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Abstract

In a recent article published in this journal (van Deemter, Gatt, van der Sluis, & Power, 2012), the

authors criticize the Incremental Algorithm (a well-known algorithm for the generation of referring

expressions due to Dale & Reiter, 1995, also in this journal) because of its strong reliance on a pre-

determined, domain-dependent Preference Order. The authors argue that there are potentially many

different Preference Orders that could be considered, while often no evidence is available to deter-

mine which is a good one. In this brief note, however, we suggest (based on a learning curve experi-

ment) that finding a Preference Order for a new domain may not be so difficult after all, as long as

one has access to a handful of human-produced descriptions collected in a semantically transparent

way. We argue that this is due to the fact that it is both more important and less difficult to get a good

ordering of the head than of the tail of a Preference Order.
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1. Introduction

When speakers use a description to refer to an object (‘‘the green sofa’’) or a person

(‘‘the tall man’’), they have to determine which properties to include so that an addressee

knows which object or person is intended. Clearly, there are many ways in which a sofa can

be distinguished from other furniture items (‘‘the large sofa,’’ ‘‘the sofa left of the modern-

looking chair,’’ etc.), and there are even more possibilities when we consider references to

persons. Various algorithms for the Generation of Referring Expressions (GRE) have been

proposed that compute which set of properties distinguish a target, where properties
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themselves are often represented as attribute-value pairs, such as Æ color, green æ, indicating

that the target has the value green for the attribute color. In a seminal study, Dale and Reiter

(1995) present and compare various algorithms that accomplish this task. One algorithm,

which they call Greedy Heuristic (gr), relies on discriminatory power: It chooses properties

one by one, at each iteration selecting that property of the intended referent that excludes

most of the distractors not previously ruled out. An alternative that Dale and Reiter discuss

is the Incremental Algorithm (ia), which relies on the assumption that some attributes (e.g.,

color) are more preferred than others (e.g., size). This notion is formalized using a

preference order (po), which is a list of attributes through which the ia iterates, selecting an

attribute-value pair if it helps distinguishing the target from one or more of the distractors.

Dale and Reiter point out that pos may vary from one domain to another, and should be

determined empirically.

Recently, van Deemter et al. (2012) presented an extensive evaluation of the various

algorithms discussed in Dale and Reiter (1995). In their paper, van Deemter and colleagues

emphasize the crucial role of the po when evaluating the ia. They show that, both in a furni-

ture and in a people domain, the ia outperforms the gr algorithm with a ‘‘good’’ po, while

the opposite holds when the ia relies on a ‘‘bad’’ po. This outcome naturally raises the ques-

tion ‘‘how ’good’ pos might be selected’’ (van Deemter et al., 2012, p. 6). The authors point

out that systematically testing all pos for a given domain quickly becomes impractical, since

for a domain where objects can be described using n different attributes, there are n! pos to

consider. Based on considerations such as these, they conclude that ‘‘someone who is look-

ing for a GRE algorithm for a previously unstudied application domain might do better

choosing gr (…), instead of an unproven version of the ia’’ (van Deemter et al., 2012,

p. 31).

However, it seems to us that it should first be determined how difficult it really is to find

a ‘‘good’’ po. Perhaps only a handful or even only one human-produced description is

needed to make an educated guess about the po for a certain domain. One way to find out is

by running a learning curve experiment, in which randomly selected sets of human-pro-

duced referring expressions (increasing in size) are used to determine the ranking of attri-

butes on a po, after which the ia (with the various, resulting pos) can be evaluated in the

same way as was done by van Deemter et al. (2012). In this letter, we report on exactly such

an experiment, thereby extending the findings of van Deemter and colleagues.

2. Experiment

2.1. Method

For our experiment we relied on the TUNA data-set, extensively described in van Deemter

et al. (2012). This semantically transparent corpus contains referring expressions for two

domains (furniture and people), and it has been used for comparative evaluation in the REG

Challenges (2007–2009). To determine pos, we used 165 furniture descriptions and 136 peo-

ple descriptions from the training set of the REG Challenge 2009. For evaluating the ia, we
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used 38 furniture descriptions and 38 people descriptions from the 2009 REG Challenge

development set.

We used randomly selected subsets for each domain of the training set, with set sizes of

1, 5, 10, 20, 30, 40, and 50 descriptions, as well as the entire set. Because the accidental

composition of a training set may strongly influence the results, especially for small training

sets, we created five different sets of each size. The training sets were built up in a cumula-

tive fashion: We started with five randomly selected sets of size 1, then added four randomly

selected descriptions to each of them to create five sets of size 5, etc.

The rank of an attribute on a po was determined by counting the number of descriptions

that include this attribute in a given set. Van Deemter et al. (2012) likewise relied on fre-

quencies (as well as on psycholinguistic evidence) to determine promising pos (which, inci-

dentally, turned out to be easier to find for the furniture than the people domain), but,

crucially, where they only computed frequencies over their entire development set, we

specifically consider subsets (of increasing sizes).

Consider determining a po based on a set of one description, say ‘‘the large chair.’’ Two

attributes are mentioned in this description (size and type) and hence have frequency 1; these

are placed at the head of the po. Other attributes (such as color and orientation) are not

mentioned (frequency 0), and these are placed at the tail of the po. This gives a partial order-

ing of attributes. However, the ia requires a complete ordering, so when two or more attri-

butes occur in a single training set with the same frequency, we decided to rank them

alphabetically (clearly, as set size increases, frequencies will more often be enough to com-

pletely rank all attributes). The resulting po for our example would be Æ size, type, color,

orientation æ. Note that like Dale and Reiter (1995), but contrary to van Deemter et al.

(2012) we check whether type is in the description after running the ia and include it when it

was not added earlier. Nothing hinges on this for the experiment we describe here, however.

Once a po has been determined, we run the ia with this po on the test set and evaluate the

performance in terms of Dice and prp, as van Deemter et al. (2012) do. Dice measures set

overlap between a generated set of properties and those produced by a human speaker, rang-

ing from 0 (no overlap) to 1 (complete overlap); prp is the perfect recall percentage, the

proportion of times when the ia achieves a Dice score of 1.

2.2. Results

Table 1 summarizes the results and reveals a clear picture. For the Furniture domain, a

set size of five descriptions is sufficient to reach top performance both in terms of Dice and

prp. For the more complex People domain the results are slightly more varied, and increas-

ing set sizes generally give numerically higher scores. However, it is important to note that

even here the first few descriptions clearly have the biggest impact; moving from set size 1

to set size 10, for example, yields a prp improvement of 0.137, while moving from set size

10 to the entire set gives a prp improvement of 0.105. For Dice, this is even clearer: From

set size 1 to 10 gives an increase of 0.16, while moving from 10 to the entire set improves

the Dice score with only 0.04.
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To test for statistical significance, we ran separate analyses of variance (one for each

domain) with set-size as a repeated measure, and Dice and prp as the dependent variables.

Planned post hoc pairwise comparisons were made to test which set-size is the smallest that

does not perform significantly different from the entire set (we call this the ‘‘ceiling’’); we

report results both for the standard Bonferroni method, which corrects for multiple compari-

sons, and for the less strict LSD method from Fisher, which does not. Note that with the

more strict Bonferroni method we are inherently less likely to find statistically significant

differences between set sizes, meaning that we can expect to reach a ceiling earlier than with

the LSD method.

We found statistically significant effects of set size for both the Furniture (Dice:

Fð7; 259Þ ¼ 13:81; p < :001; g2p ¼ 0:27 and prp: Fð7; 259Þ ¼ 34:31; p < :001; g2p ¼
0:48) and the People domains (Dice: Fð7; 259Þ ¼ 18:47; p < :001; g2p ¼ 0:33 and prp:

Fð7; 259Þ ¼ 5:99; p < :001; g2p ¼ 0:14), indicating that the number of descriptions from

which a po is derived influences the performance of the ia both in terms of Dice and of prp.

Crucially, the post hoc tests confirm that, generally speaking, small set sizes are sufficient to

reach ceiling performance. For the furniture domain, we (clearly) reached the ceiling at set-

size 5. For the People domain, the ceiling for Dice is reached at set-size 10 (both with the

Bonferroni and the LSD method), while for prp the ceiling is reached at set-size 40 using the

LSD method, and 1 with the Bonferroni method.

3. Concluding remarks

Our experiment shows that even based on a small set of human-produced descriptions we

can make an informed guess about what a ‘‘good’’ po is. With relatively small sets of

descriptions (much smaller than the entire TUNA corpus) we obtain results that are not

significantly different from the best performing variant of the ia. Arguably, these results

allow two important, related conclusions: (a) Even though, in theory, there are indeed n!

Table 1

Dice and prp scores for the furniture and people domains as a function of training

set size; the entire set consists of, respectively, 165 and 136 descriptions

Size Furniture People

Dice prp Dice prp

01 0.764 0.368 0.519 0.074

05 0.829 0.553 0.605 0.158

10 0.829 0.553 0.682 0.211

20 0.829 0.553 0.710 0.221

30 0.829 0.553 0.682 0.153

40 0.829 0.553 0.716 0.263

50 0.829 0.553 0.718 0.279

all 0.829 0.553 0.724 0.316
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different possible pos of n attributes, it is both more important and less difficult to get a

‘‘good’’ ordering for the head of the po than for its tail. And (b) relatively many human-pro-

duced descriptions will include attributes that are preferred, so that it does not really matter

how dispreferred attributes are ordered. It is worth pointing out that our approach still

requires a semantically balanced corpus. However, the evaluation results suggest that a sur-

prisingly small one may be sufficient. Of course, it should be kept in mind that these conclu-

sions, while intuitive, are based on data from the relatively simple domains studied by van

Deemter et al. (2012). Moreover, here we have only considered references to single targets,

while van Deemter et al. (2012) also consider references to sets, for which determining a po

might well be more complicated.

It will certainly be interesting to see what happens when the field of referring expression

generation moves toward more complex references and more open-ended domains. For

now, we conclude that someone who is looking for a GRE algorithm for a new application

domain might consider collecting a handful of human-produced descriptions, before

discarding the ia in favor of another algorithm.
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