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Abstract

This paper is concerned with so-called generic properties of general linear cone programs. Many results

have been obtained on this subject during the last two decades. It has, e.g., been shown in [29] that

uniqueness, strict complementarity and nondegeneracy of optimal solutions hold for almost all problem

instances. Strong duality holds generically in a stronger sense: it holds for a generic subset of problem

instances.

In this paper, we survey known results and present new ones. In particular we give an easy proof

of the fact that Slater’s condition holds generically in linear cone programming. We further discuss the

problem of stability of uniqueness, nondegeneracy and strict complementarity. We also comment on the

fact that in general, cone programming cannot be treated as a smooth program and that techniques from

nonsmooth geometric measure theory are needed.
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1 Introduction

Linear cone programs (CP) can be given in different equivalent forms. In this paper, we consider the pair of

primal-dual linear conic programs

max cTx s. t. B −Ax ∈ K , (P )
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min 〈B, Y 〉 s. t. ATY = c, Y ∈ K∗, (D)

with given vectors c ∈ Rn, B ∈ Rm, a matrix A ∈ Rm×n and variables x ∈ Rn, Y ∈ Rm. We assume that

K ⊆ Rm is a pointed full-dimensional closed convex cone and K∗ is the dual cone of K with respect to the

Euclidean inner product 〈·, ·〉 in Rm, i.e., K∗ := {Y ∈ Rm | 〈Y,X〉 ≥ 0 for all X ∈ K}.
Often, e.g., in semidefinite and copositive programming the elements Y,B and the columns Ai of A are

matrices from the set Sk of (real) symmetric k × k-matrices. We therefore write the vectors x, c ∈ Rn in

lower case but the vectors (matrices) Y,B,Ai ∈ Rm in capital letters. Note that we can simply identify

Sk ≡ Rm where m := 1
2k(k + 1).

Linear conic programming represents an important class of convex problems with a multitude of appli-

cations. It contains linear programming (LP), semidefinite and copositive programming as special cases. We

refer e.g., to [26, 36, 28] for surveys on this topic.

In this paper, we study genericity results for such programs, i.e., we wish to show that certain “nice”

regularity conditions hold generically. Let P be (a subset of) an Euclidean space RN . In what follows, we

say that a subset Pr of the set P is a generic subset of P if Pr is open in P and P \Pr has Lebesgue measure

zero. We call Pr a weakly generic subset of P if only it holds that P \ Pr has Lebesgue measure zero. A

property is said to be (weakly) generic in the problem set P , if it holds for a (weakly) generic subset Pr of P .

So the weakly generic sets Pr need not be open. Hence, genericity implies both density and stability of the

nice problem instances, whereas weak genericity only assures density. Note that from a numerical viewpoint

stability (i.e., openess of Pr) is crucial, so genericity is the desirable property.

Remark 1.1. Genericity can be defined in different ways. In [2, 4] the (weak) genericity results have been

formulated with respect to (wrt.) the Lebesque measure, in [29] wrt. the Hausdorff measure, and in [5]

in terms of σ-porousity (cf., Lemma 3.9). It is well-known that in RN the N -dimensional Lebesgue- and

Hausdorff measures coincide (see, e.g., [25, Corollary 2.8]) and that a σ-porous set has Lebesque measure

zero (the converse does not hold). In [34] weak genericity is called metric genericity and some genericity

results are given in terms of open and dense sets (see[34, Theorem 4.6,4.7]). Note however, that openess

and density of a set A ⊂ RN does not imply that the complement RN \ A has Lebesque measure zero. So

our concept of genericity is stronger and we think that for our purpose, (i.e., for problem sets in RN ), our

definition of genericity is very appropriate and meaningful.

Genericity of properties like strong duality, nondegeneracy, strict complementarity and uniqueness of so-

lutions of linear conic programs have been discussed before. Alizadeh, Haeberly, and Overton [2] as well as

Shapiro [35] specifically discuss generic properties of semidefinite programs (SDP). Pataki and Tunçel [29]

derive weak genericity results on strict complementarity, uniqueness, and nondegeneracy for general linear

conic programs. Note however, that the results in [2] have been proven under the assumption that the Slater

condition is satisfied, and in [29], the genericity results are restricted to so called gap-free problems (i.e.,
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problems with finite optimal value and zero duality gap). The possibility that these assumptions generically

fail has not been excluded, so that strictly speaking these genericity results were lacking some foundation.

Merely for the SDP case, it is indicated in [35, p. 310] that the Slater condition (Mangasarian-Fromovitz

condition) is generic. Recently in [4] Bolte, Daniilidis and Lewis gave special full genericity results wrt.

uniqueness of solutions under the extra assumption that the cone K is a semialgebraic set.

When we were working on an earlier version of this article, other results were brought to our attention,

e.g., the paper by Schurr et al. [34] and the one by Borwein et al. [5]. This has led to a complete revision

of our earlier paper and resulted in the present article which has the following aims: To survey the known

genericity results, to add new ones and to discuss the relations between the different genericity statements.

We start with some general remarks. Usually, genericity results in smooth optimization are proven by

applying transversality theory from differential topology. We refer to [22] for such genericity results in

smooth nonlinear finite programming, and to [2] for results in semidefinite programming. We also refer the

reader to Section 5 for the special case of LP and SDP.

However, a general conic program is not a completely smooth problem. Indeed, a part of the problem

is given by the general cone K (or its dual K∗) and boundaries of convex cones are generally described

by convex (thus Lipschitz) functions rather than by smooth functions. So to obtain genericity results in

general linear cone programming we have to use techniques from nonsmooth convex analysis. Fortunately,

in the field of geometric measure theory many results of differential geometry for C1-functions have been

generalized to similar results for Lipschitz functions. Founding work for this theory goes back to Federer

and others (see [11, 25, 32] for an overview). The results in [29], [34], and [4] are based on this theory, and

we also will use techniques from geometric measure theory.

In this paper, we try to prove our genericity results with techniques which are as basic as possible.

Genericity of strong duality will be proven (based on Lemma 3.2) by purely topological arguments. For

weak genericity of uniqueness more structure is needed. As we shall see, the classical result that Lipschitz-

functions (convex functions) are differentiable almost everywhere will do the job. For weak genericity

of nondegeneracy and strict complementarity (SC) more sophisticated techniques from geometric measure

theory are still needed (see [29]).

The paper is organized as follows. Section 2 introduces some notation and presents two equivalent formu-

lations for the cone programs (P ) and (D). In Section 3 we show that the Slater condition holds generically

in conic programming. By using well-known techniques this leads to genericity results for strong duality

similar to the results in [34]. We compare the statements in [34] with our result and discuss related work.

Section 4 deals with weak genericity results concerning uniqueness, nondegeneracy and strict complemen-

tarity in CP. In Section 4.1 we give an independent proof of the fact that uniqueness is weakly generic. This

approach was brought to our attention by Alexander Shapiro (personal communication). The proof does not

rely on deeper results from geometric measure theory as used in [29, Theorem 3]. Section 4.2 summarizes

3



the weak genericity results for nondegeneracy and strict complementarity from [29]. Section 4.3 comments

on the fact that nondegeneracy implies Slater’s condition. It further explains why most genericity results

from linear semi-infinite optimisation (SIP) cannot be directly applied to CP.

In Section 5 we discuss the problem of stability for properties like uniqueness, nondegeneracy and strict

complementarity. For some special classes of CP, such as LP and SDP, full genericity can be proven. For

general cone programs it is still open whether the stability for these properties holds (fully) generically.

2 Preliminaries

We next discuss two other formulations for CP. Many authors (e.g., [29]) consider conic programs in

Self-dual formulation:

(P0) max 〈C,B〉 − 〈C,X〉 s. t. X ∈ (B + L) ∩ K, (2.1)

(D0) min 〈B, Y 〉 s. t. Y ∈ (L⊥ + C) ∩ K∗, (2.2)

where C,B ∈ Rm, L = span{A1, . . . , An} ⊂ Rm is the linear subspace spanned by Ai ∈ Rm, i =

1, . . . , n, and K is a cone in Rm (as above).

It is easy to see that the problems (P0), (D0) are equivalent to (P ), (D), respectively. Indeed, let Ai
denote the columns of A and choose some C ∈ Rm satisfying 〈Ai, C〉 = ci for i = 1, . . . , n. Then the

feasible sets of (P0) and (P ) are directly related via the affine mapping X = B − Ax (in case the Ai’s

are linearly independent the map is bijective). Also their objective function values are the same since for

X = B −
∑n

i=1 xiAi we obtain

〈C,B〉 − 〈C,X〉 = 〈C,B −X〉 = 〈C,
n∑
i=1

xiAi〉 =
n∑
i=1

xi〈C,Ai〉 = cTx.

The dual problems (D0) and (D) have the same objective function, and in view of the relation

Y − C ∈ L⊥ ⇔ 〈Y − C,Ai〉 = 0 for all i ⇔ 〈Y,Ai〉 = ci for all i ⇔ ATY = c

the feasible sets coincide, so (D0) and (D) are equivalent as well.

Remark 2.1. Important special cases of CP are linear programs (LP) where K = K∗ = Rm+ , and semidef-

inite programs (SDP) where the columns Ai of A (i.e., the basis of L) as well as B,C are elements of the

space Sk of symmetric k×k-matrices andK = K∗ equals the set S+k of positive semidefinite matrices in Sk.

Note that we can identify Sk ≡ Rm withm = 1
2k(k+1). Another example is given by the class of copositive

programs (COP) where K is the cone of copositive matrices with dual K∗, the cone of completely positive
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matrices (see e.g., [6] for details).

In the sequel, the feasible sets and optimal values of these cone programs will be denoted by FP0 , FD0

and vP0 , vD0 , respectively. As usual we say that strong duality holds for a pair of primal, dual programs

(P0), (D0) if the relation vP0 = vD0 holds.

SIP formulation: Linear cone programs can also be seen as special case of linear semi-infinite programs

(SIP) of the form

(SIPP ) max
x∈Rn

cTx s. t. b(Y )− a(Y )Tx ≥ 0 for all Y ∈ Z, (2.3)

with a possibly infinite index set Z ⊂ Rm and functions a : Z → Rn and b : Z → R. The (Haar-) dual

reads:

(SIPD) min
∑
Yj∈Z

yjb(Yj) s. t.
∑
Yj∈Z

yja(Yj) = c, yj ≥ 0, (2.4)

where the min is taken over all finite sums. For an introduction to (linear) SIP we refer e.g., to [12]. Note

that the condition X ∈ K can be equivalently expressed as

〈X,Y 〉 ≥ 0 for all Y ∈ K∗.

In view of this relation the primal program (P ) can be written as (SIPP ) with

a(Y ) := ATY , b(Y ) := 〈B, Y 〉, and Z := K∗ (2.5)

The feasibility condition for (SIPD) then becomes

c =
∑
j

yjA
TYj , yj ≥ 0

and by putting Y :=
∑

j yjYj ∈ K∗, this coincides with the feasibility condition c = ATY of (D).

Moreover, in view of
∑

j yjb(Yj) =
∑

j yj〈Yj , B〉 = 〈Y,B〉, the dual (SIPD) is equivalent to (D), and we

simply denote both versions by (D).

For the genericity results in this article we always assume that the cone K (and thus K∗) and n,m are

arbitrarily fixed. Then the set of problem instances of (P ), (D) is given by

P := {(A,B, c) ∈ Rm×n × Rm × Rn} ≡ Rm·n+m+n

endowed with some norm.

Often we prove results of the sort that for arbitrarily fixed A ∈ Rm×n a property holds for all (B, c)
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from a generic set S = S(A) ⊂ Rm+n. We emphasize that this implies that the property holds for almost

all problem instances in the whole space P = {(A,B, c)}. Indeed, under this assumption for any fixed

A ∈ Rm×n the property holds on the whole Rm+n except for the set S(A)C := Rm+n \ S(A) of Lebesgue

measure µ(S(A)C) = 0 in Rm+n. But then by Fubini’s theorem the property holds for (A,B, c) ∈ Rm×n×
Rm × Rn except for a set of measure

∫
Rm×n µ(S(A)

C) dA = 0.

Concerning openness, however, we have to be careful: If for any fixed A a property holds for any (B, c)

from an open set S ⊂ Rm+n, then this property need not hold for an open set in P . A counterexample is

given by Example 3.8.

Throughout the paper we assume that n ≤ m holds. For the case n > m the genericity results can be

summarized by the following statement: Generically for the case n > m

• the dual (D) is infeasible and

• the primal program (P ) is unbounded.

So in this case generically strong duality holds with vP = vD = +∞. To prove this, we use the well-known

fact that (see e.g., [22, Ex. 7.3.23])

a matrix U ∈ RN×M with N ≥M generically has full rank M . (2.6)

We first show that generically wrt. (A, c) the system

c = ATY has no solution Y ∈ Rm . (2.7)

Indeed, by (2.6) the matrix U := [AT c] ∈ Rn×(m+1) generically has rank m+ 1 whence Uz = 0 does not

allow a nonzero solution. This means that generically the system in (2.7) is infeasible.

To show that (P ) is generically unbounded we consider the system Ax = B, cTx = τ , any solution

of which yields a primal feasible x with objective value τ . Again, by using (2.6), generically, the matrix

U :=
[
A
cT

]
∈ R(m+1)×n has full rank m+ 1, so Ax = B, cTx = τ is solvable for any τ (and B).

3 Genericity of Slater’s condition and strong duality

It is well-known that strong duality always holds in linear programming (unless both programs are infeasi-

ble), but strong duality need not hold in general cone programming. However, as we shall see, strong duality

is a generic property.

In this section we give an independent easy proof of the fact that in cone programming the Slater condi-

tion holds generically. To do so we only make use of the result that the boundary of a convex set has measure

zero. By applying well-known duality theorems this leads to an alternative proof of the genericity result
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for strong duality in [34]. We also summarize other related results that were brought to our attention ([5]

and [34]).

3.1 Genericity of the Slater condition

In this section we provide a purely topological proof of the genericity of the Slater condition.

Definition 3.1. We say that Slater’s condition holds for (P ), if there exists a feasible x such that X :=

B −Ax ∈ intK. Analogously, we say that Slater’s condition holds for (D), if there exists a feasible Y , i.e.,

ATY = c, such that Y ∈ intK∗.

Roughly speaking, Slater’s condition says that the feasible set of the problem is not entirely contained in

the boundary of the convex cone. For this reason, it is intuitive that the proof of a genericity result should be

based on properties of this boundary. More specifically, we will use the fact that the boundary of a convex

set has measure zero.

Lemma 3.2. Let T be a full-dimensional closed convex set in Rs. Then the boundary of T has s-dimensional

Lebesgue measure zero.

Proof. For the sake of completeness we repeat here the elegant proof of [24]. Consider an open ball Bε(p)
with center p ∈ bd T and radius ε > 0. Since there exists a hyperplane supporting the convex set T at p, at

least half of the ball does not contain points of T . Therefore,

lim sup
ε↓0

µ(T ∩ Bε(p))
µ(Bε(p))

≤ 1

2
.

On the other hand, Lebesgue’s density theorem (see e.g., [10]), says that for almost all points p of the

Lebesgue measurable set T we have that

lim
ε↓0

µ(T ∩ Bε(p))
µ(Bε(p))

= 1.

This immediately implies that bd T has measure zero.

The next theorem shows that Slater’s condition is indeed generic.

Theorem 3.3. Let A ∈ Rm×n be given arbitrarily. Then there exist a generic subset S1 ⊂ Rn (open with

complement of measure zero), such that for any c ∈ S1 precisely one of the following alternatives holds for

the corresponding problem instance of (D):

(1) either the feasible set of (D) is empty, i.e., {Y ∈ K∗ | ATY = c} = ∅, or

(2) Slater’s condition holds for (D), i.e., {Y ∈ intK∗ | ATY = c} 6= ∅,
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An analogous result holds for the primal program (P ), i.e., there is a generic subset S̃1 of Rm such that for

any B ∈ S̃1 either the corresponding program (P ) is infeasible or (P ) satisfies the Slater condition.

Proof. For the case of program (D), note that the set S := {c = ATY | Y ∈ K∗} ⊂ Rn is a convex set

with dimS =: k ≤ n. We define S1 := intS ∪ (Rn \ clS). As a union of two open sets, S1 is clearly open.

Note that for c ∈ Rn \ clS the alternative (1) holds, i.e., the feasible set is empty. If k < n (i.e., A does

not have full rank n) then the statement is true. So we can assume dimS = n, and since by Lemma 3.2 the

set bdS = Rn \ S1 has measure zero, it is sufficient to show that for c ∈ intS the Slater condition holds

(alternative (2)).

So let c ∈ intS be given. By assumption there exists some Y0 ∈ K∗ for which ATY0 = c holds.

Consider the affine space Y0 + kerAT . If Y0 + kerAT ∩ intK∗ 6= ∅, then Slater’s condition holds and we

are done.

So assume by contradiction that Y0 + kerAT ∩ intK∗ = ∅. This implies in particular that Y0 ∈ bdK∗,
and since intK∗ 6= ∅, there exists a separating hyperplane with normal vector N such that (see [30, Theo-

rem 11.2])

〈N,Y 〉 ≥ 〈N,Y0〉 for all Y ∈ K∗ and N ⊥ kerAT . (3.1)

Since c ∈ intS, there exists an open neighborhood ∅ 6= Nε(c) ⊂ intS of c and by continuity of the mapping

ATY there exists an open neighborhood ∅ 6= Nδ(Y0) of Y0 such that ATNδ(Y0) ⊂ Nε(c). The separating

hyperplane divides Nδ(Y0) into two parts. Take a point Y1 ∈ Nδ(Y0) such that 〈N,Y1〉 < 〈N,Y0〉. By

construction, c1 := ATY1 ∈ Nε(c) ⊂ intS. So there must exist a pre-image Ỹ1 ∈ K∗ with AT Ỹ1 = c1 , i.e.,

Ỹ1 = Y1 + Ỹ0 with Ỹ0 ∈ kerAT . Altogether using 〈N, Ỹ0〉 = 0 and (3.1), we attain the contradiction

〈N,Y0〉 ≤ 〈N, Ỹ1〉 = 〈N,Y1 + Ỹ0〉 = 〈N,Y1〉 < 〈N,Y0〉.

This concludes the proof for problem (D).

For the primal program we proceed as follows. We note that Rm allows an orthogonal decomposition

Rm = imA⊕ kerAT , B = B1 ⊕B2 for B ∈ Rm

where B2 is the projection projkerAT B of B ∈ Rm onto the linear space kerAT . Let Q ∈ Rm×m be the

matrix representation of this projection, i.e., B2 = projkerAT B = QB. We now consider the convex cone

R := QK. As before we have

QB ∈ kerAT \ clR ⇒ {B −Ax | x ∈ Rn} ∩ K = ∅

8



and we can show (with intR relative to kerAT )

QB ∈ intR ⇒ {B −Ax | x ∈ Rn} ∩ intK 6= ∅.

Here again bdR has measure zero and thus R1 := intR ∪ (kerAT \ clR) is relatively open in kerAT with

kerAT \R1 of measure zero in kerAT . Consequently, the set S̃1 := imA⊕R1 is open in Rm with Rm \ S̃1
of measure zero in Rm. By construction, for B ∈ S̃1, precisely one of the two alternatives holds.

Remark 3.4. The Slater conditions for (P ) and (P0) are clearly equivalent. Also the genericity result for

(D) in Theorem 3.3 wrt. parameter c can be translated to the following corresponding result for (D0): Let

L be given. Then there exists a generic subset Q1 ⊂ Rm such that for any C ∈ Q1 precisely one of the

following alternatives holds for the corresponding problem instance of (D0):

(1’) either the feasible set of (D0) is empty, or

(2’) Slater’s condition holds for (D0), i.e., {Y | Y ∈ (L⊥ + C) ∩ intK∗} 6= ∅.

To see this, similar to the second part of the proof of Theorem 3.3, consider the othogonal decomposition

Rm = L⊥ ⊕ L, C = C1 ⊕ C2 for C ∈ Rm.

Let P ∈ Rm×m be the matrix representation of the projection projL onto L, and let C2 = PC = projLC.

Then as in the the proof of Theorem 3.3 above we consider the convex cone S := PK∗ ⊂ L and the set

(relative to L)

S1 = intS ∪ (L \ clS) ,

which is relatively open with L \ S1 of measure zero. Note that for PC ∈ intS the alternative (2’) holds

and for PC ∈ L \ clS the condition (1’) is true. So the set Q1 = L⊥⊕ S1 is the required generic set in Rm.

It is well-known (see [31], [34, Lemma 3.2], or [12, Theorem 8.1]) that if for someA,B the problem (P )

satisfies the Slater condition, then for all c the strong duality relation vP = vD holds and, in case vP = vD

is finite, the optimal value of (D) is attained. So the genericity of Slater’s condition in Theorem 3.3 leads to

the following genericity result for strong duality (similar to [34]):

Corollary 3.5. LetA ∈ Rm×n be given arbitrarily. Then with the generic subset S̃1 ⊂ Rm from Theorem 3.3

the following holds for B ∈ S̃1:

• either the feasible set of (P ) is empty,

• or (P ) is strictly feasible and for any c ∈ Rn we have vP = vD, meaning that if (D) is infeasible,

then vP = vD = +∞, and if (D) is feasible, then vP = vD is finite and the minimum value of (D) is

attained.
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An analogous result holds for the dual program (D) wrt. c ∈ S1 ⊂ Rn (with S1 from Theorem 3.3).

By combining the results for the primal and dual programs we obtain:

Corollary 3.6. Let A ∈ Rm×n be given arbitrarily. Then with the generic subsets S1 ⊂ Rn, S̃1 ⊂ Rm from

Theorem 3.3, for any (B, c) ∈ S̃1 × S1 precisely on of the following alternatives holds:

(1) Both feasible sets of (P ) and (D) are empty.

(2) Precisely one of the feasible sets of (P ) or (D) is empty and vP = vD = ±∞.

(3) Both (P ) and (D) are feasible and for both problems the optimal value is attained with vP = vD.

A corresponding result holds for (P0), (D0) wrt. to a generic set S̃1×Q1 ⊂ Rm×Rm of parameters (B,C)

(cf. Remark 3.4).

The statement in Corollary 3.6 could be called genericity of universal strong duality wrt. parameters

(B, c) (for any fixed A).

We next compare our result with that in [34] where the authors take A as a parameter, and they define:

For given A, universal duality is said to hold (wrt. A), if for any (B, c) the equality vP = vD holds for (P )

and (D) (see also Section 3.2). They prove the following:

Theorem 3.7. [34, Theorem 4.5, Theorem 4.7]. There is a generic subset S ⊂ Rm×n such that for any

A ∈ S universal duality holds.

The main difference between this statement and ours above is that by taking A as a parameter in the

generic set S of Theorem 3.7, the case that both primal and dual are infeasible is excluded. In our approach,

for fixed A we cannot exclude generically in (B, c) the infeasibility of both programs (P ) and (D) simulta-

neously. We illustrate this difference between our result in Corollary 3.6 and the result from [34] as stated in

Theorem 3.7 by an example.

Example 3.8. Consider the LP:

(P ) max cTx s. t. B −Ax ≥ 0 with c =

(
−1
1

)
, B =


0

−1
0

 , A =


0 1

0 −1
1 0

 .

(D) min BTY s. t. ATY = c, Y = (y1, y2, y3) ≥ 0.

The primal resp. dual feasibility conditions are:

x2 ≤ 0, x2 ≥ 1, x1 ≤ 0 resp. y1

(
0

1

)
+ y2

(
0

−1

)
+ y3

(
1

0

)
=

(
−1
1

)
, yi ≥ 0.
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Both programs are infeasible, and for fixed A this property is stable wrt. small perturbations of (B, c). So

in Corollary 3.6, the alternative (1) cannot be excluded generically. Recall however that according to the

genericity concept in Theorem 3.7 (where A is the parameter) a generic perturbation of the matrix A above

makes either (P ) or (D) feasible.

Moreover, note that in Corollary 3.6 (in contrast to Theorem 3.7) also the existence of solutions is assured

in case (3). We also emphasize that the proof of our genericity statement is more elementary than the proof

in [34] which is based on a “deep” result (see [34, Lemma A.1]) from geometric measure theory.

The notion of universal duality goes back to Duffin [9]. His results allow another approach to genericity

of strong duality which is shortly discussed in the next section.

3.2 Genericity results based on generic closedness of the image MK

Recently, it was brought to our attention by Warren Moors that an approach from [5] allows another way to

prove genericity of strong duality for cone programs: it is well-known that for M ∈ Rk×m the linear image

MK := {MY | Y ∈ K} of a polyhedral closed convex cone K ⊂ Rm is closed. This is not generally

true for non-polyhedral cones (see e.g., [30, p.73,74] for a counterexample). In [5, Theorem 2] the following

genericity statement has been shown.

Lemma 3.9. Let k ∈ N and let K ⊂ Rm be a closed convex cone. Then the set

S1 := Rk×m \ int{M ∈ Rk×m |MK is closed}

is σ−porous.

Note that σ−porousity of S1 implies that S1 has Lebesgue measure zero and is the countable union of

nowhere dense sets (see [5]).

The following result for SIP, by Duffin et al. [9], provides the connection between strong duality and

closedness of images MK. We formulate these statements in terms of our problems (P ) and (D).

Under the assumption that (P ) is feasible, in [9] the data (A,B) ∈ Rm×n ×Rm are said to yield primal

uniform LP duality for (P ) and (D), if for any c ∈ Rn either FD = ∅ and vP = vD = ∞; or vP = vD is

finite and a solution of (D) exists.

Lemma 3.10. (see [9, Theorem 3.2] and [20, Theorem 6.14]) Let (A,B) ∈ Rm×n×Rm be such that (P )

is feasible. Then the data (A,B) yield primal uniform LP duality if and only if the cone

C := cone

({(
AT

BT

)
Y | Y ∈ K∗

}
∪ em+1

)
is closed. Here, em+1 denotes the unit vector em+1 = (0, . . . , 0, 1) ∈ Rm+1.
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Under the assumption that (P ) is feasible, it is easy to show that

if the cone C1 :=
{(

AT

BT

)
Y | Y ∈ K∗

}
is closed, then C is closed. (3.2)

To see this, we note that the cone C2 := cone(em+1) is closed, and apply a well-known result, e.g., in the

form [12, Theorem A4]:

Let C1, C2 be closed cones with C1 ∩ −C2 = {0}. Then C1 + C2 is closed.

To show that under the assumption FP 6= ∅ the relation C1 ∩−C2 = {0} holds, let us assume to the contrary

that there exists an element 0 6= Z ∈ C1 ∩ −C2. This means that there exists some Ỹ ∈ K∗ such that

Z :=
(
AT

BT

)
Ỹ = −αem+1 with α > 0, i.e., AT Ỹ = 0 and BT Ỹ = −α < 0. But for any x ∈ Rn we then

obtain (B −Ax)T Ỹ = BT Ỹ < 0, i.e., (P ) is not feasible, a contradiction.

By combining Lemma 3.10 and (3.2) with Lemma 3.9 we obtain:

Theorem 3.11. The set of parameters (A,B) ∈ Rm×n × Rm with nonempty primal feasible set FP where

the (primal) uniform LP-duality fails is σ−porous in Rm×n × Rm. So, in particular, uniform LP duality (as

defined above) is weakly generic in the space of parameters (A,B) ∈ Rm×n × Rm.

A corresponding dual genericity result holds wrt. parameters (AT , c).

4 Genericity analysis for other properties

In this section we analyse the generic behavior of cone programs with respect to the uniqueness, nondegen-

eracy and strict complementarity (SC) of solutions. Note that even for linear programs (LP), these properties

are not always fulfilled. But it appears that these properties hold for almost all instances of conic programs.

We emphasize that the stability (openeness of the “set of nice instances”) cannot be answered generally

without extra assumptions on the cone. This aspect will be treated in Section 5.

Trying to derive the genericity results by using techniques which are as basic as possible, we show in

the next section how the analysis of uniqueness can be based on the classical result that a convex function is

differentiable almost everywhere. The weak genericity results for nondegeneracy and strict complementarity

in Subsection 4.2 still require deeper results from geometric measure theory.

4.1 Analysis of uniqueness of solutions

We now study the uniqueness of solutions of cone programs. Weak genericity of uniqueness can be proven,

as in [29], by using a result from geometric measure theory for convex bodies ([32, Theorem 2.2.9]). Alterna-

tively, we will derive this result by using the fact that convex functions are differentiable almost everywhere.
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This approach was brought to our attention by Alexander Shapiro (personal communication). It is based on

a duality theory developed in Rockafellar [31]. Similar results have been proven for SIP programs in [13].

We will make use of these results, directly formulated in terms of cone programs.

In this section we consider for fixedA,B our primal problem P = P (c), as the linear SIP (see Section 2)

P (c) max cTx s. t. (B −Ax)TY ≥ 0 for all Y ∈ Z := K∗

depending on c as a parameter, with optimal value function vP (c), feasible set FP (c) (not depending on c)

and the set S∗P (c) := {x ∈ FP (c) | cTx = vP (c)} of optimal solutions. The dual (D(c)) has corresponding

optimal values and feasible sets vD(c), FD(c), etc.

We introduce the coneM := {a(Y ) = ATY | Y ∈ K∗} which will play a crucial role.

Remark 4.1. In semi-infinite optimization, the condition c ∈ intM is just the standard Slater condition

for (SIPD) and it is not difficult to see that this condition is equivalent to the Slater condition for (D) in

Definition 3.1 (see [1, Lemma 3.1]).

In the following, DP := {c ∈ Rn | vP (c) < ∞} denotes the effective domain of the function vP (c) and

∂vP (c) its subdifferential wrt. c .

Lemma 4.2. (see [13]) Let B and A be such that FP (c) 6= ∅. Then the following holds:

(1) vP (c) is a proper closed convex function of c on its effective domain DP

(2) ∂vP (c) = S∗P (c).

(3) S∗P (c) is nonempty and compact if and only if c ∈ intM.

Proof. See [13, page 262] for (1), and [13, Theorem 2.1] for (2) and (3).

By using Lemma 4.2 and Rademacher’s theorem for convex functions we can now prove the weak genericity

of uniqueness in CP and obtain at the same time an alternative proof for the genericity of the Slater condition.

Theorem 4.3. Let A and B be such that FP (c) 6= ∅. Then for almost all c ∈ Rn the following alternative

holds:

• either FD(c) = ∅,

• or the Slater condition holds for (D(c)) and the solution of (P (c)) is unique.

A corresponding dual result holds wrt. parameter B (for fixed A, c).

13



Proof. Let A,B be such that FP (c) 6= ∅. Let DP , with boundary bdDP , be the (convex) effective domain

of the convex function vP (c) from Lemma 4.2. We distinguish the following three cases for c ∈ Rn:

(i) c ∈ bdDP , (ii) c /∈ clDP , (iii) c ∈ intDP .

By Lemma 3.2, case (i) occurs on a set of measure zero in Rn. In case (ii), in view of the relation

FD(c) 6= ∅ ⇒ c ∈ DP

we get FD(c) = ∅ and the first alternative holds.

In case (iii), we use the fact that the convex function vP (c) defined on the open set intDP is differentiable

for almost all c ∈ intDP (cf., e.g., [30, Theorem 25.5]), i.e., for these c values the subgradient ∂vP (c) =

S∗P (c) = {∇vP (c)} is a singleton by Lemma 4.2 (2). Moreover, in this case, by Lemma 4.2 (3) the Slater

condition holds for FD(c), (cf. Remark 4.1).

The proof of the dual statement is similar.

A uniqueness result similar to the uniqueness statement in Theorem 4.3 can also be found in [4], even

for more general convex programs.

By combining the statements of Theorem 4.3 for the primal and dual we obtain:

Corollary 4.4. Let A ∈ Rm×n be given arbitrarily. Then for almost all (B, c) ∈ Rm × Rn the following

holds: If both (P ) and (D) are feasible, then both satisfy the Slater condition and both have unique optimal

solutions X and Y .

A corresponding result holds for (P0), (D0) wrt. almost all (B,C) ∈ Rm × Rm.

4.2 Nondegeneracy and strict complementarity

We now discuss nongeneracy and strict complementarity of optimal solutions in conic programming. It has

been shown by Pataki and Tunçel in [29] that both properties hold for almost all problem instances. For

completeness we summarize their results, which are formulated in terms of the cone programs in self-dual

form (P0), (D0) (cf. Section 2). Note that in [29] these results have been proven under the assumption that

the problems are gap-free. We emphasise that their arguments are completed by the results of Section 3

which assure (weak) genericity of gap-freeness.

We have to introduce some notation. Let us denote the minimal face of K containing X and the minimal

face of K∗ containing Y , respectively, by

J(X) = face(X,K) and G(Y ) = face(Y,K∗).
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Observe that for each feasible X , we have X ∈ rint J(X). For a face F of K, we define the complementary

face as F4 := {Q ∈ K∗ | 〈Q,S〉 = 0 for all S ∈ F}. Clearly, F4 is a closed convex cone. Moreover, it is

not difficult to see that if X ∈ rintF , then F4 = {Q ∈ K∗ | 〈Q,X〉 = 0}. This immediately implies that

the complementary face of J(X) is equivalently given by

J4(X) = {Q ∈ K∗ | 〈Q,X〉 = 0}. (4.1)

Analogous definitions and results apply to G4(Y ), the complementary face of G(Y ).

Definition 4.5. The extreme points of FP0 (resp. FD0) are called primal (resp. dual) basic feasible solutions.

The following characterization of basic solutions is given in [29, Theorem 1]:

Lemma 4.6. Let X be feasible for (P0). Then X is a basic feasible solution if and only if

span(J(X)) ∩ L = {0}. (4.2)

A similar condition for the dual program leads to the concept of (primal) nondegeneracy:

Definition 4.7. A primal feasible solution X is called nondegenerate, if

span(J4(X)) ∩ L⊥ = {0}. (4.3)

Nondegeneracy of a dual feasible solution Y is defined analogously.

Definition 4.8. Optimal solutions X of (P0) and Y of (D0) are called complementary, if 〈X,Y 〉 = 0, i.e.,

if Y ∈ J4(X). The solutions X and Y are called strictly complementary, if we have

Y ∈ rint J4(X). (4.4)

Recall that X ∈ rint J(X) holds by definition.

The following lemma shows some relations between nondegeneracy, strict complementarity, basic solutions

and uniqueness.

Lemma 4.9. (see [28], [29, Theorem 2]) Let X be an optimal solution of (P0). Then the following hold.

(a) If X is a unique optimal solution, then X is a basic solution.

(b) If X is nondegenerate, then any complementary solution Y of (D0) must be basic. Moreover, if there

is a complementary solution Y , it must be unique.
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(c) Suppose that Y is a dual feasible solution and X and Y are strictly complementary. Then Y is basic

if and only if X is nondegenerate.

Remark 4.10. In [29], a slightly different definition of strict complementarity is given: the optimal solutions

X and Y are called strictly complementary if

X ∈ rintF and Y ∈ rintF4 holds for some face F of K. (4.5)

It is clear that (4.4) implies (4.5). Conversely, let (4.5) be satisfied. We always have X ∈ rint J(X). So

X ∈ rintF implies F4 = J4(X) by (4.1). Therefore, (4.4) and (4.5) are equivalent.

In [28], strict complementarity for X,Y is defined by J4(X) = G(Y ). It can be shown that this

condition and (4.4) are equivalent, see the proof of [29, Theorem 2]. By considering the dual problem, strict

complementarity can similarly be defined as (again Y ∈ rintG(Y ) holds by definition):

X ∈ rintG4(Y ). (4.6)

Neither of the conditions (4.4) or (4.6) implies the other unlessK orK∗ are facially exposed, as noted in [28,

Remark 3.3.2]. For an illustrative example for these “asymmetric” definitions of strict complementarity we

refer to [7, Example 1].

Note that not all cones appearing in conic programming are facially exposed: it is well known that

the cone of semidefinite matrices is facially exposed, but the cone of copositive matrices is not, see [8,

Theorem 8.22].

We now sketch the weak genericity result for nondegeneracy and strict complementarity of Pataki and

Tunçel [29]. To prove their result, they consider for fixed L the sets (see [29, p. 455 and Proposition 1])

D(L) := {(B,C) | the corresponding problems (P0) and (D0) are feasible with vP0 = vD0 }

and

D(L) := {(B,C) ∈ D(L) | some optimal solutions X,Y of (P0), (D0) are strictly complementary }.

Using a deep result from geometric measure theory [29, Theorem 3] they derive the following result.

Lemma 4.11. [29, Proposition 2] For fixed L, the setD(L)\D(L) has dim(D(L))-dimensional Hausdorff

measure zero.

From this result Pataki and Tunçel [29] derive
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Theorem 4.12. Let L be given arbitrarily. Then for almost all (B,C) ∈ R2m the following is true: If the

corresponding programs (P0), (D0) are both feasible, then there exist unique optimal solutions X of (P0)

and Y of (D0). These solutions are nondegenerate and satisfy the strict complementarity condition.

Proof. Similar to the arguments in [29, p.456], we combine several results. For fixed L we consider the

set P0 of instances (B,C) such that the primal and dual are feasible. (Note that this set P0 is of full

dimension.) Corollary 4.4 together with Lemma 4.11 guaranty that for almost all instances in P0 the primal

and dual optimal solutions are unique and strictly complementary (as defined in (4.4)) . Let P0
sc denote

this weakly generic subset of P0. In view of Lemma 4.9(a) (also valid for the optimal solution Y of (D0))

the dual optimal solutions of instances in P0
sc are basic and by Lemma 4.9(c) the primal maximizers X are

nondegenerate.

Note that Lemma 4.9(c) does not hold for X and Y interchanged unless K is facially exposed (cf., Re-

mark 4.10). However, if we define strict complementarity as in (4.6), then Lemma 4.9(c) holds for X and Y

interchanged. Analogous to (4.4) following [29], one can show that (4.6) is a weakly generic property. Thus,

using the same arguments, weakly generically at optimal solutions of (D0) the nondegeneracy condition

holds.

Remark 4.13. With the same projection trick as in Remark 3.4, the genericity result of Theorem 4.12 for

(P0), (D0) can directly be translated to the following statement for the program in the form (P ), (D):

Let A ∈ Rm×n be arbitrary. Then for almost all (B, c) ∈ Rn × Rm we have that if (P ) and (D) are

both feasible, then there exist unique optimal solutions X of (P ) and Y of (D). Moreover, X and Y

are both nondegenerate and satisfy the strict complementarity condition.

Note that to assure uniqueness of the solution of (P ) in terms of the variable x ∈ Rn we have to assume

that A has full rank n. Recall, however, that for m ≥ n a matrix A ∈ Rm×n generically has full rank n (cf.

(2.6)).

4.3 Connection between nondegeneracy and Slater’s condition

We shortly comment on the fact that nondegeneracy implies the Slater condition. We again analyse this for

conic programs of the form (P0) (see (2.1)). The following is true.

Lemma 4.14. Let X be a nondegenerate feasible solution of (P0). Then Slater’s condition holds for (P0).

An analogous result is true for the problems (D0), (P ), and (D).
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Proof. We first note that the nondegeneracy condition L⊥ ∩ span(J4(X)) = {0} is equivalent to L +

[span(J4(X))]⊥ = Rm. So by choosing some X0 ∈ intK there is a representation

X0 = L+ Z with L ∈ L and Z ∈ [span(J4(X))]⊥ .

By defining L := X0 − Z and using 〈X0, Y 〉 > 0∀Y ∈ K∗ \ {0} we find for any S ∈ J4(X) \ {0} the

relation 〈S,Z〉 = 0 and then

〈S,L〉 = 〈S,X0〉 − 〈S,Z〉 = 〈S,X0〉 > 0 .

Let B1 := {S | ||S|| = 1} be the unit sphere in Rm. By compactness of B1 and the continuity of the linear

function 〈L, ·〉, there exists some ε > 0 such that

〈L, S〉 ≥ 2ε for all S ∈ J4(X) ∩ B1 . (4.7)

We now will show that for α > 0 small enough we have (X+αL) ∈ (B+ L)∩ intK, i.e., Slater’s condition

holds for (P0)). Clearly (X + αL) ∈ B + L since X ∈ B + L and L ∈ L. To prove (X + αL) ∈ intK,

we have to show that

〈X + αL, S〉 > 0 for all S ∈ K∗ ∩ B1 . (4.8)

To do so, in view of (4.7) by continuity there exists some δ > 0 such that

〈L, S〉 ≥ ε for all S ∈ J4δ (X) ∩ B1, (4.9)

where J4δ (X) := {S ∈ K∗ | |S − S| < δ for some S ∈ J4(X)}. Since X ∈ K, we have 〈X,S〉 ≥ 0 for all

S ∈ K∗, and by the definition of J4(X) in (4.1) we have that 〈X,S〉 > 0 for all S ∈ (K∗ \ J4δ (X)) ∩ B1.

By compactness of this set, there exists some T such that

〈X,S〉 ≥ T > 0 for all S ∈ (K∗ \ J4δ (X)) ∩ B1. (4.10)

Let M := min{〈L, S〉 | S ∈ (K∗ \ J4δ (X))∩B1}. We claim that X +αL ∈ intK for all 0 < α < T
|M | . We

have the following two cases:

If S ∈ (K∗ \ J4δ (X)) ∩ B1: then 〈X + αL, S〉 = 〈X,S〉+ 〈αL, S〉 ≥ T + αM > 0.

If S ∈ J4δ (X)∩B1: using 〈X,S〉 ≥ 0 and (4.9), we have 〈X+αL, S〉 = 〈X,S〉+〈αL, S〉 ≥ αε > 0.

By combining these two cases, we have shown that (4.8) holds, and the result follows.

For the case of semidefinite programming, it has been shown implicitly in [2, Proof of Theorem 14] that given
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L, for almost allB all feasible points ofFP are nondegenerate. Note that in [2] a definition of nondegeneracy

is used which is different but equivalent to (4.3): nondegeneracy is defined in terms of tranversality conditions

for certain tangent spaces. Hence, by applying Lemma 4.14, it follows for the SDP case that given L, for

almost all B we have: if FP 6= ∅, then FP has Slater points. This was also established in [35, page 310].

We wish to mention that in geometric measure theory, transversality results have been proven which

roughly speaking assert that weakly generically all intersection points of two convex sets are nondegenerate.

For example, the following result has been shown in [21]:

Lemma 4.15. (see [21, Lemma 3.1]) Let K,L ⊂ Rm be compact convex sets with nonempty interiors.

Then for almost all B ∈ Rm (wrt. the Hausdorff measure) the sets K and LB := B + L intersect almost

transversally, i.e., for all X ∈ bdK ∩ bdLB we have

N(K,X) ∩N(LB, X) = {0} and N(K,X) ∩ −N(LB, X) = {0}

where N(K,X) denotes the normal cone of K at X .

A similar result has been given in [33, Theorem 2]. In combination with Lemma 4.14, also these results

could be used to show that nondegeneracy and Slater’s condition hold weakly generically in CP.

4.4 Genericity results in linear semi-infinite optimization

In the preceding discussions we have made use of the fact that a conic program can be seen as a special

case of a linear semi-infinite program (SIP) (cf. Sections 3.2 and 4.1). There are many papers dealing with

generic properties (in the sense of density and stability) of semi-infinite problems in the form (SIPP ), (SIPD)

(see (2.3), (2.4)). We refer to [23] and [15, 16, 17, 18, 27]. In [14, Chapter 5] the interested reader finds an

overview of stability and genericity results for linear semi-infinite problems.

One might expect that these genericity results for SIP can directly be transferred to CP, but unfortunately

this is not the case. The reason is the following.

In the above articles, SIP programs are considered in the form (2.3) with infinite, compact index set

Z ⊂ Rm. In [23] the problem data (a(Y ), b(Y ), c) are elements of the space C2(Z)n × C2(Z) × Rn. In

[15, 16, 17, 18] the data (a(Y ), b(Y ), c) are taken from C(Z)n × C(Z) × Rn endowed with the norm of

uniform convergence

‖(a, b, c)‖ = max

{
max
Y ∈Z
‖(a(Y ), b(Y ))‖∞, ‖c‖∞ ,

}
.

But if we write CP in the form (2.3), (2.5), then the data (a(Y ), b(Y )) are of the special form

a(Y ) = ATY, b(Y ) = 〈B, Y 〉 ,
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linear in Y . So this set of cone programs represent only a small subset of the set of SIP instances, e.g., given

by (a(Y ), b(Y ), c) ∈ C(Z)n ×C(Z)×Rn. Thus this subset of CP programs allows much less freedom for

perturbations, so that roughly speaking we can say:

• The density results cannot be transferred from the general SIP theory to the special case of CP.

• Openness results remain valid in the following sense: the sufficient conditions for stability in SIP

remain valid for CP, but not the necessary conditions. Typically the conditions for stability in SIP are

too strong in CP.

We just note that [17, Theorem 1] gives genericity results (density and openness) for the special case of

(finite) linear programs.

5 Stability issues

The results so far do not present full genericity statements in the sense that stability is guarantied wrt. per-

turbation of the whole set of parameters (A,B, c). As we will show in a moment, in general CP, the Slater

condition and strong duality are (fully) generic properties (density and openness). For the other desirable

properties, namely, uniqueness, nondegeneracy and strict complementarity of solutions only weak genericity

results (density without openness) have been established.

In smooth finite optimization (see [22]), the stability of such properties is typically proven by applying

the (smooth) Implicit Function Theorem to an appropriate system of optimality conditions. As we shall

see, this approach can be applied to the special case of LP and SDP. For the latter we make use of the

fact (shown in [2]) that the set of positive semidefinite matrices of a given rank can locally be described

by smooth manifolds. Similar techniques can be used if the cones K,K∗ are so-called semi-algebraic sets:

it is well-known that semi-algebraic sets allow a complete partition (stratification) of the set into smooth

manifolds (see e.g., [3, 2.5.1 Proposition]). For the sake of completeness we recall that a set A ⊂ RN is

called semi-algebraic if it is given by a finite union of sets

{x ∈ RN | pi(x) = 0, i = 1, . . . , k; qj(x) > 0, j = 1, . . . , s}

with k, s ∈ N and polynomial functions pi, qj ∈ R[x1, . . . , xN ]. The theory of semi-algebraic sets has been

used in [4] to prove a genericity result for primal uniqueness. The stability is however shown only wrt. the

objective vector c as parameter. We formulate one of their results in terms of our cone program:

[see [4, Theorem 5.1]] Let K be a semi-algebraic cone, and let A,B be given such that FP is

compact. Then there exists a generic set S ⊂ Rn such that for all c ∈ S the corresponding program

(P ) has a unique maximizer.

20



It is not difficult to see that the cones of semidefinite, copositive and completely positive matrices are semi-

algebraic.

However, general cones K may have a much more complicated nonsmooth structure. So whether in

general CP the properties of uniqueness, nondegeneracy and strict complementarity are stable (in a generic

subset set of the problem set) remains an open problem.

We now establish some (full) genericity results. By using the stability of Slater’s condition we firstly

will prove that generically strong duality holds in general CP. To that end we restrict ourselves to the subset

P1 of CP instances (with fixed K, m ≥ n),

P1 = {(A,B, c) | the corresponding programs (P ), (D) are both feasible} .

Note that this set is of full dimension m · n+m+ n. By using results from Section 3 we can prove

Theorem 5.1. There is a generic subset P1
reg of P1 such that for any (A,B, c) ∈ P1

reg the Slater condition

holds for (P ) and (D) and both programs have optimal solutions with vP = vD.

Proof. By Corollary 3.6 there is a weakly generic subset P1
1 of P1 such that for any (A,B, c) ∈ P1

1 the

Slater condition holds for the corresponding programs (P ) and (D). In view of (2.6) there also exists a

generic subset PA of Rm×n such that for any A ∈ PA we have rankA = n (recall m ≥ n). We define the

weakly generic subset P1
reg of P1 by

P1
reg = P1

1 ∩ (PA × Rm × Rn) .

By definition, for any (A,B, c) ∈ P1
reg the Slater condition holds for the corresponding programs (P ), (D),

i.e., there exist x ∈ FP , Y ∈ FD, such that

B −Ax ∈ intK , A
T
Y = c, Y ∈ intK∗ , (5.1)

and A has full rank n. Both Slater conditions in (5.1) are stable wrt. small perturbations of (A,B, c). Indeed

for (A,B, c) near (A,B, c) the point x still satisfies the primal Slater condition. Moreover if we define

Y = Y (A, c) as the (unique) solution of

min ‖Y − Y ‖ s.t. ATY = c ,

by using rankA = n, it is not difficult to show that Y (A, c) is continuously depending on A, c and satisfies

Y (A, c) → Y for (A, c) → (A, c) and thus for (A, c) close to (A, c) the vector Y (A, c) lies in the interior

of K∗. So the set P1
reg is an (open) generic subset of P1.
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Moreover by the arguments before Corollary 3.5 for any (A,B, c) ∈ P1
reg both programs (P ), (D) have

optimal solutions and the strong duality relation vP = vD holds.

Before we give a (full) stability analysis for the case of SDP we consider linear programs as an illustrative

example.

Stability analysis for LP: Consider the pair of primal-dual LP’s

(P ) max cTx s. t. X := B −Ax ∈ Rm+ ,

(D) min 〈B, Y 〉 s. t. ATY = c, Y ∈ Rm+ ,

for instances Q := (A,B, c) (with A of full rank n). Let again P1 denote the set of LP instances Q such that

the corresponding programs (P ), (D) are both feasible. In view of Theorem 4.12 and Remark 4.13 there

exists a weakly generic subset P1
reg ⊂ P1 of instances Q such that the pair of primal, dual optimal solutions

X,Y of (P ), (D) are both unique, nondegenerate, and strictly complementary. Now let Q := (A,B, c) be

an element of P1
reg with solutions X,Y . Let us denote the active index set I = {i ∈ {1, . . . ,m} | Xi = 0},

its complement IC = {i ∈ {1, . . . ,m} | Xi > 0}, and L := span{Aj | j = 1, . . . , n}, where Aj is the jth

column of A. It follows that

J(X) = cone{ei | i ∈ I
C} = G4(Y ) , G(Y ) = cone{ei | i ∈ I} = J4(X). (5.2)

The nondegeneracy condition for X resp. Y reads

L⊥ ∩ lin J4(X) = {0} resp. L ∩ linG4(Y ) = {0} . (5.3)

The strict complementarity condition means that Y i = 0 holds if and only if i ∈ IC . From (5.3) we deduce

|I| ≤ n, resp. |IC | ≤ m−n and thus, using m = |I|+ |IC | ≤ m−n+n = m, we find |I| = n. Moreover,

the condition L ∩ linG4(Y ) = L ∩ lin{ei | i ∈ I
C} = {0} implies that the matrix

(
A
T

eTi , i ∈ I
C

)
and thus the n× n-matrix AI :=

(
[A1]I , . . . , [An]I

)
is nonsingular (where [A1]I := ([A1]j , j ∈ I)T ). It finally follows that for (A,B, c) near (A,B, c) the

solutions x (resp. X) of (P ) and Y of (D) are given as the solutions of the systems

BI −AIx = 0 and AT
I
YI − c = 0 , (5.4)

with Y defined by Yi = [YI ]i for i ∈ I and Yi = 0 otherwise. These solutions yield unique, nondegenerate
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and strictly complementary optimal solutions X,Y of (P ), (D). So we obtain the (well-known) result.

Theorem 5.2. There is a generic subset P1
reg ⊂ P1 such that for all instances Q = (A,B, c) in P1

reg the

primal, dual optimal solutions are unique, nondegenerate, and strictly complementary.

Moreover for any Q ∈ P1
reg with primal solution X and corresponding active index set I (|I| = n) there

exists a neighborhood N of Q such that for any Q = (A,B, c) ∈ N the optimal solutions X,Y of the

corresponding LP is given as the solution of the system (5.4).

Stability analysis for SDP: We now study the stability of uniqueness, nondegeneracy and strict comple-

mentarity for SDP, i.e., for the case K = S+k = {X ∈ Sk | X is positive semidefinite} and Ai ∈ Sk ≡ Rm

with m = 1
2k(k + 1). Since we will make use of results in [2], we consider SDP in the form

(P0) max 〈C,B〉 − 〈C,X〉 s. t. X := B −
n∑
i=1

xiAi ∈ S+k

(D0) min 〈B, Y 〉 s. t. Y :=
m−n∑
j=1

yjA
⊥
j + C ∈ S+k .

as programs depending on the parameter Q := ({Ai}ni=1, B,C) ∈ (Sk)n+2 (with m ≥ n). We again can

assume that the matrices Ai, i = 1, . . . , n, are linearly independent (generic condition according to (2.6))

and that A⊥j , j = 1, . . . ,m− n, is a basis of the orthogonal complement of span{Ai}ni=1.

For completeness we sketch the proof of the weak genericity results in [2]. We however present the

arguments in a more explicite form which will enable us to apply the Implicit Function Theorem to establish

stability, i.e., full genericity.

We start by collecting some well-known facts in differential geometry.

(1) Let be given a function f ∈ C1(Rq,Rs). Then 0 ∈ Rs is called a regular value of f if

∇f(x) has (full) rank s for all x such that f(x) = 0 . (5.5)

(2) (See e.g., [22, Remark 3.1.5].) A setM ∈ Rs is called a Cr-manifold of codimension cd, 0 ≤ cd ≤ s,
(dimension s− cd) if for any x ∈M there exist a neigborhoodNx and a Cr vector function h : Nx →
Rcd such that∇h(x) has rank cd for all x ∈ Nx and

x ∈ Nx is in M if and only if h(x) = 0 .

(3) Let f : Rq → Rs be a C1-function and M ⊂ Rs a manifold of codimension cd, locally (in N ⊂ Rq)
defined by h(y) = 0 with a C1-function h : N → Rcd . Then we say that f is transversal to M if (cf.,
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[22, Theorem 7.3.4])

∇f(x)[Rs] + Tf(x)M = Rs holds for all x with f(x) ∈M , (5.6)

where Tf(x)M is the tangent space to M at f(x). By [22, Remark 7.3.5] an equivalent formulation of

(5.6) is (with the defining equations h(y) = 0 for M ):

∇h(f(x)) has full rank cd for all x with f(x) ∈M . (5.7)

The following is a useful generalisation of the Sard Theorem (see e.g., [37, Prop. 78.10] for a proof).

Theorem 5.3. [Parametric Sard Theorem]

Let h : Q × P ⊂ Rq × Rp → Rs, (x, y) 7→ h(x, y), be a Cr-mapping with r > max{0, q − s} and open

sets Q ⊂ Rq, P ⊂ Rp. If 0 ∈ Rs is a regular value of h then for almost all y ∈ P the value 0 is a regular

value of the function hx(x) := h(x, y).

We now introduce the relevant functions and manifolds for the genericity results. It is well-known (see

e.g., [22, Example 7.3.24]) that for any r, 0 ≤ r ≤ k the set

Wr := {X ∈ Sk | rankX = r} is a C∞-manifold in Sk of codimension cd =
(k + 1− r)(k − r)

2
.

Let this manifold locally be defined by the system K(X) = 0.

In [2, Lemma 22] it has been proven that for any r, s, 0 ≤ r, s and 0 ≤ r + s ≤ k the set

Wr,s := {(X,Y ) ∈ Sk × Sk | rankX = s, rankY = r, 〈X,Y 〉 = 0}

is a smooth C∞-submanifold of Sk×Sk with dimWr,s = m− (k+1−r−s)(k−r−s)
2 and thus with codimension

cd = m+ (k+1−r−s)(k−r−s)
2 . Given a pair (X,Y ) ∈Wr,s such thatX ∈ S+s , Y ∈ S+r (positive semidefinite).

By continuity of the eigenvalues for (X,Y ) close to (X,Y ) the pair (X,Y ) is inWr,s if and only if (X,Y ) ∈
W+
r,s where

W+
r,s := {(X,Y ) ∈ S+k × S

+
k | rankX = s, rankY = r, 〈X,Y 〉 = 0} .

So also the set W+
r,s is a manifold of the same codimension cd. This means that with locally defined smooth

functions H (with H(X,Y ) ∈ Rcd) we have (X,Y ) ∈ W+
r,s if and only if H(X,Y ) = 0. Note also that for

(X,Y ) ∈W+
r,s the relation 〈X,Y 〉 = 0 implies X · Y = 0. So the condition r + s ≤ k must hold.

Now for x ∈ Rn, y ∈ Rm−n and SDP instance Q := ({Ai}ni=1, B, C) we define the mappings:

F (x,Q) := B −
n∑
i=1

xiAi, G(y,Q) := C +
m−n∑
j=1

yjA
⊥
j (5.8)
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For parameters Q = ({Ai}ni=1, B,C) in a sufficiently small neighborhood of Q = ({Ai}ni=1, B,C) we can

assume that the orthogonal complement {A⊥j }j=1,...,m−n depends at least C1-smoothly on the parameters

{Ai}ni=1. Indeed, we obtain the {A⊥j }’s by a smooth Gram-Schmidt orthogonalization process (to compute

{A⊥j }j=1,...,m−n}). So these functions F (x,Q), G(y,Q) can be seen as smooth functions of all parameters.

With these preparations we can prove the following full genericity result for SDP.

Theorem 5.4. There is a generic subset P1
reg of the set

P1 = {({Ai}ni=1, B,C) | the corresponding problems (P0), (D0) are both feasible} ⊂ (Sk)n+2

of SDP instances such that the following holds. For any Q ∈ P1
reg there exist unique, nondegenerate,

and strictly complementary solutions x, y (or X,Y ) of (P0), (D0). Moreover if Q ∈ P1
reg is such that the

corresponding (unique, nondegenerate, strictly complementary) solutions x, y (or X,Y ) of (P0), (D0) have

rankX = s, rankY = r with r + s = k, then there exists a (nonempty open) neighborhood N of Q such

that for any Q ∈ N the corresponding SDP programs (P0) and (D0) have (unique, nondegenerate, strictly

complementary) solutions x(Q) ≈ x, , y(Q) ≈ y (or (X(Q), Y (Q)) ≈ (X,Y )) with the same ranks,

rankX(Q) = s and rankY (Q) = r.

Proof. We first sketch the proof of the weak genericity result as in [2]. Let P1
0 denote the weakly generic

subset of P1 such that for all Q ∈ P1
0 optimal solutions X,Y of (P0), ((D0) exist with 〈X,Y 〉 = 0 (see

Corollary 3.6).

For fixed r, s (0 ≤ r + s ≤ k) we now consider the system of cd equation H(X,Y ) = 0 which (locally)

define the manifold W+
r,s of codimension cd = m + (k+1−r−s)(k−r−s)

2 . We further introduce with F,G in

(5.8) the equations

H̃(x, y,Q) := H(F (x,Q), G(y,Q)) = 0

Let in the sequel ∇zf(z, y) denote the (partial) derivative of f with respect to the variable z. Since the

derivative∇B,C(F (x,Q), G(y,Q)) has full rank 2m, the derivative

∇H̃(x, y,Q) = ∇H(F (x,Q), G(y,Q))) · ∇(F (x,Q), G(y,Q))

has full rank cd for all x, y,Q with (F (x,Q), G(y,Q)) ∈W+
r,s. By the parametric Sard Theorem for almost

all Q also for the function H̃x,y(x, y) := H̃(x, y,Q):

∇H̃x,y(x, y) = ∇(x,y)[H(F (x,Q), G(y,Q))] has full rank cd ∀x, y with (F (x,Q), G(y,Q)) ∈W+
r,s.

(5.9)

For r+ s < k this means that for almost all Q there is no (x, y) ∈ Rm such that (F (x,Q), G(y,Q)) ∈W+
r,s.

For r + s = k, strict complementarity holds for all feasible pairs (X,Y ) ∈ W+
r,s. Taking all finitely many
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combinations r, s with r + s ≤ k into account we have proven that there is a weakly generic subset P1
1 of

P1 such that for all Q ∈ P1
1 any complementary solutions X,Y of (P0), (D0) are strictly complementary.

For the weak genericity of primal nondegeneracy we proceed also similar to [2, Proof of Th. 14]. Given

s, 0 ≤ s ≤ k we consider the set Ws above and instances Q with primal feasible X = F (x,Q) in Ws.

With the (linear independent) system of cd equations K(X) = 0, which (locally) define the manifold Ws of

codimension cd =
(k+1−s)(k−s)

2 , we thus consider x,Q such that

K̃(x,Q) := K(F (x,Q)) = 0 .

Again since ∇BF (x,Q) has full rank m, the derivative ∇F (x,Q) has full rank m for all x,Q and thus (in

view of the definition of a manifold)∇K(X) has full rank cd =
(k−s+1)(k−s)

2 for X ∈Ws. So we find

∇K̃(x,Q) = ∇K(F (x,Q)) · ∇F (x,Q) has full rank cd for all x,Q with F (x,Q) ∈Ws .

The parametric Sard Theorem implies that for almost all Q for the function K̃x(x) := K̃(x,Q) we have

∇K̃x(x) = ∇x[K(F (x,Q)] has full rank cd for all x with F (x,Q) ∈Ws . (5.10)

This means, (see (5.6),(5.7) in fact (3) above) that for almost all Q the function F (x,Q) is transversal to the

manifold Ws, so that for almost all Q:

∇xF (x,Q)[Rn] + TF (x,Q)Ws = Sk for all x with F (x,Q) ∈Ws . (5.11)

Since∇xF (x,Q)[Rn] = span{{Ai}ni=1} this condition is just the primal nondegeneracy condition [2, (18)].

(Note that our primal is the dual in [2] and the nondegeneracy condition in [2] is different but equivalent to

the nondegeneracy relation in our paper.) Again by considering all possible s, 0 ≤ s ≤ k, we obtain a

weakly generic subset P1
2 of P such that for all Q ∈ P1

2 all primal feasible solutions are nondegenerate.

The same can be done for the dual to obtain a set P1
3 of instances such that for all Q ∈ P1

3 all dual feasible

solutions are nondegenerate. Note that if the primal and dual solutions are nondegenerate by Lemma 4.9(b)

the optimal solutions must be unique. So by intersecting the weakly generic sets, P1
reg := ∩i=0,1,2,3P1

i ,

we have constructed a weakly generic subset P1
reg of P1 such that for any Q ∈ P1

reg there exist unique,

nondegenerate and strictly complementary solutions x, y (or X,Y ) of (P0), (D0).

We now show the stability of these nice properties, i.e., openess of P1
reg. This will be done by applying

the Implicit Function Theorem to the system of equations above.

To do so, let Q := ({Ai}ni=1, B,C) be a given instance in P1
reg. So x, y (or X,Y ) are unique, nonde-

generate, strictly complementary solutions of the corresponding SDP pair (P0) and (D0) with rankX = s,

rankY = r, r + s = k and (X,Y ) ∈ W+
r,s, where X = F (x,Q) = B −

∑n
i=1 xiAi and Y = G(y,Q) =
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∑m−n
j=1 yjA

⊥
j + C. By the discussion above (see (5.9)) the derivative

∇(x,y)[H(F (x,Q), G(y,Q))] has full rank m (5.12)

at (F (x,Q), G(y,Q)) satisfyingH(F (x,Q), G(y,Q)) = 0, a system ofm equations. Locally near (x, y,Q)

we consider the system

H̃(x, y,Q) := H(F (x,Q), G(y,Q)) = 0 (5.13)

in the variables (x, y,Q). By applying the Implicit Function Theorem to (5.13), and taking into account (5.12),

we see that for Q ≈ Q there exists a unique C∞-solution function x(Q), y(Q) of the system

H̃(x(Q), y(Q), Q) = 0.

By construction, these solutions x(Q), y(Q) define strictly complementary optimal solutions of the programs

(P0), (D0) wrt. the data Q ≈ Q with rankF (x(Q), Q) = s, rankG(y(Q), Q) = r. So we have proven the

stability of strict complementarity.

To see that also nondegeneracy of the solutions is stable we take for the instance Q ∈ P1
reg the primal

solutionX = X(Q) (see above). By the previous discussion (see (5.10)) with the defining equationK(X) =

0 for the manifold Ws of codimension cd =
(k−s+1)(k−s)

2 we have

∇x[K(F (x,Q)] has full rank cd .

But then by continuity for Q ≈ Q and x(Q) ≈ x also ∇x[K(F (x(Q), Q)] has full rank cd and (see (5.10),

(5.11) above) the primal maximizers x(Q) (X(Q)) are nondegenerate.

The same can be done for the dual. So finally we have established a full genericity result for SDP.

6 Conclusion

In this paper we survey and complete genericity results for general conic programs. The results show that

Slater’s condition and strong duality are fully generic properties of CP, i.e., they hold for almost all problem

instances and are stable wrt. small perturbations of all problem data. Other nice properties such as unique-

ness, nondegeneracy and strict complementarity are weakly generic, i.e., they hold for almost all problem

instances. For the special cases of SDP these properties are also stable. Whether this stability holds in

general CP is still an open question.
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