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ABSTRACT. A semi-infinite programming problem is an optimization problem in
which finitely many variables appear in infinitely many constraints. This model natu-
rally arises in an abundant number of applications in different fields of mathematics,
economics and engineering. The present paper intends to give a short introduction
into the field and to present some preliminary discussion on the complexity of linear
SIP.

1. INTRODUCTION

1.1. Problem formulation. A semi-infinite progran¢SIP) is an optimization problem

in finitely many variables = (xg, ..., X,) € R" on a feasible set described by infinitely
many constraints:
(2) P: min f(x) st. gx,y)>0 VyeY,

X

whereY is an infiniteindex set & will denote the feasible set,= inf{f(X) | X € F}
the optimal value and = {X e ¥ | f(X) = v} the set of minimizers of the problem.
We assume that ¢ R™ is compactg(x, y) is continuous orfiR" x Y and for any fixed
y € Y the gradientv,g(Xx, y) (wrt. X) exists and is continuous @' x Y.

We also will consider generalizations of SIP, where the inde¥ setY(x) is allowed
to be dependent ox(GSIP for short),

(2) nlin f(x) st gix,y) >0 VyeY(X).

During the last five decades the field of Semi-infinite Programming has known a
tremendous development. More than 1000 articles have been published on the the-
ory, numerical methods and applications of SIP. Originally the research on SIP was
strongly related to (Chebyshev) approximation, sgg [11], [7]. As excellent review
articles on the field we refer to Polak [17] and Hettich/Kortanek [8]. Since a first con-
tribution [12] thegeneralized SIP problert2) became a topic of intensive research
(seee.g, [14] and [21]). For an extensive treatment of linear semi-infinite problems

we refer to the book by Goberna/Lopez [9].
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REMARK 1. For shortness and a clearer presentation we omit additional equality con-
straintsh;(x) = 0 in the formulation of SIP. It is not difficult to generalize (under
appropriate assumptions br) all results in this paper to the more general situation.

The paper is organized as follows. The next section presents some illustrative applica-
tions of SIP and GSIP. Section 3 shortly describes the structure of the feasible set of
semi-infinite problems. Section 4 derives first order necessary and sufficient optimal-
ity conditions. Linear semi-infinite and linear semidefinite programming is treated in
Section 5 also from the viewpoint of complexity. Section 6 presents an interior point
method for LP and discusses the limits to extend such methods to (general) linear SIP.
In Section 7 the discretization methods for solving SIP is surveyed.

2. APPLICATIONS

In [17], [8] and [9] many applications of SIP are mentioned in different fields such
as (Chebyshev) approximation), robotics, boundary- and eigen value problems from
Mathematical Physics, engineering design, optimal control, transportation problems,
fuzzy sets, cooperative games, robust optimization and statistics. From this large list
of applications we have chosen some illustrative examples.

Chebyshev Approximation : Let be given a functionf (y) € C(R™, R) and a space
of approximating function(x, y), p € C(R" x R™, R), parameterized by € R".
We want to approximatd by functionsp(x, -) in the max-norm (Chebyshev-norm)
| fllco = Maxey | f(y)] on a compact se¥Y ¢ R™. To minimize the approximation
errore = | f — pll-, leads to the problem:

(3) mine s.t. g- (X, y) :=%(f(y) — p(x, y)) <e forallye Y.

This is a semi-infinite problem.

The so-called reverse Chebyshev problem consists of fixing the approximatios error
and making the regiolY as large as possible (see [13] for such problems). Suppose,
the setY = Y(d) is parameterized by € R andv(d) denotes the volume of (d)

(e.g. Y(d) = ITK ,[—d;, d]). The reverse Chebyshev problem then leads to the GSIP
(e fixed).

4) max v(d)s. t. g"(x, y) ==£(f(y) = p(x, y)) <eforallye Y(d).

where the index set(d) depends on the variabte We refer the reader also to [13].

Mathematical Physics.The so-called defect minimization approach leads to semi-
infinite programming models for solving problems from Mathematical Physics which
is different from the common finite element and finite difference approaches. We give
an example.

Shape optimization problemConsider the following Boundary-value problem,
BVP: GivenG, c R™ (Gp a simply connected open region with smooth bound&y,
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(closureGy)) andk > 0. Find a functioru e C?(Go, R) such that with the Laplacian
AU = Uyyy, + oo Uy

K, vy e Gy
0, vy € 3Gy

Au(y)
u(y)

By choosing a linear space of appropriate trial functiopns C?(R™, R),

n—-1
S={u(x.y) =D xu(y)}
i=1

this BVP can approximately be solved via the following SIP:
min ¢ s.t. +(Aux,y) —k) < ¢ yeGg
&,X
Tu(x,y) < & YyeiG

In [5] the related but more complicated so-callgbdape Optimization Probletmas
been considered theoretically.

SOP: Find a (simply connected) regida € R™ with normalized volume:(G) =1
and a functioru e C?(G, R) which solves with a given objective functidf(G, u) the
problem

min  F(G, u) s.t. Au(y) = Kk, vVye G
n(G)=1u
uly) = 0, vy e 0G

This is a problem with variable regio® and can be solved approximately via the
following GSIP-problem:

Choose some appropriate set of regi@i(g) depending on a parametee RP and
satisfyingu (G(z)) = 1 for all z. Fix some small error bound > 0. Then we solve
with trial functionsu(x, y) € Sthe program
minF(G(z), u(x,-)) s.t. +(Au(x,y) —k) < ¢ VyeG(2)
' LUu(xy) < & VyedG(2)

For further contributions to the theory and numerical results of this approach we refer
e.g.to [20], [8].

Robotics. Control problems in robotics can often be modeled as a semi-infinite prob-
lem. We refer to the Ex.2.1 in [8] and the many references therein (cf. also [10]).

Geometry. Semi-infinite problems can be interpreted in a geometrical setting. Given a
family of setsS(x) c RP depending orx € R", we wish to find a ’body’Y of a certain
class and a valug such thaty is contained inS(X) andY is as large as possible.

The mathematical formulation is as follows. Supp&ée) is defined by
S(x)={yeRP|g(x,y,t) >0, forallt e Q}
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where Q is a given compact set iR® andg € C>(R" x RP x RS, R). Let the body
Y(d) c RP be parameterized by € RY with v(d), a measure for the size ¥fd) (e.qg.
the volume). To maximize(d) for Y(d) c S(x) then becomes:

(5) nd1ax v(d) s.t.g(x,y,t) >0 forallye Y(d), te Q.
,X
For the case that the s8is fixed this problem is known adesign centeringroblem.

Optimization under uncertainty (Robust optimization). As a concrete situation we
consider a linear program

min c'x st ajx—b; >0, VjeJ,
X

J a finite index set. Often in the model the dataandb; are not known exactly. It
is only known that the vector&;, b;) may vary in a set; c R™*. In a “pessimistic
way” we now can restrict the problem to suckvhich are feasible for all possible data
vectors leading to a SIP

min c'x st a'x—b>0, V(a,b) e Y:i=U,Y;.
X

In the next example we discuss such a “robust optimization” model in economics. For
more details we refer to [19], [23], [2], [16] and [1].

Economics.We consider the followingdPortfolio problem We wish to invesK euros
into n shares, say for a period of one year. We inveguros in sharéand expect at
the end of the period a return gf euros per 1 euro investment in share

Our goal is to maximize the portfolio value= y"x after a year, where= (xy, ..., X,)
andy = (Y, ..., Yn). The problem is that the valueis not known in advance. How-
ever often models from economics suggest that the veuiolt vary in some compact
subsety of R". In this case we are led to solve the linear SIP:

maxv st Yy x—v>0VyeY
v, X

inzK,sz.

Different other applications There are other interesting applications in game theory
(see [18]) in data envelopment analysis (see [15]) and in probability theory (see [4]).

3. STRUCTURE OF THE FEASIBLE SET

In this section we shortly discuss the structure of the feasible/setsfinite and semi-
infinite optimization problems.

F in linear programming (LP): The feasible set is defined by finitely many linear
constraints

F={x|ajx>hj, jed}
with a finite index setl = {1, ..., m} anda; € R", b; € R.
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F in semi-infinite linear programming (LSIP): The feasible set is defined by (pos-
sibly) infinitely many linear constraints

(6) F ={x|ayx>bhy, yeY}

with an (possibly infinite) index sét ¢ R™ and functionsy - a, e R", y — by e R.

Any such set¥ is closed and convex but also the converse can be proven with an
separation theorem

LEMMA 1. Asubsetf c R"is convex and closed iff it can be defined in the form (6).

Proof. To prove that the closed convex getcan be written in the form (6) let us chose
a pointy ¢ F arbitrarily. In view of the Separation Theorem.q, [6, Th.10.1]) the
pointy ¢ # can be separated from the closed convex/sdly a separating halfspace
Hy = {x]ajx> by}, ie,

agx>by>ajy, Vxef.
So, the set can be written ag = (., Hy = {X| ajx>hy, Vy ¢ 7} . .

F in finite programming (FP): The feasible set is defined by finitely many (nonlin-
ear) constraints

(7) F={xlgi(x >0, jeJ}
whereJ = {1, ..., m} is finite andg; : R" — R are continuous.

F in semi-finite programming (SIP): Feasible set defined by infinitely many (non-
linear) constraints

(8) F={xlgxy) =0, yeY}
with infinite index sety ¢ R™ and continuoug : R" x R" — R.
F in generalized semi-finite programming (GSIP):
F={x19xy) >0, yeY(x}
with variable index se¥ (x) defined by a set valued mappiivg. R" = R™ and con-
tinuousg: R" x R™ — R.
The topological structure of the feasible sgtsn FP and SIP are the same.
EX. 1. The feasible set$ in FP and SIP are closed.

The feasible set in GSIP need not be closed.
EX. 2. Consider the problem

m%Qx s.it. x>1-y, VyeYX)={yeR|0<y, y<-—x}
Xe

Obviously, the feasible set consists of the open intef@abo) (Y (x) = # means that

x is feasible). A minimizer of the program does not exist. The problem here is that the
index setY(x) = [0, —x] for x < 0, Y(x) = @ for x > 0, is not continuous at = 0.
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If Y(X) is continuous then, non-closednessfofs excluded.

LEMMA 2. Suppose the mapping:YX = R™is continuous on a compact setdKR".
Then the feasible s¢t N K of GSIP is compact (in particular closed).

4. HRST ORDER OPTIMALITY CONDITIONS

In this section, first order optimality conditions are derived for the SIP prolffam
(1). We assumd, g € C.

A feasible pointx € ¥ is called alocal minimizerof SIP if there is some > 0 such
that

(9) fx)—f(X)>0 forallx e F with |[x—=X|| < ¢ .

The minimizerx is said to beglobalif this relation holds for ang > 0. We callx e
astrict local minimizer of order p- O if there exist somg > 0 ande > 0 such that

(20) f(x)— fX) >qlx=X|P forall x e F with ||[x—X|| < ¢ .
It is not difficult to see that near a poiite ¥, where the active index s&y(X) =
{ye Y| g(X y) =0} is empty, the SIP problem represents a common unconstrained

minimization problem. So throughout the paper we assume that for any (candidate)
minimizer of P the conditionYy(X) # @ is satisfied.

LeEMMA 3. [Primal necessary optimality conditiobgtx € ¥ be a local minimizer of
P. Then there cannot existstrictly feasible descent directiahi.e., a vector de R"
satisfying the relations

Vi®d <0, Vig(X, y)d > 0, Vy e Yo(X) .

Proof. Let d be a strictly feasible descent direction. Thefx+ zd) < f(X) holds for
smallt > 0 (recall f € C). We claim that there exists somg> 0 with the property
g(X+1td,y) > 0 forallO0<t<rtandyeY

showing thatXx cannot be a local minimizer. Suppose that the claim is false. Then to
eachk > 1 there exists someQ 7, < 1/kand somey, € Y such thag(X + ©d, yx) <

0. SinceY is compact, there must exist some convergent subsequyencg.) such
thaty, — 0 andy,, — y* € Y. The continuity ofg then yields g(X + 7 d, yx.) —

g(X, y*) , which implies g(X, y*) = 0 andy* € Yp(X) . On the other hand, the Mean
Value Theorem provides us with numbers:(f,, < 7, such that

o Z g()_(+ Tksd’ yks) - g()_(’ yks) = Tksvxg()_(+ %ksd’ yks)d
and hencev,g(X + 7 d, Y. )d < 0. So the continuity o¥,g entails
Vxg(X, y")d = lim V,g(X+ %d, yi)d < 0,

which contradicts the hypothesis dn
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THEOREM 1. [First order sufficient conditionlet X be feasible for P. Suppose that
there does not exist a vectdr£ d € R" satisfying

VEx)d <0, Vig(X, y)d > 0, Vy € Yo(X) .
ThenX is a strict local minimizer of SIP of order $ 1.

Proof. If X is an isolated feasible point than the result is trivially fulfilled. If not then,
it is not difficult to see that the sé&t(X) :={d e R" | ||d|| = 1, V4,g(X, y)d > 0, Vy e
Yo(X) } is nonempty. (Consider with a sequencexpk 7, xx — X, an accumulation
pointd of (xx — X) /|1 Xx — X||). SinceK (X) is also compact, the value

CL= drery(ni) ViXd

is attained by somé’ € K(X). By assumptiongc; = Vf(X)d’ > 0 holds. Fix any
0 < ¢ < ¢;. We claim that there is sone> 0 with the property

(12) f(x)— f(X)>c|x=X| forallxe F, |x—X|<¢e¢.

Suppose to the contrary that this claim is false and there is an infinite sequence of
feasible points¢, — X with the propertyf (xx) — f(X) < ¢ ||Xx — X||. We writex, =

X+ 1y with ty > 0 anddy € S={d € R" | ||d|| = 1}. Then,xx — Ximpliest, — 0.
Moreover, the compactness 8fensures that some subsequencédpf converges.
Without loss of generality, we thus assutie— d,d € S,

The differentiability assumption together with the feasibility conditg(xy, y) > O
and the propertg(X, y) = 0 implies
Clad >  fx)—FfX® = =»nViX®dd + o(wl),
0 < g Y) -9y = wVagX y)d + o(wl), YeYo(X).
Divide all these relations by. Lettingk — oo (zx — 0), we conclude thaltg(X, y)d >
0, i.e, d e K(X) andV f (X)d < c. This contradicts our choice of< ¢;. So (11) must

be true.
O

REMARK. The assumptions of Theorem 1 are rather strong and can be expected to hold only
in special cases (in Chebyshev approximatiine.g. [11]). It is not difficult to see that the
assumptions imply that the set of gradiefiigg(X, y) | y € Yo(X) } contain a basis dR". So

in particular |Yo(X)| > n.

We introduce someonstraint qualificationsWe say that th&inear Independenceonstraint
qualification holds ak € ¥ if

Vxa(X, ¥), Y € Yo(X), are linearly independent
The (weakerMangasarian Fromovitz CQMFCQ) is said to hold ax if with somed € R"
(12) Vig(X,y)d >0, Vye Yo(X).
More general sufficient optimality conditions need second order information.

We now derive the famoubritz John (FJ) and theKarush-Kuhn-TuckefKKT) optimality
conditions.
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THEOREM 2. [Dual Necessary Optimality ConditionsgtX be a local minimizer of P. Then
the following holds.

(a) There exist multipliergco, (1, - .-, uke1 = 0andindicesy, ..., Yk+1 € Yo(X), k< n,
such thafy "3 u; = 1and
k+1
(13) oV f (%) — Z i Vxg(X, yj) =0. (FJ- condition)

j:l
(b) If MFCQ holds afx, then there exist multiplierss, ..., ux > 0andindicesy, ..., Yk €
Yo(X), k < n, such that

k
(14) VE®) =D 1jVxg(X yj) =0. (KKT-condition)
j=1
Proof. Consider the setS= {Vf(X)} U {—Vxg(X,y) | Y € Yo(X)} € R". SinceX is a local
minimizer of P, there is no strictly feasible descent directidrat X (cf. Lemma 3). This
means that
there is nad e R"withd's < Oforallse S.

Now Yp(X) is compact. Therefore (by continuity 8g(X, -)) alsoSis compact. By Lemma 9
it follows 0 € convS. In view of Caratheodory’s Lemma 7, 0 is a convex combination of at
mostn 4+ 1 elements of, i.e,,

K K
(15) D ujsi=0 sjeS puj=0 > uj=1 withk<n,
j=0 j=0

which implies (a).

Now assume thad € R" is a strictly feasible direction at)i.e., MFCQ holds). For statement
(b) it suffices to showjg # 0 in the representation (a) (as division by > 0 in (13) yields
a representation of type (14)). Suppose to the contraryuthat O is true, and multiply (13)
with d. Sincenj > 0 holds for at least ong > 1, we obtain the contradiction

k+1
0>—> ujVxg(X,y))d=0"d=0.
=1
O

REMARK 2. Note that the results of this section in particular remain true for a finite program.
In fact, given a finite program (see (7), we only have to chose a finité sety;, ..., yn} and
to identify g(x, yj) '=g;(X), j=1,...,m.

EX. 3. Assume thak € ¥ is a KKT-point such that (14) holds with= n linear independent
vectorsVyg(X, yj), j =1,...,n, (LICQ) andﬁj > 0. Show that then the sufficient conditions
of Theorem 1 are satisfied.

5. CONVEX AND LINEAR SEMI-INFINITE PROGRAMS

5.1. Convex SIP. The semi-infinite program is callezbnvexif the objective functionf (x)
is convex and, for every indexe Y, the constraint functiogy(x) = g(x, y) is concavei(e.,
—Qgy(X) is convex).
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EX. 4. Itis not difficult to show that for a convex SIP the feasible set is convex and that any
local minimizerx is a global minimizer. Moreover, (i € C') the existence of a MFCQ vector

d at a feasible poink is equivalent with the Slater condition: There exists a feasible point
such thag(X,y) > Oforallye .

Recall that a local minimizer of a convex program is actually a global one (see Ex. 4). As in
finite programming, the KKT-conditions are sufficient for optimality.

THEOREM 3. Assume that the SIP problem P is convexX i§ a feasible point that satisfies
the Kuhn-Tucker condition (14), thenis a (global) minimizer of P.

Proof. By the convexity assumption, we have for every feaskdady € Yy (X) (cf. Lemma 8)
f)—FfX > VIXX-=%)
0<9gx,V)=9XY)—-09XY) =< V9XYX-=X).

Hence, if there are multipliers; > 0 and index pointy; € Yo(X) such thaW f (X) = Z'j;l wiVx9(X, ¥j),
we conclude

k
f)— (%) = VI (X=X) ZZMijQ(Y,Vj)(X—Y) >0.
=1
O

5.2. Linear SIP. Animportant special case of (convex) SIP is given bylitear semi-infinite

problem(LSIP), where the objective functioh and the functiorg are linear inx:
(16) P: min c'x st. agx>by VyeY.

For an intensive treatment of LSIP we refer to the monograph [9]. Here we only derive strong
duality results.

Recall that any convex optimization problem
min c'x st. xe ¥, F c R" a closed convex set

can be written as a LSIP. LSIP is said to be continuou¥; i§ compact and the functions
y — ay =a(y), y— by = b(y) are continuous o¥.

EX. 5. Let P be a continuous LSIP. Show that the functigr) := minyey{a(y)Tx— b(y)}is
concave. So LSIP can be written as a convex prognauin: ¢ x s.t.¢(x) > 0.

Assume from now on that LSIP is continuous. We also write (16) formally in the familiar form
(P) min c'™x st Ax>Dh,
whereA is a matrix with infinitely many roway, y € Y andb is a vector with infinitely many
componentdy. We now define the (so-called Haaiyal of (P) as
(D) max b'u st Alu=c¢, u>0,
with the following understandingu = (uy) is dual feasiblef uy, > 0, y € Y anduy > 0 for

only finitely many ye Y. Sob™u = 3", byuy is actually a finite sum and so 8"u= 3", ayuy.
Note that, by definition,

a7 (D) is feasible <= cecone{ay|yeY}
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The optimal objective function values of (P) and (D) will be denoted panduvp.

REMARK. Recall from Caratheodory’s Lemma 7 that the st 3, ayuy can be expressed
as sums with at mostnon-zero coefficientsy.

As in LP, if x e R" andu = (uy) are primal resp. dual feasible, then
c'x—u'b=u"(Ax—b) =>"uy(ajx—hy) > 0.
y

THEOREM 4. (Weak duality, complementary slackneskx and u are primal resp. dual
feasible, then tx > bTu. If ¢ = b"u then x resp. u are optimal withp = vp.

We emphasize that in contrast to ordinary (finite) linear programs, linear semi-infinite problems
do not necessarily have the strong duality property unless additional constraint qualifications
hold (cf. Ex.6). A further notable difference to finite linear programming is the fact that the ex-
istence of primal and dual feasible solutions need not imply the existence of optimal solutions
(cf. Ex. 7). To assure.g. the existence of an optimal solution of (P) we may assume strict
feasibility of the dual program.

The Slater constraint qualificatioffior (P) assumes the existence of a strictly feasible primal
solution Slater poinf see also Ex. 4):

(SCp) There exists some e R"with AX > b.
We also strengthen the dual feasibility condition (17) todbel Slater condition

(SCp) ceintconefay |y e Y}.
One can show that a feasible LSIP has an minimal solution if the conditigniS@ilfilled.
This leads to the following strong duality result (seg, [6] for a proof).

THEOREM 5 (Strong duality) Assume that the Slater conditions (§@nd (SG) are sat-
isfied, i.e., (P) and (D) are strictly feasible. Then optimal primal and dual solutioasdt
exist, andvp = vp holds.

Moreover in this cas& is an optimal solution of (P) if and only ¥ is a KKT-point,.e., there
exist a dually feasibl@ satisfyingUyJ. >0foryjeYo(xX), j=1,...,k,k<n,andly =0
otherwise, such that )

c= TUyay .
j:l

In particulart’ (AX — b) = 0.

EX. 6. Letk > 0 be fixed. Showp = 0 andvp = « and that neither the primal nor the dual
Slater condition is satisfied for the linear (SIP)

mn —x; st —y’X1—y%» >0, yeY=[0,1]and»% < «.

EX. 7. Show thatF = {(X1, X2) | X0 > €1 for x; < 0and % > x; + 1 for x; > 0} is the feasi-
ble set of the (LSIP)

(P) min x; st —yx+x>yl—-Iny), yeY=][0,1].

Show furthermore: (D) is feasible and (P) satisfies the primal Slater condition but does not
have an optimal solution. (Consequently, §3€annot be satisfied).
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5.3. Linear semidefinite programs. A semidefinite progrartSDP) is of the type

n
(18) (P): m}%{n c'x s.t. Z Aixi — B =0 (positive semidefinite)
xeR" =)

whereB, Aq, ..., A, € S**Kare giverk x k matrices S*k denotes the set of (real) symmetric
k x k matrices. By the following trick a semidefinite program can be transformed into an LSIP.
Recall that forS = (s;) € S¥* the relation

(19) S=0 < y'Sy=> sjyy;j=0vyeY:={yeR ||yl =1}
ij
holds. So we may state (18) equivalently as
(20) nlinch st.  aly)’x—b(y)>0 vyeY
with
a()' = (y"Ay.....y Ay) and b(y) =y'By.
Let us denote the inner product df k k)-matricesC = (cjj) and D = (djj) by Co D =

Z:szl cijdij. Then itis not difficult to see that the LSIP dual of (20) can be written in the form
(see [6])

(21) (D): mUax BoU st. AlocU=g¢,i=1,...,n, Uu>0.

The primal Slater condition takes the form:
(SCp)  Thereexistke R" s.t. Z A% — B =0,

whereS >~ 0 indicates thaB is a positive definite matrix. Moreover it is not difficult to show
(cf. [6]) that the dual slater condition can be written as

(SCo) there existd) = O suchthatAjoU =c¢j, i=1,...,n.

So in principle, optimality and duality results for SDP can directly be deduced from the corre-
sponding results in LSIP. We obtain in this way (see [6] for a proof)

COROLLARY 1 (Strong duality) Assume that the Slater conditions (§@nd (SG) are sat-
isfied, i.e., (P) and (D) are strictly feasible. Then optimal primal and dual soluticasdU
exist, andvp = vp holds.

Moreover in this cas& is an optimal solution of (P) if and only if there exist a dually feasible
U satisfyingU - (3, A% — B) =0.

As a consequence of the previous considerations, the optimality conditions and duality results
for these special cone constrained programs are easily obtained from the general theory for
LSIP (cf. e.q.[6]).
Second order Cone programmingSimilarly we discussecond order conic programs

(soP minc'x st u:=Ax—bel™,
whereL™ denotes the Lorentz cone

LM = {ueR™|up> (Ui +...+u2 V3.
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Definel = (uy, ..., un—1) and observe the identity

Idl= max Y0
geR™1, |d|=1
So the conditioru € L™, or uy, > |G|, can be written asim, — ¥' G > 0 V||§|| = 1, and the
feasibility condition in SOP reads:

y (Ax—b) >0 or a(y)’x>b(y) VyeY={y=(7.1|[yl=1},
with & (y) = y' A;, A thei-th column of A andb(y) = y'b.

5.4. Complexity issues. As a first general observation we emphasize that, from the numerical
viewpoint, SIP is much more difficult than FP. The main reason is the difficulty associated with
the feasibility test fox. In a finite program,

FP: mXin f(x) st. 9j(x)>0 VjeJ={12, .., mj

we only have to compute function valuesg; (X) and to check whether all these values are
nonnegative. In SIP, checking the feasibility>fs obviously equivalent to solve the global
minimization problemQ(X) in they variable:

(22) QX): myin gX,y) st yeYy,

and to check whether for a global solutigithe conditiong(X, y) > 0 holds.

Note that, even for the LSIP, the proble@(X) is not in general a convex problem. As a con-
sequence of this fact, the LSIP problem cannot be expected to be solvable in polynomial time.
However, there are special subclasses of linear or convex semi-infinite programs which can be
solved polynomially. Interesting examples are semidefinite and second order cone program-
ming, as well as certain classes of robust optimization problems [2]. We refer to [25] for an
extensive treatment of this issue.

Here for shortness we will try to motivate the fact that SDP can be solved efficiently from
the viewpoint of the ellipsoid method. Firstly, we emphasize that it is not difficult to see that a
convex program can be solved efficiently if the corresponding feasibility problem can be solved
efficiently. To find a feasible poirt € F, the ellipsoid method proceeds as follows.

Ellipsoid Method

INIT: Start with a (sufficiently large) ellipsoiég so that¥ N Eg # @.

ITER: Given the ellipsoicEj = {x | (x— xj) T Aj(Xx— Xj) < 1}, Aj = 0, such that
FNEj=FNEy

(1) if x; € F sTOP

(2) OTHERWISE compute a separating halfspaid% such that
F C HJ?, Xj ¢ HJ?.
and find (the smallest) ellipsoiflj+1 with vol Ej;1 < qvol E; (0 < g < 1)
containingE; N HJ? and thus¥ N Ep .
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So the Ellipsoid Method generates ellipsols E;, ... with the property
vol (F N Ep) < vol Ej << glvol Ey — 0.

Hence, if 0< vol (F N Ep), itis clear that the algorithm will find a poing; € F after a finite
number of iterations.

The overall ellipsoid method can be shown to be polynomial if the feasibilitiktest in step

(1) and the construction of a separating halfspace in step (2) can be done in polynomial time.
To consider the special case of SDP@) := > ; Aix; — B e SK*K,

LEMMA 4. The feasibility test &) = 0 and the construction of a separating halfspace can
be done in time)(k3).

Proof. It is well-known that by applying a modification of the Gauss algorithnGte: G(X)
we can compute, in time(k3), a decomposition

QGQ"' =D with Q regular andD = diag (dy, .. ., dy),
such thatG = 0 if and only ifdi > 0, Vi. So ifd; > 0, Vi, the pointX is feasible. If not

sayd; < 0, than by definingy = Q'e; (e; the unit vector) it follows for all feasible, i.e.,
G(x) = 0:
a] G(x)a; > 0> d; = e/ De; = e/ QGQ'e; = a/ Ga; .

So the linear inequalitp] G(x)a; = >, (a] Aia1)x — a] Bay > 0 defines a separating half-
space.
O

Ex. Show for SOC: The feasibility test and the construction of a separating hyperplane for
someu ¢ LM is easily done.

Special case g linear in y We consider the special case of a SIP with linear (or convex)
objective and constraint function of the form

gx,y)=ax)'y—bx) >0 VvyeY
So x is feasible if:
#(x) :=min ax)Ty—b(x) >0
ye

SupposeY is given by a ball say = {y | ||y|l < 1}. By observing the relation

mina'y—b = aT[—i]—bz—a —b>0
lyl=1 y llall lal -

we find by using a result of Schur:

-b-1 a
el zbe (' F ) e

Consequently ifi(x) = Ax, b(x) = b"x are linear in x the feasibility tegt(x) > 0 becomes
the constraint of a SDP, and the SIP problem is equivalent to a (linear) semidefinite program.
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Ex. Suppose thaY is given by (the ellipsoidY = {y e R™| (y — yo) TQ~1(y — yo) < 1} with
a positive definite matrix) = CC'. Then the constraint

@(X) :=mina(x)Ty —b(x) >0
yeY

is equivalent to the SDP constraint

( —B(X) -1 Ca(x)

a’C  —B(x) ) is positive semidefinite

whereg(x) = (b(x) — a(x)Tyo)

In the case of SOC programming the feasibility test (and the construction of a separating hy-
perplane) is trivially polynomial.

6. A PRIMAL-DUAL INTERIORPOINT METHOD

It is well-known that interior point methods lead to polynomial solution methods for solving
LP problems.

On has tried to extend this method to LSIP. In this section we will discuss such an extension.
Essentially it is the approach discussed in Tuncel/Todd [24]. We however present this approach
in a different and shorter form. We describe a version of the interior point method based on the
pair of primal and dual programs.

We will see however that the extension to LSIP (at the current state) seem only of theoretical
value because it relies (see also [24]) on an assumption which cannot be verified a priori.
Consider the linear program

(23) (P) maxc'x st. Ax+s=b
and its dual
(24) (D) minb'z st. ATz=c and z>0

with A € R™" ¢ e R" andb € R™ (m constraints).

The strong duality property of linear programs says that feasible solutitorg23) andz for
(24) are optimal if and only if they satisfy the complementary slackness condjspe= O for

j=1,...,m Sowe seektofind > 0, s> 0 andx solving the system of equations
Ax+s = b
(25) ATz = ¢
zisjy = 0, j=1,....m

Suppose we can find feasible solutionandy that satisfy complementary slackness "approx-
imately” in the sense that

(26) ZjSj = forj=1,...,m
holds for someu > 0. Then the solutions might still be acceptably googd ifs sufficiently
small (x < ¢/ m, say). Indeed, we observe for the associated duality gap:

m
(27) 0<b’z—c'x=2"s=> zsj=mu<e.
=
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Note thaty > 0 in (26) impliesz; > 0 ands; > O for all j, i.e, z> O ands > 0. So we
are dealing with primal and dual solutions that lie in the (relatim&rior of the respective
feasibility regions.

We therefore want to determine a solutios- 0, s> 0, andx of theperturbed system

Ax+s = b
(28) ATz = ¢
ZjSj = W, j:l,...,m.

for the parameter > 0.

In the following, we assume that there exsibngly feasiblesolutionsz, z of (23) and (24)i.e.,
z> 0ands=c— ATx > 0. Furthermore, we always assume that the marix R™" has full
rank n (after having removed redundant equations if necessaryk iSaniquely determined
by s.

Remark. Assuming that strictly feasible primal and dual solutions exist it can be shown that
for anyu > O there is a unique solutiofx (), z(w), s(i)) (central path of (28)

The idea of the method is to construct a sequence of vallds0 together with (approximate)
solutions(X, Yk, S) of (28) for u = .

We now extend the previous analysis to linear semi-infinite programs and introduce the short
hand notation

Ax=a(j)Tx b=b(j)=b; jeY

b'z= [, bjzidj P:=[,1-dj
Here for convenience, we have replaced the index variglde j. Moreover (as in [24]) we
assumeg;, s, z € C(Y) and that the functionasi(j), ..., an(j) are linear independent o.
Note that at least for the limjt = 0 the assumptiorm e C(Y) is unrealistic because we expect
the solutionz of D to be a point functional.
With this definitions, P and D also represent a pair of primal and dual linear semi-infinite
programs. Moreover the equations (25) and (28) make sense for LSIP if the third equation
(i.e., (26) is replaced by;s; = 0 (or= ) for all j € Y. The weak duality relation (27) then
becomes

0< sz_ch=sz=/Yz<j>s<j>dj=Pu

In what follows we give the whole proof for the LP case and only note the modifications needed
for LSIP.

6.1. Newton Steps.We wish to solve the system (28) for fixed The problem is that, due
to the quadratic equatiorgs; = u, the system is nonlinear. So we may apply the Newton
method.

At this point, it is useful to introduce the following shorthand notation for any veatons e

R
uw = (Wwi,...,Unwm)' | = Ujw;
wtl = 1w Lwm)T | =1/wj . .
€ Y in case of LSIP
VU = (JUL,..../TmT | = /0 J
o= (1, 1) | =n

With this notation, for example, we can writé w = 1T(uw).
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The Newton method for solving the system (28) consists of computing solutionsAz, As)
of the linear equation

AAX+As = 0
(29) ATAz = 0
SAZ+27ZAS = p—12zs

leading to the next iteratex™, z+, st) = (X, z, S) + (AX, Az, As).
PropPoOsITION 1. For everyz > 0 ands > 0, the system (29) of linear equations admits a
unigue solutionAx, Az, AS).

Proof. The first two equations in (29) statez € kerAT andAs e row AT. The third equation
is equivalent with

—7s
VszZIAzZ+ VzsiAS= MJ_ )

zs
Pre-multiplying the vectors in each of the subspaceg\keand rowA " with the fixed positive
vectorsv/'sz 1 resp.v/zs1, we obtain the linear subspaces

U = {VszlAz|AzekerAT} with dim U = m-rankA
V = {VzslAs|AserowAT} with dim V = rankA.

Since keAT and rowAT are complementary orthogonal subspaces, stJaaadV. Indeed,
foru=+/sztAzandv = vzs"1Aswe haveujv; = Az;As; and hence

(31) uwv=AzAs and u'v=Az'As=0.

So every vector iR™ can be (uniquely) written as + v with u € U (its projection ontdJ)
andv e V (its projection ontd/ = U+). In particular, there exist € U andv e V with

(30)

u—2ZS
32 = .
(32) u+v =

Hence alsoAz and As are uniquely determined, antiz follows (uniquely) fromATAz =
—As. (Recall thatA has full row rankn by assumption).
The proofin the LSIP case follows in a similar way by using aresultin [3, Th.4.1].

The triple (AX, Az, As) is said to be eNewton steff it solves (29). The Newton step is
feasibleif
zZ"=z+Az>0 and st=s+As>0.

Convergence of Newton Stepddeally, we would like to have the Newton stéfix, Az, AS)
to yield ztst = u. However, we only obtain

(33) z'st = pu+ AzAs (= p+uv by (31)

As a consequence of (33), we observe
(34) (zHTst=1"(z's") =1"p+1T(AzZAS) =mpu+ AzTAs = mu
(35) = Pu for LSIP.

Hence, provided the Newton step is feasiltle,, s™) yields a strictly feasible primal-dual pair
of solutions with duality gapmu or Pu (even ifztst # p).
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The next inequality between the max-norm and the Euclidian norm is essential for obtaining
the polynomiality of the interior point method. Forv € R™ it trivially follows

lujpjl < O (UpppHY2 = luv] .

Unfortunately such a bound is not generally valid in (the infinite dimensional s@a%§) For
the LSIP case we however have to make the following assumption (see also [24]) which cannot
be verified a priori.

AS. All vectorsu = v/sz1Azandv = v/zs 1 As(satisfyingujvj = AzjAs;) computed during
the interior point method satisfy with some const@ntl. < C < oc:

(36) [ujvj] < Clluv]] forall jeY.

We now measure the quality of an approximatas® p by taking the relative (squared) Eu-
clidean distance from the central path

C?|zs—p|? 2 2 . C=1forLP
b =3@sw == = o MAEVIE W e agin (36) for LSIP

whereu € U andv € V are as in (32). We can now make our previous remark precise: If
zs~ u , then zts"™ is an even better approximation to

THEOREM 6. Let AS hold for LSIP. Then fat = §(z, s, u) < 1 in the Newton iteration it
follows:

(a) (Ax, Az, As) is a feasible Newton step.
(b) 8t = 8(z*,s", ) < 362

Proof. By the auxiliary Lemma 5 below, we have for each compone(ib both cases LP
(C=1)andLSIP (see (36))

C 1
Az Asj| = Jujvj| < Clluvl) < Slu+ VI = S5ud < 1/ (20).

2C
Hence usingC > 1, (33) yieldsz™s™ > /2, which implies (again by Lemma 5 below):
2 | et — 4y 112 2 2 2
P At 23 [ L R TR
o z+st wol /2 pe 4 2

To show feasibility of the Newton step, suppose to the contraryzfpast 0 holds. In view

of ztst > u/2 > 0, then alsosjr < 0 must hold. But(Ax, Az, As) is a Newton step. (29)
therefore implies

— 78 4+ 7 AS +SiAZ = zist 457t —s 7.
n=ZjSj+ ZjAsj + SjAZ) = 7jS] +5jZ] — 5z <0,

a contradiction.

LEMMA 5. Letu,v e R" (or € C(Y)) be orthogonal. Then

1
luvil < Slu+vi®.
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Proof. The general identityd8 = (« + B)% — (a« — B)? yields
Aujujl = |(Uj + v)? = (U — v))?| < (U] + V)% + (U] —v))?.
Summation ovelf = 1, ..., n (or integration ovelj € Y) gives
Auv] < 4> |upjl < lu+ V]2 + lu—v]?.
j

The claim follows by observing thdu + v|| = |ju — v|| for orthogonalu andyv.
<&

6.2. The Algorithm IPM. Theorem 6 has important algorithmic implications. Statement (b)
indicates thab(z, s, ) converges quickly to 0 (and hen¢e z, s) to a solution of (28)). Since
we really would like to solve (28) witlx > 0 as small as possible, the question arises whether
we could decrease the parameteafter each Newton iteration.

Consider an arbitrary & 6 < 1 and assumé(z, s, u) < 1. By (34) we have(z)'st =
Iv/Z+s |2 = mu (or = Pu), so we compute in the LP case :
2

s(zt,st,6n) = % %
— %“(1-9)@%% i
= (1_90)2m+98(z+,s+,u)
< (1_99)2m+g (by Theorem 6)

(The third equation above uséa+ b|| = ||a|| + ||b]| fora L b.) For LSIP we obtain the same
in equalities withm replaced bym = C?P.

For the choic#* =1 — % we find the bound

*

0 .
m—1+551 (ifm>2).

So Theorem 6 guarantees that the Newton steps will remain feasible even when we reduce the
current value ofx > 0 by the facto®* in each iteration!

(37) 8(zt,st, 0u) <

This discussion suggests the following algorithm, which will compute an approximately op-
timal solution of the linear progran23). To start the algorithm, we assume to have at our
disposal a primal feasible vectrg, a vectorzg and a parameterg > 0 with the properties

() z0 > 0.
(i) ss=b—Axg > 0.
(ii)) 8(zo0, S0, 110) < 1.
In every iteration, the algorithm computes a feasible Newton &ep Az, As) with respect
to the current paramete(s, s, ) and then reduces by the factom*. As a stopping criterion,
we use a precision parameter 0 (which can be chosen freely).
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Algorithm IPM

INIT: Z2¢20,S< S, U UQ;
ITER: Compute a solutiofAx, Az, As) of (29) and update
Z « Z+ AX;
S ¢« S+ As;

IF mu < ¢ (or Pu <¢e) STORELSEu <« 6*u .

By (37) and Theorem 6 every Newton step is feasible. When the algorithm stops, the current
solution satisfies

b'z—c'x =z's=mu < ¢ (or= Pu < eforLSIP).

So we have found a solutionfor the linear program (23) whose objective function vatliz
differs by at most from the optimum. We call such a solutierapproximate

The total numbeK of iterations of algorithm IPM can be estimated. From the general inequal-
ity 14+ x < ewe find (6*)™ = (1—1/m)™ < e~L. Sou shrinks by at least a facter?! in any
m subsequent iterations. Consequently, after

(38) K <m-In™ ™ (with m=C2P for LSIP)
&

iterations, the current = (8*)X o will satisfy the stopping criteriop < ¢/m(or u < ¢/P
in the LSIP case). So we have obtained a polynomial (in the number of Newton steps) approx-
imation algorithm, which for LSIP however assumes that AS holds.

7. DISCRETIZATION METHODS

In a discretization method we choose finite sub¥éisf Y, and instead oP = P(Y) we solve
the finite programs

P(Y): min f(x) st.g(x,y) >0, VyeY'.

Letv(Y"), F (Y") andS(Y’) denote the the minimal value, the feasible set and the set of (global)
minimizers of P(Y’) respectively. We introduce the Hausdorff distance (meshgi¢¢) be-
tweenY’ andY by

p(Y) :=maxdist(y, Y) where dist(y,Y)=min|y—VY] .
yeY yeY

The following relation is trivial but important:
(39) YcY1 =  F(Y1)C F(Y2)andu(Yz) < v(Y1) .

We consider the discretization conceptYR is said to baliscretizabldf for each sequence of
finite gridsYy c Y satisfyingp(Yx) — 0 (for k lage enough) there exist solutiorsof P(Yk)
and for each sequence of solutions the relation

dist(Xk, S(Y)) > 0 and v(Yx) — v(Y)
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holds. To treat non-convex problems we also introduce a local concept. Given a local mini-
mizerX of P(Y) the SIP is called locally discretizableaif the discretizability relation holds
locally, i.e. if the problenP! (Y),

P (Y): min f(x) st gy >0vyeY,
obtained as the restriction &(Y) to an open neighborhoddk of X, is discretizable.
We give an illustrative example.
ExAMPLE 1. Consider the linear SIP (with some fixed- 0):
min X1 S.t. X3 COSy + Xpsiny > 1, ye Y = { L. 37/2] case A
[t —e¢,37/2] caseB
The minimizer of RY)isX = (-1, 0).

Case A:The problem is not discretizable (only weakly discretizable). For a'gricbntaining

y = 7 we havev(Y’) = v(Y). On the other hand for any’ not containingr the value is
unboundedy(Y’) = —co.

Case B:The problem is discretizable as is easily shown. Note that in case B the condition
c e intconefa(y) | y € Y} is satisfied but not in case Af( also Theorem 8).

The following algorithm is based on the concept of discretizability.
Algorithm 1 (Conceptual discretization methpd

Step k:Given a discretizatioyy C Y

i. Compute a solutiomy of P(Y).
ii. Stop, if x is feasible within a fixed accuraey> 0, i.e.g(Xx, ) > —«,
y € Y. Otherwise, select a finer discretizatign.; C Y.

Under a compactness assumption on the feasible sets we obtain a general convergence result
for this method. We begin with linear and convex problems.

THEOREM 7. A convex SIP is discretizable if the feasible s€Y}-is compact.
The following result on discretizability of LSIP is contained in [11, p. 70-75].

THEOREM 8. Let the LSIP problem &) be feasible and assume that the conditior ¢
int cone{a(y) | y € Y} holds. ThenS(Y) is non-empty and bounded, so a solution @Y
exists. Moreover PY) is discretizable.

The next result is valid for general SIP.
THEOREM 9. Letthe sequence of discretizationgs4tisfy
Yoc YkVk>1andp(Yyx) > 0 fork— oo.

Supposef (Yp) is compact. Then &) is discretizablei.e., the problems PYy) have solutions
xx and each such sequence of solutions satisfiigts xx, S(Y)) — O.

Proof. By assumption and using, c Yy C Y the feasible set§ (Y), F (Yk), of P(Y), P(Yx)
respectively, are compact and satisfy(Y) ¢ 7 (Yx) € ¥ (Yo), ke N. Consequently, so-
lutions xx of P(Yx) exist. Suppose now that a sequence of such solutions does not satisfy
dist (xk, S(Y)) — 0. Then there exist > 0 and a subsequengg such that

dist (X, S(Y)) >€e>0 Wv.
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Sincexy, € ¥ (Yo) we can select a convergent subsequence. Without restriction we can assume
X, = X, v — oo. Inview of F(Y) C ¥ (Yi) the relationf (xg,) < v(Y) holds and thus by
continuity of f we find £ < oY) .

We no show thak € S(Y) in contradiction to our assumption. To do so it suffices to prove
thatX € 7 (Y). Lety e Y be given arbitrarily. Since(Yy,) — 0 for v — oo we can choose
Yk, € Yk,, such thaty,, — y. In view of g(X,, Yk,) > 0, by taking the limitv — oo, it follows
g(X,y) >0,i.e.xe F(Y).

O
We now consider discretizability for general (also nonlinear) semi-infinite problems. Here we
have to make use of the local concept. The following can be easily proven (e.g. in [22])

LEMMA 6. Letbe given a sequence of gridsY Y with px := p(Yx) — 0.
(a) Let % be points inF (Yx) N K, where K is a compact subsetRf. Then there exists
¢ > 0 such that for allpox > 0 small enough
9%, Y) > —Cpk VyeY.

(b) Let MFCQ be satisfied & with the vector ddf. (12)). Then there exist numbers
7 > 0, &1 > 0such that for smalpy the points X+ toxd are feasible for PY) for all
Xk € F (V) with || x« — X|| < e1.

THEOREM 10. LetX be a local minimizer of PY) of order p> 1. Suppose MFCQ holds
atX. Then P is locally discretizable &t More precisely, there is some> 0 such that for
any sequence of gridg Y with p(Yx) — 0 and any sequence of solutionsof the locally
restricted problem RY,) (see the definition of discretizability) the following relation holds:

(40) 0< f(®) — f(x) < 0(p(Y) and [Ixc—XI| <o p(Y)"P.
Proof. Consider the SIP restricted to the closed balBgix) with small « chosen such that
Kk < g, €1 (with £ in (10) ands; in Lemma 6) :

PMMo: minf(x) st xeFM)NclB(X) .
Obviously, sincex € F (Yx) and ¥ (Yy) N cl B, (X) is compact (and nonempty), a soluti&'p
exists. Note thak is the unique (global) minimizer of' PY). Putpi := p(Yi) and consider
any sequence of solutiong of P'(Y). In view of #(Y) ¢ F (Yx) andx, + zokd € F(Y) N
cl B.(X) (for largek, see Lemma 6(b)) we find

f(xd) < (%) < F(X+ oK) .

SinceX is a minimizer of ordep (see 10) it follows

1 1
|1X + okd — X]|P < a(f(x'k+wkd) - f(%) < a(f(x'k+mkd> — (%)) = 0(px) -

Finally, the triangle inequality yields
(41) 1% = Xl < 11X+ zoxd = XI| + [|zokdlll = O (3P .

In particular||xL —X|| < « (for largek) such thath are (global) minimizers of the problem

P (Yy) restricted to the open neighborhoBgd(X).
O
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REMARK 3. Under additional assumptions on the quality of the discretizatiqnsne can
prove a faster convergence than in (40). It has been shown in [22] that a convergence rate

[|[Xk — X|| = O(,oi/p) occurs if the gridgy of meshsizegy are chosen in a special way.

Complexity of the Discretization Method. Let us shortly discuss the complexity of an ap-
proximation algorithm which solve the discretized LSIP problem by the interior point method.
Consider an LSIP and the corresponding discretized LP problems depending on the meshsize
p of the gridY,,

P(Y,) min c'xs.ta(y)"™x>b(y) vyeY,

Le x, be its solution. For simplicity we assunye= [0, 1]°. The numbem of gridpoints of a
grid Y, of meshsizep is (roughly) given by

1 S
Jol
By the interior point method we can compute an approximaxjpof x, such that

0 < f()_(,o) - f(xp) <p
by a number of (basic) computation steps of or@ém?®In %") (see Section 6).
The discretization error between and a the solutioi of LSIP was bounded by
0<fxX)—f(x,) <C-p.
It is not difficult to show that such a constadtdoes not depend on So the overall
complexity for computing, satisfying (assum€ > 1)
1f(X,)— f®|<C-d

(- () )

which is polynomial for fixeds. Note however that the computation work grows fast
with s.

is given by

7.1. Exchange method.We also outline thexchange methodhich is often more
efficient than a pure discretization method. This method can be seen as a compromise
between the discretization method in Section 7.3 and the so-called reduction approach.

Algorithm 3 (Conceptual exchange method

Step k:Given a discretizatioiy, c Y and a fixed, small value > 0.
i. Compute a solutiomx of SIP(Yy).
ii. Compute local solutiong,, i =1,..., ik (i > 1) of Q(xx) (cf. (22)) such that
one of them, say;, is a global solution, i.eg(x, y;) = m%xg(xk, Y)
ye

iii. Stop, if g(x, y§) > —a, with a solutionx ~ x,. Otherwise, update
(42) Yt =Y U, i=1,...,0k .
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THEOREM 11. Suppose that the (starting) feasible $etYy) is compact. Then, the
exchange method (witlh = 0) either stops with a solutioX = x,, of P(Y) or the
sequencegx,} of solutions of RYy) satisfiedist (xx, S(Y)) — O.

Proof. We consider the case that the algorithm does not stop with a minimizer of
P(Y). As in the proof of Theorem 9, by our assumptions, a solutjoof P(Yy) exists,
Xk € F (Yo) and with the subsequengg — X we find

f(X) <v(Y).

Again we have to show € ¥ or equivalentlyp(X) > 0 for the value functiop(x) of
Q(X). In view of p(x¢) = g(X, Yi) (see Algorithm 2, step ii) we can write

P(X) = p(X) + @(X) — p(X) = J(Xe, Vi) + 9(X) — (%) -
Sinceyi € Yy 1 We haveg(X.1, Vi) < 0 and by continuity ofy andg we find
(%) > (9% Yi) — 9kt1, Vi) + (9(X) — 9(x)) = 0 fork — oo

We refer to the review paper [8] for more details on this approach.

8. APPENDIX

This section contains some definitions and auxiliary results. £setalledconvexf

C contains with any, y € C also the wholdine segmentx, y] = {(1 — X)X+ 1y|0 <
A <1} . For an arbitrary seA c R" we define itsconvex condy

k
coneA={a= > Arja|k>1 a €A 1;>0}.
i—1

and itsconvex hulby

k k
convA={a=> rjaj|k>1 a €A 1;>0 > 1=1}.
=1 j=1

LEMMA 7. (CaratheodoryFor A c R", each ae conv A can be represented as a
convex combination of (at mostHnl vectors: a= Z’j‘jkjaj, and each elementa

coneA as a conic combination of (at most) n vector&aZ?zl)»,-aj

A function f : C — R defined on a convex s& c R" is calledconvexif for all
X, ye Cand0< A <1,

f((L=M)X+Ary) < A—21)FX)+Arf(y) .

LEMMA 8. A differentiable function £ C — R (C c R", open and convex) is convex
onCifandonlyifforany xye C: f(x) > f(xX)+ VIi(y)(x—y).
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LEMMA 9. [Generalized Gordan Lemmbagt AcC R" be a compact set. Then exactly
one of the following alternatives is true.

(i) 0econvA.
(i) There exists some @R" suchthat &d < 0 forall ae A.

REFERENCES

[1] Amaya J., ®mez J.A.Strong duality for inexact linear programming probler@ptimization 49,
no. 3, 243-269, (2001).

[2] Ben-Tal A., Nemirovski A.,Robust solutions of uncertain linear progran@perations Research
Letters 25, 1-13, (1999).

[3] Borwein J.M., Lewis A.S.Convergence of best entropy estima®\M J. Optim. 1, 191-205
(1991).

[4] Dall’Aglio M., On Some Applications of LSIP to Probability and Statist®smi-infinite program-
ming, Eds. Gobernafpez, (Alicante, 1999), 237-254, Nonconvex Optim. Appl., 57, Kluwer
Acad. Publ., Dordrecht, 2001.

[5] Dambrine M., Pierre M.About stability of equilibrium shape#lathem. Modelling and Num.
Analysis Vol.34, NO 4, 811-834, (2000).

[6] Faigle U., Kern W., Still G., Algorithmic Principles of Mathematical Programming, Kluwer, Dor-
drecht, (2002).

[7] Glashoff K., Gustafson S.-A., Linear Optimization and Approximation, Springer Verlag, Berlin,
(1983).

[8] Hettich R., Kortanek K., Semi-infinite programming: Theory, methods and applications, SIAM
Review, vol 35, NO.3, 380-429, (1993).

[9] Goberna M.A., Lopez M.A.Linear Semi-Infinite Optimizatigrdlohn Wiley & Sons, Chichester,
(1998).

[10] Haaren-Retagne EA semi-infinite programming algorithm for robot trajectory plannjimysser-
tation, University Trier (1992).

[11] Hettich R. and Zencke ANumerische Methoden der Approximation und der semi-infiniten Opti-
mierung Teubner, Stuttgart (1982).

[12] Hettich R., Still G.,On Generalized semi-infinite programming probleierking paper, Univer-
sity of Trier, (1986).

[13] Hoffmann A. and Reinhardt ROn reverse Chebyshev approximation problemechnical Uni-
versity of lllmenau, Preprint No. M08/94, (1994).

[14] H. Th Jongen, J.-J. &Rkmann, O. Stein, Generalized semi-infinite optimization: A first
order optimality condition and examples, Mathematical Programming 83 (1998) 145-158.

[15] Jess A., Jongen H.Th., Neralic L., Stein @.semi-infinite programming model in data envelop-
ment analysisOptimization 49, 369-385, (2001).

[16] Len T., Vercher E.Optimization under uncertainty and linear semi-infinite programming: a sur-
vey.in Semi-infinite programming, Eds. Gobernaflez, (Alicante, 1999), 327-348, Nonconvex
Optim. Appl., 57, Kluwer Acad. Publ., Dordrecht, 2001.

[17] Polak E.,On the mathematical foundation of nondifferentiable optimization in engineering design
SIAM Rev., 29, 21-89, (1987).

[18] Sanchez-Soriano J., Llorca N., Tijs S., Timmer Semi-infinite assignment and transportation
gamesSemi-infinite programming, Eds. Gobernafiez, (Alicante, 1999), 349-363, Nonconvex
Optim. Appl., 57, Kluwer Acad. Publ., Dordrecht, (2001).

[19] Soyster A.L.,Convex programming with set-inclusive constraints and applications to inexact lin-
ear programmingOperations research 21, 1154-1157, (1973).



SOME TOPICS IN SIP 25

[20] still G., Haaren-Retagne E., Hettich B, numerical comparison of two approaches to com-
pute membrane eigenvalues by defect-minimizatiofintern. Series of Numer. Math.” vol 96,
Birkhauser Verlag, 209-224, (1991).

[21] still G., Generalized semi-infinite programming: Theory and methBdsopean Journal of Oper-
ational Research 119, 301-313, (1999).

[22] Still G., Discretization in semi-infinite programming: the rate of convergeiath. Program. 91
(2001), no. 1, Ser. A, 53-69.

[23] Tichatschke R., Hettich R., Still GConnections between generalized inexact and semi-infinite
linear programming ZOR-Methods and Models of OR 33, 367-382, (1989).

[24] Tuncel L. Todd M.J. Asymptotic behavior of interior point methods: a view from semi-infinite
programming Mathematics of Operations Research 21, No. 2, 354-380, (1996).

[25] Wolkowicz H., Saigal L., Vandenberghe (Eds.), Handbook of semidefinite programming. Theory,
algorithms, and applications. International Series in Operations Research and Management Sci-
ence 27, Kluwer Academic Publishers, Boston, (2000).



