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Abstract

Generalized semi-infinite optimization problems (GSIP) are considered. It is investigated
how the numerical methods for standard semi-infinite programming (SIP) can be extended
to GSIP. Newton methods can be extended immediately. For discretization methods the
situation is more complicated. These difficulties are discussed and convergence results for
a discretization- and an exchange method are derived under fairly general assumptions on
GSIP. The question is answered under which conditions GSIP represents a convex problem.
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1 Introduction

We are concerned withgeneralized semi-infinite optimization problemsof the form:

GSIP: min f .x/ subject to x ∈ M = {x ∈ IRn | g.x; y/ ≥ 0; y ∈ Y.x/}
with Y.x/ = {y ∈ IRr | ul .x; y/ ≥ 0; l ∈ L}

andL, a finite index set. If not stated otherwise, we assume that the functionsf; g;ul are twice
continuously differentiable and that the set valued mappingY satisfies

Y : IRn→ 2IRr
; Y.x/ ⊂ C0 for all x ∈ IRn with C0 ⊂ IRr compact. (1)

For the special case that the setY= Y.x/ does not depend onx, i.e. ul .x; y/ = ul .y/; l ∈ L, the
problem GSIP is a common semi-infinite problem and will be abbreviated by SIP. If moreoverY
is a finite set then GSIP reduces to a finite optimization problem.

For a function f .x/ the derivative will be denoted byDf .x/ (row vector) and for a function
h.x; y/ by Dxh; Dyh we denote the partial derivatives w.r.t. the variablesx; y. For brevity, we
omit equality constraints inM andY.x/.

Generalized semi-infinite problems have recently become a topic of interest. Optimality con-
ditions for GSIP have been developed in [5], [6], [10], [12]. The structure of the feasible set has

1



been investigated in [7], [11]. Some numerical aspects of GSIP are discussed in [12]. Numerical
algorithms for a special class of GSIP (terminal problems,y ∈ IR; r = 1) are considered in [8].
In [9], GSIP’s are studied with (in essence) functionsg.x; y/ = 1

2 yTGy+ aTy+ yT Hx; G; H,
matrices,ul .x; y/ = pT

l y+ ql.x/; pl ∈ IRr and convex functionsql ; f . By duality theory such
a problem is reduced to a non-convex finite optimization problem. However, a general study of
numerical methods for GSIP has not yet been done. With this paper we intend to make a first
step.

For applications of GSIP in robotics (maneuverability problem), optimal control (terminal
problem) and approximation theory (reverse Chebyshev problem) we refer to [3], [8] and [12].

The paper is organized as follows. In Section 2 the notation is introduced and optimality
conditions based on ‘local reduction’ are given for later purposes. In Section 3 it is shown that
the Newton-type methods can directly be generalized from SIP to GSIP. Section 4 is concerned
with discretization- and exchange methods. The difference between the situation in SIP and
GSIP is discussed. Convergence results for two types of algorithms are given under fairly natural
assumptions. A discussion how these assumptions can be fulfilled in practice is done. A forth-
coming paper will be concerned with numerical experiments on these algorithms. We do not
consider so-called ‘descent methods’. Section 5 investigates convex GSIP. Sufficient conditions
are given for GSIP to represent a convex problem.

2 Preliminaries

In this section we give some preliminaries and outline optimality conditions for GSIP based on
‘local reduction’. Forx ∈ M we define theset of active points

Y0.x/ = {y ∈ Y.x/ | g.x; y/ = 0} :

Obviously, for feasiblex ∈ M, any point y ∈ Y0.x/ is a (global) minimum of the following
parametric optimization problem, the so-calledlower level problem,

Q.x/ : min
y

g.x; y/ s.t. y ∈ Y.x/ : (2)

Let in the sequelv.x/ denote the value function ofQ.x/. Givenx ∈ M, y ∈ Y.x/ we define the
active index setL0.x; y/ with respect toQ.x/, L0.x; y/ = {l ∈ L | ul .x; y/ = 0}.

We say that aty∈ Y.x/ the ‘linear independency constraint qualification’ (LICQ) is satisfied
for Q.x/ if the vectors

Dyul.x; y/; l ∈ L0.x; y/; are linearly independent. (3)

The weaker ‘Mangasarian Fromovitz constraint qualification’ (MFCQ) is said to hold aty ∈
Y.x/ if

there exists a vector� such thatDyul.x; y/� > 0; l ∈ L0.x; y/ : (4)
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Let be givenx ∈ M, y ∈ Y0.x/, i.e. y is a solution ofQ.x/. If at y the MFCQ is satisfied then,
necessarily the following Kuhn-Tucker condition is fulfilled: There exists a multiplier vector
 ∈ IR|L0.x;y/| such that

DyL y.x; y; / = 0 ;  ≥ 0 with L y.x; y; / = g.x; y/−
∑

l∈L0.x;y/

l ul .x; y/; (5)

the Lagrange function. The following F. John type optimality condition holds for GSIP (cf. [10]
for a short proof).

Theorem 1 Let be givenx ∈ M. Suppose, at any pointy ∈ Y0.x/ the MFCQ is satisfied for
Q.x/. Then, there existyj ∈ Y0.x/, 

j ∈ IR|L0.x;yj /|;  j ≥ 0; j = 1; : : : ; p, and multipliers
¼0; ¼1; : : : ¼p ≥ 0, not all zero, such that

¼0Df .x/−
p∑

j=1

¼ j DxL yj
.x; yj;  j/ = 0 : (6)

If Y0.x/ = {y1; : : : ; yp} and LICQ is satisfied atx (for GSIP), i.e.

DxL yj
.x; yj;  j/; j = 1; : : : ; p; are linearly independent (7)

then, we can assume¼0= 1 (Kuhn-Tucker condition) and the multipliers¼1; : : : ; ¼p are uniquely
determined. Note, that for SIP the functions ul = ul .y/ do not depend on x. Consequently,
DxL yj

.x; yj;  j / = Dxg.x; yj / in this case, and (6) takes the form

¼0Df .x/−
p∑

j=1

¼ j Dxg.x; yj / = 0 : (8)

For later purposes, we summarize second order optimality conditions for GSIP (cf. [5], [12] for
proofs and details). Standard assumptions for the so-called ‘reduction ansatz’ to obtain second
order conditions are the following: Let at any active pointyj ∈ Y0.x/ condition (3) hold and (5)
with  j > 0 (strict complementary slackness) as well as the second order conditions,

�T D2
yL

yj
.x; yj;  j /� > 0; for all � ∈ T.x; yj / \ {0} ; (9)

whereT.x; yj / = {� ∈ IRr | Dyul .x; yj /� = 0; l ∈ L0.x; yj /}. In the following we putuj :=
[ul ; l ∈ L0.x; yj /]T (a matrix with rowsul ). The implicit function theorem applied to the system

DyL yj
.x; yj ;  j / = 0; uj.x; yj / = 0 (10)

implies the existence ofC1-functionsyj.x/;  j.x/ defined on a neighborhoodU.x/ of x such
that onU.x/ the valueyj.x/ is a local solution ofQ.x/ with corresponding multiplier vector
 j.x/ satisfyingyj.x/ = yj;  j.x/ =  j. By implicitly differentiating (10) w.r.t.x we find the
following formula for Dyj; D j,

−DxyL yj
.x; yj;  j / = D2

yL yj
.x; yj;  j / Dyj.x/− DT

y uj.x; yj/ D j.x/
−Dxuj.x; yj / = Dyuj.x; yj / Dyj.x/

(11)
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The assumptions (3) and (9) imply that the matrices (Jacobian of (10) w.r.t.y; )

M
j
:=
(

D2
yL yj

.x; yj;  j / −DT
y uj.x; yj/

Dyuj.x; yj / 0

)
are regular. (12)

Moreover, these conditions imply that the setY0.x/ is finite, Y0.x/ = {y1; : : : ; yp}. Under these
strong assumptions the problem GSIP can locally, in a neighborhoodU.x/ of x, be transformed
into the following equivalent finite optimization problem (reduced problem):

GSIPloc.x/ : min f .x/ s.t. gj.x/ := g.x; yj.x// ≥ 0; j = 1; : : : ; p:

Here, the functionsyj.x/ are the local solutions ofQ.x/ constructed above. By applying optimal-
ity conditions of finite optimization to the problem GSIPloc.x/ we obtain the following sufficient
optimality conditions for GSIP (cf. e.g. [12]): Let at all points inY0.x/ = {y1; : : : ; yp} the
above standard assumptions be satisfied. Assume that atx ∈ M the condition LICQ is fulfilled
(cf. (7)), as well as the Kuhn-Tucker condition (i.e. (6) holds with¼0 = 1) and the second order
condition,

¾T M0 ¾ > 0 for all ¾ ∈ T \ {0} (13)

whereT = {¾ ∈ IRn | DxL yj
.x; yj;  j /¾ = 0; j = 1; : : : ; p} and

M0 := ¼0D2 f .x/−
p∑

j=1

¼ j D
2
xL

yj
.x; yj;  j /+

p∑
j=1

¼ j D
T yj.x/D2

yL
yj
.x; yj;  j /Dyj.x/

+
p∑

j=1

¼ j

∑
l∈L0.x;yj /

(
DT

j
l .x/Dxul.x; yj/+ DT

x ul.x; yj /D j
l .x/

)
(14)

Then,x is a local minimizer of GSIP.

We end up this section with short comments on the difference between SIP and GSIP. Under
the standard assumptions above, for SIP the feasible setM = {x ∈ IRn | g.x; y/ ≥ 0; ∀y ∈ Y}
is always closed. For GSIP this need not be the case (see Example 2 below and [6, Section 2],
[12]). Another phenomenon in GSIP is, that even if MFCQ is satisfied at any pointy ∈ Y.x/,
the feasible setM of GSIP may have ‘re-entrant corners’ atx. We refer to [10] and [12] for
examples and further details. This bad behavior is excluded if LICQ is satisfied forQ.x/ at all
pointsy ∈ Y.x/ (cf. [12, Theorem 3]).

3 Newton’s method for solving GSIP

A common method for solving SIP is to apply Newton’s method (or a Quasi-Newton variant) to
the necessary optimality conditions ( see e.g. [1], [4]). In [12] it is indicated that this approach
can directly be generalized from SIP to GSIP. Here, we will give a proof of this assertion under
the ‘standard assumptions’ in Section 2.

4



Considerx ∈ M such that at any pointyj ∈ Y0.x/; j = 1; : : : ; p, the conditions (3), (9) are
satisfied. Let moreover (7) and (13) be fulfilled. Then, necessarily (cf. Theorem 1)x; ¼; yj;  j,
j = 1; : : : ; p, will solve the following system of Karush-Kuhn-Tucker equations of GSIP and
the corresponding lower level problemQ.x/:

Df .x/−
p∑

j=1

¼ j

(
Dxg.x; yj /−

∑
l∈L0.x;yj /


j
l Dxul .x; yj /

)
= 0

g.x; yj /−
∑

l∈L0.x;yj /


j
l ul.x; yj / = 0 j = 1; : : : ; p

and for j = 1; : : : ; p (15)

Dyg.x; yj /−
∑

l∈L0.x;yj /


j
l Dyul.x; yj / = 0

ul.x; yj / = 0 l ∈ L0.x; yj /

This system consists ofK := n+ p+∑p
j=1

(
r + |L0.x; yj /|) equations for theK unknowns

x ∈ IRn; ¼ j ∈ IR; yj ∈ IRr;  j ∈ IR|L0.x;yj /|; j = 1; : : : ; p. The following lemma shows that
under our assumptions the Jacobian of the system (15) is regular at the solution. This in particular
implies that the Newton method (Quasi-Newton method) applied to (15) will locally converge
quadratically (super-linearly).

Lemma 1 Let x ∈ M be given such that at any pointyj ∈ Y0.x/; j = 1; : : : ; p the conditions
(3), (9) are satisfied and let (7), (13) be fulfilled. Then, the Jacobian of (15) atx; ¼; yj;  j; j =
1; : : : ; p, is regular.

Proof. The Jacobian of the system (15) reads (all functions evaluated atx; ¼; yj;  j):

x ¼ y1 1 · · · yp  p︷ ︸︸ ︷
D2 f −

p∑
j=1

¼ j D
2
xL yj

︷︸︸︷
−BT

︷ ︸︸ ︷
−¼1DyxL y1

︷ ︸︸ ︷
¼1DT

x u1 · · ·
︷ ︸︸ ︷
−¼pDyxL yp

︷ ︸︸ ︷
¼pDT

x up

B 0 0 0 · · · 0 0
DxyL y1

0 D2
yL y1 −DT

y u1 · · · 0 0
Dxu1 0 Dyu1 0 · · · 0 0

...
...

...
DxyL yp

0 0 0 · · · D2
yL yp −DT

y up

Dxup 0 0 0 · · · Dyup 0


(16)

whereBT := [ DT
x L y1

; : : : ; DT
x L yp

] and in the rowsn+ 1; : : : ;n+ p we have used the relations
DyL yj = 0; uj = 0. Now, for j = 1; : : : ; p, we add to the firstn columns of (16) a combination
Dyj of the columns corresponding to the variableyj and a combinationD j of the columns
corresponding to the variable j. Then, by using (11) and (12) the matrix (16) is transformed
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into the following matrix without changing the determinant,
M0 −BT −¼1DyxL y1

¼1DT
x u1 · · · −¼pDyxL yp

¼pDT
x up

B 0 0 · · · 0

0 0 M
1 · · · 0

...
...

...
0 0 0 · · · M

p

 (17)

Here, then× n sub-matrixM0 has the form

M0 = D2 f −
p∑

j=1

¼ j D
2
xL

yj +
p∑

j=1

¼ j

(− DyxL yj
Dyj + DT

x uj D j
)
: (18)

In view of (11) it follows that

−DyxL yj
Dyj = DT yj D2

yL
yj

Dyj − DT j Dyu
j Dyj = DTyj D2

yL
yj

Dyj + DT j Dxu
j :

By substituting this relation into (18) we find thatM0 equals the matrixM0 in (14) with¼0 = 1.
In view of our assumptions (7) and (13) the matrix

(M0 −BT

B 0

)
is regular. Hence, by using (12), the

matrix (17) and therefore also the matrix (16) is regular. 2

In practice, to obtain a ‘globally convergent’ Newton-type method, one has to apply a (glob-
ally convergent) method for finite problems to the locally reduced problems GSIPloc.x/. For SIP
such an algorithm is described in [4, Algorithm 7.4]. With the modifications indicated in Sec-
tion 2 this algorithm can directly be generalized to GSIP. Another possibility is to calculate an
approximate solution of GSIP by a discretization method as given in the next section and to use
this approximation as a starting value for the solution of the system (15) by Newton’s method.

4 Discretization methods for GSIP

Another way for solving SIP are discretization methods (see e.g. [1], [4] for a survey). In this
section we will generalize these methods from the SIP-case to GSIP. Due to the dependence of
the setsY on x this generalization is not immediate. Difficulties in comparison with the situation
for SIP are mentioned.

For given compact setsY1;Y0 ⊂ IRr we define the distances

d.Y1;Y0/ = max
y0∈Y0

min
y1∈Y1
||y1− y0|| ; dH.Y

1;Y0/ =max{d.Y1;Y0/ ; d.Y0;Y1/} :

Let us introduce some assumptions.

A1. Given the compact setM0 in IRn, the set valued mappingY : IRn→ 2IRr
satisfies condition

(1) andY is continuous onM0, i.e. for anyx ∈ M0; limx→x dH.Y.x/;Y.x// = 0. (M0 will be
fixed later on.)
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Remark 1 Condition (1) implies thatY is upper semi-continuous (closed) and that for any
x∈ IRn the setY.x/ is compact such that ifY.x/ 6= ∅, a solution of the lower level problemQ.x/
exists. The continuity ofY implies the continuity of the value functionv.x/ of Q.x/. We give a
standard result in parametric optimization: Let the following assumption AMFCQ be satisfied.

AMFCQ: Let for all x ∈ M0 the MFCQ hold forQ.x/, i.e. for anyy ∈ Y.x/ we have (4).

Then,Y.x/ is (Lipschitz-) continuous onM0 (M0 compact) in the following sense. There exist
c> 0 such that

dH.Y.x1/;Y.x2// ≤ c ||x2− x1|| for all x1; x2 ∈ M0 :

For SIP, the assumption A1 simply means that the (fixed) setY is compact. The following
assumption is also often used in SIP.

A2. The feasible setM of GSIP is compact.

This condition implies that a (global) solution of GSIP exists. LetvGSIP denote the minimal value
of GSIP,vGSIP= minx∈M f .x/.

Remark 2 Since the continuity assumption onY implies thatM is closed (cf. [6]), condition A2
can also be replaced by the assumption thatM is bounded. This condition can always be imposed
by adding constraints|xi| ≤ �; i = 1; : : : ;n for some large� > 0. Note, that for non-continuous
mappingsY the setM need not be closed in general (cf. Example 2 below).

A discretization method is based on discretizations of the setsY.x/. In any step of such a method
we have to choose discretizationsY∗.x/ of Y.x/ such that for anyx, the setY∗.x/ is a finite set
satisfyingY∗.x/ ⊂ Y.x/. Then, we solve the problem

GSIP(Y∗): min f .x/ subject tox ∈ M∗ = {x ∈ IRn | g.x; y/ ≥ 0; y ∈ Y∗.x/} (19)

For SIP, the discretizationY∗ is a finite subset of the compact setY (not depending onx) and
thus, GSIP(Y∗) represents a finite optimization problem. For GSIP, the situation is more compli-
cated. Even whenY.x/ is continuous (and thusM closed), the discretizationY∗.x/ need not be
continuous inx and the feasible setM∗ need not be closed (i.e. a solution of GSIP.Y∗) may not
exist). We give an illustrative example.

Example 1 Consider the GSIP

max x s.t. x ∈ M = {x ∈ [−1;1] | x− 2y≥ 0; y ∈ Y.x/};
with Y.x/ = {y | − 1 ≤ y ≤ x}. Then,M = {x ∈ [−1;1] | x− 2x ≥ 0} = [−1;0]. Choosing
the discretizationY∗.x/ = Y.x/∩ ZZ it follows, Y∗.x/ = {−1} for x ∈ [−1;0/, Y∗.x/ = {−1;0}
for x ∈ [0;1/, Y∗.x/ = {−1;0;1} for x= 1. We findM∗ = [−1;1/, which is not closed, and a
solution of GSIP(Y∗) does not exist.

To avoid such a bad behavior we have to assume that the discretizationsY∗.x/ are also continu-
ous.
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A3. Let be given the compact setM0 in IRn. The discretizationY∗.x/ ⊂ Y.x/ is defined by
continuous functionsy∗i : M0→ IRr; i = 1; : : : ; i∗,

Y∗.x/ = {y∗i .x/; i = 1; : : : ; i∗}; x ∈ M0 :

Under Assumption A3, the discretized problem GSIP(Y∗) is a finite optimization problem:

GSIP(Y∗): min f .x/ subject to gi.x/ := g.x; y∗i .x// ≥ 0; i = 1; : : : ; i∗ :

Now, we are going to generalize the discretization method to GSIP.

Algorithm 1 (Conceptual discretization method)

Step k: Given a discretizationYk.x/ ⊂ Y.x/

i. Select a (finer) discretizationYk+1.x/, Yk+1.x/ ⊂ Y.x/ and compute a solution
xk+1 of GSIP(Yk+1).

ii. Stop, if xk+1 is feasible within a fixed accuracyÞ > 0, i.e.g.xk+1; y/ ≥ −Þ;
y ∈ Y.xk+1/. Otherwise, stepk+ 1.

Theorem 2 Suppose that the assumptions A1, A2 are satisfied. Let the discretizations Yk.x/ of
Y.x/ be choosen such that A3 holds for Yk.x/ as well as Y0.x/ ⊂ Yk.x/; k ∈ IN. Let the feasible
set M0 of GSIP(Y0) be compact. Suppose,

d.Yk.x/;Y.x//→ 0 for k→∞; uniformly on the (compact) set M0: (20)

Then, the sequence{xk} of solutions xk of GSIP(Yk) has an accumulation pointx and each such
point is a solution of GSIP.

Proof. By assumptions A1, A2, A3 and usingY0.x/ ⊂ Yk.x/ ⊂ Y.x/ the feasible setsM, Mk

respectively, of GSIP, GSIP(Yk) respectively, are compact (cf. Remark 2) and satisfy

M ⊂ Mk ⊂ M0; k ∈ IN :

Consequently, a solutionxk ∈ Mk of GSIP(Yk) exist. Sincexk ∈ M0, the sequence{xk} has an
accumulation pointx ∈ M0. Without restriction we can assumexk→ x; k→∞. In view of
M ⊂ Mk, for the valuesf .xk/ andvGSIP the relationf .xk/ ≤ vGSIP holds and thus by continuity of
f we find

f .x/ ≤ vGSIP :

It suffices to show thatx ∈ M. Let y ∈ Y.x/ be given arbitrarily. Sinced.Y.xk/;Y.x//→ 0 for
k→∞ (by continuity ofY) and using (20), we can chooseŷk ∈ Y.xk/, yk ∈ Yk.xk/ such that

lim
k→∞

ŷk = y ; lim
k→∞
|yk− ŷk| = 0 :

In view of g.xk; yk/ ≥ 0, by taking the limitk→∞, it follows g.x; y/ ≥ 0, i.e.x ∈ M.
2
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We also generalize the so-called exchange method from SIP to GSIP. This method can be more
efficient than a pure discretization method as given in Algorithm 1.

Algorithm 2 (Conceptual exchange method)

Step k: Given a discretizationYk.x/ ⊂ Y.x/ and a fixed, small valueÞ > 0.

i. Compute a solutionxk of GSIP(Yk).

ii. Calculate local solutionsyk
i ; i = 1; : : : ; ik (ik ≥ 1) of Q.xk/ (cf. (2)) such that one of them,

sayyk
1, is a global solution, i.e.g.xk; yk

1/ = miny∈Y.xk/ g.xk; y/

iii. Stop, if g.xk; yk
1/ ≥ −Þ, with a solutionx≈ xk.

Otherwise, construct functionsyk
i .x/ continuous onIRn such thatyk

i .x
k/ = yk

i ; yk
i .x/ ∈

Y.x/; i = 1; : : : ; ik and put

Yk+1.x/ = Yk.x/∪ {yk
i .x/; i = 1; : : : ; ik} : (21)

To ensure the convergence of this algorithm we have to make a further assumption.

A4. Given the compact setM0, the functionsyk
1.x/; k ∈ IN, are equicontinuous onM0, i.e. for

any" > 0 there existsŽ > 0 such thatx1; x2 ∈ M0; |x1− x2| < Ž implies |yk
1.x1/− yk

1.x2/| < "

for all k ∈ IN. (The functionsyk
1.x/ can be constructed locally as indicated in the construction of

Y∗.x/ below, leading under AMFCQ to Lipschitz-functionsyk
1 with common Lipschitz constant.)

Theorem 3 Suppose that the assumptions A1, A2 are satisfied. Let Y0.x/ be chosen such that
A3 holds and that the feasible set M0 of GSIP(Y0) is compact. Let A4 be satisfied. Then, the
exchange method in Algorithm 2 withÞ = 0 either stops with a solutionx= xk0 of GSIP or the
sequence{xk} of solutions of GSIP(Yk) has an accumulation pointx and each such point is a
solution of GSIP.

Proof. We consider the case that the algorithm does not stop with a solution. As in the proof of
Theorem 2, by our assumptions, a solutionxk of GSIP(Yk) exist andxk ∈ M0. Thus, the sequence
{xk} has an accumulation pointx∈ M0 and again we can assumexk→ x; k→∞. As before we
find f .x/ ≤ vGSIP and we only have to show thatx ∈ M, i.e.v.x/ ≥ 0 for the value functionv.x/
of Q.x/. In view of v.xk/ = g.xk; yk

1/ (see Algorithm 2ii) we can write

v.x/ = v.xk/+ v.x/− v.xk/ = g.xk; yk
1/+ v.x/− v.xk/ :

Sinceyk
1.x/ ∈ Yk+1.x/ we haveg.xk+1; yk

1.x
k+1// ≥ 0 and in view of A4 it follows usingyk

1 =
yk

1.x
k/ that |yk

1.x
k+1/− yk

1| → 0 for k→∞. Consequently, by continuity ofg andv (cf. Re-
mark 1) we find

v.x/ ≥ (g.xk; yk
1/− g.xk+1; yk

1.x
k+1//

)+ (v.x/− v.xk/
)→ 0 for k→∞ : 2

After deriving the convergence results we have to discuss how strong the assumptions A1-A4
are. We furthermore indicate how the assumption A3 can be fulfilled in practice.
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From the theoretical point of view, the only severe assumption is the condition in A1 that the set-
valued mappingY is continuous. This condition is not fulfilled in general (in the generic case)
since in particular it excludes that by varyingx a (connected) component ofY.x/ may disappear
(or a new component may appear). Recall that a sufficient condition for the continuity ofY is the
condition AMFCQ. We give an example where both conditions A1 and A2 are violated.

Example 2 Let be given the problem

P: min x2 s.t. x ∈ M = {x ∈ [−2;2] | y− x− 1≥ 0; y ∈ Y.x/};

with Y.x/ = {y ∈ IR | 0≤ y; y≤ −x}. We find

Y.x/ =
{

[x;0] ; x≤ 0
∅ ; x> 0

and M = [−2;−1]∪ .0;2]:

At x= 0 the condition MFCQ is not fulfilled forY.x/ = {0}. Obviously, the mappingY is not
continuous atx= 0, M is not closed and a solution ofP does not exist.

We also present an example of a GSIP where the conditions A1 and A2 are fulfilled.

Example 3 Consider a simple instance of a so-calledreverse Chebyshev approximation prob-
lem. We approximate a given functionf .y/ ∈C. IR2; IR/ by functionsp.x; y/ ∈C. IRn× IR2; IR/
depending linearly on the parameterx ∈ IRn on ellipses

Y.Þ/ =
{

y ∈ IR2 | y2
1

Þ2
1

+ y2
2

Þ2
2

≤ 1

}
; Þ ∈ IR2; Þ ≥ 0:

as follows. Given a fixed error bound" > 0 we have to determinex and an ellipseY.Þ/ with
maximal surfaces= ³Þ1Þ2 such that the error in the Chebyshev norm onY.Þ/,

|| f .·/− p.x; ·/||Y.Þ/ := max
y∈Y.Þ/

| f .y/− p.x; y/| ;

does not exceed". This leads to the GSIP,

RC : max
x;Þ

Þ1Þ2 s.t. ± . f .y/− p.x; y// ≤ " for all y ∈ Y.Þ/

Þ1 ≥ ²; Þ2 ≥ ²
where² is a fixed small number² > 0.

It is not difficult to show that the set-valued mappingY is continuous (C∞) for Þ ∈ IR2; Þ1 ≥
²; Þ2 ≥ ². Moreover, for all feasible parameterÞ, LICQ holds forY.Þ/ at all y ∈ Y.Þ/. For
realistic approximation problems RC the condition

|| f .·/− p.x; ·/||Y.Þ/→∞ for ||.x; Þ/|| →∞

will hold. This implies that the feasible setM of RC is bounded. Moreover, sinceY.Þ/ is
continuous, the feasible set is closed (see Remark 2). If we assume that² > 0 is small such that
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minx∈ IRn || f .·/− p.x; ·/||Y..²;²// < ", thenM is non-empty. Hence, the conditions A1 and A2
hold.

This GSIP problem RC can also be transformed to a common SIP. To see this, note that the
convex setsY.Þ/ can be parameterized by

Y.Þ/ ={y= t.Þ1 cos'; Þ2 sin'/; ' ∈ [0;2³]; t ∈ [0;1]
}
:

By substituting this expression forY.Þ/ into RC we obtain the SIP (see also [12]):

max Þ1Þ2 s.t. Þ1 ≥ ²; Þ2 ≥ ²
±( f .t.Þ1 cos'; Þ2 sin'//− p.x; t.Þ1 cos'; Þ2 sin'//

) ≤ " for all ' ∈ [0;2³]; t ∈ [0;1] :

This example indicates that also for more general reverse Chebyshev approximation problems on
regionsY.Þ/ depending continuously onÞ the conditions A1, A2 are natural assumptions. The
same holds for the class of maneuverability problems which has a similar structure (see [12] for
a geometrical interpretation of both classes of GSIP problems).

We now outline a possible way to construct a continuous discretizationY∗.x/ of Y.x/ as given
in A3. In practice, this has only to be done locally near a given pointx (where the actual compu-
tation takes place). Under assumption A1 or the stronger condition AMFCQ such a construction is
always possible. Note, that AMFCQ implies that forx nearx with x ∈ M0, the setsY.x/ andY.x/
are (Lipschitz-) homeomorphic (cf. [2, Theorem B]).

We give the construction for the case thatY.x/ is a set inIR2. Assume thatY.x/⊂C0; x∈ M0

(cf. (1)). Let be givenx of M0 and an appropriate, small neighborhoodU.x/ of x.

Construction ofY∗.x/ in U.x/: Choose a mesh sizeh and define the grid pointspi; j = h.i; j/,
i; j ∈ ZZ. ChooseN ∈ IN such thatC0⊂ {.y1; y2/ | − hN≤ yi ≤ hN; i = 1;2}. Initialize index
sets,I1 = I2 = ∅, and proceed as follows: Fori; j = −N to N do:

1. If pi; j =∈ Y.x/, goto 4, else goto 2.

2. If pi+²; j+− ∈ Y.x/ for all ²; − = −1;0;1 (neighbors ofpi; j) then put I1 = I1 ∪ {.i; j/},
yi; j.x/ = pi; j, x ∈ U.x/ and goto 4

else putI2 = I2∪ {.i; j/} and goto 3.

3. For²; − =−1;0;1 (or some other ordering) do : ifpi+²; j+− =∈ Y.x/, then put²i = ²; − j = −
and defineyi; j.x/ to be the intersection point of the linel .t/ = pi; j + t.pi+²i ; j+− j − pi; j/ ,
|t|minimal, with the boundary@Y.x/. Goto 4. Next²; −.

4. Nexti; j.

Then, the desired discretization is given byY∗.x/ = {yi; j.x/ ; .i; j/ ∈ I1∪ I2} :
Remark 3 Clearly, the ‘size’ of the neighborhoodU.x/ where the discretizationY∗.x/ con-
structed above can be used, is strongly related to the mesh sizeh chosen in the construction. The
neighborhoodU.x/ should necessarily satisfy the condition

pi; j ∈ Y.x/; .i; j/ ∈ I1; for all x ∈ U.x/ :

In a forthcoming paper [13] we will investigate numerically whether this construction can be
implemented in such a way that the convergence of the Algorithms 1 and 2 are not affected.
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Figure 1 Illustration of the construction of the discretizationY∗.x/.

For SIP, the setY and the discretizationY∗ do not depend onx such that the assumptions A3
and A4 are not relevant. So, one could also try to avoid the construction in A3 by transforming
GSIP into a common SIP (see also Example 3). In [12] it has been shown that under AMFCQ the
problem GSIP can be transformed to an equivalent SIP (with functionsg̃.x; y/ which need only
to be Lipschitz-continuous). However, in the general case this transformation is constructed by
locally defined functions which are ‘glued together’ in an abstract way. Hence, this transforma-
tion is only useful if the set valued functionY satisfies certain convexity conditions. See [12,
Lemma 1] for such a construction. In [13] numerical experiments will be done. Note however,
that the transformation of a GSIP to a common SIP may destroy the convexity structure. This
was observed in [8] for a class of GSIP (terminal problems) (see also Example 4).

5 Convex GSIP

In this section we answer the question under which conditions a GSIP is a convex problem,
i.e. under which conditions the feasible set of GSIP is convex and the first order condition is
sufficient for optimality. Similar to the situation in finite optimization, the following is true for
SIP.

Theorem 4 Let be given a problem SIP. Suppose, f is convex and for any (fixed) y the function
−g.x; y/ is convex in x (on IRn). Then we have:

(a) The feasible set M of SIP is convex.

(b) Suppose, forx ∈ M the Kuhn-Tucker condition is satisfied, i.e. with¼0 = 1,
¼1; : : : ; ¼p ≥ 0 the equation (8) holds. Then,x is a (global) minimizer of SIP.

For GSIP the situation is more complicated due to the dependence ofY onx. This is illustrated by
the problem in Example 2 where the feasible setM = [−2;−1]∪ .0;2] is not convex although
all problem functions are linear. We firstly give a sufficient condition forM to be a convex set.
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Lemma 2 Suppose that the function−g.x; y/ is convex in.x; y/ (on IRn+r) and assume that
the following set-valued inclusion holds: For any x1; x2 ∈ IRn andÞ; 0< Þ < 1 we have,

Y.Þx1+ .1− Þ/x2/ ⊂ ÞY.x1/+ .1− Þ/Y.x2/ : (22)

Then, the feasible set M of GSIP is convex and the value functionv.x/ of Q.x/ (cf. (2)) is
concave.

Proof. The straightforward proof is omitted.

To illustrate condition (22) we have depicted in Figure 2 two possible situations for the case that
x; y ∈ IR.

x2
x1 xÞ x2 x1

xÞ

Figure 2 a) Condition (22) is satisfied b) Condition (22) is not satisfied

From Figure 2b it is clear that forY.x/ = {y ∈ IR | ul .x; y/ ≥ 0; l ∈ L}; x ∈ IR the condition
(22) cannot be satisfied if there exist pointsx; y∈ Y.x/ such thatu1.x; y/= u2.x; y/= 0 and the
gradientsDu1.x; y/; Du2.x; y/ are linearly independent. So, roughly speaking, the boundary of
the set{.x; y/ | y ∈ Y.x/} may not have ‘corners’ as in Figure 2b.

Before proving our main result, we need a lemma.

Lemma 3 Let be givenx ∈ IRn and a pointy1 ∈ Y.x/ such that aty1 the condition LICQ holds
for Q.x/. Then, there exist a neighborhood U.x/ of x and a C1-function y1 : U.x/→ IRr; such
that y1.x/ = y1; y1.x/ ∈ Y.x/ and ul .x; y1.x// = 0 for all l ∈ L0.x; y1/; x ∈ U.x/.

Proof. The result follows by applying the implicit function theorem to the equations
ul .x; y/ = 0; l ∈ L0.x; y1/. 2

Theorem 5 Suppose, the Kuhn-Tucker condition for GSIP is satisfied atx ∈ M , i.e. (6) holds
with ¼0 = 1 and pointsy1; : : : ; yp ∈ Y0.x/. Suppose, the assumptions of Lemma 2 hold and
LICQ is satisfied for Q.x/ at all active pointsy1; : : : ; yp. Let furthermore f be convex (in x)
and ul .x; y/; l ∈ L, be convex in.x; y/. Then,x is a global minimizer of GSIP.
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Proof. By convexity of−g, for anyx ∈ M; yj ∈ Y.x/ we obtain,

0≤ g.x; yj /− g.x; yj / ≤ Dxg.x; yj /.x− x/+ Dyg.x; yj /.yj − yj / : (23)

Choose now the neighborhoodU.x/ and the functionsyj = yj.x/ according to Lemma 3 corre-
sponding to the pointsy1; : : : ; yp ∈ Y0.x/. Using convexity oful it follows

0= ul .x; yj /− ul.x; yj/ ≥ Dxul .x; yj/.x− x/+ Dyul .x; yj /.yj − yj / : (24)

Thus for anyx ∈ U.x/∩ M we find by using the convexity off , the Kuhn-Tucker condition (6)
as well as (10), (23), (24) that

f .x/− f .x/ ≥ Df .x/.x− x/

=
p∑

j=1

¼ j

(
Dxg.x; yj/.x− x/−

∑
l∈L0.x;yj /


j
l Dxul .x; yj /.x− x/

)

≥ −
p∑

j=1

¼ j

(
Dyg.x; yj /.yj − yj/+

∑
l∈L0.x;yj /


j
l Dxul .x; yj/.x− x/

)

≥ −
p∑

j=1

¼ j

∑
l∈L0.x;yj /


j
l

(
Dyul.x; yj/.yj − yj /+ Dxul .x; yj /.x− x/

)
≥ 0 :

Hence,x is a local minimizer onU.x/∩ M. Since f is convex (on the convex setM), x is also a
global minimizer. 2

We illustrate the convexity theory with a simple example.

Example 4 Given the GSIP withx; y ∈ IR,

CP : min x s.t. x+ y≥ −7
4 for all y ∈ Y.x/

−1≤ x≤ 1

whereY.x/ = {y | − 1− x2 ≤ y ≤ 1+ x2}. It is not difficult to see geometrically that for
x∈ [−1;1] the mappingY satisfies the condition (22). Moreover, LICQ is satisfied forY.x/. The
functionsu1.x; y/ = 1+ x2− y; u2.x; y/ = 1+ x2+ y; − g.x; y/ = −x− y− 7

4 and f .x/ = x
are convex. We now show that the Kuhn-Tucker condition is satisfied atx= −1

2.
The solution of the lower level problem

Q.x/ : min y+ 5
4

s.t. u1.x; y/ ≥ 0; u2.x; y/ ≥ 0

is given byy=−5
4 with active constraintu2.x; y/= 0. With the Lagrange functionL y.x; y; /=

x+ y+ 7
4 − .1+ x2+ y/ the Kuhn-Tucker condition forQ.x/, DyL y.x; y; / = 1−  = 0 is

fulfilled with  = 1. Thus, the Kuhn Tucker condition for CP reads,

Df .x/−¼DxL y.x; y; / = 1−¼.1− 2x/ = 1− 2¼ = 0 ;
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and is satisfied with¼ = 1
2. By Theorem 5 the pointx= −1

2 is a global solution of the convex
problem CP. Note, that by convexity of−g the conditiong.x; y/ ≥ 0 has only to hold for the
lower and upper bounds inY.x/. Consequently, CP can equivalently be written as the finite
problem

min x s.t. x− 1− x2 ≥ −7
4
; x+ 1+ x2 ≥ −7

4
:

However, the second constraint is not concave and the transformation destroys (at least formally)
the global convexity structure of the problem CP.

References

[1] Görner S., Reemtsen R.,Numerical methods for semi-infinite programming: A survey, in
‘Semi-infinite Programming’, Reemtsen/R¨uckmann (eds. ), Kluwer, Boston (1998).

[2] Guddat J., Jongen H.Th. and R¨uckmann J.,On stability and stationary points in nonlinear
optimization, J. Australian Math. Soc., Series B 28, 36-56, (1986).

[3] R. Hettich, G. Still,Semi-infinite programming models in Robotics, in ’Parametric Opti-
mization and Related Topics II’, Guddat et al. (eds.), Akademie Verlag, Berlin (1991).

[4] Hettich R., Kortanek K., Semi-infinite programming: Theory, methods and applications,
SIAM Review, vol 35, No.3, 380-429, (1993).

[5] R. Hettich, G. Still,Second order optimality conditions for generalized semi-infinite pro-
gramming problems, Optimization Vol. 34, pp. 195-211, (1995).

[6] H. Th Jongen, J.-J. R¨uckmann, O. Stein,Generalized semi-infinite optimization: A first
order optimality condition and examples, Mathematical Programming 83, 145-158, (1998).

[7] H. Th Jongen, J.-J. R¨uckmann, O. Stein,Disjunctive optimization: critical point theory, J.
Optim. Theory Appl. 93, no. 2, 321-336 (1997).

[8] Kaplan A. and Tichatschke R.,On the numerical treatment of a class of terminal problems,
Optimization Vol. 41, 1-36, 1997.

[9] Levitin E. and Tichatschke R.,A branch and bound approach for solving a class of gener-
alized semi-infinite programming problems, J. of Global Optimization 13, 299-315, (1998).

[10] Rückmann J.-J., Shapiro A., On first order optimality conditions in generalized semi-
infinite programming, J. Optim. Theory Appl. 101 , no. 3, 677-691, (1999).

[11] Stein O.,On the level sets of marginal functions, University of Aachen, Preprint No. 80,
(1998).

15



[12] Still G., Generalized semi-infinite programming: Theory and methods, European Journal
of Operational Research 119, 301-313, (1999).

[13] Still G., Generalized semi-infinite programming: Computational experiments with nu-
merical methods, in preparation.

16


