that they store a representation of some set
of training data in memory, and classify new instances by
looking for the most similar instances in memory. In the
current context an instance is the representation of an ut-
terance pair using a vector of 14 feature value pairs. The
14 features are described in [7]: four represent proper-
ties of the systems’ questions such as verification strategy
and presence or absence of defaults, the ten others rep-
resent properties of the users’ replies (number of words,
(dis)confirmations, corrections, repetitions etc.). Various
experiments were carried out on the complete set of 487
utterance pairs described in [7], each time training on
486 cases and testing on the remaining one (“leave one
out”). The category to be predicted during the test phase
is whether or not there are communication problems. If
X is the test case, a distance metric A(X,Y) determines
which group k of cases Y in memory is the most similar
to X. The most frequent value for the relevant category
in k is the predicted value for X. Since some features are
more important than others, a weighting function w; may
be used. In sum: the distance between vectors X and Y
of length n is determined by the following equation:

AX,Y) =) wi b(wi, i) (1)
i=1
where 6(x;,y;) gives a point-wise distance between features
which is 1 if z; = y; and 0 otherwise.

For the actual experiments we used the IB1-GR algorithm
from [4]. IB1-GR is a combination of (an extension of)
the instance-based learning algorithm 1B1 of [1] with gain
ratio (GR) as weighting function. The gain ratio for a
feature ¢ is derived from the information gain for that
particular feature, computed by looking at the difference
in uncertainty (entropy) for situations with and without
feature i. A consequence of this measure is that features
which have a minority of infrequent but highly informative
values, and a majority of uninformative values (such as
marked versus unmarked word order), tend to have low
information gain, and thus mostly play a minor role in
classification. Moreover, the information gain metric has
a tendency to overestimate the benefits of features with
a large number of values. As an extreme case, consider
a feature with unique values (for the current domain, an

Table 6: Percentages correct classifications (problems/no
problems) obtained using leave-one-out on tokens with the
IB1-GR algorithm.

Features Percentage correct
All features 97%
confirm + correct 96%
correct 90%
confirm 83%

utterance identification number between 1 and 487, say).
Such a feature will have a maximal information gain, but
is useless for value prediction of new cases. The gain ratio
metric normalizes the information gain in this respect (for
further details we refer to [4]).

Using the IB1-GR algorithm four experiments were carried
out, in which the number of features stored in memory is
varied. Table 6 displays the results. The baseline strategy
is always guessing that there are no problems, which would
be correct for 287 of the 487 cases. Thus, the chance level
lies at 59%. All experiments went well above this level, the
best results being obtained using all features with 97% cor-
rect categorizations. In the data under consideration, the
features with the highest gain ratio by far were ‘confirm’
(whether or not the user’s utterance contains a confirma-
tion) and ‘correct’ (the number of slots the user corrects).
This means that these features play first fiddle when all
features are considered. TLooking only at these features
leads to slightly lower percentage of correct predictions
(although we should be careful to draw conclusions from
that, given the relatively small amount of data). Interest-
ingly, the two features only perform well in combination,
in isolation their respective performances are much lower.

The conclusion must be that on the basis of the hand-
annotated data it is very well possible to predict whether
the user signals a communication problem or not. The
results indicate that the presence of all features is bene-
ficial, but the relatively small amount of data does not
warrant any definite conclusions in this respect. As noted
in the main text: there is a considerable gap between the
hand-annotated data and the raw data coming out of a
speech recognition engine. It is expected that it will be
quite hard to extract certain feature values automatically
from a word graph (e.g., marked word-order). However,
we suspect that other (and more important) features can
be extracted from the word graph automatically provided
that the context (the preceding system utterance) is taken
into account. To find out whether this is indeed the case,
we intend to redo the experiments in the future with word
graphs. Additionally, we want to further investigate the
usefulness of prosodic cues (boundary tone, duration, Fp,
pause) for error-spotting, which, we conjecture, are relat-
ively easy to extract from the speech signal. It will be very
interesting to see how the memory-based learning tech-
niques will perform when applied directly on the level of
such raw data.



