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ABSTRACT. A semi-infinite programming problem is an optimization problem in
which finitely many variables appear in infinitely many constraints. This model natu-
rally arises in an abundant number of applications in different fields of mathematics,
economics and engineering. The present paper intends to give a short introduction
into the field and to present some preliminary discussion on the complexity of linear
SIP.

1. INTRODUCTION

1.1. Problem formulation. A semi-infinite program(SIP) is an optimization problem
in finitely many variablesx= .x1; : : : ; xn/ ∈Rn on a feasible set described by infinitely
many constraints:

(1) P: min
x

f .x/ s.t. g.x; y/ ≥ 0 ∀y ∈ Y ;

whereY is an infiniteindex set. F will denote the feasible set,v = inf{ f .x/ | x ∈ F }
the optimal value andS = {x ∈ F | f .x/ = v} the set of minimizers of the problem.
We assume thatY⊂ Rm is compact,g.x; y/ is continuous onRn

×Y and for any fixed
y ∈ Y the gradient∇xg.x; y/ (wrt. x) exists and is continuous onRn

× Y.

We also will consider generalizations of SIP, where the index setY= Y.x/ is allowed
to be dependent onx (GSIP for short),

(2) min
x

f .x/ s.t. g.x; y/ ≥ 0 ∀y ∈ Y.x/ :

During the last five decades the field of Semi-infinite Programming has known a
tremendous development. More than 1000 articles have been published on the the-
ory, numerical methods and applications of SIP. Originally the research on SIP was
strongly related to (Chebyshev) approximation, seee.g., [11], [7]. As excellent review
articles on the field we refer to Polak [17] and Hettich/Kortanek [8]. Since a first con-
tribution [12] thegeneralized SIP problem(2) became a topic of intensive research
(seee.g., [14] and [21]). For an extensive treatment of linear semi-infinite problems
we refer to the book by Goberna/Lopez [9].
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REMARK 1. For shortness and a clearer presentation we omit additional equality con-
straintshi .x/ = 0 in the formulation of SIP. It is not difficult to generalize (under
appropriate assumptions onhi) all results in this paper to the more general situation.

The paper is organized as follows. The next section presents some illustrative applica-
tions of SIP and GSIP. Section 3 shortly describes the structure of the feasible set of
semi-infinite problems. Section 4 derives first order necessary and sufficient optimal-
ity conditions. Linear semi-infinite and linear semidefinite programming is treated in
Section 5 also from the viewpoint of complexity. Section 6 presents an interior point
method for LP and discusses the limits to extend such methods to (general) linear SIP.
In Section 7 the discretization methods for solving SIP is surveyed.

2. APPLICATIONS

In [17], [8] and [9] many applications of SIP are mentioned in different fields such
as (Chebyshev) approximation), robotics, boundary- and eigen value problems from
Mathematical Physics, engineering design, optimal control, transportation problems,
fuzzy sets, cooperative games, robust optimization and statistics. From this large list
of applications we have chosen some illustrative examples.

Chebyshev Approximation : Let be given a functionf .y/ ∈ C.Rm;R/ and a space
of approximating functionsp.x; y/, p ∈ C.Rn

× Rm;R/, parameterized byx ∈ Rn.
We want to approximatef by functionsp.x; ·/ in the max-norm (Chebyshev-norm)
‖ f ‖∞ = maxy∈Y | f .y/| on a compact setY ⊂ Rm. To minimize the approximation
error� = ‖ f − p‖∞, leads to the problem:

(3) min
x;�

� s. t. g±.x; y/ := ±
(

f .y/− p.x; y/
)
≤ � for all y ∈ Y :

This is a semi-infinite problem.

The so-called reverse Chebyshev problem consists of fixing the approximation error�

and making the regionY as large as possible (see [13] for such problems). Suppose,
the setY = Y.d/ is parameterized byd ∈ Rk andv.d/ denotes the volume ofY.d/
(e.g. Y.d/ = 5k

i=1[−di ;di ]). The reverse Chebyshev problem then leads to the GSIP
(� fixed).

(4) max
d;x

v.d/ s. t. g±.x; y/ := ±
(

f .y/− p.x; y/
)
≤ � for all y ∈ Y.d/ :

where the index setY.d/ depends on the variabled. We refer the reader also to [13].

Mathematical Physics.The so-called defect minimization approach leads to semi-
infinite programming models for solving problems from Mathematical Physics which
is different from the common finite element and finite difference approaches. We give
an example.

Shape optimization problem :Consider the following Boundary-value problem,

BVP: GivenG0⊂Rm (G0 a simply connected open region with smooth boundary@G0,
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(closureG0)) andk > 0. Find a functionu ∈ C2.G0;R/ such that with the Laplacian
1u= uy1y1 + : : :+ uymym:

1u.y/ = k; ∀y ∈ G0

u.y/ = 0; ∀y ∈ @G0

By choosing a linear space of appropriate trial functionsu j ∈ C2.Rm;R/,

S=
{
u.x; y/ =

n−1∑
i=1

xiui .y/
}

this BVP can approximately be solved via the following SIP:

min
";x

" s.t. ±
(
1u.x; y/− k

)
≤ "; y ∈ G0

±u.x; y/ ≤ "; y ∈ @G0

In [5] the related but more complicated so-calledShape Optimization Problemhas
been considered theoretically.

SOP: Find a (simply connected) regionG ∈ Rm with normalized volume�.G/ = 1
and a functionu∈ C2.G;R/ which solves with a given objective functionF.G;u/ the
problem

min
�.G/=1;u

F.G;u/ s.t. 1u.y/ = k; ∀y ∈ G

u.y/ = 0; ∀y ∈ @G

This is a problem with variable regionG and can be solved approximately via the
following GSIP-problem:

Choose some appropriate set of regionsG.z/ depending on a parameterz ∈ Rp and
satisfying�.G.z// = 1 for all z. Fix some small error bound" > 0. Then we solve
with trial functionsu.x; y/ ∈ S the program

min
z;x

F.G.z/;u.x; ·// s.t. ±
(
1u.x; y/− k

)
≤ "; ∀y ∈ G.z/

±u.x; y/ ≤ "; ∀y ∈ @G.z/

For further contributions to the theory and numerical results of this approach we refer
e.g. to [20], [8].

Robotics.Control problems in robotics can often be modeled as a semi-infinite prob-
lem. We refer to the Ex.2.1 in [8] and the many references therein (cf. also [10]).

Geometry.Semi-infinite problems can be interpreted in a geometrical setting. Given a
family of setsS.x/ ⊂ Rp depending onx ∈ Rn, we wish to find a ’body’Y of a certain
class and a valuex such thatY is contained inS.x/ andY is as large as possible.

The mathematical formulation is as follows. SupposeS.x/ is defined by

S.x/ = {y ∈ Rp
| g.x; y; t/ ≥ 0; for all t ∈ Q}
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whereQ is a given compact set inRs and g ∈ C2.Rn
× Rp

× Rs;R/. Let the body
Y.d/⊂ Rp be parameterized byd ∈ Rq with v.d/, a measure for the size ofY.d/ (e.g.
the volume). To maximizev.d/ for Y.d/ ⊂ S.x/ then becomes:

(5) max
d;x

v.d/ s.t.g.x; y; t/ ≥ 0 for all y ∈ Y.d/; t ∈ Q :

For the case that the setS is fixed this problem is known asdesign centeringproblem.

Optimization under uncertainty (Robust optimization). As a concrete situation we
consider a linear program

min
x

cTx s.t. aT
j x− b j ≥ 0; ∀ j ∈ J;

J a finite index set. Often in the model the dataa j andb j are not known exactly. It
is only known that the vectors.a j;b j / may vary in a setYj ⊂ Rn+1. In a “pessimistic
way” we now can restrict the problem to suchx which are feasible for all possible data
vectors leading to a SIP

min
x

cTx s.t. aTx− b≥ 0; ∀.a;b/ ∈ Y := ∪ j∈JYj :

In the next example we discuss such a “robust optimization” model in economics. For
more details we refer to [19], [23], [2], [16] and [1].

Economics.We consider the followingPortfolio problem. We wish to investK euros
into n shares, say for a period of one year. We investxi euros in sharei and expect at
the end of the period a return ofyi euros per 1 euro investment in sharei.
Our goal is to maximize the portfolio valuev= yTx after a year, wherex= .x1; : : : ; xn/

andy= .y1; : : : ; yn/. The problem is that the valuey is not known in advance. How-
ever often models from economics suggest that the vectory will vary in some compact
subsetY of Rn. In this case we are led to solve the linear SIP:

max
v;x

v s.t. yTx− v ≥ 0 ∀y ∈ Y∑
i

xi = K; x≥ 0 :

Different other applications There are other interesting applications in game theory
(see [18]) in data envelopment analysis (see [15]) and in probability theory (see [4]).

3. STRUCTURE OF THE FEASIBLE SET

In this section we shortly discuss the structure of the feasible setsF of finite and semi-
infinite optimization problems.

F in linear programming (LP): The feasible set is defined by finitely many linear
constraints

F = {x | aT
j x≥ b j; j ∈ J}

with a finite index setJ = {1; : : : ;m} anda j ∈ Rn, b j ∈ R.
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F in semi-infinite linear programming (LSIP): The feasible set is defined by (pos-
sibly) infinitely many linear constraints

(6) F = {x | aT
y x≥ by; y ∈ Y}

with an (possibly infinite) index setY⊂ Rm and functionsy→ ay ∈ Rn , y→ by ∈ R.

Any such setF is closed and convex but also the converse can be proven with an
separation theorem.

L EMMA 1. A subsetF ⊂ Rn is convex and closed iff it can be defined in the form (6).

Proof.To prove that the closed convex setF can be written in the form (6) let us chose
a point y =∈ F arbitrarily. In view of the Separation Theorem (e.g., [6, Th.10.1]) the
point y =∈ F can be separated from the closed convex setF by a separating halfspace
H≥y = {x | a

T
y x≥ by}, i.e.,

aT
y x≥ by > aT

y y; ∀x ∈ F :

So, the setF can be written asF =
⋂

y=∈F H≥y = {x | a
T
y x≥ by; ∀y =∈ F } :

2

F in finite programming (FP): The feasible set is defined by finitely many (nonlin-
ear) constraints

(7) F = {x | g j.x/ ≥ 0; j ∈ J}

whereJ = {1; : : : ;m} is finite andg j : Rn
→ R are continuous.

F in semi-finite programming (SIP): Feasible set defined by infinitely many (non-
linear) constraints

(8) F = {x | g.x; y/ ≥ 0; y ∈ Y}

with infinite index setY⊂ Rm and continuousg : Rn
×Rn

→ R.

F in generalized semi-finite programming (GSIP):

F = {x | g.x; y/ ≥ 0; y ∈ Y.x/}

with variable index setY.x/ defined by a set valued mappingY : Rn ⇒ Rm and con-
tinuousg : Rn

×Rm
→ R.

The topological structure of the feasible setsF in FP and SIP are the same.

EX . 1. The feasible setsF in FP and SIP are closed.

The feasible set in GSIP need not be closed.
EX . 2. Consider the problem

min
x∈R

x s.t. x≥ 1− y; ∀y ∈ Y.x/ = {y ∈ R | 0≤ y; y≤ −x}

Obviously, the feasible set consists of the open interval.0;∞/ (Y.x/ = ∅ means that
x is feasible). A minimizer of the program does not exist. The problem here is that the
index setY.x/ = [0;−x] for x≤ 0, Y.x/ = ∅ for x > 0, is not continuous atx= 0.
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If Y.x/ is continuous then, non-closedness ofF is excluded.

L EMMA 2. Suppose the mapping Y: K ⇒ Rm is continuous on a compact set K⊂Rn.
Then the feasible setF ∩ K of GSIP is compact (in particular closed).

4. FIRST ORDER OPTIMALITY CONDITIONS

In this section, first order optimality conditions are derived for the SIP problemP in
(1). We assumef; g ∈ C1.
A feasible pointx ∈ F is called alocal minimizerof SIP if there is some" > 0 such
that

(9) f .x/− f .x/ ≥ 0 for all x ∈ F with ‖x− x‖ < " :

The minimizerx is said to beglobal if this relation holds for any" > 0. We callx ∈ F
astrict local minimizer of order p> 0 if there exist someq > 0 and" > 0 such that

(10) f .x/− f .x/ ≥ q ||x− x||p for all x ∈ F with ‖x− x‖ < " :

It is not difficult to see that near a pointx ∈ F , where the active index setY0.x/ =
{y ∈ Y | g.x; y/ = 0} is empty, the SIP problem represents a common unconstrained
minimization problem. So throughout the paper we assume that for any (candidate)
minimizer of P the conditionY0.x/ 6= ∅ is satisfied.

L EMMA 3. [Primal necessary optimality condition]Let x ∈ F be a local minimizer of
P. Then there cannot exist astrictly feasible descent directiond, i.e., a vector d∈ Rn

satisfying the relations

∇ f .x/d < 0 ; ∇xg.x; y/d > 0; ∀y ∈ Y0.x/ :

Proof.Let d be a strictly feasible descent direction. Thenf .x+ �d/ < f .x/ holds for
small� > 0 (recall f ∈ C1). We claim that there exists some�0 > 0 with the property

g.x+ �d; y/ > 0 for all 0< � ≤ �0 andy ∈ Y

showing thatx cannot be a local minimizer. Suppose that the claim is false. Then to
eachk≥ 1 there exists some 0< �k < 1=k and someyk ∈ Y such thatg.x+ �kd; yk/≤

0. SinceY is compact, there must exist some convergent subsequence.�ks; yks/ such
that �ks → 0 andyks → y∗ ∈ Y. The continuity ofg then yields g.x+ �ksd; yks/→

g.x; y∗/ , which implies g.x; y∗/ = 0 andy∗ ∈ Y0.x/ . On the other hand, the Mean
Value Theorem provides us with numbers 0< �̂ks < �ks such that

0≥ g.x+ �ksd; yks/− g.x; yks/ = �ks∇xg.x+ �̂ksd; yks/d

and hence∇xg.x+ �̂ksd; yks/d ≤ 0. So the continuity of∇xg entails

∇xg.x; y∗/d= lim
s→∞
∇xg.x+ �̂ksd; yks/d ≤ 0 ;

which contradicts the hypothesis ond.
2
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THEOREM 1. [First order sufficient condition]Let x be feasible for P. Suppose that
there does not exist a vector0 6= d ∈ Rn satisfying

∇ f .x/d ≤ 0 ; ∇xg.x; y/d ≥ 0; ∀y ∈ Y0.x/ :

Thenx is a strict local minimizer of SIP of order p= 1.

Proof. If x is an isolated feasible point than the result is trivially fulfilled. If not then,
it is not difficult to see that the setK.x/ := {d ∈ Rn

| ‖d‖ = 1;∇xg.x; y/d ≥ 0; ∀y ∈
Y0.x/ } is nonempty. (Consider with a sequence ofxk ∈ F , xk→ x, an accumulation
point d of .xk− x/=‖xk− x‖). SinceK.x/ is also compact, the value

c1 = min
d∈K.x/

∇ f .x/d

is attained by somed′ ∈ K.x/. By assumption,c1 = ∇ f .x/d′ > 0 holds. Fix any
0 < c < c1. We claim that there is some" > 0 with the property

(11) f .x/− f .x/ ≥ c ‖x− x‖ for all x ∈ F ; ‖x− x‖ < " :

Suppose to the contrary that this claim is false and there is an infinite sequence of
feasible pointsxk→ x with the propertyf .xk/− f .x/ < c ‖xk− x‖. We writexk =

x+ �kdk with �k > 0 anddk ∈ S= {d ∈ Rn
| ‖d‖ = 1}. Then,xk→ x implies�k→ 0.

Moreover, the compactness ofS ensures that some subsequence of.dk/ converges.
Without loss of generality, we thus assumedk→ d, d ∈ S.

The differentiability assumption together with the feasibility conditiong.xk; y/ ≥ 0
and the propertyg.x; y/ = 0 implies

c |�k| > f .xk/− f .x/ = �k∇ f .x/dk + o.|�k|/ ;

0 ≤ g.xk; y/− g.x; y/ = �k∇g.x; y/dk + o.|�k|/ ; y ∈ Y0.x/ :

Divide all these relations by�k. Lettingk→∞ (�k→ 0), we conclude that∇g.x; y/d≥
0; i.e., d ∈ K.x/ and∇ f .x/d≤ c. This contradicts our choice ofc< c1. So (11) must
be true.

2

REMARK. The assumptions of Theorem 1 are rather strong and can be expected to hold only
in special cases (in Chebyshev approximationcf. e.g. [11]). It is not difficult to see that the
assumptions imply that the set of gradients{∇xg.x; y/ | y ∈ Y0.x/ } contain a basis ofRn. So
in particular |Y0.x/| ≥ n .

We introduce someconstraint qualifications. We say that theLinear Independenceconstraint
qualification holds atx ∈ F if

∇xg.x; y/; y ∈ Y0.x/; are linearly independent

The (weaker)Mangasarian Fromovitz CQ(MFCQ) is said to hold atx if with somed ∈ Rn

(12) ∇xg.x; y/d > 0; ∀y ∈ Y0.x/ :

More general sufficient optimality conditions need second order information.

We now derive the famousFritz John (FJ) and theKarush-Kuhn-Tucker(KKT) optimality
conditions.
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THEOREM 2. [Dual Necessary Optimality Conditions]Let x be a local minimizer of P. Then
the following holds.

(a) There exist multipliers�0; �1; : : : ; �k+1 ≥ 0 and indices y1; : : : ; yk+1 ∈ Y0.x/, k≤ n,
such that

∑k+1
j=0� j = 1 and

(13) �0∇ f .x/−
k+1∑
j=1

� j∇xg.x; y j / = 0 : (FJ- condition)

(b) If MFCQ holds atx, then there exist multipliers�1; : : : ; �k≥ 0and indices y1; : : : ; yk ∈

Y0.x/, k≤ n, such that

(14) ∇ f .x/−
k∑

j=1

� j∇xg.x; y j / = 0 : (KKT-condition)

Proof. Consider the setS= {∇ f .x/} ∪ {−∇xg.x; y/ | y ∈ Y0.x/} ⊆ Rn. Sincex is a local
minimizer of P, there is no strictly feasible descent directiond at x (cf. Lemma 3). This
means that

there is nod ∈ Rn with dTs< 0 for all s∈ S :

Now Y0.x/ is compact. Therefore (by continuity of∇xg.x; ·/) alsoS is compact. By Lemma 9
it follows 0 ∈ conv S. In view of Caratheodory’s Lemma 7, 0 is a convex combination of at
mostn+ 1 elements ofS, i.e.,

(15)
k∑

j=0

� jsj = 0 sj ∈ S; � j ≥ 0;
k∑

j=0

� j = 1 with k≤ n ;

which implies (a).

Now assume thatd ∈ Rn is a strictly feasible direction atx )i.e., MFCQ holds). For statement
(b) it suffices to show:�0 6= 0 in the representation (a) (as division by�0 > 0 in (13) yields
a representation of type (14)). Suppose to the contrary that�0 = 0 is true, and multiply (13)
with d. Since� j > 0 holds for at least onej ≥ 1, we obtain the contradiction

0 > −

k+1∑
j=1

� j∇xg.x; y j /d= 0Td= 0 :

2

REMARK 2. Note that the results of this section in particular remain true for a finite program.
In fact, given a finite program (see (7), we only have to chose a finite setY= {y1; : : : ; ym} and
to identify g.x; y j / := g j .x/; j = 1; : : : ;m.

EX . 3. Assume thatx ∈ F is a KKT-point such that (14) holds withk= n linear independent
vectors∇xg.x; y j /; j = 1; : : : ;n, (LICQ) and� j > 0. Show that then the sufficient conditions
of Theorem 1 are satisfied.

5. CONVEX AND LINEAR SEMI-INFINITE PROGRAMS.

5.1. Convex SIP. The semi-infinite program is calledconvexif the objective functionf .x/
is convex and, for every indexy ∈ Y, the constraint functiongy.x/ = g.x; y/ is concave (i.e.,
−gy.x/ is convex).
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EX . 4. It is not difficult to show that for a convex SIP the feasible set is convex and that any
local minimizerx is a global minimizer. Moreover, (ifg∈ C1) the existence of a MFCQ vector
d at a feasible pointx is equivalent with the Slater condition: There exists a feasible pointx̂
such thatg.x̂; y/ > 0 for all y ∈ Y.

Recall that a local minimizer of a convex program is actually a global one (see Ex. 4). As in
finite programming, the KKT-conditions are sufficient for optimality.

THEOREM 3. Assume that the SIP problem P is convex. Ifx is a feasible point that satisfies
the Kuhn-Tucker condition (14), thenx is a (global) minimizer of P.

Proof.By the convexity assumption, we have for every feasiblex andy ∈ Y0.x/ (cf. Lemma 8)

f .x/− f .x/ ≥ ∇ f .x/.x− x/

0≤ g.x; y/ = g.x; y/− g.x; y/ ≤ ∇xg.x; y/.x− x/ :

Hence, if there are multipliers� j ≥ 0 and index pointsy j ∈ Y0.x/ such that∇ f .x/=
∑k

j=1� j∇xg.x; y j /,
we conclude

f .x/− f .x/ ≥ ∇ f .x/.x− x/ =
k∑

j=1

� j∇xg.x; y j /.x− x/ ≥ 0 :

2

5.2. Linear SIP. An important special case of (convex) SIP is given by thelinear semi-infinite
problem(LSIP), where the objective functionf and the functiong are linear inx:

(16) P: min
x

cTx s.t. aT
y x≥ by ∀y ∈ Y :

For an intensive treatment of LSIP we refer to the monograph [9]. Here we only derive strong
duality results.

Recall that any convex optimization problem

min
x

cTx s.t. x ∈ F ; F ⊂ Rn a closed convex set;

can be written as a LSIP. LSIP is said to be continuous, ifY is compact and the functions
y→ ay = a.y/; y→ by = b.y/ are continuous onY.

EX . 5. Let P be a continuous LSIP. Show that the function'.x/ :=miny∈Y{a.y/Tx− b.y/} is
concave. So LSIP can be written as a convex program:min cTx s.t.'.x/ ≥ 0.

Assume from now on that LSIP is continuous. We also write (16) formally in the familiar form

(P) min
x

cTx s.t. Ax≥ b ;

whereA is a matrix with infinitely many rowsaT
y , y ∈ Y andb is a vector with infinitely many

componentsby. We now define the (so-called Haar)dualof (P) as

(D) max
u

bTu s.t. ATu= c; u≥ 0 ;

with the following understanding:u = .uy/ is dual feasibleif uy ≥ 0, y ∈ Y anduy > 0 for
only finitely many y∈ Y. SobTu=

∑
y byuy is actually a finite sum and so isATu=

∑
y ayuy.

Note that, by definition,

(17) (D) is feasible ⇐⇒ c ∈ cone{ay | y ∈ Y}:



10 GEORG STILL

The optimal objective function values of (P) and (D) will be denoted byvP andvD.

REMARK. Recall from Caratheodory’s Lemma 7 that the sumc=
∑

y ayuy can be expressed
as sums with at mostn non-zero coefficientsuy.

As in LP, if x ∈ Rn andu= .uy/ are primal resp. dual feasible, then

cTx− uTb= uT.Ax− b/ =
∑

y

uy.a
T
y x− by/ ≥ 0:

THEOREM 4. (Weak duality, complementary slackness)If x and u are primal resp. dual
feasible, then cTx≥ bTu. If cx

= bTu then x resp. u are optimal withvP = vD.

We emphasize that in contrast to ordinary (finite) linear programs, linear semi-infinite problems
do not necessarily have the strong duality property unless additional constraint qualifications
hold (cf. Ex.6). A further notable difference to finite linear programming is the fact that the ex-
istence of primal and dual feasible solutions need not imply the existence of optimal solutions
(cf. Ex. 7). To assuree.g. the existence of an optimal solution of (P) we may assume strict
feasibility of the dual program.

The Slater constraint qualificationfor (P) assumes the existence of a strictly feasible primal
solution (Slater point, see also Ex. 4):

(SCP) There exists somêx ∈ Rn with Ax̂ > b :

We also strengthen the dual feasibility condition (17) to thedual Slater condition:

(SCD) c ∈ int cone{ay | y ∈ Y}.

One can show that a feasible LSIP has an minimal solution if the condition SCD is fulfilled.
This leads to the following strong duality result (seee.g., [6] for a proof).

THEOREM 5 (Strong duality). Assume that the Slater conditions (SCP) and (SCD) are sat-
isfied, i.e., (P) and (D) are strictly feasible. Then optimal primal and dual solutionsx andu
exist, andvP = vD holds.
Moreover in this casex is an optimal solution of (P) if and only ifx is a KKT-point,i.e., there
exist a dually feasibleu satisfyinguy j ≥ 0 for y j ∈ Y0.x/; j = 1; : : : ; k, k≤ n, anduy = 0
otherwise, such that

c=
k∑

j=1

uy j ay j :

In particular uT.Ax− b/ = 0.

EX . 6. Let � > 0 be fixed. ShowvP = 0 andvD = � and that neither the primal nor the dual
Slater condition is satisfied for the linear (SIP)

min −x2 s.t. − y2x1− yx2 ≥ 0 ; y ∈ Y= [0;1] and x2 ≤ � :

EX . 7. Show thatF = {.x1; x2/ | x2 ≥ ex1 for x1 ≤ 0 and x2 ≥ x1+ 1 for x1 ≥ 0} is the feasi-
ble set of the (LSIP)

.P/ min x2 s.t. − yx1+ x2 ≥ y.1− ln y/; y ∈ Y= [0;1] :

Show furthermore: (D) is feasible and (P) satisfies the primal Slater condition but does not
have an optimal solution. (Consequently, (SCD) cannot be satisfied).
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5.3. Linear semidefinite programs. A semidefinite program(SDP) is of the type

(18) .P/ : min
x∈Rn

cTx s.t.
n∑

i=1

Ai xi − B� 0 (positive semidefinite);

whereB; A1; : : : ; An ∈ Sk×k are givenk× k matrices.Sk×k denotes the set of (real) symmetric
k× k matrices. By the following trick a semidefinite program can be transformed into an LSIP.
Recall that forS= .si j / ∈ Sk×k the relation

(19) S� 0 ⇔ yT Sy=
∑
i; j

si j yi y j ≥ 0 ∀y ∈ Y := {y ∈ Rk
| ‖y‖ = 1}

holds. So we may state (18) equivalently as

(20) min
x

cTx s.t. a.y/Tx− b.y/ ≥ 0 ∀y ∈ Y

with
a.y/T

=
(
yT A1y; : : : ; yT Any

)
and b.y/ = yT By :

Let us denote the inner product of (k× k)-matricesC = .ci j / and D = .di j / by C ◦ D =∑k
i; j=1 ci j di j . Then it is not difficult to see that the LSIP dual of (20) can be written in the form

(see [6])

(21) .D/ : max
U

B◦U s.t. Ai ◦U = ci ; i = 1; : : : ;n; U � 0:

The primal Slater condition takes the form:

(SCP) There existŝx ∈ Rn s.t.
∑

Ai x̂i − B� 0;

whereS� 0 indicates thatS is a positive definite matrix. Moreover it is not difficult to show
(cf. [6]) that the dual slater condition can be written as

(SCD) there existsU � 0 such thatAi ◦U = ci ; i = 1; : : : ;n:

So in principle, optimality and duality results for SDP can directly be deduced from the corre-
sponding results in LSIP. We obtain in this way (see [6] for a proof)

COROLLARY 1 (Strong duality). Assume that the Slater conditions (SCP) and (SCD) are sat-
isfied, i.e., (P) and (D) are strictly feasible. Then optimal primal and dual solutionsx andU
exist, andvP = vD holds.
Moreover in this casex is an optimal solution of (P) if and only if there exist a dually feasible
U satisfyingU · .

∑
i Ai xi − B/ = 0.

As a consequence of the previous considerations, the optimality conditions and duality results
for these special cone constrained programs are easily obtained from the general theory for
LSIP (cf. e.g.[6]).

Second order Cone programming.Similarly we discusssecond order conic programs

(SOP) min c>x s.t. u := Ax− b ∈ Lm;

whereLm denotes the Lorentz cone

Lm := {u ∈ Rm
| um≥ .u2

1+ : : :+ u2
m−1/

1=2
}:
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Defineũ= .u1; : : : ;um−1/ and observe the identity

‖ũ‖ = max
ỹ∈Rm−1; ‖ũ‖=1

ỹ>ũ:

So the conditionu ∈ Lm; or um ≥ ‖ũ‖; can be written asum− ỹ>ũ ≥ 0 ∀‖ỹ‖ = 1; and the
feasibility condition in SOP reads:

y>.Ax− b/ ≥ 0 or a.y/Tx≥ b.y/ ∀y ∈ Y= {y= . ỹ;1/ | ‖ỹ‖ = 1};

with ai .y/ = y>Ai , Ai the i-th column ofA andb.y/ = y>b.

5.4. Complexity issues.As a first general observation we emphasize that, from the numerical
viewpoint, SIP is much more difficult than FP. The main reason is the difficulty associated with
the feasibility test forx. In a finite program,

FP : min
x

f .x/ s.t. g j .x/ ≥ 0 ∀ j ∈ J = {1;2; :::;m};

we only have to computem function valuesg j .x/ and to check whether all these values are
nonnegative. In SIP, checking the feasibility ofx is obviously equivalent to solve the global
minimization problemQ.x/ in the y variable:

(22) Q.x/ : min
y

g.x; y/ s.t. y ∈ Y;

and to check whether for a global solutiony the conditiong.x; y/ ≥ 0 holds.
Note that, even for the LSIP, the problemQ.x/ is not in general a convex problem. As a con-
sequence of this fact, the LSIP problem cannot be expected to be solvable in polynomial time.
However, there are special subclasses of linear or convex semi-infinite programs which can be
solved polynomially. Interesting examples are semidefinite and second order cone program-
ming, as well as certain classes of robust optimization problems [2]. We refer to [25] for an
extensive treatment of this issue.
Here for shortness we will try to motivate the fact that SDP can be solved efficiently from
the viewpoint of the ellipsoid method. Firstly, we emphasize that it is not difficult to see that a
convex program can be solved efficiently if the corresponding feasibility problem can be solved
efficiently. To find a feasible pointx ∈ F , the ellipsoid method proceeds as follows.

Ellipsoid Method

INIT: Start with a (sufficiently large) ellipsoidE0 so thatF ∩ E0 6= ∅.

ITER: Given the ellipsoidE j = {x | .x− x j /
T A j .x− x j / ≤ 1}, A j � 0, such that

F ∩ E j = F ∩ E0

(1) if x j ∈ F STOP

(2) OTHERWISE: compute a separating halfspaceH≥j such that
F ⊆ H≥j ; x j =∈ H≥j .
and find (the smallest) ellipsoidE j+1 with vol E j+1 ≤ q vol E j .0 < q < 1/
containingE j ∩ H≥j and thusF ∩ E0 .
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So the Ellipsoid Method generates ellipsoidsE0; E1; : : : with the property

vol .F ∩ E0/ ≤ vol E j <≤ q jvol E0 → 0 :

Hence, if 0< vol .F ∩ E0/, it is clear that the algorithm will find a pointx j ∈ F after a finite
number of iterations.
The overall ellipsoid method can be shown to be polynomial if the feasibility testx∈ F in step
(1) and the construction of a separating halfspace in step (2) can be done in polynomial time.
To consider the special case of SDP letG.x/ :=

∑n
i=1 Ai xi − B ∈ Sk×k.

L EMMA 4. The feasibility test G.x/ � 0 and the construction of a separating halfspace can
be done in timeO.k3/.

Proof. It is well-known that by applying a modification of the Gauss algorithm toG = G.x/
we can compute, in timeO.k3/, a decomposition

QGQT
= D with Q regular andD = diag.d1; : : : ;dk/;

such thatG � 0 if and only if di ≥ 0; ∀i. So if di ≥ 0; ∀i, the pointx is feasible. If not
sayd1 < 0, than by defininga1 = QTe1 (e1 the unit vector) it follows for all feasiblex, i.e.,
G.x/ � 0:

aT
1 G.x/a1 ≥ 0 > d1 = eT

1 De1 = eT
1 QGQTe1 = aT

1 Ga1 :

So the linear inequalityaT
1 G.x/a1 =

∑n
i=1.a

T
1 Aia1/xi − aT

1 Ba1 ≥ 0 defines a separating half-
space.

2

Ex. Show for SOC: The feasibility test and the construction of a separating hyperplane for
someu =∈ Lm is easily done.

Special case g linear in y. We consider the special case of a SIP with linear (or convex)
objective and constraint function of the form

g.x; y/ = a.x/T y− b.x/ ≥ 0 ∀y ∈ Y

So x is feasible if:

'.x/ := min
y∈Y

a.x/T y− b.x/ ≥ 0

SupposeY is given by a ball sayY= {y | ‖y‖ ≤ 1}. By observing the relation

min
‖y‖=1

aT y− b = aT
[
−

a
‖a‖

]
− b= −‖a‖ − b≥ 0

we find by using a result of Schur:

−‖a‖ ≥ b⇔

(
−b · I a

aT
−b

)
psd.

Consequently ifa.x/ = Ax; b.x/ = bTx are linear in x the feasibility test'.x/ ≥ 0 becomes
the constraint of a SDP, and the SIP problem is equivalent to a (linear) semidefinite program.
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Ex. Suppose thatY is given by (the ellipsoid)Y= {y ∈ Rm
| .y− y0/

T Q−1.y− y0/ ≤ 1} with
a positive definite matrixQ= CCT. Then the constraint

'.x/ := min
y∈Y

a.x/T y− b.x/ ≥ 0

is equivalent to the SDP constraint(
−�.x/ · I Ca.x/
a.x/TC −�.x/

)
is positive semidefinite

where�.x/ = .b.x/− a.x/T y0/

In the case of SOC programming the feasibility test (and the construction of a separating hy-
perplane) is trivially polynomial.

6. A PRIMAL -DUAL INTERIOR POINT METHOD

It is well-known that interior point methods lead to polynomial solution methods for solving
LP problems.
On has tried to extend this method to LSIP. In this section we will discuss such an extension.
Essentially it is the approach discussed in Tuncel/Todd [24]. We however present this approach
in a different and shorter form. We describe a version of the interior point method based on the
pair of primal and dual programs.
We will see however that the extension to LSIP (at the current state) seem only of theoretical
value because it relies (see also [24]) on an assumption which cannot be verified a priori.
Consider the linear program

(23) .P/ max cTx s:t: Ax + s= b

and its dual

(24) .D/ min bTz s:t: ATz= c and z≥ 0

with A ∈ Rm×n, c ∈ Rn andb ∈ Rm (m constraints).

The strong duality property of linear programs says that feasible solutionsx for (23) andz for
(24) are optimal if and only if they satisfy the complementary slackness conditionzjsj = 0 for
j = 1; : : : ;m. So we seek to findz≥ 0, s≥ 0 andx solving the system of equations

(25)
Ax + s = b

ATz = c
zjsj = 0 ; j = 1; : : : ;m:

Suppose we can find feasible solutionsx andy that satisfy complementary slackness ”approx-
imately” in the sense that

(26) zjsj = � for j = 1; : : : ;m

holds for some� > 0. Then the solutions might still be acceptably good if� is sufficiently
small (� < "=m, say). Indeed, we observe for the associated duality gap:

(27) 0≤ bTz− cTx = zTs=
m∑

j=1

zjsj = m� < " :
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Note that� > 0 in (26) implieszj > 0 andsj > 0 for all j, i.e., z > 0 ands > 0. So we
are dealing with primal and dual solutions that lie in the (relative)interior of the respective
feasibility regions.

We therefore want to determine a solutionz > 0; s> 0, andx of theperturbed system

(28)
Ax + s = b

ATz = c
zjsj = � ; j = 1; : : : ;m:

for the parameter� > 0.

In the following, we assume that there existstrongly feasiblesolutionsz, z of (23) and (24),i.e.,
z> 0 ands= c−ATx > 0. Furthermore, we always assume that the matrixA ∈ Rm×n has full
rankn (after having removed redundant equations if necessary). Sox is uniquely determined
by s.

Remark. Assuming that strictly feasible primal and dual solutions exist it can be shown that
for any� > 0 there is a unique solution.x.�/;z.�/;s.�// (central path) of (28)

The idea of the method is to construct a sequence of values�k ↓ 0 together with (approximate)
solutions.xk;yk;sk/ of (28) for� = �k.

We now extend the previous analysis to linear semi-infinite programs and introduce the short
hand notation

Ax≡ a. j/Tx b≡ b. j/ = b j j ∈ Y
bTz≡

∫
Y b j zj dj P :=

∫
Y 1 · dj

Here for convenience, we have replaced the index variabley by j. Moreover (as in [24]) we
assumeai ; s; z ∈ C.Y/ and that the functionsa1. j/; : : : ;an. j/ are linear independent onY.
Note that at least for the limit� = 0 the assumptionz∈ C.Y/ is unrealistic because we expect
the solutionz of D to be a point functional.
With this definitions, P and D also represent a pair of primal and dual linear semi-infinite
programs. Moreover the equations (25) and (28) make sense for LSIP if the third equation
(i.e., (26) is replaced byzjsj = 0 (or= �) for all j ∈ Y. The weak duality relation (27) then
becomes

0≤ bTz− cTx= zTs=
∫

Y
z. j/s. j/dj =P�

In what follows we give the whole proof for the LP case and only note the modifications needed
for LSIP.

6.1. Newton Steps.We wish to solve the system (28) for fixed�. The problem is that, due
to the quadratic equationszjsj = �, the system is nonlinear. So we may apply the Newton
method.

At this point, it is useful to introduce the following shorthand notation for any vectorsu;w ∈
Rn:

uw = .u1w1; : : : ;umwm/
T
| = u jw j

w−1
= .1=w1; : : : ;1=wm/

T
| = 1=w j√

u = .
√

u1; : : : ;
√

um/
T

| =
√

u j

µ = .�; : : : ; �/ | = �

j ∈ Y in case of LSIP

With this notation, for example, we can writeuTw = 1T.uw/.
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The Newton method for solving the system (28) consists of computing solutions.1x;1z;1s/
of the linear equation

(29)
A1x+1s = 0

AT1z = 0
s1z+ z1s = µ− zs:

leading to the next iterate.x+;z+;s+/ = .x;z;s/+ .1x;1z;1s/.

PROPOSITION 1. For everyz > 0 and s> 0, the system (29) of linear equations admits a
unique solution.1x;1z;1s/.

Proof.The first two equations in (29) state1z ∈ kerAT and1s∈ row AT. The third equation
is equivalent with

√

sz−11z+
√

zs−11s=
µ− zs
√

zs
:

Pre-multiplying the vectors in each of the subspaces kerAT and rowAT with the fixed positive
vectors

√
sz−1 resp.

√
zs−1 , we obtain the linear subspaces

(30)
U = {

√
sz−11z|1z ∈ kerAT

} with dim U = m− rankA
V = {

√
zs−11s|1s∈ row AT

} with dim V = rankA:

Since kerAT and rowAT are complementary orthogonal subspaces, so areU andV. Indeed,
for u =

√
sz−11z andv =

√
zs−11s we haveu jv j = 1zj1sj and hence

(31) uv = 1z1s and uTv = 1zT1s= 0:

So every vector inRm can be (uniquely) written asu+ v with u ∈ U (its projection ontoU)
andv ∈ V (its projection ontoV = U⊥). In particular, there existu ∈ U andv ∈ V with

(32) u+ v =
µ− zs
√

zs
:

Hence also1z and1s are uniquely determined, and1z follows (uniquely) fromAT1z =
−1s. (Recall thatA has full row rankn by assumption).
The proof in the LSIP case follows in a similar way by using a result in [3, Th.4.1]. �

The triple .1x;1z;1s/ is said to be aNewton stepif it solves (29). The Newton step is
feasibleif

z+ = z+1z > 0 and s+ = s+1s> 0 :

Convergence of Newton Steps.Ideally, we would like to have the Newton step.1x;1z;1s/
to yieldz+s+ = µ. However, we only obtain

(33) z+s+ = µ+1z1s .= µ+ uv by (31)/

As a consequence of (33), we observe

.z+/Ts+ = 1T.z+s+/ = 1Tµ+ 1T.1z1s/ = m�+1zT1s = m�(34)

= P� for LSIP:(35)

Hence, provided the Newton step is feasible,.z+;s+/ yields a strictly feasible primal-dual pair
of solutions with duality gapm� or P� (even ifz+s+ 6= µ).
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The next inequality between the max-norm and the Euclidian norm is essential for obtaining
the polynomiality of the interior point method. Foru;v ∈ Rm it trivially follows

|u jv j | ≤ .
∑

.u jv j /
2/1=2

= ‖uv‖ :

Unfortunately such a bound is not generally valid in (the infinite dimensional space)C.Y/. For
the LSIP case we however have to make the following assumption (see also [24]) which cannot
be verified a priori.

AS.All vectorsu=
√

sz−11z andv=
√

zs−11s (satisfyingu jv j =1zj1sj) computed during
the interior point method satisfy with some constantC, 1≤ C <∞:

(36) |u jv j | ≤ C‖uv‖ for all j ∈ Y :

We now measure the quality of an approximationzs≈ µ by taking the relative (squared) Eu-
clidean distance from the central path

� = �.z;s; �/ =
C2

�

∥∥∥∥zs−µ
√

zs

∥∥∥∥2

=
C2

�
‖u+ v‖2 with

C= 1 for LP
C as in (36) for LSIP

whereu ∈ U andv ∈ V are as in (32). We can now make our previous remark precise: If
zs≈ µ , then z+s+ is an even better approximation toµ.

THEOREM 6. Let AS hold for LSIP. Then for� = �.z;s; �/ ≤ 1 in the Newton iteration it
follows:

(a) .1x;1z;1s/ is a feasible Newton step.
(b) �+ = �.z+;s+; �/ ≤ 1

2�
2.

Proof. By the auxiliary Lemma 5 below, we have for each componentj (in both cases LP
(C= 1) and LSIP (see (36) )

|1zj1sj | = |u jv j | ≤ C‖uv‖ ≤
C
2
‖u+ v‖2 =

1
2C

�� ≤ �=.2C/:

Hence usingC ≥ 1, (33) yieldsz+s+ ≥ µ=2, which implies (again by Lemma 5 below):

�+ =
C2

�

∥∥∥∥z+s+ −µ
√

z+s+

∥∥∥∥2

≤
C2

�

∥∥∥∥ uv
√
�=2

∥∥∥∥2

≤
2C2

�2 ·
1
4
‖u+ v‖4 =

1
2
�2 :

To show feasibility of the Newton step, suppose to the contrary thatz+j < 0 holds. In view
of z+s+ ≥ µ=2 > 0, then alsos+j < 0 must hold. But.1x;1z;1s/ is a Newton step. (29)
therefore implies

� = zjsj + zj1sj + sj1zj = zjs
+

j + sj z
+

j − sj zj < 0 ;

a contradiction.
�

L EMMA 5. Letu;v ∈ Rn ( or ∈ C.Y/) be orthogonal. Then

‖uv‖ ≤
1
2
‖u+ v‖2 :



18 GEORG STILL

Proof.The general identity 4�� = .�+ �/2− .�− �/2 yields

4|u jv j | = |.u j + v j /
2
− .u j − v j /

2
| ≤ .u j + v j /

2
+ .u j − v j /

2 :

Summation overj = 1; : : : ;n (or integration overj ∈ Y) gives

4‖uv‖ ≤ 4
∑

j

|u jv j | ≤ ‖u+ v‖2+ ‖u− v‖2 :

The claim follows by observing that‖u+ v‖ = ‖u− v‖ for orthogonalu andv.
�

6.2. The Algorithm IPM. Theorem 6 has important algorithmic implications. Statement (b)
indicates that�.z;s; �/ converges quickly to 0 (and hence.x;z;s/ to a solution of (28)). Since
we really would like to solve (28) with� > 0 as small as possible, the question arises whether
we could decrease the parameter� after each Newton iteration.

Consider an arbitrary 0< � < 1 and assume�.z;s; �/ ≤ 1. By (34) we have.z+/Ts+ =
‖
√

z+s+‖2 = m� (or= P�), so we compute in the LP case :

�.z+;s+; ��/ =
1
��

∥∥∥∥z+s+ − �µ
√

z+s+

∥∥∥∥2

=
1
��

∥∥∥∥.1− �/
√

z+s+ + �
z+s+ −µ
√

z+s+

∥∥∥∥2

=
1
��
‖.1− �/

√
z+s+‖2+

1
��

∥∥∥∥�z+s+ −µ
√

z+s+

∥∥∥∥2

=
.1− �/2

�
m+ ��.z+;s+; �/

≤
.1− �/2

�
m+

�

2
(by Theorem 6):

(The third equation above uses‖a+ b‖ = ‖a‖+ ‖b‖ for a⊥ b.) For LSIP we obtain the same
in equalities withm replaced bym= C2P.

For the choice�∗ = 1−
1
m

we find the bound

(37) �.z+;s+; ��/ ≤
1

m− 1
+

�∗

2
≤ 1 (if m> 2) :

So Theorem 6 guarantees that the Newton steps will remain feasible even when we reduce the
current value of� > 0 by the factor�∗ in each iteration!

This discussion suggests the following algorithm, which will compute an approximately op-
timal solution of the linear program.23/. To start the algorithm, we assume to have at our
disposal a primal feasible vectorx0, a vectorz0 and a parameter�0 > 0 with the properties

(i) z0 > 0.
(ii) s0 = b−Ax0 > 0.

(iii) �.z0;s0; �0/ ≤ 1.

In every iteration, the algorithm computes a feasible Newton step.1x;1z;1s/ with respect
to the current parameters.z;s; �/ and then reduces� by the factor�∗. As a stopping criterion,
we use a precision parameter" > 0 (which can be chosen freely).
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Algorithm IPM

INIT: z← z0 ; s← s0 ; �← �0 ;
ITER: Compute a solution.1x;1z;1s/ of (29) and update

z ← z+1x ;
s ← s+1s ;

IF m� ≤ " (or P� ≤ ") STOP, ELSE� ← �∗� .

By (37) and Theorem 6 every Newton step is feasible. When the algorithm stops, the current
solution satisfies

bTz− cTx = zTs = m� ≤ " .or= P� ≤ " for LSIP/ :

So we have found a solutionx for the linear program (23) whose objective function valuecTx
differs by at most" from the optimum. We call such a solution"-approximate.

The total numberK of iterations of algorithm IPM can be estimated. From the general inequal-
ity 1+ x≤ ex we find.�∗/m= .1− 1=m/m≤ e−1. So� shrinks by at least a factore−1 in any
m subsequent iterations. Consequently, after

(38) K ≤ m · ln
�0m
"

. with m= C2P for LSIP/

iterations, the current� = .�∗/K�0 will satisfy the stopping criterion� ≤ "=m (or � ≤ "=P
in the LSIP case). So we have obtained a polynomial (in the number of Newton steps) approx-
imation algorithm, which for LSIP however assumes that AS holds.

7. DISCRETIZATION METHODS

In a discretization method we choose finite subsetsY′ of Y, and instead ofP≡ P.Y/ we solve
the finite programs

P.Y′/: min f .x/ s.t. g.x; y/ ≥ 0; ∀y ∈ Y′ :

Let v.Y′/, F .Y′/ andS.Y′/ denote the the minimal value, the feasible set and the set of (global)
minimizers ofP.Y′/ respectively. We introduce the Hausdorff distance (meshsize)�.Y′/ be-
tweenY′ andY by

�.Y′/ := max
y∈Y

dist .y;Y′/ where dist.y;Y′/ = min
y′∈Y′
‖y− y′‖ :

The following relation is trivial but important:

(39) Y2 ⊂ Y1 ⇒ F .Y1/ ⊂ F .Y2/ andv.Y2/ ≤ v.Y1/ :

We consider the discretization concept: P.Y/ is said to bediscretizableif for each sequence of
finite gridsYk ⊂ Y satisfying�.Yk/→ 0 (for k lage enough) there exist solutionsxk of P.Yk/

and for each sequence of solutions the relation

dist.xk; S.Y//→ 0 and v.Yk/→ v.Y/
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holds. To treat non-convex problems we also introduce a local concept. Given a local mini-
mizerx of P.Y/ the SIP is called locally discretizable atx if the discretizability relation holds
locally, i.e. if the problemPl .Y/,

Pl .Y/ : min
x∈Ux

f .x/ s.t. g.x; y/ ≥ 0 ∀y ∈ Y ;

obtained as the restriction ofP.Y/ to an open neighborhoodUx of x, is discretizable.
We give an illustrative example.

EXAMPLE 1. Consider the linear SIP (with some fixed" > 0):

min x1 s.t.x1 cosy+ x2 siny≥ 1; y ∈ Y :=

{
[�;3�=2] case A

[�− ";3�=2] case B

The minimizer of P.Y/is x= .−1;0/.

Case A:The problem is not discretizable (only weakly discretizable). For a gridY′ containing
y = � we havev.Y′/ = v.Y/. On the other hand for anyY′ not containing� the value is
unbounded,v.Y′/ = −∞.
Case B:The problem is discretizable as is easily shown. Note that in case B the condition
c ∈ int cone{a.y/ | y ∈ Y} is satisfied but not in case A (cf. also Theorem 8).

The following algorithm is based on the concept of discretizability.

Algorithm 1 (Conceptual discretization method)

Step k:Given a discretizationYk ⊂ Y

i. Compute a solutionxk of P(Yk).
ii. Stop, if xk is feasible within a fixed accuracy� > 0, i.e.g.xk; y/ ≥ −�;

y ∈ Y. Otherwise, select a finer discretizationYk+1 ⊂ Y.

Under a compactness assumption on the feasible sets we obtain a general convergence result
for this method. We begin with linear and convex problems.

THEOREM 7. A convex SIP is discretizable if the feasible set F.Y/ is compact.

The following result on discretizability of LSIP is contained in [11, p. 70-75].

THEOREM 8. Let the LSIP problem P.Y/ be feasible and assume that the condition c∈
int cone{a.y/ | y ∈ Y} holds. ThenS .Y/ is non-empty and bounded, so a solution of P.Y/
exists. Moreover P.Y/ is discretizable.

The next result is valid for general SIP.

THEOREM 9. Let the sequence of discretizations Yk satisfy

Y0 ⊂ Yk ∀k≥ 1 and�.Yk/→ 0 for k→∞ :

SupposeF .Y0/ is compact. Then P.Y/ is discretizable,i.e., the problems P.Yk/ have solutions
xk and each such sequence of solutions satisfiesdist .xk;S .Y//→ 0.

Proof.By assumption and usingY0 ⊂ Yk ⊂ Y the feasible setsF .Y/, F .Yk/, of P.Y/, P.Yk/

respectively, are compact and satisfyF .Y/ ⊂ F .Yk/ ⊂ F .Y0/; k ∈ N. Consequently, so-
lutions xk of P.Yk/ exist. Suppose now that a sequence of such solutions does not satisfy
dist .xk;S .Y//→ 0. Then there exist" > 0 and a subsequencexk� such that

dist .xk� ;S .Y// ≥ � > 0 ∀� :
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Sincexk� ∈ F .Y0/ we can select a convergent subsequence. Without restriction we can assume
xk� → x; �→∞. In view of F .Y/ ⊂ F .Yk/ the relation f .xk� / ≤ v.Y/ holds and thus by
continuity of f we find

f .x/ ≤ v.Y/ :

We no show thatx ∈ S .Y/ in contradiction to our assumption. To do so it suffices to prove
that x ∈ F .Y/. Let y ∈ Y be given arbitrarily. Since�.Yk� /→ 0 for �→∞ we can choose
yk� ∈ Yk� , such thatyk� → y. In view of g.xk� ; yk� / ≥ 0, by taking the limit�→∞, it follows
g.x; y/ ≥ 0, i.e.x ∈ F .Y/.

2

We now consider discretizability for general (also nonlinear) semi-infinite problems. Here we
have to make use of the local concept. The following can be easily proven (e.g. in [22])

L EMMA 6. Let be given a sequence of grids Yk ⊂ Y with�k := �.Yk/→ 0.

(a) Let xk be points inF .Yk/ ∩ K, where K is a compact subset ofRn. Then there exists
c > 0 such that for all�k > 0 small enough

g.xk; y/ ≥ −c �k ∀y ∈ Y :

(b) Let MFCQ be satisfied atx with the vector d (cf. (12)). Then there exist numbers
� > 0; "1 > 0 such that for small�k the points x+ ��kd are feasible for P.Y/ for all
xk ∈ F .Yk/ with ‖xk− x‖ < "1.

THEOREM 10. Let x be a local minimizer of P.Y/ of order p≥ 1. Suppose MFCQ holds
at x. Then P is locally discretizable atx. More precisely, there is some� > 0 such that for
any sequence of grids Yk ⊂ Y with�.Yk/→ 0 and any sequence of solutions xk of the locally
restricted problem Pl .Yk) (see the definition of discretizability) the following relation holds:

(40) 0≤ f .x/− f .xk/ ≤ O.�.Yk// and ||xk− x|| ≤ � �.Yk/
1=p :

Proof. Consider the SIP restricted to the closed ball clB�.x/ with small � chosen such that
� < "; "1 (with " in (10) and"1 in Lemma 6) :

Pl .Yk/ : min f .x/ s.t. x ∈ F .Yk/∩ cl B�.x/ :

Obviously, sincex ∈ F .Yk/ andF .Yk/ ∩ cl B�.x/ is compact (and nonempty), a solutionxl
k

exists. Note thatx is the unique (global) minimizer of Pl .Y/. Put�k := �.Yk/ and consider
any sequence of solutionsxl

k of Pl .Yk/. In view of F .Y/ ⊂ F .Yk/ andxl
k + ��kd ∈ F.Y/ ∩

cl B".x/ (for largek, see Lemma 6(b)) we find

f .xl
k/ ≤ f .x/ ≤ f .xl

k+ ��kd/ :

Sincex is a minimizer of orderp (see 10) it follows

||xl
k+ ��kd− x||p ≤

1
q

(
f .xl

k+ ��kd/− f .x/
)
≤

1
q

(
f .xl

k+ ��kd/− f .xl
k/
)
= O.�k/ :

Finally, the triangle inequality yields

(41) ||xl
k− x|| ≤ ||xl

k+ ��kd− x|| + ||��kd|| = O.�
1=p
k / :

In particular||xl
k − x|| < � (for largek) such thatxl

k are (global) minimizers of the problem
Pl .Yk/ restricted to the open neighborhoodB�.x/.

2
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REMARK 3. Under additional assumptions on the quality of the discretizationsYk one can
prove a faster convergence than in (40). It has been shown in [22] that a convergence rate
||xk− x|| = O.�

2=p
k / occurs if the gridsyk of meshsizes�k are chosen in a special way.

Complexity of the Discretization Method. Let us shortly discuss the complexity of an ap-
proximation algorithm which solve the discretized LSIP problem by the interior point method.
Consider an LSIP and the corresponding discretized LP problems depending on the meshsize
� of the gridY�,

P.Y�/ min
x

cTx s.t.a.y/Tx≥ b.y/ ∀y ∈ Y�

Le x� be its solution. For simplicity we assumeY= [0;1]s. The numberm of gridpoints of a
grid Y� of meshsize� is (roughly) given by

m≈

(
1
�

)s

By the interior point method we can compute an approximationx� of x� such that

0≤ f .x�/− f .x�/ ≤ �

by a number of (basic) computation steps of orderO.m3 ln m
� / (see Section 6).

The discretization error betweenx� and a the solutionx of LSIP was bounded by

0≤ f .x/− f .x�/ ≤ C · � :

It is not difficult to show that such a constantC does not depend on�. So the overall
complexity for computingx� satisfying (assumeC ≥ 1)

| f .x�/− f .x/| ≤ C · d

is given by

O

(
s ·

(
1
�

)3·s

· ln
1
�

)
which is polynomial for fixeds. Note however that the computation work grows fast
with s.

7.1. Exchange method.We also outline theexchange methodwhich is often more
efficient than a pure discretization method. This method can be seen as a compromise
between the discretization method in Section 7.3 and the so-called reduction approach.

Algorithm 3 (Conceptual exchange method)

Step k:Given a discretizationYk ⊂ Y and a fixed, small value� > 0.

i. Compute a solutionxk of SIP(Yk).
ii. Compute local solutionsyi

k; i = 1; : : : ; ik (ik ≥ 1) of Q.xk/ (cf. (22)) such that
one of them, sayy1

k, is a global solution, i.e.,g.xk; y1
k/ = max

y∈Y
g.xk; y/

iii. Stop, if g.xk; y1
k/ ≥ −�, with a solutionx≈ xk. Otherwise, update

(42) Yk+1 = Yk ∪ {y
i
k; i = 1; : : : ; ik} :
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THEOREM 11. Suppose that the (starting) feasible setF .Y0/ is compact. Then, the
exchange method (with� = 0) either stops with a solutionx = xk0 of P.Y/ or the
sequence{xk} of solutions of P.Yk/ satisfiesdist .xk;S .Y//→ 0.

Proof. We consider the case that the algorithm does not stop with a minimizer of
P(Y). As in the proof of Theorem 9, by our assumptions, a solutionxk of P.Yk/ exists,
xk ∈ F .Y0/ and with the subsequencexk� → x we find

f .x/ ≤ v.Y/ :

Again we have to showx ∈ F or equivalently'.x/ ≥ 0 for the value function'.x/ of
Q.x/. In view of '.xk/ = g.xk; y1

k/ (see Algorithm 2, step ii) we can write

'.x/ = '.xk/+ '.x/− '.xk/ = g.xk; y1
k/+ '.x/− '.xk/ :

Sincey1
k ∈ Yk+1 we haveg.xk+1; y1

k/ ≤ 0 and by continuity ofg and' we find

'.x/ ≥
(
g.xk; y1

k/− g.xk+1; y1
k/
)
+
(
'.x/− '.xk/

)
→ 0 for k→∞ :

2

We refer to the review paper [8] for more details on this approach.

8. APPENDIX

This section contains some definitions and auxiliary results. A setC is calledconvexif

C contains with anyx; y∈ C also the wholeline segment[x; y] = {.1− �/x+ �y |0≤
� ≤ 1} : For an arbitrary setA⊂ Rn we define itsconvex coneby

coneA= {a=
k∑

j=1

� ja j | k≥ 1; a j ∈ A; � j ≥ 0} :

and itsconvex hullby

conv A= {a=
k∑

j=1

� ja j | k≥ 1; a j ∈ A; � j ≥ 0;
k∑

j=1

� j = 1} :

L EMMA 7. (Caratheodory)For A ⊂ Rn, each a∈ conv A can be represented as a
convex combination of (at most) n+ 1 vectors: a=

∑n+1
j=1 � ja j , and each element a∈

coneA as a conic combination of (at most) n vectors: a=
∑n

j=1� ja j

A function f : C→ R defined on a convex setC ⊂ Rn is calledconvexif for all
x; y ∈ C and 0≤ � ≤ 1,

f ..1− �/x+ �y/ ≤ .1− �/ f .x/+ � f .y/ :

L EMMA 8. A differentiable function f: C→ R (C⊂ Rn, open and convex) is convex
on C if and only if for any x; y ∈ C: f .x/ ≥ f .x/+∇ f .y/.x− y/ .
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L EMMA 9. [Generalized Gordan Lemma]Let A⊂ Rn be a compact set. Then exactly
one of the following alternatives is true.

(i) 0 ∈ conv A .
(ii) There exists some d∈ Rn such that aTd < 0 for all a ∈ A .

REFERENCES
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