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Abstract When answering questions, major challenges are (a) to carefully deter-
mine the content of the answer and (b) phrase it in a proper way. In IMIX, we focus
on two text-to-text generation techniques to accomplish this: content selection and
sentence fusion. Using content selection, we can extend answers to an arbitrary
length, providing not just a direct answer but also related information so to better
address the user’s information need. In this process, we use a graph-based model
to generate coherent answers. We then apply sentence fusion to combine partial an-
swers from different sources into a single more complete answer, at the same time
avoiding redundancy. The fusion process involves syntactic parsing, tree alignment
and surface string generation.

1 Introduction

Answering specific types of trivia style (so-called ‘factoid’) questions is often taken
as the core domain of question answering (QA) research. An example of such a
question would be: what is RSI? But what is the correct answer to such a question?
Ostensibly, this is a definition question, and a plausible answer is something like
RSI means Repetitive Strain Injury. But will this answer the need for information
of the person asking the question? In general, it seems that even if an unambiguous
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question is posed, users appreciate more information than a direct answer (Strza-
lkowski et al., 2000). Someone querying a system about RSI may be interested to
know what the abbreviation stands for, but may also like to know what it actually
is. Bates (1990) helps explaining the findings of Strzalkowski et al. by viewing an
information search as a ‘berry picking’ process. Consulting an information system
is only part of a user’s attempt to fulfill an information need. It’s not the end point,
but just one step whose result may motivate a follow-up step. The ‘factoid answer
approach’ fails to show leads to related information, which may trigger follow-up
questions. Bakshi et al. (2003) show that when answering questions, increasing the
amount of text returned to users significantly reduces their number of queries, sug-
gesting that users utilize related information from the text surrounding the answer.

In short, the raw response of a question answering system is often not a suit-
able answer. Text-to-text generation can help transforming a QA response into an
appropriate answer. Generating an answer involves two core decisions to be made:
(1) which information should be included, and (2) how that information should be
presented. Decision (1) requires content selection, which is the process of finding
the boundary between useful information and superfluous information. Decision (2)
involves choosing an optimal formulation.

In this chapter, we describe our efforts in text-to-text generation within the IMO-
GEN project. In particular, we describe two focus areas of research to improve the
quality of the answer: (a) graph-based content selection to improve the answer in
terms of usefulness, and (b) sentence fusion to improve the answer in terms of for-
mulation. We use sentence fusion to join together multiple sentences in order to
eliminate overlapping parts, thereby reducing redundancy. The results of this work
have been applied in the IMIX system. This system uses a question answering sys-
tem to pinpoint fragments of text which are relevant to the information need ex-
pressed by the user. A content selection system then uses these fragments as entry
points in the text to formulate a more complete answer. Sentence fusion is applied
to manipulate the result in order to increase the fluency of the text.

For example, for the question ‘what is RSI’, the content selection system may
find several passages which may be used in the answer:

1A RSI means repetitive strain injury.

1B Repetitive Strain Injury is generally caused by a mixture of poor ergonomics, stress and
poor posture.

1C Repetitive Strain Injury may occur for instance in people who regularly work with a
display device.

The system could return an answer by just enumerating the above sentences, but this
answer would contain some degree of redundancy because the term repetitive strain
injury occurs in each of the sentences. By using sentence fusion, we can fuse the
last two sentences and generate a more fluent answer with less redundancy:

RSI means repetitive strain injury. Repetitive Strain Injury is generally caused by a mixture
of poor ergonomics, stress and poor posture, and may occur for instance in people who
regularly work with a display device.
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In this chapter, we present the progress we made in developing text-to-text gen-
eration techniques for question answering. The next two sections – section 2 and 3
– are dedicated to content selection and sentence fusion respectively. The chapter
closes with some final words and an outlook in section 4.

2 Graph-based content selection

Not boring anyone with irrelevant details and, at the same time, not withholding
the essentials. That is the essence of content selection. It can also be seen as an
optimization issue: more information takes the user more time to process, while
less information may increase the number of interactions. The greatest efficiency is
achieved when exactly that is said which is relevant to the user.

In this section, we describe a framework for content selection which is based on
the notion of contextual salience – all evidence of salience of a particular content
unit is based on the salience of related content units (its context). The underlying
data model is based on graph theory – a paradigm which is excellently equipped for
representing relations between content units, thus modelling coherence and redun-
dancy in text.

Our model separates the actual content selection from the detection of coherence
and redundancy relations. The relation detection process results in a graph, and the
content selection algorithm uses that graph to select the sentences to include in
the summary. This separation makes it possible to replace the relation detection
algorithms or the content selection algorithm without changing anything else. It is
also possible to combine several relation graphs and use the combined graph for
content selection.

As such, our graph-based model does not prescribe the nature of the relations
or algorithms used to find the relations: the relations may represent coherence rela-
tions, co-reference relations, lexical chains, cosine similarity, or any other paradigm
that may model (semantic) relations in text and that is compatible with the graph-
based representation. Each of those methods may be individually implemented and
evaluated, possibly in combination with other methods. We evaluate the model using
sentences as content units and cosine similarity as a feature to find relations between
sentences.

2.1 Related work

Content selection – choosing what to include and what not to include in a summary –
is useful in answer presentation; it is also a subtask of summarization. A typical text
summarization system transforms a source document (or a set of documents) into a
more concise document by: (1) splitting up the source into individual content units,
(2) selecting the most salient content units, and (3) composing a summary of those
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content units. The system may exploit contextual information such as a user ques-
tion. Because of the availability of resources and tools in automatic summarization,
we evaluate our algorithms for content selection in the context of a summarization
system.

Content units may vary in granularity from paragraphs to phrases. Often, sen-
tences are chosen as content units because they are reasonably fine-grained infor-
mation units and, at the same time, the possibility of ungrammatical results can be
avoided (which is a major challenge in phrase-based summarization).

Rather than viewing a summary as a single text, summarization systems typi-
cally perform content selection by determining the relevance of each passage inde-
pendently, and then composing a summary of the top ranking passages. Classical
features for scoring sentences include the presence of cue phrases, term frequency,
stop word lists, etc. (Edmundson, 1969; Luhn, 1958). Assessing the relevance of
each sentence individually, these systems neglect the internal structure of the sum-
mary, despite insights in discourse organization which claim that meaning is tightly
related to discourse organization (e.g. Mann and Thompson, 1988). The meaning in
a text is not merely the sum of the meaning in its passages, but a passage should be
interpreted in the context shaped by other passages. For example, given the two pas-
sages below, the second passage would have little meaning if the context provided
by the first were omitted. Hence, a generic summarization system should include
the second sentence in a summary only if the first is also included.

2A A commercial airliner crashed in northwestern Iran on Wednesday.

2B All 168 people on board were killed.

If content selection is to result in an answer to a user query or question, this
makes the need for dealing with coherence even more pressing. While a generic
summary (i.e., a summary which is generated without user input) should be inter-
nally coherent, a query-based summary should also be coherent with respect to the
query. Similarly, the task of multi-document summarization (if the answer is drawn
from multiple documents) introduces the need to deal with redundancy, as a sum-
mary should not mention the same thing twice.

A number of ad-hoc solutions to dealing with redundancy and coherence emerged
in response to the challenges of multi-document and query-based summarization.
For instance, Carbonell and Goldstein (1998) introduced the concept of marginal
relevance to handle redundancy. They build up a summary by adding sentences one
by one, with a bias toward sentences which contain new information with respect to
already-selected sentences.

Barzilay and Elhadad (1997) modeled coherence by dividing the source into top-
ics by identifying lexical chains. They composed summaries of one sentence from
each of the strongest topics, as to maximize coverage. The summarization system of
Blair-Goldensohn and McKeown (2006) prioritizes sentences in the summary which
have a coherence relation to another summary sentence. Each of these answers to
the problem of coherence represents a minor change to an existing summarization
system, rather than an integral model of coherence. Other summarization systems
(e.g. Marcu, 1999; Wolf and Gibson, 2005) integrate a more sophisticated model
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Title: former President Carter’s international activities
Query: Describe former President Carter’s international efforts including activities of the Carter

Center.

Fig. 1 A DUC 2006 topic (D0650E).

of coherence in the content selection process, but they require high level semantic
annotation which can (for now) only be achieved manually.

2.2 Task definition

We used the Document Understanding Conference (DUC) 2006 data set for training,
and the DUC 2005 data set for testing.1 This is possible because both data sets are
similar. The task at hand is to automatically generate a summary of a maximum of
250 words, given a topic. A topic consists of a title, a query, and a set of source
documents. The summary should answer the query, using the source documents. An
example of a topic is given in Fig. 1. The DUC 2006 document set consists of 50
topics with 25 source documents each. The DUC 2005 document set consists of 50
topics with 25–50 source documents each (approximately 32 on average).

The summarization task is given to professional human summarizers as well as
automatic summarization systems. The human summaries are used as reference
summaries for evaluating candidate summaries (i.e., generated summaries). Each
DUC 2005 topic has six corresponding reference summaries; each DUC 2006 topic
has four. We use Rouge-2 recall (i.e. bigram recall with respect to reference sum-
maries) and Rouge-SU4 recall (skip bigram recall) as performance metrics for eval-
uation (Lin, 2004), because these metrics were also used (with the same configura-
tion) at DUC 2005 and DUC 2006. Although Rouge metrics provide only a partial
evaluation of a summarization system, they are reproducible and repeatable for dif-
ferent system configurations in an objective manner since they require no manual
intervention.

To measure if one summarization algorithm performs better (or worse) than an-
other with a particular metric, we count the number of topics for which it outper-
formed the other, and vice versa. Then, an approximate randomization test is run to
measure statistical significance (Noreen, 1989).

2.3 A framework for summarization

Our goal is to investigate new methods for content selection. Nonetheless, the eval-
uation methods used are designed to measure the quality of abstracts, and require a

1 Available from http://duc.nist.gov
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full summarization system. We briefly describe the summarization system, and then
focus on the content selection components. The summarization system consists of
the following components.

Segmentation. The source documents as well as the query are segmented into sen-
tences. The document name, the paragraph number and sentence number are as-
sociated with each sentence as meta-information. The document name can later
be used to detect whether sentences are from the same document, or whether they
are query sentences. Paragraph boundaries are derived from annotations provided
with the source documents. The segmenter also attempts to remove meta data
from the text, such as the date and location of publication. These meta data are
not part of the running text and may introduce noise in the summary.

Feature extraction. The source text and the query are processed and converted to
a feature graph to prepare for content selection. Multiple modules may be used
in parallel so that multiple graphs are generated. This may include coherence
analysis, measuring redundancy, etc. The generated graphs are integrated into a
combined graph, as described later in this chapter.

Salience estimation. A salience value is derived for each sentence from the (pos-
sibly combined) feature graph.

Presentation. A summary is created using the most salient content units, up to
the word limit of 250 words. If adding the next-salient sentence would cause the
word limit to be exceeded, no more sentences are added. Where possible, the
linear ordering of the sentences in the source text is retained. If the summary
contains sentences from multiple source documents, sentences from the docu-
ment containing the largest number of sentences are presented first. Although the
ordering of the sentences may be important for readability, it has little effect on
Rouge scores.

In the next section, we compare different methods for feature extraction and
salience estimation. Across these experiments, the components of segmentation and
presentation remain unchanged.

2.4 Query-based summarization

Below, we describe a number of systems based on our summarization framework,
starting with a rudimentary summarization system, and adding features to build in-
creasingly sophisticated systems. The modular summarization framework allows for
the flexibility to add feature graphs or replace the salience estimation algorithm.

Wherever parameter optimization is used, the DUC 2006 data set is used for this
purpose. The results are then validated with the DUC 2005 data set.
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2.4.1 Query-relevance

A simple form of query-based summarization is to determine sentence salience by
measuring its cosine similarity with the query. The sentences most similar to the
query are presented as a summary. This constitutes a competitive baseline system
for query-based summarization. The graph used for salience estimation is the graph
in which each candidate sentence is related to each query sentence, and the strength
of this relation is the cosine similarity of the two sentences. The sentences closest
to a query sentence are then included in the summary. The cosine similarity graph
is generated in three steps:

1. the words of all sentences are stemmed using Porter’s stemmer (Porter, 2001);
2. the inverse document frequency (IDF) is calculated for each word;
3. the cosine similarity of each candidate sentence and each query sentence is cal-

culated using the tf · idf weighting scheme.

Stemming is a way to normalize morphological variation. For example, the words
cause and causes are different words but refer to the same concept. Stemming allows
us to treat both forms in the same way.

The inverse document frequency is used to assign a greater weight to words
which occur in fewer sentences. Rare words typically characterize the sentence they
appear in to a greater extent than frequent words. IDF is a way to account for this
(Spärck Jones, 1972).

IDF calculation requires statistics of the language to determine the frequency of
words. For calculating the IDF values of the words in source documents, we use the
statistics of the set of all source documents in the topic. It is inappropriate to use
the same statistics to weight the query words, because there is a mismatch between
the language use in the query and in the source documents. For instance, queries
frequently use phrases such as ‘Discuss ...’ or ‘Describe ...’. These words have a low
frequency in the source documents, and thus would be assigned a high IDF value,
although they are hardly descriptive if they appear in the query. On the other hand,
a single query is too short to draw useful statistics from. Therefore, the IDF values
for query terms are calculated from the set of sentences from all DUC 2006 queries,
while the IDF values for source documents are calculated from the set of source
document sentences specific for the topic.

The query-relevance graph (called δq) is defined by a function determining the
strength of the relation between two sentences:

δq(i, j) = cosim(i, j) , if i ∈ Q; j ∈ S

δq(i, j) = 0 , otherwise (1)

where δq(i, j) is the strength of the relation between sentences i and j; Q is the
set of query sentences; S is the set of candidate sentences; cosim(i, j) is the cosine
similarity of sentences i and j. The strength of a relation is a value in the range of 0
(no relation) to 1 (a strong relation).
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The query-relevance Rq( j) of a sentence j is then calculated by taking the great-
est strength of any relation of j to a query sentence:

Rq( j) = max
q∈Q

(δq(q, j)) (2)

where Rq( j) is the salience of sentence j; Q is the set of query sentences.
A summary is then generated from the most salient sentences.

2.4.2 Contextual relevance

The cohesion graph (δc) is added as a feature graph for calculating contextual rel-
evance. This graph is constructed the same way the query-relevance graph is con-
structed, except that it relates candidate sentences of the same document, rather than
query sentences and candidate sentences.

The graphs δq and δc are integrated into a single multi-graph ∆q+c. A multi-graph
is a graph that can have two edges between the same two sentences, expressing
simultaneous relations. As a result, not a single relation but a set of relations hold
between two sentences, and each relation may have a different strength between 0
and 1. The integrated graph is expressed as follows.

∆q+c(i, j) =
{

wqδq(i, j),wcδc(i, j)
}

(3)

where ∆q+c(i, j) is a set of values, each representing the strength of an edge from
i to j in the multi-graph ∆q+c. The values of wq,wc ∈ [0..1] are weighting factors.
The smaller wq and the greater wc, the greater the relative importance of indirect ev-
idence of relevance. A greater wq (relative to wc) results in selecting more sentences
which can be directly related to the query. A greater wc represents a greater bias to-
ward sentences which are relevant indirectly, and which may increase the coherence
of the summary as a whole.

The salience estimation algorithm calculates the salience of each sentence, given
a graph of relations between sentences. A relation from sentence X to sentence
Y increases the relevance (and therefore the salience) of Y if X is relevant. This
immediately poses a problem if X is a candidate sentence, because the relevance of Y
depends on the relevance of X , which itself is not yet calculated. Literature provides
several solutions (Mani and Bloedorn, 1997; Erkan and Radev, 2004), which have in
common that they iteratively recalculate the salience of a sentence in a graph from
the salience of neighboring sentences. Following this process, salience is calculated
as follows.

1. Initiate the salience of all candidate sentences (source document sentences) at 0.
The salience of query sentences is initiated at 1.

2. Recalculate the salience of each candidate sentence, using the feature graphs and
the salience of neighboring (i.e. related) sentences. Salient sentences increase the
salience of their neighbors.
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3. Repeat step 2 untill the sum of changes in salience in the last iteration falls below
a certain (pre-defined) threshold.

We used two salience estimation algorithms, normalized centrality and proba-
bilistic relevance. They differ in how they recalculate relevance (step 2).

The first, based on Erkan and Radev (2004), recalculates the salience by divid-
ing the salience of each sentence among its neighboring sentences. Because the
sum of salience values of all sentences remains approximately constant (amounts of
salience are just “passed on” from one sentence to the next), we call this normalized
centrality.

The probabilistic relevance algorithm regards the feature graph as a probabilistic
semantic network. The salience of a sentence represents the probability that the
sentence is relevant, and a relation from sentence X to Y is the probability that Y is
relevant, given X is relevant.

Normalized centrality. The result of the normalized centrality process is a cen-
trality value for each sentence, which represents the salience of the sentence. The
basic idea behind this algorithm is that at each iteration, the centrality value of each
sentence is distributed among its related sentences. For instance, if a sentence has
three outgoing relations, the centrality value is divided among these three sentences.
Conversely, the new centrality value of a sentence at the next iteration is calculated
from the sum of “centrality” received from sentences to which it has an incoming
relation.

We use the symbol µ j to indicate the centrality of sentence j. The value of µ j(t)
is the centrality of sentence j at iteration t ≥ 0, which is calculated as follows:

µ j(t) = 1 , if j ∈ Q

µ j(0) = 0 , if j ∈ S (4)

µ j(t +1) =
d
‖D‖

+(1−d)∑
i∈D

x(i, j) , if j ∈ S

x(i, j) = ∑
r∈∆q+c(i, j)

r ·µi(t) ·degree(i)−1

where D = Q∪S; and ∆q+c(i, j) is the set of edges between i and j in the relevance
graph.

By definition, query sentences have a centrality of 1. In the first iteration, the
centrality of all other sentences is initialized to 0. At each iteration, the normalized
centrality of each sentence is distributed to its neighbor sentences (the sentence’s
related sentences). The constant d is a small value which is required in order to
guarantee that the algorithm converges under all circumstances by giving each sen-
tence a small a priori non-zero centrality.2 The degree of a sentence i in the graph is
measured as the sum of the weights of the outgoing edges:

2 Throughout this section, the value of 0.15 is used, as suggested in Erkan and Radev (2004), but
the actual value of d has no effect on the final centrality ranking as long as it is non-zero.
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degree(i) = ∑
k∈D

∑
(r∈∆q+c(i,k))

r (5)

A characteristic of this algorithm is that across iterations, the sum of the central-
ity of all sentences stays approximately the same: centrality is treated as a kind of
commodity which may be transferred from one sentence to the next, but no cen-
trality is created or lost. The only exceptions to this rule are the query sentences
(which always have a centrality of one, and therefore may “create” centrality) and
the constant d, which causes a small centrality value to be assigned to each sentence.

The result is a centrality (i.e., salience) value µ between 0 and 1 associated with
each passage. The content units with the highest salience values are selected for
inclusion in the summary. In this configuration, normalization cancels out the effect
of graph weighting: changing the graph weights wq and wc (cf. equation 3) does not
affect the summaries in any way because the relevance distribution is normalized
and the sets of sentences with outgoing edges in δq and δc are disjunct.

Probabilistic relevance. In the probabilistic approach, relations between sen-
tences are interpreted as probabilities. The strength of a relation is the probability
that the target sentence is relevant, provided that the origin sentence of the relation
is relevant. In this algorithm, the salience calculation of a sentence at each iteration
depends only on the salience values of its related sentences and the strengths of
these relations. This is unlike normalized centrality, where a sentence has to “com-
pete” for a related sentence’s centrality, since centrality is distributed among related
sentences proportional to the relation strengths.

The query sentences are relevant by definition (although they are not actually
included in the summary):

ν j(t) = 1 , if j ∈ Q

If a candidate sentence has only one incoming relation, its probabilistic relevance
in the next iteration is the strength of the relation multiplied by the relevance of the
origin sentence of the relation:

ν j(0) = 0 , if j ∈ S (6)
ν j(t +1) = r ·νi(t) · y , if j ∈ S; t ≥ 0

where ν j(t) is the probabilistic relevance value of sentence j at iteration t, and r is
the strength of the relation. The value of y is the decay value, a global constant in the
range 〈0..1〉. The constant y has a function similar to the constant d in normalized
centrality: it is necessary to ensure that the relevance value converges.

If a sentence has more incoming relations, its relevance value depends on the rel-
evance of the origin sentences of the relations. If P( j | i) denotes the (conditional)
probability that j is relevant, provided that i is relevant, then P(¬ j | i) = 1−P( j | i)
is the probability that i is not relevant, provided that i is relevant. If we read all
relation strengths as the conditional probability that the target sentence is not rele-
vant (the inverse probability), we can combine multiple probabilities by multiplying
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their inverse probabilities, and then again taking the inverse of the result to get the
combined probability:

P(i) = 1−∏
j
(1−P(i | j)) (7)

Combining eq. 6 and 7, the relevance of a sentence j is calculated at each iteration
as:

ν j(t +1) = 1− ∏
i∈Q∪S

∏
r∈∆q+c(i, j)

(1− r ·νi(t) · y)

The relation set ∆q+c(i, j) is the result of the union of the graphs δq and δc, and
their weights wq and wc. The optimal weight values are estimated by measuring
Rouge-2 performance for different weight values. First, wq is incremented in steps
of 0.1 from 0 to 1 with wc = 1, and then wc is incremented in steps of 0.1 from 0 to
1 with wq = 1. The optimal weight settings are wq = 1; wc = 0.1.

2.4.3 Redundancy-aware summarization

One of the assumptions often made implicitly in the design of single-document
summarization systems, is that the source document does not contain redundancy.
Consequently, there is no risk of including a sentence in the summary which does
not contain any new information. This changes when a summary is generated from
multiple source documents, where non-redundancy of sentences from different doc-
uments cannot be taken for granted. The content selection procedures outlined pre-
viously concentrate entirely on relevance, not on redundancy. However, in multi-
document summarization, presented content should be relevant to the query and
novel with respect to what is already mentioned in the summary. In other words,
salience comprises both relevance and novelty.

To accommodate representing novelty, we extended the model with a redundancy
feature graph ϒ which is used in addition to the previously mentioned relevance
feature graph ∆. Similarly to relevance, redundancy relations have a strength in the
range [0..1]. The strength of a redundancy relation between two sentences expresses
the likelihood that a sentence is redundant, given the fact that another sentence is
relevant.

Although redundancy comes into play only during sentence selection, this way
of modeling redundancy makes it possible to generate the redundancy graph in par-
allel with the relevance graph generation. That is, before the actual sentence selec-
tion, or even before the query is formulated. The actual novelty calculation still has
to take place during sentence selection, but this is just a simple calculation while
the redundancy graph may be the result of sophisticated processing algorithms. The
redundancy graph generation algorithms do not need specific knowledge of summa-
rization and can focus on their isolated task, which is to calculate the probability
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that a sentence i is redundant, provided that a sentence j is relevant, for each pair of
sentences i, j.

The redundancy of sentence j, given sentence i, is defined by δr(i, j). The form
of the redundancy graph is identical to that of the relevance graph. The strengths of
relations in the redundancy feature graph δr are defined as follows:

δr(i, j) = cosim(i, j) , if i, j ∈ S; doc(i) 6= doc( j)

δr(i, j) = 0 , otherwise (8)

The redundancy-aware summarization system uses a set of redundancy feature
graphs ϒ for determining salience of sentences, in addition to the relevance feature
graphs ∆:

∆q+c+r(i, j) =
{

wq ·δq(i, j),wc ·δc(i, j),wr∆ ·δr(i, j)
}

ϒr(i, j) = {wrϒ ·δr(i, j)} (9)

where δq, δc and δr are the query-relevance graph, the cohesion graph, and the
redundancy graph respectively. The set of relations between sentences i and j is
represented by ∆q,c,r(i, j) (relevance) and ϒr(i, j) (redundancy). Since redundancy
implies ‘relatedness’, we regard a redundancy graph as a special case of a relevance
graph. Therefore, δr is not only included in ϒr but also in ∆q+c+r (with weights wrϒ

and wr∆ respectively).
The calculation of redundancy-adjusted salience was inspired by Carbonell and

Goldstein (1998). First, the relevance of each sentence is calculated using ∆q+c+r.
Then, the novelty is calculated – novelty is the reciprocal of redundancy. If two sen-
tences are redundant, this affects only the novelty of the least-relevant of the two.
The implication of this is that a redundancy relation may cause a sentence to be
downranked, but only if it is redundant with respect to a higher ranking sentence
(which was already preferred over the downranked sentence during sentence selec-
tion). The stronger the redundancy relation, the greater the reduction of novelty.
Novelty is calculated as follows:

N( j) = ∏
i∈Fj

∏
r∈ϒr(i, j)

(1− r ·R(i)) (10)

Fj = {k : S | R(k)> R( j)}

where N( j) is a value in the range [0..1], representing the novelty of sentence j;
ϒr(i, j) is a set of redundancy relations, expressing the redundancy of j given i; Fj is
the set of content units more relevant than j. The function R(i) denotes the relevance
of sentence i, as previously calculated.

Now, the redundancy-adjusted salience can be calculated as the product of rele-
vance and novelty:

σ j = R( j) ·N( j) (11)
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Table 1 Performance on DUC 2006 data: Rouge scores, and the system rank among 36 systems
(between brackets) if it had participated in DUC 2006.

System Rouge-2 Rouge-SU4
Query-relevance .08180 (11) .1384 (11)
Normalized centrality .08195 (11) .1362 (11)
Probabilistic relevance .08884 (3) .1432 (7)
Redundancy-aware normalized centrality .09294 (2) .1496 (2)
Redundancy-aware probabilistic redundancy .09305 (2) .1501 (2)
Best DUC 2006 submission .09505 (-) .1546 (-)

Table 2 Percentage of DUC 2006 topics (Rouge-2/Rouge-SU4) for which one system (rows) beat
another (columns). Note that percentages do not add up to 100 if both systems receive the same
score for at least one topic.

% (a) (b) (c) (d) (e)
(a) Query-relevance – 50/52 34a /28a 30a /28a 26a /26a

(b) Normalized centrality 46/48 – 34a /36b 38b /34a 30a /24a

(c) Probabilistic relevance 64a /70a 66a /62b – 56/58 44/50
(d) Redundancy-aware normalized centrality 66a /66a 60b /62a 42/42 – 30a /30a

(e) Redundancy-aware probabilistic relevance 70a /72a 68a /72a 48/46 64a /68a –
a Significant at p < 0.01.
b Significant at p < 0.05.
c Significant at p < 0.1.

where σ j is the redundancy-adjusted salience of sentence j. The calculation of σ j
ensures that:

• if one content unit is selected, all content units redundant to that unit are less
likely to be selected: if two content units are redundant with respect to each
other, the salience of the least-relevant content unit is reduced;

• redundancy of a content unit does not prevent relevance to propagate: a redundant
content unit may still be relevant.

We determined the graph weights by starting from the optimal values for wq and
wc, as specified in section 2.4.2. The remaining weights are determined by means of
a similar procedure as in section 2.4.2: first, wr∆ is incremented in steps of 0.1 from
0 to 1 with wrϒ = 0, and then wrϒ is incremented in steps of 0.1 from 0 to 1 without
changing the other weights.

For the normalized centrality algorithm, the resulting optimal weight settings are
wq = 1; wc = 1 and wrϒ = 0; wr∆ = 1. Increasing the value of wrϒ has no effect on
the quality of the summaries. For the probabilistic relevance algorithm, the resulting
optimal weight settings are wq = 1; wc = 0.1; wr∆ = 0.2; wrϒ = 1.
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Table 3 Performance on DUC 2005 data: Rouge scores, and the system rank among 32 systems
(between brackets) if it had participated in DUC 2005.

System Rouge-2 Rouge-SU4
Query-relevance .07056 (3) .1260 (5)
Normalized centrality .07210 (2) .1262 (5)
Probabilistic relevance .06923 (5) .1247 (6)
Redundancy-aware normalized centrality .07230 (2) .1291 (3)
Redundancy-aware probabilistic relevance .07362 (1) .1300 (2)
Best DUC 2005 submission .07251 (-) .1316 (-)

Table 4 Percentage of DUC 2005 topics (Rouge-2/Rouge-SU4) for which one system (rows) beat
another (columns). Note that percentages do not add up to 100 if both systems receive the same
score for at least one topic.

% (a) (b) (c) (d) (e)
(a) Query-relevance – 46/44 42/42 50/50 40c /40c

(b) Normalized centrality 52/54 – 50/34a 50/54 38b /34a

(c) Probabilistic relevance 54/58 50/66a – 58b /64a 36c /42
(d) Redundancy-aware normalized centrality 44/44 46/44 38b /36a – 30a /30a

(e) Redundancy-aware probabilistic relevance 58c /60c 60b /66a 54c /54 60a /70a –
a Significant at p < 0.01.
b Significant at p < 0.05.
c Significant at p < 0.1.

2.5 Results

Table 1 shows the Rouge scores for each of the summarization systems. Table 2
gives an overview of the differences in performance between the systems. The
query-relevance system was beaten by every other system (p< 0.01) except the nor-
malized centrality system. The (redundancy-aware) probabilistic relevance system
outperformed the (redundancy-aware) normalized centrality system (p < 0.05). The
introduction of redundancy significantly improved results in the normalized central-
ity system (p< 0.05), but not in the probabilistic relevance system. The redundancy-
aware probabilistic relevance system is the only system which beats all systems
except the (non redundancy-aware) probabilistic relevance system (p < 0.01).

2.6 Validating the results

The previous section outlined a comparison of different configurations of the sum-
marization framework. However, the way the graph weight configurations are deter-
mined implies that the weights are tailored to the DUC 2006 data set. As a result,
there is a risk that the weights are overfitted to this particular set. In order to validate
the results, we ran the experiments on the DUC 2005 data set with the graph weight
configurations determined in section 2.4.
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Table 3 shows the average Rouge-2 and Rouge-SU4 scores achieved with the
DUC 2005 corpus. Table 4 shows an overview of the pair-wise significance tests.
The redundancy-aware probabilistic relevance system significantly outperforms all
other systems when Rouge-2 is used (p < 0.1), and all except the redundancy-aware
normalized centrality system according to Rouge-SU4. This system would have
ranked first (Rouge-2) or second (Rouge-SU4) if it had participated in DUC 2005.
The overall picture confirms the preliminary results in section 2.5 with respect to the
differences between normalized centrality and the probabilistic relevance: the latter
system outperformed the first (Rouge-2: p < 0.01; although no significant differ-
ences were measured using Rouge-SU4), and the redundancy-aware variant of the
probabilistic relevance system also outperformed the redundancy-aware normalized
centrality system (p < 0.01, Rouge-2 and Rouge-SU4). However, introducing re-
dundancy did not generally improve the results. Only in the probabilistic relevance
system, we found a significant Rouge-2 improvement (p < 0.1) as a result of the
added redundancy graphs.

An interesting observation is that the probabilistic relevance system has the low-
est average scores, but still beats the normalized centrality system in terms of the
number of summaries for which the Rouge-SU4 score was greater. Apparently, the
probabilistic relevance system usually (in 66% of the cases) beat the normalized
centrality system, but there were a few cases in which the score of the probabilis-
tic system was considerably lower. This raises the question which system is better:
the one which receives the greatest average score, or the one which most frequently
produces the better summary?

Note also that it is not guaranteed that the combination of graph weights that
leads to the best performance has been found. Apart from the risk of overfitting,
the number of possible graph weight combinations is infinite and a greater number
of graphs makes it more difficult to find the best combination of weights. A future
extension would use machine learning methods such as genetic algorithms that are
better suited to find the optimal solution. Despite this, we already achieved good
result with the current system, using limited optimization.

3 Sentence fusion

Question-answering systems conventionally follow the strategy of retrieving possi-
ble answers from a text collection, ranking these answers according to some criteria
of goodness, and outputting the top-ranked answer. Many current QA systems even
rely on various parallel answer-finding strategies, each of which may produce an
n-best list of answers (e.g. Maybury, 2004). However, the underlying assumption
that a single complete answer can be pinpointed in the text collection is question-
able at least. Especially if the question is of the open type rather than the factoid
type (where the answer typically is some named entity), relevant parts of the answer
may be scattered among the candidate answers on the n-best list. For example, in
response to the open question What causes RSI? one candidate answer may be:
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RSI can be caused by repeating the same sequence of movements many times an hour or
day.

However, another candidate could be:

RSI is generally caused by a mixture of poor ergonomics, stress and poor posture.

Clearly neither of these two examples constitutes a single complete answer on its
own. A more satisfying alternative would require a fusion of the two partial answers
into a more complete one such as:

RSI can be caused by a mixture of poor ergonomics, stress, poor posture and by repeating
the same sequence of movements many times an hour or day.

This notion of sentence fusion was first introduced by Barzilay (2003). Sentence
fusion is a text-to-text generation application, which given two related sentences,
outputs a single sentence expressing the information shared by the two input sen-
tences. The process of sentence fusion comprises four major steps:

1. Linguistic analysis The input sentences are tokenized and syntactically parsed.
2. Alignment The syntax trees are aligned by matching syntactic nodes with similar

meaning.
3. Merging The syntax trees are combined into a single tree.
4. Generation The surface string for the output sentence is generated.

This was originally applied in the context of multi-document summarization, where
it was used to combine similar sentences extracted from different documents in or-
der to increase compression and avoid redundancy. However, as we proposed ear-
lier (Marsi and Krahmer, 2005a,b), sentence fusion may be applied in a question-
answering context as well for the purpose of combining candidate answers.

Ideally we use an off-the-shelf sentence fusion system, plug it into an existing
QA system, and run some evaluations in order to measure its contribution to overall
answer quality. In reality, there are no readily available sentence fusion systems yet
and there are at least a number of open research questions. The work reported here
reviews our earlier work on sentence fusion. It concerns the implementation and
evaluation of models for alignment, merging and generation in Dutch. We start in
section 3.1 with the basic question whether it is possible at all to reliably align sen-
tences. After defining the alignment task, we describe the construction of a parallel
monolingual corpus consisting of manually aligned syntax trees, discussing results
on inter-annotator agreement. Section 3.2 then addresses automatic alignment. We
present our algorithm for automatic tree alignment as well as its evaluation on the
parallel corpus. Next, section 3.3 describes exploratory work on simple methods
for the merging and generation steps in the sentence fusion process, including an
evaluation test. We end with a discussion and description of more recent follow-up
research in section 3.4.
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3.1 Data collection and Annotation

3.1.1 General approach to alignment

Alignment has become standard practice in data-driven approaches to machine
translation (e.g. Och and Ney, 2000). Initially work focused on word-based align-
ment, but more recent research also addresses alignment at the higher levels (sub-
strings, syntactic phrases or trees), e.g., Gildea (2003). The latter approach seems
most suitable for current purposes, where we want to express that a sequence of
words in one sentence is related to a non-identical sequence of words in another
sentence (a paraphrase, for instance). However, if we allow alignment of arbitrary
substrings of two sentences, then the number of possible alignments grows exponen-
tially to the number of tokens in the sentences, and the process of alignment – either
manually or automatically – may become infeasible. An alternative, which seems to
occupy the middle ground between word alignment on the one hand and alignment
of arbitrary substrings on the other, is to align syntactic analyses. Here, following
Barzilay (2003), we will align sentences at the level of dependency structures.

Rather than a binary choice (align or not), one might want to distinguish more
fine-grained relations such as overlap (if two phrases share some but not all of
their content), paraphrases (if two phrases express the same information in different
ways), entailments (if one phrase entails the other, but not vice versa), etc. Unlike
Barzilay (2003), we therefore not only align similar nodes, but also label the node
alignments according to a small set of semantic similarity relations, which will be
defined in the next section. This additional information allows for alternative ways
of fusing sentences, as described in section 3.3, which are especially interesting in
the context of QA.

3.1.2 Task definition

A dependency analysis of a sentence S yields a labeled directed graph D = 〈V,E〉,
where V (vertices) are the nodes, and E (edges) are the dependency relations. For
each node v in the dependency structure for a sentence S, we define STR(v) as the
substring of all tokens under v (i.e., the composition of the tokens of all nodes reach-
able from v). For example, the string associated with node persoon in Fig. 2 is heel
veel serieuze personen (‘very many serious persons’).

An alignment between sentences S and S′ pairs nodes from the dependency
graphs for both sentences. Aligning node v from the dependency graph D of sen-
tence S with node v′ from the graph D′ of S′ indicates that there is a relation be-
tween STR(v) and STR(v′), i.e., between the respective substrings associated with
v and v′. We distinguish five potential, mutually exclusive, relations between nodes
(with illustrative examples):

1. v equals v′ iff STR(v) and STR(v′) are literally identical (abstracting from case
and word order)
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verb:
hebben

verb:
hebben

hd/vc

pron:
ik

hd/su

adv:
zo

hd/mod hd/su

noun:
contact

hd/obj1

prep:
met

hd/pc

prep:
in de loop van

hd/mod

det:
veel

hd/det

adv:
heel

hd/mod

noun:
persoon

hd/obj1

adj:
serieus

hd/mod

det:
veel

hd/det

adv:
heel

hd/mod

noun:
leven

hd/obj1

det:
mijn

hd/det

Fig. 2 Example dependency structure for the sentence Zo heb ik in de loop van mijn leven heel
veel contacten gehad met heel veel serieuze personen. (lit. ‘Thus have I in the course of my life
very many contacts had with very many serious persons’).

Example: “a small and a large boa-constrictor” equals “a large and a small boa-
constrictor”;

2. v restates v′ iff STR(v) is a paraphrase of STR(v′) (same information content but
different wording),
Example: “a drawing of a boa-constrictor snake” restates “a drawing of a boa-
constrictor”;

3. v specifies v′ iff STR(v) is more specific than STR(v′),
Example: “the planet B 612” specifies “the planet”;

4. v generalizes v′ iff STR(v′) is more specific than STR(v),
Example: “the planet” generalizes “the planet B 612”;

5. v intersects v′ iff STR(v) and STR(v′) share some informational content, but also
each express some piece of information not expressed in the other,
Example: “Jupiter and Mars” intersects “Mars and Venus”

Note that there is an intuitive relation with entailment here: both equals and restates
can be understood as mutual entailment (i.e., if the root nodes of the analyses corre-
sponding S and S′ stand in an equal or restate relation, S entails S′ and S′ entails S),
if S specifies S′ then S also entails S′ and if S generalizes S′ then S is entailed by S′.

An alignment between S and S′ can now formally be defined on the basis of the
respective dependency graphs D = 〈V,E〉 and D′ = 〈V ′,E ′〉 as a graph A = 〈VA,EA〉,
such that
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EA = {〈v, l,v′〉 | v ∈V & v′ ∈V ′ & l(STR(v), STR(v′))},

where l is one of the five relations defined above. The nodes of A are those nodes
from D en D′ which are aligned, formally defined as

VA = {v | ∃v′∃l〈v, l,v′〉 ∈ EA}∪{v′ | ∃v∃l〈v, l,v′〉 ∈ EA}

3.1.3 Corpus

For evaluation and parameter estimation we have developed a parallel monolin-
gual corpus consisting of two different Dutch translations of the French book “Le
petit prince” (the little prince) by Antoine de Saint-Exupéry (published 1943), one
by Laetitia de Beaufort-van Hamel (1966) and one by Ernst van Altena (2000). The
texts were automatically tokenized and split into sentences, after which errors were
manually corrected. Corresponding sentences from both translations were manu-
ally aligned; in most cases this was a one-to-one mapping but occasionally a single
sentence in one version mapped onto two sentences in the other. Next, the Alpino
parser for Dutch (e.g. Bouma et al., 2001) was used for part-of-speech tagging and
lemmatizing all words, and for assigning a dependency analysis to all sentences.
The POS labels indicate the major word class (e.g. verb, noun, pron, and adv). The
dependency relations hold between tokens and are the same as used in the Spoken
Dutch Corpus (see e.g. van der Wouden et al., 2002). These include dependencies
such as head/subject, head/modifier and coordination/conjunction. See Fig. 2 for an
example. If a full parse could not be obtained, Alpino produced partial analyses col-
lected under a single root node. Errors in lemmatization, POS tagging, and syntactic
dependency parsing were not subject to manual correction.

3.1.4 Results

All text material was aligned by two annotators. They started doing the first ten
sentences of Chapter One together in order to get a feel for the task. They continued
with the remaining sentences from Chapter One individually. The total number of
nodes in the two translations of the chapter was 445 and 399 respectively. Inter-
annotator agreement was calculated for two aspects: alignment and relation labeling.
With respect to alignment, we calculated the precision, recall and F-score (with
β = 1) on aligned node pairs as follows:

precision(Areal ,Apred) =
| Areal ∩Apred |
| Apred |

recall(Areal ,Apred) =
| Areal ∩Apred |
| Areal |

F-score =
2× precision× recall

precision+ recall
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where Areal is the set of all real alignments (the reference or golden standard), Apred
is the set of all predicted alignments, and Apred ∩Areal is the set of all correctly pre-
dicted alignments. For the purpose of calculating inter-annotator agreement, one of
the annotations (A1) was considered the ‘real’ alignment, the other (A2) the ‘pre-
dicted’. The results are summarized in Table 5 in column (A1,A2).

Table 5 Interannotator agreement with respect to alignment between annotators 1 and 2 before
(A1,A2) and after (A1′ ,A2′ ) revision, and between the consensus and annotator 1 (Ac,A1′ ) and
annotator 2 (Ac,A2′ ) respectively.

(A1,A2) (A1′ ,A2′ ) (Ac,A1′ ) (Ac,A2′ )
#real: 322 323 322 322
#pred: 312 321 323 321
#correct: 293 315 317 318
precision: .94 .98 .98 .99
recall: .91 .98 .98 .99
F-score: .92 .98 .98 .99

Next, both annotators discussed the differences in alignment, and corrected mis-
taken or forgotten alignments. This improved their agreement as shown in column
(A1′ ,A2′). In addition, they agreed on a single consensus annotation (Ac). The last
two columns of Table 5 show the results of evaluating each of the revised annota-
tions against this consensus annotation. The F-score of .96 can therefore be regarded
as the upper bound on the alignment task.

Table 6 Inter-annotator agreement with respect to alignment relation labeling between annota-
tors 1 and 2 before (A1,A2) and after (A1′ ,A2′ ) revision , and between the consensus and annotator 1
(Ac,A1′ ) and annotator 2 (Ac,A2′ ) respectively.

(A1,A2) (A1′ ,A2′ ) (Ac,A1′ ) (Ac,A2′ )
precision: .86 .96 .98 .97
recall: .86 .95 .97 .97
F-score: .85 .95 .97 .97
κ: .77 .92 .96 .96

In a similar way, the agreement was calculated for the task of labeling the align-
ment relations. Results are shown in Table 6, where the measures are weighted pre-
cision, recall and F-score. For instance, the precision is the weighted sum of the
separate precision scores for each of the five relations. The table also shows the
κ-score, which is another commonly used measure for inter-annotator agreement
(Carletta, 1996). Again, the F-score of .97 can be regarded as the upper bound on
the relation labeling task.

We think these numbers indicate that the labeled alignment task is well defined
and can be accomplished with a high level of inter-annotator agreement.
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3.2 Automatic alignment

3.2.1 Tree alignment algorithm

The tree alignment algorithm is based on Meyers et al. (1996), and similar to that
used in Barzilay (2003). It calculates the match between each node in dependency
tree D against each node in dependency tree D′. The score for each pair of nodes
only depends on the similarity of the words associated with the nodes and, recur-
sively, on the scores of the best matching pairs of their descendants. For an efficient
implementation, dynamic programming is used to build up a score matrix, which
guarantees that each score will be calculated only once.

Given two dependency trees D and D′, the algorithm builds up a score function
S(v,v′) for matching each node v in D against each node v′ in D′, which is stored in a
matrix M. The value S(v,v′) is the score for the best match between the two subtrees
rooted at v in D and at v′ in D′. When a value for S(v,v′) is required, and is not yet
in the matrix, it is recursively computed by the following formula:

S(v,v′) = max


TREEMATCH(v,v′)
maxi=1,...,n S(vi,v′)
max j=1,...,m S(v,v′j)

where v1, . . . ,vn denote the children of v and v′1, . . . ,v
′
m denote the children of v′.

The three terms correspond to the three ways that nodes can be aligned: (1) v can be
directly aligned to v′; (2) any of the children of v can be aligned to v′; (3) v can be
aligned to any of the children of v′. Notice that the last two options imply skipping
one or more edges, and leaving one or more nodes unaligned.3

The function TREEMATCH(v,v′) is a measure of how well the subtrees rooted at
v and v′ match:

TREEMATCH(v,v′) = NODEMATCH(v,v′) +

max
p∈P (v,v′)

[
∑

(i, j)∈ p

(
RELMATCH(−→v i,

−→v ′j) +S(vi,v′j)
)]

Here −→v i denotes the dependency relation from v to vi. P (v,v′) is the set of all
possible pairings of the n children of v against the m children of v′, which is the
power set of {1, . . . ,n}×{1, . . . ,m}. The summation ranges over all pairs, denoted
by (i, j), which appear in a given pairing p ∈ P (v,v′). Maximizing this summation
thus amounts to finding the optimal alignment of children of v to children of v′.

NODEMATCH(v,v′) ≥ 0 is a measure of how well the label of node v matches
the label of v′.

3 In the original formulation of the algorithm by Meyers et al. (1996), there is a penalty for skipping
edges.
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RELMATCH(−→v i,
−→v ′j) ≥ 0 is a measure for how well the dependency relation

between node v and its child vi matches that of the dependency relation between
node v′ and its child v j.

Since the dependency graphs delivered by the Alpino parser were usually not
trees, they required some modification in order to be suitable input for the tree align-
ment algorithm. We first determined a root node, which is defined as a node from
which all other nodes in the graph can be reached. In the rare case of multiple root
nodes, an arbitrary one was chosen. Starting from this root node, any cyclic edges
were temporarily removed during a depth-first traversal of the graph. The resulting
directed acyclic graphs may still have some amount of structure sharing, but this
poses no problem for the algorithm.

3.2.2 Evaluation of automatic alignment

We evaluated the automatic alignment of nodes, abstracting from relation labels, as
we have no algorithm for automatic labeling of these relations yet. The baseline is
achieved by aligning those nodes which stand in an equals relation to each other,
i.e., a node v in D is aligned to a node v′ in D′ iff STR(v) =STR(v′). This alignment
can be constructed relatively easily.

The alignment algorithm is tested with the following NODEMATCH function:

NODEMATCH(v,v′) =



10 if STR(v) = STR(v′)
5 if LABEL(v) = LABEL(v′)
2 if LABEL(v) is a synonym

hyperonym or hyponym
of LABEL(v′)

0 otherwise

It reserves the highest value for a literal string match, a somewhat lower value for
matching lemmas, and an even lower value in case of a synonym, hyperonym or hy-
ponym relation. The latter relations are retrieved from the Dutch part of EuroWord-
net (Vossen, 1998). For the RELMATCH function, we simply used a value of 1 for
identical dependency relations, and 0 otherwise. These values were found to be ade-
quate in a number of test runs on two other, manually aligned chapters (these chap-
ters were not used for the actual evaluation). In the future we intend to experiment
with automatic optimizations.

We measured the alignment accuracy defined as the percentage of correctly
aligned node pairs, where the consensus alignment of Chapter One served as the
golden standard. The results are summarized in Table 7. In order to test the con-
tribution of synonym and hyperonym information for node matching, performance
is measured with and without the use of EuroWordnet. The results show that the
algorithm improves substantially on the baseline. The baseline already achieves a
relatively high score (an F-score of .56), which may be attributed to the nature of
our material: the translated sentence pairs are relatively close to each other and may
show a sizeable amount of literal string overlap. The alignment algorithm (without
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use of EuroWordnet) loses a few points on precision, but improves a lot on recall (a
200% increase with respect to the baseline), which in turn leads to a substantial im-
provement on the overall F-score. The use of EuroWordnet leads to a small increase
(two points) on both precision and recall (and thus to small increase on F-score).
Yet, in comparison with the gold standard human score for this task (.95), there is
clearly room for further improvement.

Table 7 Precision, recall and F-score on automatic alignment

Alignment : Prec : Rec : F-score:
baseline .87 .41 .56
algorithm without wordnet .84 .82 .83
algorithm with wordnet .86 .84 .85

3.3 Merging and generation

The remaining two steps in the sentence fusion process are merging and generation.
In general, merging amounts to deciding which information from either sentence
should be preserved, whereas generation involves producing a grammatically cor-
rect surface representation. In order to get an idea about the baseline performance,
we explored a simple, somewhat naive string-based approach. Below, the pseudo
code is shown for merging two dependency trees in order to get restatements. Given
a labeled alignment A between dependency graphs D and D′, if there is a restates
relation between node v from D and node v′ from D′, we add the string realization
of v′ as an alternative to those of v.

RESTATE(A)

1 for each edge 〈v, l,v′〉 ∈ EA
2 do if l = restates
3 then STR(v)← STR(v) ∨ STR(v′)

The same procedure is followed in order to get specifications:

SPECIFY(A)

1 for each edge 〈v, l,v′〉 ∈ EA
2 do if l = generalizes
3 then STR(v)← STR(v) ∨ STR(v′)

The generalization procedure adds the option to omit the realization of a modifier
that is not aligned:
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GENERALIZE(D,A)

1 for each edge 〈v, l,v′〉 ∈ EA
2 do if l = specifies
3 then STR(v)← STR(v) ∨ STR(v′)
4 for each edge 〈v, l,v′〉 ∈ ED
5 do if l ∈ MOD-DEP-RELS and v /∈ EA
6 then STR(v)← STR(v) ∨ NIL

where MOD-DEP-REL is the set of dependency relations between a node and a mod-
ifier (e.g. head/mod and head/predm).

Each procedure is repeated twice, once adding substrings from D into D′ and
once the other way around. Next, we traverse the dependency trees and generate
all string realizations, extending the list of variants for each node that has multiple
realizations. Finally, we filter out multiple copies of the same string, as well as
strings that are identical to the input sentences.

As expected, many of the resulting variants are ungrammatical, because con-
straints on word order, agreement or subcategorisation are violated. Following work
on statistical surface generation (Langkilde and Knight, 1998) and other work on
sentence fusion (Barzilay, 2003), we try to filter out ungrammatical variants with
an n-gram language model. The Cambridge-CMU Statistical Modeling Toolkit v2
was used to train a 3-gram model on over 250M words from the Twente Newscor-
pus, using back-off and Good-Turing smoothing. Variants were ranked in order of
increasing entropy.

To gain some insight into the general performance of the merging and generation
strategy, we performed a small evaluation test in which two judges independently
judged all generated variants in terms of three categories:

1. Perfect: no problems in either semantics or syntax;
2. Acceptable: understandable, but with some minor flaws in semantics or gram-

mar;
3. Nonsense: serious problems in semantics or grammar

Table 8 shows the number of sentences in each of the three categories per judge,
broken down in restatements, generalization and specifications. The κ-score on this
classification task is .75, indicating a moderate to good agreement between the
judges. Roughly half of the generated sentences are perfect, although specifications
are somewhat less well-formed.

We think we can conclude from this evaluation that sentence fusion is a viable
and interesting approach for producing restatements, generalization and specifica-
tions. However, there is certainly further work to do; the procedure for merging
dependency graphs should be extended, and the realization model clearly requires
more linguistic sophistication, in particular to deal with word order, agreement and
subcategorisation constraints.
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Table 8 Results of the evaluation of the sentence fusion output as the number of sentences in each
of the three categories perfect, acceptable and nonsense per judge (J1 and J2), broken down in
restatements, generalizations and specifications.

Restate Specific General
J1 J2 J1 J2 J1 J2

Perfect: 109 104 28 22 89 86
Acceptable: 44 58 15 16 34 24
Nonsense: 41 32 19 24 54 67
Total: 194 62 177

3.4 Discussion

Our early work on sentence fusion described here was only performed on a small
corpus, consisting of parallel translations of a single book, (Le Petit Prince). We
have not offered an evaluation of sentence fusion in the context of QA. Both limita-
tions have been addressed in the DAESO project (short for Detecting And Exploit-
ing Semantic Overlap), which was a partial continuation of the IMOGEN project. In
this project, a one million word parallel monolingual treebank was developed (Marsi
and Krahmer, 2007, 2009), containing multiple translations of various books (Le Pe-
tit Prince, but also parts of Darwin’s Origin of Species and Montaigne’s Essays), as
well as multiple news reports about the same event, headlines for related news re-
ports and multiple answers to the same question (this data was actually collected in
the IMIX project).

Half of the data was manually annotated, for which two annotation tools were de-
veloped (both publicly available): Hitaext, allowing for many-to-many alignments
on the sentence level, and Algraeph, for sentence alignment at the word and phrase
level.4 The other half of the corpus was automatically aligned, with a vastly im-
proved version of the automatic aligner described above. One important aspect of
the automatic aligner is that it makes no prior assumptions about the relation be-
tween the two sentences other than that they are somehow related: the amount of
overlap may range from a few words (as may be the case in the news reports) to the
entire sentence (as is the case in the parallel translations), and no order between the
sentences is assumed. Evaluation (on alignment of news reports) shows that the per-
formance of the automatic aligner approaches that of the human annotators, where
it is interesting to observe that the algorithm outperforms human annotators on the
Equals and Intersects relations. Human annotators, by contrast, are better at classi-
fying the remaining relations, but since Equals and Intersects are relatively frequent
in the News segment, the overall weighted performance of our algorithm is less than
a percent below the scores obtained by the human annotators (Marsi and Krahmer,
2010).

In DAESO we also continued our work on sentence fusion. It has been argued
that sentence fusion is a poorly defined task, which is therefore difficult to evaluate

4 Both tools are available from http://daeso.uvt.nl
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(Daumé III and Marcu, 2004). Krahmer et al. (2008) studied sentence fusion in a
QA setting, where participants were asked to merge potential answer sentences with
and without explicitly showing the question. We found that question-based sentence
fusion is a better defined task than generic sentence fusion (Q-based fusions are
shorter, display less variety in length, yield more identical results and have higher
normalized Rouge scores). The sentence fusion data collected in this way has been
made publicly available. Moreover, we found that in a QA application, participants
strongly prefer Q-based fusions to generic ones, and have a preference for union fu-
sions (combining information from answers, without overlap) over intersection fu-
sions (only using the shared information in potential answer sentences). This clearly
shows that sentence fusion is indeed a useful strategy for QA systems.

4 Conclusion

In this chapter we described two related ways in which QA systems could provide
more informative answers, by (1) doing query-based summarization and (2) fusing
potential answer sentences to more complete answers.

Concerning query-based summarization, our primary aim was to bring automatic
content selection practice in line with insights from discourse theory. To this end, we
devised a framework for automatic summarization which is founded on graph theory
and can be applied as a text-to-text generation technique in question answering. The
content selection algorithm is entirely based on relations between content units (text
passages). The evaluated systems are just examples of possible implementations of
this framework; they can be extended to exploit more textual features, and discourse
oriented features in particular.

The framework represents a step toward context aware summarization. Previ-
ous work on query-based summarization has mainly focused on extracting the set
of sentences which best match the query, ignoring their broader context. The fea-
tures used for relating sentences are computationally low-cost and easy to port to
other languages, but knowledge-intensive methods may detect relations between
sentences more accurately. Despite this, the graph-based approach showed good
results compared to DUC participant systems (the redundancy-aware probabilistic
relevance system would have ranked first for Rouge-2 and second for Rouge-SU4 if
it had participated in DUC 2005, when most of the work described in this chapter
was done), which indicates that we are on the right track. The main lessons learned
from our experiments are the following:

1. The graph-based approach to summarization represents a promising direction,
given the good results in spite of the superficial linguistic analysis performed by
the evaluated systems. Even better results are to be expected when more sophis-
ticated features are used.

2. The probabilistic interpretation of semantic networks (i.e., probabilistic rele-
vance) seems to be more suitable for content selection than the social network
interpretation (i.e., normalized centrality).
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Further performance gains may be achieved by using more different sources of in-
formation for detecting relations, including knowledge-intensive methods such as
rhetorical relation detection or anaphora resolution.

This chapter also described our first explorations into sentence fusion for Dutch.
Our starting point was the sentence fusion model proposed by Barzilay et al. (1999);
Barzilay (2003), and further extended by Barzilay and McKeown (2005), in which
dependency analyses of pairs of sentences are first aligned, after which the aligned
parts (representing the common information) are fused. The resulting fused depen-
dency tree is subsequently transfered into natural language. Our new contributions
are primarily in two areas. First, we carried out an explicit evaluation of the align-
ment – both human and automatic alignment – whereas Barzilay (2003) only eval-
uates the output of the complete sentence fusion process. We found that annotators
can reliably align phrases and assign relation labels to them, and that good results
can be achieved with automatic alignment, certainly above an informed baseline,
albeit still below human performance. Second, Barzilay and co-workers developed
their sentence fusion model in the context of multi-document summarization, but ar-
guably the approach could also be used for applications such as question answering
or information extraction. This seems to call for a more refined version of sentence
fusion, which has consequences for alignment, merging and realization. We have
therefore introduced five different types of semantic relations between strings (i.e.
equals, restates, specifies, generalizes and intersects). This increases the expressive-
ness of the representation, and supports generating restatements, generalizations and
specifications. We described and evaluated our first results on sentence realization
based on these refined alignments, with promising results.
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