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1 INTRODUCTION

In their interesting 1995 paper, Dale & Reiter present various algorithms they de-
veloped alone or in tandem to determine the content of a distinguishing description.
That is: a definite description which is an accurate characterization of the entity be-
ing referred to, but not of any other object in the current ‘context set’. They argue
that their Incremental Algorithm, discussed in more detail below, is the best one
from a computational point of view (it has a low complexity and is fast) as well as
from a psychological point of view (humans appear to do it in a similar way).

Even though Dale & Reiter (1995) primarily aimed at investigating the compu-
tational implications of obeying the Gricean maxims,1 the Incremental Algorithm
has become more or less accepted as the state of the art for generating descriptions.
However, due to their original motivation, various other aspects of the generation
of definites remained somewhat underdeveloped. In this paper, we flesh out a num-
ber of these aspects, without losing sight of the attractive properties of the original
algorithm (speed, complexity, psychological plausibility).

The basic idea we want to pursue is that a definite description refers to the most
salient element satisfying the descriptive content (Lewis 1979: 348-350, see Krah-
mer 1998 for a formalization in dynamic semantics). Lewis mentions the following
example (due to McCawley):

(1) The dog got in a fight with another dog.

Lewis notes that this statement can only be true in a domain which contains at least
two dogs, which entails that the dog cannot be a distinguishing description. Ac-
cording to Lewis, (1) means that the most salient dog got in a fight with some less
salient dog. Lewis does not mention descriptions which refer to ‘unique’ objects,
but it is readily seen that they can also be understood in terms of salience: if there
is only one object with the relevant properties, it has to be the most salient one. Ar-
guably, a notion of salience is implicit in Dale & Reiter’s usage of context sets, and
also extensions such as Horacek (1997:210) and Stone & Webber (1998:183) expli-
citly remark that some form of salience is important. None, however, specify how
salience should be determined nor which repercussions the inclusion of a notion of
salience has for the generation algorithm.2

In this paper we show that it is possible to integrate an explicit notion of sali-
ence into Dale & Reiter’s Incremental Algorithm and that this paves the way for
the context-sensitive generation of definite descriptions (section 3). In section 4,
two ways of assigning salience weights to objects are discussed, one based on the1For a good discussion of this aspect of their work, see Oberlander 1998.2Horacek (1997) and Stone & Webber (1998) are closely related in spirit to the current work. Hor-
acek (1997) makes various interesting observations about the limitations of the Incremental Algorithm
and its ilk and proposes a new algorithm with ‘flexible interfaces’ to other modules. Many of the is-
sues discussed by Horacek are also addressed in this paper, and some of his suggestions are taken
over, in particular the integration of linguistic constraints during generation. This integration is also a
central ingredient of Stone & Webber (1998), who go one step further and argue for the simultaneous
inclusion of semantic and pragmatic information as well. While both approaches look promising, it
is difficult to make a precise judgement of their respective performance and predictions since cent-
ral components (e.g., selection of properties, salience determination) are left unspecified. As a con-
sequence, the computational properties of their algorithms are not clear (see Horacek 1997:212 and
Stone & Webber 1998:186).



hierarchical focusing constraints of Hajic̆ová (1993), the other on the constraints
of Centering Theory (Grosz et al. 1995). In section 5, a number of extensions of
the modified Incremental Algorithm are described. To begin with, the presence of
a principled way of salience weight assignment makes it possible to take the pro-
nominalization decision within the algorithm (section 5.1). A more substantial ex-
tension is offered in section 5.2, where it is shown how the algorithm can be exten-
ded so as to be able to generate relational descriptions in an efficient and flexible
way. Finally, in section 5.3 it is argued that the two previous extensions make it
possible to generate bridging descriptions. In the concluding section we describe,
among other things, some issues related to the implementation of the algorithm and
its integration in a data-to-speech system (i.e., a system which converts structured,
non-linguistic data into spoken language).

2 THE INCREMENTAL ALGORITHM (DALE & REITER 1995)
Suppose, for the sake of illustration, that we have a domain D1 consisting of the
following four entities d1 � d4.d1 h type, chihuahua i, h size, small i, h colour, black id2 h type, chihuahua i, h size, large i, h colour, white id3 h type, siamese cat i, h size, small i, h colour, black id4 h type, poodle i, h size, smalli, h colour, white i
It should be stressed that the approaches described in this paper apply to any do-
main which meets the following criteria (Dale & Reiter 1995:254): (i) each en-
tity in the domain is characterized by a list of attribute value pairs, or properties,
(ii) each entity has at least an attribute type and (iii) there may be a subsumption
hierarchy on the values of certain attributes. Here it is assumed that there is such a
hierarchy for the attribute ‘type’: ‘dog’ subsumes ‘chihuahua’ and ‘poodle’, ‘cat’
subsumes ‘siamese cat’ and ‘mammal’ in its turn subsumes ‘dog’ and ‘cat’. Addi-
tionally, there can be a basic level value (e.g., Rosch 1978) for a certain attribute.
Following Dale & Reiter, we assume that the basic level values for ‘type’ are ‘dog’
and ‘cat’ respectively.3

The input for the Incremental Algorithm is an object r, a set C (the context set)
consisting of alternative objects from which r has to be distinguished (the distract-
ors) and, crucially, a list of preferred attributes. This list contains, in order of prefer-
ence, the attributes that human speakers and hearers prefer for a particular domain.
For instance, it seems likely that a human speaker would first try to describe an an-
imal by its ‘type’ (is it a dog? is it a cat?), and if that doesn’t help attributes like
‘colour’ and ‘size’ may be used. It is reasonable to assume that speakers have a gen-
eral preference for absolute properties such as ‘colour’, which are easily observed
without taking the other objects into account, over relative properties such as ‘size’,3According to the categorization theories of Rosch and others, the basic levels are fixed. For in-
stance, they are the first levels which children learn to understand and use. Additionally, and most
relevant for current purposes, basic levels are normally used in neutral contexts. Lakoff (1987:42):
“For example, There’s a dog on the porch can be used in a neutral context, whereas special contexts
are needed for There’s a mammal on the porch or There’s a wire-haired terrier on the porch. (See
Cruse 1977).” From the perspective of generation, the basic level values might also be viewed as
user-dependent (Dale p.c.). For instance, it seems likely that for a professional dog-breeder the ‘ba-
sic level’ is below ‘dog’ in the subsumption hierarchy.



which are less easily observed and always require inspection of the distractors.4
Thus let us assume that the list of preferred attributes for the example domain ish type, colour, size, . . .i. Essentially, the Incremental Algorithm goes through the
list of preferred attributes, and for each attribute it encounters it finds the best value
of this property. The best value of a property is the value closest to the basic level
value such that none of the values it subsumes rule out more objects in the domain.
If adding this best value to the already selected properties has the effect of ruling out
any of the remaining distractors, it is included in the list of properties to be used in
the generation of the distinguishing description. The algorithm stops when the end
of the list of preferred attributes is reached (failure), or when the list of distractors
is empty (success). In the latter case, it is checked whether the ‘type’ property was
included, and if not, its basic value is added to the selected list of properties.

Dale & Reiter (1995:247) argue that this algorithm has a polynomial complex-
ity and the theoretical run time can be characterized as ndnl: the run time depends
solely on the number of distractors nd and the number of iterations (i.e., selected
properties) nl. This means that the Incremental Algorithm is the fastest algorithm
discussed in Dale & Reiter (1995). One of the central features of the Incremental
Algorithm is that there is no backtracking (hence the term ‘incremental’): once a
property p has been selected, it will be realised in the final description, even if a
property which is added later would render the inclusion of p redundant with hind-
sight. This aspect is partly responsible for the efficiency of the algorithm, but Dale
& Reiter additionally claim that this property is ‘psychologically realistic’ since hu-
man speakers also often include redundant modifiers in their referring expressions
(see e.g., Pechmann 1989).5
3 A MODIFICATION OF THE ALGORITHM BASED ON SALIENCE

3.1 Introduction
The contents of the description for an object which the incremental algorithm out-
puts are to a large extent determined by the context set. Nevertheless, Dale & Re-
iter do not address the question how such context sets are constructed nor how their
contents can be updated during the generation process. They only write:

We define the context set to be the set of entities that the hearer is cur-
rently assumed to be attending to; this is similar to the set of entities4The literature on perception contains a wealth of empirical evidence for such general orderings,

see, for instance, Pechmann (1989), Levelt (1989) and, more recently, Beun & Cremers (1998).5Dale & Reiter (1995:248): “For example, in a typical experiment a participant is shown a picture
containing a white bird, a black cup, and a white cup and is asked to identify the white bird; in such
cases, participants generally produce the referring expression the white bird, even though the simpler
form the bird would have been sufficient.” Yet, it seems to us that the Incremental Algorithm would
produce the description the bird in this situation: if we make the natural assumption that ‘type’ is the
most preferred attribute, the property ‘bird’ will be the first one selected and immediately rules out
the black and the white cup. In general, it should be noted that Pechmann’s notion of incrementality
refers to speech production; the fact that speakers, when describing an object, start uttering properties
of that object without making sure whether these are actually distinctive or not. Dale & Reiter’s in-
crementality refers to the lack of backtracking in property selection, but the order in which properties
are selected is not related to the order in which properties are realized in speech. It is worth noting
that full incrementality in the latter sense (each property is uttered as soon as it is selected), cannot be
obtained without taking a certain amount of lookahead into account (Levelt 1989).



in the focus spaces of the discourse focus stack in Grosz and Sidner’s
(1986) theory of discourse structure. (Dale & Reiter 1995:236)

Dale (1992:192-193) is somewhat more explicit and briefly describes a full and a
partial order on focus spaces. However, he concludes that:

[i]n the present domain [recipes, K&T], since the number of entities
we are dealing with is relatively small, it is adequate to take the global
working set to be the context.

(The ‘working set’ refers to the list of “identifiable distinct objects in the domain
at any point in time,” Dale 1992:56.) In this section our aim is to be explicit about
the continuously changing contents of context sets and the repercussions this has
for the Incremental Algorithm. It is instructive at this point to look at some of the
options we have at our disposal. We assume that there always has to be a domain
of discourse D: the set of objects which can be referred to (in a data-to-speech sys-
tem this set is given as part of the data). Some people have suggested that a context
set C may be a proper subset of D, containing those objects of D which have been
referred to before. But, suppose for the sake of argument that D contains three ob-
jects: two dogs and a cat, and that the cat has just been mentioned. How should
we restrict the context set? We cannot restrict C to the cat, because then we cannot
refer to the dogs anymore, and for similar reasons we cannot restrict C to the dogs.
This suggests that it is not feasible to dynamically reduce or enlarge the context set.
Rather it should be a structured whole, containing precisely the objects in the do-
main and combined with a method to mark certain objects as more prominent than
others. As our metric of prominence we shall use salience weights.

3.2 Preliminaries
The underlying idea of our modifications is the following:

A definite description ‘the N’ is a suitable description of an object d
in a state s iff d is the most salient object with the property expressed
by N in state s

Since the denotation of the N is an important factor, we use the notion of a value
set. Let L be the list of properties expressed by some N. The value set of L in some
domainD (notation: ValD(L)) is the set of objects d 2 D which have the properties
expressed by L.6 More formally:

DEFINITION 1 (Value sets)
ValD(hA; V i) = fd 2 D j d has the property expressed by V g;
ValD(fp1; : : : ; png) = ValD(p1)\ : : : \ValD(pn), where pi = hAi; Vii(1 � i � n).
Thus: ValD1(fhcolour;whitei; htype; chihuahuaig) = ValD1(hcolour;whitei) \
ValD1(htype; chihuahuai) = fd2; d4g \ fd1; d2g = fd2g. The domain subscript6The use of value sets marks a minor deviation from Dale & Reiter. Whereas they use a function
RulesOut which determines the objects which do not have a certain property p, we check which ob-
jects do have this property. This difference is akin to the difference between a cup which is half full
and one which is half empty. We find the use of value sets somewhat more intuitive, as they provide
a first connection with the semantics.



and the attributes are omitted when this does not lead to confusion; e.g., we write
Val(small, chihuahua). By definition, the value set of the empty list of properties
is the entire domain (ValD(fg) = D). Following common practice, we use jSj to
denote the cardinality of a set S.

How can we model the salience of an entity? For that purpose we use a func-
tion variable sw (salience weight) which per state represents a function mapping
elements in the domain to a natural number.7 For the sake of simplicity, we shall
assume that in the initial state (s0), say the beginning of the generation process,
all entities are minimally salient (represented as a zero salience level). Formally,8d 2 D : sw0(d) = 0. When this can be done without creating confusion, the in-
dex on swi is suppressed. Below, in section 4, we discuss and compare two methods
for salience weight assignment. For the time being we simply assume that the sa-
lience weights are given. So let sws be the function assigning salience weights in
state s, then we can define that an object r is the most salient object having cer-
tain properties L in a state s (notation: MostSalient(r; L; s)) if, and only if, every
object in Val(L) different from r has a lower salience weight in s than r itself.

DEFINITION 2 (Salience condition)
MostSalient(r; L; s), 8d 2 Val(L)(d 6= r ! sws(d) < sws(r))
3.3 Outline of the Modified Algorithm
Figure 1 contains our proposal for a modified algorithm in pseudo-code. We have
stuck as closely as possible to the algorithm from Dale & Reiter (1995:257) to ease
comparison.8 Below, we illustrate it with a number of examples. First, we give a
general, somewhat informal overview.

The algorithm is called by MakeReferringExpression (r; P; s); that is, we try
to generate a definite description for a referent r given some pre-defined list P of
preferred attributes in a state s (where s is a pointer to the sws function). L is the
list of properties which have been selected for inclusion in the expression generated
and is initialized as the empty list. The variable tree contains the syntactic tree for
the NP under construction which corresponds with the current list of properties L.
Finally, contrast is a boolean variable which indicates whether the property under
consideration is contrastive or not. As in the original version of the algorithm, the
main loop iterates through the list P of preferred attributes. For each attribute A on
this list, the best value V is sought (essentially in the same way as done in the Incre-
mental Algorithm). Once the best value V is found, it is checked whether adding
the property hA; V i to the list of already selected properties ‘shrinks’ the value set
(and thus rules out one or more distractors). If this is so, the function Contrastive
(r;A; V ) checks whether the property under consideration is contrastive, i.e., if it
serves to distinguish the object r in some linguistic contextLC . LC is defined as the7It is also possible to assign salience weights to groups of objects (such as focus spaces). No-
tice that the point-wise assignment can be mapped onto a group-wise assignment, but not vice versa.
The additional information that point-wise assignments have is potentially useful for the sake of pro-
nominalization. We do not believe, however, that there is a knock-down argument for either of the
alternatives. For that the two are too similar.8We also adopt the notation employed by Dale & Reiter, which is essentially the WEB style from
Knuth (1986:viiff).



MakeReferringExpression (r; P; s)L fg, tree nil, contrast false
for each member Ai of list P doV  FindBestValue (r; Ai;BasicLevelValue(r; Ai); s)

if jVal(L [ fhAi; V ig)j < jVal(L)j ^
contrast Contrastive(r; Ai; V ) ^
(tree UpdateTree(tree; V; contrast)) 6= nil

then L L [ fhAi; V ig
endif
if MostSalient (r; L; s) = true
then if htype; Xi 2 L for some X

then tree AddDefDet (tree) ^
return tree

else V  BasicLevelValue(r; type) ^
(tree UpdateTree (tree, V, false)) 6= nil ^
tree AddDefDet (tree) ^
return tree

endif
endif

return failure

FindBestValue(r; A; initial-value; s)
if UserKnows(r; hA; initial-valuei) = true
then value initial-value
else value nil
endif
if MostSalient(r; fhA; valueig; s) = false ^(msv MoreSpecificValue(r; A; value)) 6= nil ^

(new-value FindBestValue (r; A, msv, s)) 6= nil ^jVal(fhA; new-valueig)j < jVal(fhA; valueig)j
then value new-value
endif
return value

MostSalient(r; L; s)
if 8d 2 Val(L)(d 6= r ) sws(d) < sws(r))
then return true
else return false
endif

Contrastive(r; A; V )LC  fd 2 DR(PrevS [ CurrS) j d 6= r ^
Parent(BasicLevelValue(d; type)) =
Parent(BasicLevelValue(r; type))g

if 9d 2 LC : Value(d;A) 6= V
then return true
else return false
endif

Figure 1: Full sketch of the modified algorithm.



set of objects/discourse referents (DRs) which are referred to in the previous sen-
tence (PrevS) or in the sentence currently being generated (CurrS), and of which
the basic level value of the attribute ‘type’ has the same parent as that of r. A prop-
erty hA; V i of r is considered to be contrastive if there is an element c 2 LC which
has a different value for the current attribute.9 Subsequently, the algorithm tries to
incorporate V in the NP under construction, using the function UpdateTree(tree,
V, contrast).10 If this does not succeed (the lexical or syntactic restrictions of the
generation module make it impossible to express the property), V is rejected. If it
does succeed, the current property is added to the list of selected properties. Then
it is checked whether the intended referent r is the most salient object in the current
state of the discourse which satisfies L. If so, the algorithm succeeds. It realises
the type in the constructed NP if it is not already there, after which the function
AddDefDet inserts the determiner the to produce a full definite description.

3.4 Examples
First example: non-anaphoric description Reconsider our example domain D1,
and suppose that we start generating a monologue in the initial state s0. Thus, by as-
sumption, all elements of the domain are equally salient. Now we want to generate
an expression for d2. MakeReferringExpression (d2; P; s0) is called (assuming
that P is h type, colour, size, . . .i). The list of properties L is initialized as fg, tree as
nil and contrast as false. We consider the first property of d2, h type, chihuahua i.
The best value for this attribute is ‘chihuahua’, since jVal(chihuahua)j = 2 <jVal(dog)j = 3. This property has sufficient descriptive content to be included in
the description under construction: jVal(chihuahua)j = 2 < jVal(fg)j = 4. As a
result the function UpdateTree is called which incorporates the type into the de-
scription under construction and returns tree (I) from figure 2. The value ofL is nowfh type, chihuahua ig. MostSalient(d2; chihuahua; s0) fails because d1 is also a
chihuahua, and d1 and d2 are both minimally salient by assumption. So we proceed
by taking the second property of d2, h colour, white i. Now jVal(white; chihuahua)j< jVal(chihuahua)j; this property is discriminating and again we call the function
UpdateTree which adds an AP for the property ‘white’ to the current NP tree (II,
figure 2). Now, MostSalient(d2; fwhite, chihuahuag; s0) is true: d2 is the only
white chihuahua in the domain, so it is by definition the most salient one. Since
the type of d2 is present in the constructed NP tree, the definite article is added, and
the resulting tree (III, figure 2) is returned. When the description is conveyed, d2
increases in salience, becoming more salient than the other objects in the domain.9Thus, loosely speaking, the adjective large in the NP the large dog is marked as contrastive in the
context of a small cat but not in the context of a small car. This treatment of contrast is closely related
to the proposal of Prevost (1996), who presents an algorithm for deciding which properties should
receive contrastive accent in a manner which is somewhat similar to the Incremental Algorithm. See
Theune (1997) for some further discussion on Prevost’s approach to contrast.10In contrast with the rest of the algorithm, this function is largely domain and language depend-
ent. Essentially, starting from a prototypical NP structure, the function attempts to integrate each new
value V in the syntactic tree constructed so far. In general, the value of the ‘type’ attribute is realised
as the head noun. Unary properties are added, in the order of selection, as prenominal AP modifiers.
Relations (discussed in section 5.2) may be realized as postnominal PPs or relative clauses. If contrast
is true, the expression of the value V is marked by a [+c] feature, which can be taken into account dur-
ing the computation of prosody in a spoken language generation system. Following Horacek (1997),
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Figure 2: The three stages of generating the first example description.

Notice that when we assume that all entities in the domain are always equally sa-
lient (thus sw represents the constant function mapping each d 2 D to some n), the
modified algorithm selects exactly the same properties as the original Incremental
Algorithm. In other words, our version truly generalizes the original, which brings
us to the next example.

Second example: anaphoric description An anaphoric description generally con-
tains less information than its antecedent. This may be reflected by the omission
of properties, by the use of a more general head noun, or by both, as this example
shows. Suppose we want to refer to d2 in a situation s0 where d2 is more salient
than the other animals in the domain (e.g., because d2 was referred to in the pre-
vious sentence). The BasicLevelValue for d2 with attribute ‘type’ is ‘dog’, and
since d2 is currently the most salient dog in the domain, the modified Incremental
Algorithm immediately succeeds and returns a tree for the dog.

Third example: contrast Now suppose that the preceding sentence referred to bothd1 and d2 (e.g., ‘the black chihuahua and the white chihuahua . . . ’) and that we call
MakeReferringExpression (d2; P; s). Then the first property added to the descrip-
tion under construction will be ‘chihuahua’ (as the reader may check for herself).
The second property, ‘white’ is also added to the description, since it distinguishesd2 from d1. Moreover, this property is contrastive, since d1 and d2 have the same
basic level value for the ‘type’ attribute and different values for the ‘colour’ attrib-
ute. The result is ‘the white[+c] chihuahua’ (where [+c] is a feature indicating a
contrastive relation).

3.5 Discussion
We have described a generalization of the Incremental Algorithm which extends the
original in a number of ways. First and foremost, it explicitly takes the discourse
context into account by treating context sets as a combination of a discourse do-
main with a salience function. This generalization entails that creating a referring
expression for one object (here d2 of domain D1) can result in e.g., the white chi-
huahua (in the initial state), the dog (in a context like the white chihuahua . . . ), the
dog[+c] (sample context: the white chihuahua and the cat) and the white[+c] chi-
huahua (context: the black chihuahua and the white chihuahua .. .). This does not
make the algorithm more complex: it still has a polynomial complexity, and a sim-

we allow each available slot in the prototypical NP structure to be filled only once.



ilar theoretical run time as the original algorithm (ndnl).11
4 DETERMINING SALIENCE WEIGTHS

So far we did not discuss how salience weights are computed. The literature con-
tains various methods to do so, such as Alshawi (1987), Hajic̆ová (1993), Lappin
& Leass (1994), and Grosz et al. (1995). In principle any of these methods will do;
it is not our intention to argue in favour of any specific approach. Our main point
here is that the modified algorithm can be associated with more than one principled
way of determining salience weigths. To illustrate this we discuss the hierarchical
focusing constraints of Hajic̆ová (1993) and the Centering approach of Grosz et al.
(1995). Throughout this section we let swi be a total function mapping the objects
in a domain D to the set f0; : : : ; 10g, with the intuition that 0 represents complete
non-salience and 10 maximal salience.12
4.1 Hajic̆ová: Hierarchical Focus Constraints
The salience function given in definition 3 below closely corresponds to the rules
given by Hajic̆ová (1993), except that in our version entities are mapped to a higher
number as they become more salient, with a maximum of 10, whereas in Hajic̆ová
(1993) entities are assigned a lower number as they become more salient, maximal
salience being indicated by 0. As a consequence, the Praguian approach allows for
an infinite decrease in salience weight, keeping track of objects which have faded
from the discourse long ago. In our version, the salience weight of an entity cannot
decrease below zero.

DEFINITION 3 (Salience weight assignment based on Hajic̆ová 1993)
Let Uk be a sentence uttered in the context of swi, and let topic(Uk) � D and
focus(Uk) � D be the sets of entities which are referred to in the topic and the fo-
cus part of Uk respectively.13 Then the new salience function swi+1 is defined as:swi+1(d) = 8>>>><>>>>: 10 if d 2 focus(Uk)9 if d 2 topic(Uk) and d is referred to by a definite NPswi(d) if d 2 topic(Uk) and d is referred to by a pronoun

max(0; swi(d)� 1) if d 62 topic(Uk) [ focus(Uk) and d 2 topic(Ul); l < k
max(0; swi(d)� 2) if d 62 topic(Uk) [ focus(Uk) and d 2 focus(Ul); l < k

4.2 Grosz et al.: Centering
An alternative definition of salience weight assignment can be based on the ranking
of the so-called forward looking centers (Cf ) of an utterance. According to Cen-
tering Theory (Grosz et al. 1995), the set of forward looking centers of an utter-
ance contains the entities referred to in that utterance. This set is partially ordered
to reflect the relative prominence of the referring expressions within the utterance.11To see this, observe that the modified algorithm still requires as much iterations as properties
realized in the description (nl) and in each of the iterations has to inspect the set of distractors (nd).12Notice that we are not committed to an 11-point scale of salience per se. Any finite subset of the
integers will do.13Informally speaking, the topic of U is what sentence U is about, while the focus of U is what
the sentence says about its topic (see e.g., Sgall et al. 1986). Notice that this notion of focus is very
different from that used in e.g., Grosz & Sidner (1986) and Grosz et al. (1995).



Grammatical roles play a major factor in this, so that subject > object > other.

DEFINITION 4 (Salience weight assignment based on Centering Theory)
Let swi be some total function mapping the objects in a domain D to f0; : : : ; 10g.
Let Uk be a sentence uttered in the context of swi, in which reference is made tofd1; : : : ; dng � D. Let Cf (Uk) (the forward looking centers of Uk) be a partial
order defined over fd1; : : : ; dng � D. Then the new salience function swi+1 is
defined as: swi+1(d) = ( 0 if d 62 Cf (Uk)n otherwise, where n = level(d; Cf (Uk))
Here, level(d;Cf (Uk)) refers to the level of the occurrence of d in the orderingCf (Uk), defined in such a way that the highest element(s) on the ordering are mapped
to 10, the element(s) immediately below are mapped to 9, etc.

4.3 Examples, Predictions and Comparison
Here we discuss two illustrative examples in some detail, emphasizing the repercus-
sions of choosing either way of assigning salience weights for the context sensitive,
incremental generation of referring expressions. Suppose the domain of discourse
is D1. We use swh to indicate the salience weights as assigned by the Hajic̆ová-
based approach (definition 3), while swc gives the salience weights as based on the
Centering approach (definition 4). We only keep track of the individuals in the do-
main and only list values which are not zero. Indices on words refer to entities in
the domain. In these example sentences, the Praguian topic always coincides with
the syntactic subject. Consider the following example.

(2) a. The2 white chihuahua was angry.swh(d2) = 9swc(d2) = 10
b. It2 viciously attacked the1 black[+c] chihuahua.swh(d2) = 9; swh(d1) = 10swc(d2) = 10; swc(d1) = 9
c. f The1 dog (H)/The1 black[+c] dog (C) g barked loudly.swh(d2) = 8; swh(d1) = 10swc(d1) = 10

First we take the Praguian point of view, using swh as defined above. In (2.a) the
modified algorithm produces the description the white chihuahua to refer to d2.
Thereby, d2 becomes the most salient object, with the highest-but-one degree of
salience, as it is introduced in the topic of the sentence. In (2.b) d2 is referred to by a
pronoun occurring in the topic of the sentence, so its salience weight is unchanged.14
A new object, d1, is introduced to the discourse using the description the black chi-
huahua. Since this is done in the focus of the sentence, d1 rises to maximal sali-
ence. When the modified algorithm generates a description for d1 in (2.c), the de-
scription the dog is constructed, as d1 is currently the most salient dog. This result,14Below we address the problem of pronoun generation.



though marginally acceptable, is not what we want. A simple solution to this prob-
lem is to ignore small differences in activation degree between competitors (see
also Kruijff-Korbayová & Hajic̆ová 1997:41). This would amount to re-defining
MostSalient(r; L; s) in such a way that this condition is met if, and only if, every
object in Val(L) different from r has a salience weight in swhich is at least, say, two
points lower than the salience weight in s of r itself.15 Let us now discuss example
(2) from the Centering perspective. After the first sentence has been uttered, we find
that Cf (2.a) is the singleton set containing d2, and as a result this object is now the
most salient object. In (2.b) we refer to both d2 and d1, and Cf (2.b) therefore con-
tains both d1 and d2. Since d2 is referred to in subject position, it is ranked higher
than d1. Consequently, to refer to d1 in (2.c) the modified Incremental Algorithm
correctly produces the black dog, where the adjective is marked as contrastive.

Now consider the following example. Suppose Joe went to a dog show (thus,
the domain of discourse contains hundreds of dogs of all kinds, sizes, colours) and
bought two dogs.

(3) a. Joe bought the45 large black long-haired sausage dog and the53 small
grey pygmy poodle with the perm wave.swh(joe)=9; swh(d45)=10; swh(d53)=10swc(joe) = 10; swc(d45) = 9; swc(d53) = 9

b. The45 sausage dog was a bargain.swh(joe)=8; swh(d45)=9; swh(d53)=8swc(d45) = 10
c. fThe53 poodle (H) / The53 small grey pygmy poodle with the perm wave

(C) g was very expensive though.swh(joe)=7; swh(d45)=8; swh(d53)=9swc(d53) = 10
Comparing the two different salience weight assignments in this example presents
the following picture. After generation of the first sentence, both approaches assign
high salience weights to joe and the dogs d45 and d53. The second sentence only
contains a reference to d45 (the sausage dog). Using the Centering approach, this
reduces the salience weight of joe and d53 to zero as they are not mentioned in (3.b),
whereas using the Hajic̆ová approach entails that their salience weights are reduced
much less. This difference in salience weight reduction for d53 greatly influences
its description in (3.c). Seen from a Praguian perspective, d53 is still the most sali-
ent poodle at this stage, and the generated description is the poodle. However, from
the Centering perspective, d53 is not salient at all and the modified Incremental Al-
gorithm again produces the description the small grey pygmy poodle with the perm
wave, just as it did for the first-mention of this dog in (3.a). In our opinion, this
shows that the Centering assumption that only objects mentioned in the previous
sentence can have a non-zero salience weight, is too strong from the perspective of
definite descriptions. Again, there is an obvious way to remedy this shortcoming:
we have to take the structure of the discourse into account (see e.g., Walker 1997
for a proposal to this effect).15In fact, Reiter (p.c.) suggested that the salience threshold might be dependent on text-genre. For
instance, the salience threshold for legal texts seems to be very high (see e.g., Maes 1991, who shows
that legal texts hardly contain anaphoric descriptions).



4.4 Discussion
As we have seen, there are at least two principled ways to determine salience weights
that can be used in the modified algorithm. We have discussed two examples illus-
trating the differences. In the first case, the Centering approach yields better results,
while in the second case, it is the Hajic̆ová way of determining salience weights
which pays off. A simple solution, which gives us the best of both worlds, would be
to combine the ordering of definition 4 with the gradual decrease in salience offered
by definition 3. In general, the determination of salience adds little computational
overhead. To compute a new salience function only the values of the objects men-
tioned in the current clause and the objects with a non-zero salience weight have
to be updated. Even for huge domains, the latter set is highly restricted, containing
only the objects mentioned in the last few sentences.

5 FURTHER EXTENSIONS

5.1 Pronominalization
Reiter & Dale (1997:81) point out that a simple but surprisingly effective strategy
for pronominalization is to “use a pronoun to refer to an entity if the entity was men-
tioned in the previous clause, and there is no other entity in the previous clause that
the pronoun could possibly refer to”. This is a fairly conservative strategy, which
has the advantage that it will not often produce incorrect pronominalizations. On
the other hand, it has been claimed that a pronoun should be used whenever this
is possible.16 The presence of salience weights in the modified algorithm makes it
possible to employ a somewhat less conservative strategy, taking the pronominal-
ization decision within the algorithm. This basic idea is as follows: if an object r
is the most salient object with respect to the empty list of properties (thus: r is the
single most salient object in the domain) and there is an antecedent for this object
in the direct linguistic context, then r can be referred to using a pronoun.

MakeReferringExpression (r; P; s)L fg, tree nil, contrast false
if MostSalient (r; fg; s) = true ^ 9c : Antecedent(c; r)
then tree Pronominalize (tree, r) ^

return tree
else for each member Ai of list P do

...

Figure 3: Pronominalization within MakeReferringExpression. Remainder of
the algorithm is as given in figure 1.

We certainly do not offer this as the final answer to the problem of generating
pronouns. One obvious limitation is that it does not take the role of semantics and
common sense into account (see e.g., Kameyama 1996, Passonneau 1996). The
current approach is only concerned with the default approach to pronoun genera-
tion which is purely syntactically motivated, and does not address how semantic16This is a specific instance of the DOAP principle from Williams 1997: “Don’t Overlook Ana-
phoric Possibilities.”



or pragmatic information can override the default. The success of this strategy de-
pends fully on the adequacy of the underlying model of salience weight determin-
ation, but we contend that the approaches discussed in the previous section could
serve as a starting point. Suppose, for example, that we determine salience weights
as in definition 4 (based on Centering Theory). If sentence (4.a) has been uttered
at the onset of a discourse, object d2 is more salient than object d3. If the modified
algorithm subsequently generates a referring expression for d2, it will produce it,
while a subsequent reference to d3 will yield a full, anaphoric description, which is
intuitively right.

(4) a. The2 white chihuahua was chasing the3 cat.

b. fIt2/The3 catg ran fast.

5.2 Relational Descriptions
Dale & Haddock (1991) offer an algorithm for the generation of relational descrip-
tions, which is couched in terms of the “Greedy Heuristics algorithm” (Dale 1992).
The basic claim we want to make here is that it is possible to generate relational de-
scriptions in a computationally efficient way using a slightly adapted version of the
(modified) Incremental Algorithm. Sticking to our continuing dogs and cats theme,
let us consider the following situation:��

.

.

ZZZZ���� ��
.

.

ZZZZ����
More precisely, we focus on the following sample domain (D2) where we in-

troduce the attribute ‘spatial’ which has a relation (in (x; y)) as value:d1 h type, chihuahua (d1) i, h size, small (d1) i, h colour, black (d1) id2 h type, chihuahua (d2) i, h size, small (d2) i, h colour, black (d2) i, h spatial, in (d2; d4) id3 h type, doghouse (d3) i , h size, large (d3) i, h colour, white (d3) id4 h type, doghouse (d4) i , h size, large (d4) i, h colour, white (d4) i, h spatial, in (d2; d4) i
When an object a is the intended referent and stands in a relation R to some

object b, then —following Levelt (1989)— b is referred to as the relatum of a. Since
we allow relations as properties, the definition of value sets has to be extended. A
minor complication is that we now have to keep track of the object whose value set
we want to determine (either the first or the second argument of a relation); therefore
the intended referent is included as a subscript. This yields the following definition.

DEFINITION 5 (Value sets (modified))
Vala;D(hA;P (a)i) = fd 2 D j d has the property expressed by Pg
Vala;D(hA;R(a; b)i) = fd 2 D j 9d0 2 D : hd; d0i stand in relation Rg



Vala;D(hA;R(b; a)i) = fd 2 D j 9d0 2 D : hd0; di stand in relation Rg
Vala;D(fp1; : : : ; png) = Vala;D(p1) \ : : : \ Vala;D(pn).
For example: Vald4;D2(fh spatial, in (d2; d4) ig) = fd 2 D2 j 9d0 2 D2 : d0 is
contained in dg (the set of objects which contain something) = fd4g.17 The list of
preferred attributes needs some rethinking as well. It seems a valid assumption that
people prefer to describe an object in terms of unary properties, and only shift to re-
lations when unary descriptions do not suffice (i.e., one-place properties stand to re-
lations as absolute properties stand to relative properties). This would follow from
the omnipresent principle of least effort (e.g., Zipf 1949, Clark & Wilkes-Gibbs
1986): it takes less effort to consider and describe only one object. Similarly, we
follow Horacek 1997:208 in assuming that human speakers and hearers have a pref-
erence for relatums which are close to the designated referent. Reasonable as such
assumptions seem, we are not aware of any psycholinguistic research into these is-
sues. For our example domain D2, we simply assume that P = h type, colour, size,
spatial i.

MakeReferringExpression (r; P; L; tree; s)
contrast false
for each member Ai of list P doV  FindBestValue (r; Ai;BasicLevelValue(r; Ai); s)

if (jVal(L [ fhAi; V ig)j < jVal(L)j _ Ai = type) ^
contrast Contrastive(r; Ai; V ) ^
(tree UpdateTree(tree; V; contrast)) 6= nil

then L L [ fhAi; V ig
endif
if V = R(r; r0) _ V = R(r0; r) for some relation R
then tree MakeReferringExpression (r0; P; fhAi; V ig; tree; s)
endif
if MostSalient (r; L; s) = true
then if htype; Xi 2 L for some X

then tree AddDefDet (tree) ^
return tree

else V  BasicLevelValue(r; type) ^
(tree UpdateTree (tree, V, false)) 6= nil ^
tree AddDefDet (tree) ^
return tree

endif
endif

return failure

Figure 4: Extension of the modified Incremental Algorithm which incorporates relational
descriptions. Other functions as in figure 1.17In certain situations the selected properties of the relatum (Lb) are also of interest. So a more
general definition of the value set of a relation would be Vala;D(hA;R(a; b)i) = fd 2 D j 9d0 2
Valb;D(Lb) : hd; d0i stand in relation Rg. For expository reasons, we stick to the simpler definition
in the main text.



Figure 4 shows a version of the modified Incremental Algorithm which is suited
for the generation of relational descriptions. The chief novelty is that the algorithm
now allows for recursion: as soon as a relation R is included, the MakeReferring-
Expression function is called again with as parameters the relatum, the list of pre-
ferred attributes, the relation (which already provides some information about the
relatum!), the syntactic tree constructed so far, and the context. To enable this re-
cursive call of MakeReferringExpression, the variables tree andL have been pro-
moted to parameters.

NP��� HHH
DET N�� HH

N

dog

PP��HH
P

in

NP

NP��� HHH
DET N��� HHH

N

dog

PP��� HHH
P

in

NP�� HH
DET

the

N

N

doghouse
(I) (II)

Figure 5: Two crucial stages in the generation of the dog in the doghouse.

Let us discuss an example: suppose we want to generate a description for ob-
ject d2 of example domain D2 in the initial situation s0 (all objects are equally non-
salient). We call the function MakeReferringExpression (d2; P; fg;nil; s0), whereP = h type, colour, size, spatial i, fg is the empty set of selected properties and nil
is the empty tree. As before, we iterate through P . The first property we encounter
is h type, chihuahua (d2) i. The best value is ‘dog’, and including this property rules
out the two doghouses. This property is realized as theN0 in the NP tree under con-
struction. The MostSalient condition is not true: d1 is a dog as well. The second
and third attributes (‘colour’ and ‘size’) fail to distinguish d2 from d1. The fourth
item, h spatial, in (d2; d4)i, does rule out d1, which is not inside something. This
item is included in the tree under construction as the head of a PP. The resulting
tree (I) is given in figure 5. Now we enter the recursion: the function MakeRefer-
ringExpression is called with as parameters d4 (the relatum), the list of preferred
attributes, the one property of d4 already included (h spatial, in (d2; d4)i), the cur-
rent tree (I), and the state s0. The first element on the list of preferred attributes is
‘type’. The type of d4 is ‘doghouse’. This property is not included since it does not
rule out any of the objects not yet ruled out by the spatial property. Now, MostSali-
ent (d4; h spatial, in (d2; d4)i; s0) is true: d4 is the most salient non-empty object in
this situation. Before leaving this iteration, the basic ‘type’ value of d4 (doghouse)
is included after all18 and the function AddDefDet inserts a definite determiner into
the embedded NP. The resulting tree (II in figure 5) is returned and the initial call of18It would be more efficient to simply include the ‘type’ immediately. However, it has been our
intention to stick as close to Dale & Reiter (1995) as possible.



MakeReferringExpression continues. At this point, the selected properties of d2
are Ld2 = fh spatial, in (d2; d4) i; h type, dog (d2) ig. MostSalient (d2; Ld2 ; s0)
is now true as well. To wrap things up AddDefDet inserts a definite article into the
main NP and the final tree is returned. Thus, the algorithm outputs the dog in the
doghouse. The interesting thing about this description is that it is distinguishing,
while neither the dog nor the doghouse in isolation are.

One common criticism of Dale & Haddock’s algorithm is that it always pro-
duces ‘embedded’ instead of ‘flat’ descriptions (see e.g., Horacek 1997:212, Stone
& Webber 1998:185). Consider the following situation: a room contains three tablest1, t2 and t3, where t1 supports a cup (c1) and a glass (g1, standing to the left of c1),t2 only a glass (g2) and t3 only a cup (c2). A natural way to refer to t1 would be
something like the table with the glass and the cup. However, if t1 would be fed
to Dale & Haddock’s algorithm, the algorithm would generate something like ex-
ample (5), using a relatum (the cup) to fully specify the relatum (the glass) of the
object to be described (the table).

(5) the table with the glass left of the cup

It is interesting to see what is wrong with Dale & Haddock’s result. It is not that one
cannot use a relatum to specify another relatum (think of: the dog in the doghouse
next to the garage). Rather, in the scenario described above it is just not relevant that
the glass is left of the cup. This information would only be relevant if the domain
contained a fourth table (t4) with a glass placed to the right of a cup. In that scenario
it would be perfectly natural to describe t1 as (5) (and notice that left would receive
a pitch accent in that case).

The algorithm outlined in figure 4 can capture this insight by defining subsump-
tion hierarchies on relations. Figure 6 contains (part of) such a subsumption hier-
archy for spatial relations. Here � stands for the underspecified spatial relation. We������������������� HHHHHH XXXXXXXXXXXX

. . . in front of next to�� HH
left of right of

on top of .. .

Figure 6: Part of the subsumption hierarchy on spatial relations

assume that � is the ‘basic level value’ for spatial relations and that it is linguistic-
ally realised as a plain conjunction.19 The value stored in the domain is the most
specific one (just as for the animal types). Suppose we are generating a description
for t1, and the algorithm has decided to include the type of t1 in this description (it
is a table) as well as the fact that t1 supports a glass g1. At this point, t1 is already
distinguished from t3 and the generated tree is given in figure 7.19It is interesting to note that most of the work on categorization in cognitive science has been
concerned with physical objects. A notable exception is Case study 2 in Lakoff (1987). Here Lakoff
studies the interrelations between various senses of the preposition over, which leads —on a lower
level— to a similar structure as 6. However, to the best of our knowledge the notion of basic level
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Figure 7: Intermediate tree for table t1.

The algorithm is now in the recursion and tries to further specify the glass g1.
For this purpose it has only one attribute (‘spatial’) left, namely that this glass is
located to the left of cup c1.20 The function FindBestValue is called with the basic
level value of the relevant spatial relation, which we have taken to be �. This basic
level value turns out to be the best since �(g1; c1) rules out the remaining table t2.
By assumption, the underspecified spatial relation � is linguistically realised as a
conjunction. The resulting description will thus be the table with the glass and the
cup. In contrast, if we would add table t4 to the domain (which supports a glass to
the right of a cup), then �(g1; c1) would not be the best value for the spatial relation
as it would fail to distinguish the intended referent from the newly added table t4.
This would only be accomplished by left of. (We invite the reader to check what
would happen if the glass on t4 were placed on top of the cup.)

Let us take stock. We have shown that some simple modifications to the (modi-
fied) Incremental Algorithm suffice for the generation of descriptions involving re-
lations. To begin with, this exercise shows how insights of Dale & Haddock (1991)
can be incorporated in Dale & Reiter’s Incremental Algorithm, which is more effi-
cient than the Greedy Heuristics strategy used by Dale & Haddock. The resulting al-
gorithm still has clear computational properties: the theoretical complexity remains
polynomial, and the typical run time can be characterized as nr(ndnl) (where nr is
the number of objects described and ndnl models the run time of the original In-
cremental Algorithm). Moreover, this algorithm is fully explicit about which prop-
erties should be tried in which order. The use of subsumption hierarchies on re-
lations seems to offer an attractive and plausible means of obtaining some of the
required flexibility. Finally, the possibility of generating relational descriptions in

values for certain classes of relations has not been studied, and we certainly do not intend to claim
psychological reality for our assumptions here.20Theoretically, every object in the domain stands in spatial relation to g1. However, as said, we as-
sume that human speakers and hearers have a preference for a relatum close to the designated referent.
The problem of deciding which objects are ‘close’ may be likened to the problem of deciding which
objects are ‘large’. In the ideal case, both size and spatial distances are given in absolute measures
(cm/in/pt) and a reasoning component determines which objects are indeed large or close by. It may
well be that this kind of reasoning in its general form is rather complex and computationally expensive
(see e.g., Lemon & Pratt 1997). For now, we simply assume that the input data are given.



a context-sensitive manner paves the way for the generation of another kind of nom-
inals: bridging descriptions.

5.3 Bridging Descriptions
The two extensions of the modified Incremental Algorithm described above and dis-
played in figures 3 and 4 respectively can be combined in a straightforward way and
this combination allows for the generation of bridging descriptions. From the cur-
rent perspective, a bridging description is just a relational description with a highly
salient relatum. To illustrate this, consider a domain of discourse which contains
three objects d1; d2 and d3: d1 is a man, while d2 and d3 are chihuahua’s of the
same size and colour, the former being in the possession of d1, the latter being a
stray dog. Suppose that the man has just been mentioned (‘A man is walking in
the park’) and thus is maximally salient. Now we attempt to generate a description
referring to d2. To begin with, the type (‘dog’) is included. The attributes ‘size’
and ‘colour’ are not included in the description since they fail to rule out the other
chihuahua. Finally, the possessive relation is encountered: the fact that d2 is in the
possession of d1 is included as this does rule out the stray chihuahua. At this point,
the algorithm enters the recursion. Since d1 is the single most salient object in the
domain, we can pronominalize the reference to d1 and a suitable pronoun is inser-
ted in the current tree. Normally, this would result in (a tree for) dog of him, but
following common practice (see e.g., Geurts 1995, Krahmer & van Deemter 1998)
the function UpdateTree rewrites such descriptions using a possessive pronoun as
determiner, with his dog as the net-result.21
6 CONCLUDING REMARKS

In this paper we have discussed a generalization of Dale & Reiter’s Incremental
Algorithm which extends the original algorithm in a number of respects. To be-
gin with, we have made the notion of context sets more precise by adding salience
weights. This makes it possible to generate descriptions in a fully context sensit-
ive manner, without jeopardizing the attractive properties of the original algorithm.
Additionally, the algorithm now immediately attempts to incorporate selected prop-
erties in the NP tree under construction and marks contrastive properties as such.

The modified Incremental Algorithm has been fully implemented and integ-
rated in a data-to-speech system called LGM (see e.g., Klabbers et al. 1998 and the
references cited therein). Klabbers et al. also describe how factors like newness and
givenness, combined with contrastiveness (marked by the [+c] feature), determine
the placement of pitch accents and intonational boundaries. We are currently eval-
uating the predictions of the modified Incremental Algorithm in an experiment.

Three related extensions of the modified algorithm have been described. First, a
simple pronominalization decision within the algorithm was discussed. Second, we
have shown that some modifications of the (modified) Incremental Algorithm allow
for the generation of relational descriptions, again without losing the efficiency or
speed of the original Incremental Algorithm. Finally, the combination of these two21As a rule of thumb, we assume that this happens only if the relatum is animate. Thus, if a par-
ticular car c is highly salient and we want to refer to the motor of c, the resulting NP will not be its
motor but the motor. It should be noted that this distinction is highly language dependent. In French,
for example, it is common to refer to someone’s hand as le main instead of son main.



extensions enables the generation of bridging descriptions.
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[12] Hajic̆ová, E. (1993), Issues of Sentence Structure and Discourse Patterns. Theoretical

and Computational Linguistics, Vol 2, Charles University, Prague.
[13] Kameyama, M. (1996), Indefeasible Semantics and Defeasible Pragmatics, in: Quan-

tifiers, Deduction and Context, M. Kanazawa, C. Piñon, H. de Swart (eds.), CSLI Pub-
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