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Abstract

Generalized semi-infinite optimization problems (GSIP) are considered. It is investigated

how the numerical methods for standard semi-infinite programming (SIP) can be extended
to GSIP. Newton methods can be extended immediately. For discretization methods the
situation is more complicated. These difficulties are discussed and convergence results for
a discretization- and an exchange method are derived under fairly general assumptions on
GSIP. The question is answered under which conditions GSIP represents a convex problem.
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1 Introduction

We are concerned witfpeneralized semi-infinite optimization probleaighe form:

GSIP: minf(x) subjecttoxe M={xeR"|g(x,y) >0, ye Y(X)}
with Y(X)={ye R |u(x,y) >0, | €L}

andL, a finite index set. If not stated otherwise, we assume that the functians, are twice
continuously differentiable and that the set valued mapjisgtisfies

Y : R"— 2R, Y(x) c Cforall xe R" with C, C IR" compact. (1)

For the special case that the ¥e£ Y(x) does not depend axn i.e. u; (X, y) = u(y), | € L, the
problem GSIP is a common semi-infinite problem and will be abbreviated by SIP. If moréover
is a finite set then GSIP reduces to a finite optimization problem.

For a functionf (x) the derivative will be denoted bR f (x) (row vector) and for a function
h(x, y) by Dyh, Dyh we denote the partial derivatives w.r.t. the variables. For brevity, we
omit equality constraints iiM andY (x).

Generalized semi-infinite problems have recently become a topic of interest. Optimality con-
ditions for GSIP have been developed in [5], [6], [10], [12]. The structure of the feasible set has
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been investigated in [7], [11]. Some numerical aspects of GSIP are discussed in [12]. Numerical
algorithms for a special class of GSIP (terminal probleyns, IR, r = 1) are considered in [8].

In [9], GSIP’s are studied with (in essence) functigiig, y) = 3y'Gy+a'y+ y"Hx, G, H,
matrices,u;(x, y) = ply+ (), p € IR" and convex functiong;, f. By duality theory such

a problem is reduced to a non-convex finite optimization problem. However, a general study of
numerical methods for GSIP has not yet been done. With this paper we intend to make a first
step.

For applications of GSIP in roboticen@neuverability probleim optimal control {erminal
problen) and approximation theorydverse Chebyshev problgme refer to [3], [8] and [12].

The paper is organized as follows. In Section 2 the notation is introduced and optimality
conditions based on ‘local reduction’ are given for later purposes. In Section 3 it is shown that
the Newton-type methods can directly be generalized from SIP to GSIP. Section 4 is concerned
with discretization- and exchange methods. The difference between the situation in SIP and
GSIP is discussed. Convergence results for two types of algorithms are given under fairly natural
assumptions. A discussion how these assumptions can be fulfilled in practice is done. A forth-
coming paper will be concerned with numerical experiments on these algorithms. We do not
consider so-called ‘descent methods’. Section 5 investigates convex GSIP. Sufficient conditions
are given for GSIP to represent a convex problem.

2 Preliminaries

In this section we give some preliminaries and outline optimality conditions for GSIP based on
‘local reduction’. Forx € M we define theset of active points

Yo(X) ={ye YX) | 9(X,y) =0} .

Obviously, for feasiblex € M, any pointy € Yy(X) is a (global) minimum of the following
parametric optimization problem, the so-calledier level problem

QX) : myin gX,y) st.yeY(X). (2)

Let in the sequeb(x) denote the value function @(x). GivenX € M,y € Y(X) we define the
active index set (X, y) with respect toQ(X), Lo(X,y) ={l € L | u(X,y) = 0}

We say that ay € Y (X) the ‘linear independency constraint qualificatighlCQ) is satisfied
for Q(X) if the vectors

Dyu(X,y), | € Lo(X,y), are linearly independent. 3)

The weaker Mangasarian Fromovitz constraint qualificatiofMFCQ) is said to hold aly
Y(X) if

there exists a vector such thatDyu; (X, y)n > 0, | € Lo(X,y) . 4)



Let be givernx e M, Yy € Y(X), i.e. Y is a solution ofQ(X). If at y the MFCQ is satisfied then,
necessarily the following Kuhn-Tucker condition is fulfilled: There exists a multiplier vector
7 € IRIL&YI sych that

DLYXY,7) =0, 7=0 with LYy, »)=gxy)— Y nuxy, (5)
leLo(X,y)
the Lagrange function. The following F. John type optimality condition holds for GSIP (cf. [10]
for a short proof).

Theorem 1 Let be giverk € M. Suppose, at any poifte Yo(X) the MFCQ is satisfied for
Q(X). Then, there existy! € Yp(X), 7' € RNV 51 >0, j=1,...,p, and multipliers
s 1, - - - p = 0, not all zero, such that

p . o
moDf(®) - ) mDLY X ¥.7) =0. (6)

=1
If Yo(X) = {y,...,y"} and LICQ is satisfied a (for GSIP), i.e.
D,LY (X, V., 7)), j=1,...,p, arelinearlyindependent (7)

then, we can assuripg = 1 (Kuhn-Tucker condition) and the multipliefs, . .. , 7t are uniquely
determined. Note, that for SIP the functions=uu(y) do not depend on x. Consequently,
D,LY (X, ¥, 7)) = Dg(X, V) in this case, and (6) takes the form

p .
oDf () — ) ;DX V) =0. 8)
j=1
For later purposes, we summarize second order optimality conditions for GSIP (cf. [5], [12] for
proofs and details). Standard assumptions for the so-called ‘reduction ansatz’ to obtain second
order conditions are the following: Let at any active pgiht Y,(X) condition (3) hold and (5)
with 7! > 0 (strict complementary slackngsss well as the second order conditions,

1" DILY (X, ¥, 7)m >0, forall neTxy)\ {0}, (9)

whereT(X, ') = {n € R | Dyu(X,¥)n =0, | € Lo(X, ¥)}. In the following we putul :=
[u, | € Lo, ¥)]T (a matrix with rowsy;). The implicit function theorem applied to the system

DLY(xy,y) =0,  u(xy)=0 (10)

implies the existence of!-functionsy!(x), y!(x) defined on a neighborhodd(X) of X such
that onU (X) the valuey!(x) is a local solution ofQ(x) with corresponding multiplier vector
¥l (x) satisfyingy!(x) =y, y1(X) = 7. By implicitly differentiating (10) w.r.t.x we find the
following formula for Dy!, Dy,

—DyLV®¥.7) = DAY XY.¥) Dyl(X) — DJu(X. V) Dyi(x)

“DU®RY) = DU®Y)DY®) (1)
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The assumptions (3) and (9) imply that the matrices (Jacobian of (10)ywnt.

i 2l Vex vi oy —DTyi(x vl
M’ = ( Dyll:; ug)((%yy’j;/ ) Dyuo(x, y) ) are regular. (12)
Yy ’

Moreover, these conditions imply that the 3gtX) is finite, Yo(X) = {Y*, ... , ¥*}. Under these
strong assumptions the problem GSIP can locally, in a neighbord@ggof X, be transformed
into the following equivalent finite optimization probleme@uced problem

GSIR,(X): min f(x) st g :=gxyx)>0 j=1...,p.

Here, the functiong! (x) are the local solutions dp(x) constructed above. By applying optimal-
ity conditions of finite optimization to the problem GQIEX) we obtain the following sufficient
optimality conditions for GSIP (cf. e.g. [12]): Let at all points Yg(X) = {y*, ..., yP} the
above standard assumptions be satisfied. Assume tiRat & the condition LICQ is fulfilled
(cf. (7)), as well as the Kuhn-Tucker condition (i.e. (6) holds with= 1) and the second order
condition,

ETMo&>0 forallge T\ {0} (13)

whereT ={ e R" | D,LY (X, V),7)é=0, j=1,..., p} and

P _ o P . . o )
Mo := TD*f(X)—» %D X.¥.7)+) mDY®DILYX.¥.7)Dy X
j=1 j=1

p . _ o
+ ) W Z <DTV|‘ (X) Dy (X, V') + Du (X, ') Dy (>‘<)) (14)
]

j=1 leLo(X, V)

Then,X is a local minimizer of GSIP.

We end up this section with short comments on the difference between SIP and GSIP. Under
the standard assumptions above, for SIP the feasiblMset{x € IR" | g(x,y) > 0, Vy € Y}
is always closed. For GSIP this need not be the case (see Example 2 below and [6, Section 2],
[12]). Another phenomenon in GSIP is, that even if MFCQ is satisfied at any panY (X),
the feasible seM of GSIP may have ‘re-entrant corners’xat We refer to [10] and [12] for
examples and further details. This bad behavior is excluded if LICQ is satisfie@($orat all
pointsy € Y(X) (cf. [12, Theorem 3]).

3 Newton’s method for solving GSIP

A common method for solving SIP is to apply Newton’s method (or a Quasi-Newton variant) to
the necessary optimality conditions ( see e.g. [1], [4]). In [12] it is indicated that this approach
can directly be generalized from SIP to GSIP. Here, we will give a proof of this assertion under
the ‘standard assumptions’ in Section 2.



Considerx € M such that at any point' € Y5(X), j =1,..., p, the conditions (3), (9) are
satisfied. Let moreover (7) and (13) be fulfilled. Then, necessarily (cf. Theoranydy’, 7',
j=1,...,p, will solve the following system of Karush-Kuhn-Tucker equations of GSIP and
the corresponding lower level proble@(X):

P _ . _
DH@—ZM(WWKW— XjWDmeQ =0
j=1

leLo(X,¥)

leLo(x.y!)
andforj=1,...,p (15)
Dygx,y)— > ¢ Duxy) = 0
leLo(X. V')

ux,y) = 0 lelyxy)

This system consists i ;= n+ p+ Zf:l(r + |Lo(X, 71)|) equations for thek unknowns
xeR", pnjeR, yle R, yle ROEWIj =1 p. The following lemma shows that
under our assumptions the Jacobian of the system (15) is regular at the solution. This in particular

implies that the Newton method (Quasi-Newton method) applied to (15) will locally converge
guadratically (super-linearly).

Lemma 1 LetX € M be given such that at any poigt € Yo(X), j=1,..., p the conditions
(3), (9) are satisfied and let (7), (13) be fulfilled. Then, the Jacobian of (1) At y', 7', j =
1,...,p,isregular.

Proof. The Jacobian of the system (15) reads (all functions evaluateday’, 7'):

X u y! Yl . yP yP
2 P _ 21y T — ¥V = (T, d — Y — TP
D*f =) mDiLY —BT —mDylY mDjut .- —E,DylY myDiu
j=1
B 0 0 0 e 0 0
Dy LV o bAY  —plut ... 0 0 (16)
DL Y 0 0 o ... DALY  —DJuP
whereBT := [_DILVl, ..., DILY]andinthe rowsr+1, ... ,n+ pwe have used the relations
DyLyJ =0, u'=0. Now, forj=1,..., p, we add to the firsh columns of (16) a combination

Dy! of the columns corresponding to the varialyleand a combinatiorDy’ of the columns
corresponding to the variablg. Then, by using (11) and (12) the matrix (16) is transformed



into the following matrix without changing the determinant,

Mo —BT —Dyl¥ mDJut -+ —w,Dy LY m,DIuP

B 0 0 0

0 o0 M 0 (17)
0 0 0 ™"

Here, then x n sub-matrixMgy has the form

P _ P . o
Mo=D?f — > "m;DiLY + > %;( — Dyl ¥ Dy’ + Dyu'Dy)) . (18)
j=1 j=1

In view of (11) it follows that
—D,,LYDy = DTy/D2LY Dy — D"y D,u'Dy’ = DTy/D2LY Dy’ + D"y Dy .

By substituting this relation into (18) we find thist, equals the matris, in (14) withz, = 1.
In view of our assumptions (7) and (13) the ma(r‘l’ig‘fT) is regular. Hence, by using (12), the
matrix (17) and therefore also the matrix (16) is regular. O

In practice, to obtain a ‘globally convergent’ Newton-type method, one has to apply a (glob-
ally convergent) method for finite problems to the locally reduced problems G$)PFor SIP

such an algorithm is described in [4, Algorithm 7.4]. With the modifications indicated in Sec-
tion 2 this algorithm can directly be generalized to GSIP. Another possibility is to calculate an
approximate solution of GSIP by a discretization method as given in the next section and to use
this approximation as a starting value for the solution of the system (15) by Newton’s method.

4 Discretization methods for GSIP

Another way for solving SIP are discretization methods (see e.g. [1], [4] for a survey). In this
section we will generalize these methods from the SIP-case to GSIP. Due to the dependence of
the setsy on x this generalization is not immediate. Difficulties in comparison with the situation
for SIP are mentioned.

For given compact seté!, YO ¢ IR" we define the distances

d(Y?:, Y0 = maxm|n||y O, da(YE Y?) = maxd(YL YO, d(Y° YY)} .

YO 1EY1

Let us introduce some assumptions.

Al. Given the compact séil° in IR", the set valued mapping: IR" — 2R satisfies condition
(1) andY is continuous orM?, i.e. for anyx € M°, lim,_zd,(Y(X), Y(X)) = 0. (M° will be
fixed later on.)



Remark 1 Condition (1) implies thatY is upper semi-continuous (closed) and that for any
x € IR" the setY (x) is compact such that ¥ (x) # @, a solution of the lower level proble@(x)
exists. The continuity o¥ implies the continuity of the value functian(x) of Q(x). We give a
standard result in parametric optimization: Let the following assumptipp,Ae satisfied.

Ayreo: Let for all x e M? the MFCQ hold forQ(x), i.e. for anyy € Y(x) we have (4).

Then,Y(x) is (Lipschitz-) continuous oM° (M° compact) in the following sense. There exist
¢ > 0 such that
di(Y(x1), Y(X2)) < C X — xq|| forall xi, %, € M?.

For SIP, the assumption A1l simply means that the (fixed)Yset compact. The following
assumption is also often used in SIP.

A2. The feasible seM of GSIP is compact.

This condition implies that a (global) solution of GSIP exists. L&t denote the minimal value
of GSIP,vgse = Mingey f(X).

Remark 2 Since the continuity assumption dhimplies thatM is closed (cf. [6]), condition A2
can also be replaced by the assumption Mas$ bounded. This condition can always be imposed
by adding constraintx| < «, i =1, ..., nfor some larger > 0. Note, that for non-continuous
mappingsY the setM need not be closed in general (cf. Example 2 below).

A discretization method is based on discretizations of theXsets In any step of such a method
we have to choose discretizatiovis(x) of Y(x) such that for any, the setY*(x) is a finite set
satisfyingY*(x) C Y(x). Then, we solve the problem

GSIP{Y*): min f(x) subjecttoxe M*={xe IR"| g(x,y) >0, ye Y*(X)} (19)

For SIP, the discretizatiol* is a finite subset of the compact sé{not depending orx) and
thus, GSIPY*) represents a finite optimization problem. For GSIP, the situation is more compli-
cated. Even whel (x) is continuous (and thul! closed), the discretizatio* (x) need not be
continuous inx and the feasible séfl* need not be closed (i.e. a solution of GEIP) may not
exist). We give an illustrative example.

Example 1 Consider the GSIP
max X s.t.xeM={xe[-1,1]|x—2y>0, ye Y(X)},

with Y(x) ={y| —1<y<x}. Then M ={xe[-1,1]| x—2x> 0} =[-1,0]. Choosing
the discretizatiory*(x) = Y(x) N Z it follows, Y*(x) = {—1} for x e [-1, 0), Y*(X) = {—1, 0}
forx e [0,1), Y*(x) ={—1,0,1} for x= 1. We findM* = [—1, 1), which is not closed, and a
solution of GSIPY*) does not exist.

To avoid such a bad behavior we have to assume that the discretizZétionsare also continu-
ous.



A3. Let be given the compact sé1° in IR". The discretizationy*(x) C Y(x) is defined by
continuous functiong? : M° — IR, i =1,... ,i,,

Y*X) ={y;(x), i=1,...,i,}, xe M°.
Under Assumption A3, the discretized problem G318 (s a finite optimization problem:
GSIP(Y*): min f(x) subjectto gi(x):=g(X ¥ (X)) >0, i=1,...,1,.

Now, we are going to generalize the discretization method to GSIP.
Algorithm 1 (Conceptual discretization methpd
Step k: Given a discretizatioty¥(x) C Y(X)

i. Select a (finer) discretizatior**(x), Y**1(x) C Y(x) and compute a solution
X<t of GSIPY**).

ii. Stop, if x“*is feasible within a fixed accuragy > 0, i.e.g(x**1,y) > —a,
y € Y(x1), Otherwise, step + 1.

Theorem 2 Suppose that the assumptions A1, A2 are satisfied. Let the discretization®i
Y (x) be choosen such that A3 holds fan(X) as well as ¥(x) c YK(x), k € IN. Let the feasible
set M of GSIP(¥) be compact. Suppose,

d(Y¥(x), Y(x)) > 0 for k— oo, uniformly on the (compact) set M (20)

Then, the sequend&®} of solutions X of GSIP(Y¥) has an accumulation point and each such
point is a solution of GSIP.

Proof. By assumptions A1, A2, A3 and usind(x) C Y(x) C Y(x) the feasible setd, MX
respectively, of GSIP, GSIF() respectively, are compact (cf. Remark 2) and satisfy

McM<cM® kelN.

Consequently, a solutiox ¢ M of GSIP(Y¥) exist. Sincexk e MO, the sequencéx} has an
accumulation poink € M°. Without restriction we can assum& — X, k — co. In view of
M c MK, for the valuesf (x) andvsg,s the relationf (x¢) < vss» holds and thus by continuity of
f we find

f(X) < vegp -

It suffices to show thak € M. Lety e Y(X) be given arbitrarily. Since(Y(x¥), Y(X)) — 0 for
k — oo (by continuity ofY) and using (20), we can choog&e Y(x¥), y¢ € Y*(x¥) such that

lim §=7y, Jim ly<—§9=0.

k— o0

In view of g(x¥, y*) > 0, by taking the limitkk — oo, it follows g(X,y) > 0, i.e.X € M.



We also generalize the so-called exchange method from SIP to GSIP. This method can be more
efficient than a pure discretization method as given in Algorithm 1.

Algorithm 2 (Conceptual exchange method
Step k: Given a discretizatioiy¥(x) C Y(x) and a fixed, small value > 0.

i. Compute a solutior® of GSIP(Y).

ii. Calculate local solutiongt, i =1, ..., ik (ix > 1) of Q(x¥) (cf. (2)) such that one of them,
sayy¥, is a global solution, i.eg(x*, y§) = minycyx, g(x, y)

iii. Stop, if gOX¥, y¥) > —a, with a solutiornx ~ xX.
Otherwise, construct functiong(x) continuous onR" such thatyX(x<) = y¥, yk(x) €
Y(x), i=1,...,ikand put

Y0 = YOO U {yE(x), T=1, ... i) . (21)

To ensure the convergence of this algorithm we have to make a further assumption.

A4. Given the compact sé¥°, the functionsy%(x), k € IN, are equicontinuous ol?, i.e. for
anye > 0 there exist$ > 0 such thatx;, X, € MP, [x; — X;| < § implies|yX(x1) — Y¥(X)| < €
for all k € IN. (The functions/4(x) can be constructed locally as indicated in the construction of
Y*(x) below, leading under #, to Lipschitz-functiong/ with common Lipschitz constant.)

Theorem 3 Suppose that the assumptions A1, A2 are satisfied. 4(et Ye chosen such that
A3 holds and that the feasible set’Mf GSIP(Y¥) is compact. Let A4 be satisfied. Then, the
exchange method in Algorithm 2 with= 0 either stops with a solutioR = x* of GSIP or the
sequencgx®} of solutions of GSIP(Y has an accumulation poirk and each such point is a
solution of GSIP.

Proof. We consider the case that the algorithm does not stop with a solution. As in the proof of
Theorem 2, by our assumptions, a solutiéof GSIP(Y) exist andx* € M°. Thus, the sequence

{x} has an accumulation poifte M° and again we can assume— X, k — co. As before we

find f(X) < vgsr @and we only have to show thate M, i.e.v(X) > O for the value function(x)

of Q(x). In view of v(x¥) = g(x*, y¥) (see Algorithm 2ii) we can write

v(X) = v(X) + v(X) — v(X) = g, ¥¥) + v(X) — v(X¥) .

SinceyX(x) € Ykt (x) we haveg(xt1, y¥(x**1)) > 0 and in view of A4 it follows using/X =
YE(X) that |yK(xX<t1) — y¥| — 0 for k — oco. Consequently, by continuity f and v (cf. Re-
mark 1) we find

v(X) > (X, ¥) — g(X™ yE(X)) 4+ (v(R) —v(X)) > 0 for k—>o00. g

After deriving the convergence results we have to discuss how strong the assumptions Al-A4
are. We furthermore indicate how the assumption A3 can be fulfilled in practice.

9



From the theoretical point of view, the only severe assumption is the condition in Al that the set-
valued mappingr is continuous. This condition is not fulfilled in general (in the generic case)
since in particular it excludes that by varyir@ (connected) component ¥fx) may disappear

(or a new component may appear). Recall that a sufficient condition for the continiyitg tfie
condition A,c,. We give an example where both conditions Al and A2 are violated.

Example 2 Let be given the problem
P: mnx? st xeM={xe[-22]|y—x—1>0, ye Y(X)},
withY(x) ={ye R|0<vy, y<—x}. We find

[x,0], x<O

4. x>0 and M=[-2 -1]U(0,2].

Y(X) = {

At X = 0 the condition MFCQ is not fulfilled foX (X) = {0}. Obviously, the mappingd’ is not
continuous ak = 0, M is not closed and a solution & does not exist.

We also present an example of a GSIP where the conditions A1 and A2 are fulfilled.

Example 3 Consider a simple instance of a so-caltederse Chebyshev approximation prob-
lem We approximate a given functioity) € C(IR?, IR) by functionsp(x, y) € C(IR" x IR?, R)
depending linearly on the parametee IR" on ellipses

_ 2 Vi Y5 2
Y(a) = yeIR|—2—|——2§ , ae€lR, a=>0.
o

1 ¥

as follows. Given a fixed error boured> 0 we have to determing and an ellipseY («) with
maximal surface = wo;a, such that the error in the Chebyshev normYan),

1) = PX v = y@Y%I fCy) = px, Yl

does not exceed This leads to the GSIP,

RC: maxaio; S.t. £ (f(y)—pX,y)) <e forallye Y(x)
X, o

1= p, Q2= P

wherep is a fixed small numbes > 0.

It is not difficult to show that the set-valued mappMgs continuousC>) for o € IR?, oy >
o, ax > p. Moreover, for all feasible parameter LICQ holds forY(«) at ally € Y(«). For
realistic approximation problems RC the condition

1) = PX, Iy — 00 for [[(X, a)[| - o0

will hold. This implies that the feasible sé of RC is bounded. Moreover, sind&«) is
continuous, the feasible set is closed (see Remark 2). If we assume=th@is small such that
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MiNewrn || F(-) — PX v,y < € thenM is non-empty. Hence, the conditions Al and A2
hold.

This GSIP problem RC can also be transformed to a common SIP. To see this, note that the
convex set¥ («) can be parameterized by

Y () ={y= t(a1COSp, apSing), ¢ € [0, 21], t € [0, 1]} )
By substituting this expression fof(«) into RC we obtain the SIP (see also [12]):

max oo St a1 >p, ap>p
:I:(f(t(OthOSgo, a,Sing)) — p(X, t(ay COSp, azsimp))) <e forallp €]0,27], te]0,1].

This example indicates that also for more general reverse Chebyshev approximation problems on
regionsY («) depending continuously anthe conditions Al, A2 are natural assumptions. The
same holds for the class of maneuverability problems which has a similar structure (see [12] for
a geometrical interpretation of both classes of GSIP problems).

We now outline a possible way to construct a continuous discretization of Y(x) as given
in A3. In practice, this has only to be done locally near a given go(mthere the actual compu-
tation takes place). Under assumption Al or the stronger conditjan Auch a construction is
always possible. Note, that,&, implies that forx nearx with X € M©, the setsy(x) andY (%)
are (Lipschitz-) homeomorphic (cf. [2, Theorem B]).

We give the construction for the case thgk) is a set inR2. Assume tha¥ (x) C Cp, x € M°
(cf. (1)). Let be giverx of M® and an appropriate, small neighborhdd@k) of .

Construction ofy*(x) in U(X): Choose a mesh sizeand define the grid points; ; = hi, j),
i, j € Z. ChooseN € IN suchthatCy C {(y1, ¥2) | —hN <y <hN, i =1, 2}. Initialize index
sets,l; = I, = ¢, and proceed as follows: Farj = —Nto N do:

1. If pi;; ¢ Y(X), goto 4, else goto 2.

2. If piyp - € YX) for all p, 7= —1,0,1 (neighbors ofp; ;) then putl, = I, U {(i, )},
y“J(X) = pij, X € U(X) and goto 4
else putl, = I, U {(i, j)} and goto 3.

3. Forp, r=-1,0,1 (orsome other ordering)do: [, j+. ¢ Y(X), thenputo,=p, ;=1

and definey"/(x) to be the intersection point of the liné) = p; j + t(Pisy,j+r; — Pij) -
[t| minimal, with the boundargY (x). Goto 4. Nextp, t.

4. Nexti, j.
Then, the desired discretization is givenYsy(x) = {y"1(x) , (i, j) € 11U Iy} .

Remark 3 Clearly, the ‘size’ of the neighborhodd (X) where the discretizatioN*(x) con-
structed above can be used, is strongly related to the mesh slimesen in the construction. The
neighborhoodU (X) should necessarily satisfy the condition

pijeY(X), (,j)el, foralxeU(X).

In a forthcoming paper [13] we will investigate numerically whether this construction can be
implemented in such a way that the convergence of the Algorithms 1 and 2 are not affected.
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Figure 1 lllustration of the construction of the discretizatiorix).

For SIP, the seY and the discretizatiolY* do not depend o such that the assumptions A3

and A4 are not relevant. So, one could also try to avoid the construction in A3 by transforming
GSIP into a common SIP (see also Example 3). In [12] it has been shown that ypdetha
problem GSIP can be transformed to an equivalent SIP (with func§nsy) which need only

to be Lipschitz-continuous). However, in the general case this transformation is constructed by
locally defined functions which are ‘glued together’ in an abstract way. Hence, this transforma-
tion is only useful if the set valued function satisfies certain convexity conditions. See [12,
Lemma 1] for such a construction. In [13] numerical experiments will be done. Note however,
that the transformation of a GSIP to a common SIP may destroy the convexity structure. This
was observed in [8] for a class of GSlerfminal problem}(see also Example 4).

5 Convex GSIP

In this section we answer the question under which conditions a GSIP is a convex problem,
i.e. under which conditions the feasible set of GSIP is convex and the first order condition is
sufficient for optimality. Similar to the situation in finite optimization, the following is true for
SIP.

Theorem 4 Let be given a problem SIP. Suppose, f is convex and for any (fixed) y the function

—g(X, y) is convex in x (on IR. Then we have:
(a) The feasible set M of SIP is convex.
(b) Suppose, forx € M the Kuhn-Tucker condition is satisfied, i.e. with = 1,
iy, ..., Ly = 0the equation (8) holds. TheR,is a (global) minimizer of SIP.

For GSIP the situation is more complicated due to the dependeicerof. This is illustrated by
the problem in Example 2 where the feasible Met [—-2, —1] U (0, 2] is not convex although
all problem functions are linear. We firstly give a sufficient conditionNbto be a convex set.

12



Lemma2 Suppose that the functiong(x, y) is convex in(x, y) (on IR™") and assume that
the following set-valued inclusion holds: Forany x; € IR"anda, 0 < @ < 1 we have,

Y(axi+ (1 —a)%) C aY(X) + (1 — )Y (%) . (22)

Then, the feasible set M of GSIP is convex and the value funetionof Q(x) (cf. (2)) is
concave.

Proof. The straightforward proof is omitted.

To illustrate condition (22) we have depicted in Figure 2 two possible situations for the case that
X, ¥ e R.

X2
X:
X1 Xo 2 X1 Xa

Figure 2 a) Condition (22) is satisfied b) Condition (22) is not satisfied

From Figure 2b it is clear that for(x) = {y € IR | u(x,y) >0, | € L}, x € IR the condition
(22) cannot be satisfied if there exist poir{y € Y (X) such thau, (X, ¥) = (X, y) = 0 and the
gradientsDu; (X, y), Du,(X, y) are linearly independent. So, roughly speaking, the boundary of
the set{(x, ¥) | y € Y(X)} may not have ‘corners’ as in Figure 2b.

Before proving our main result, we need a lemma.

Lemma 3 Let be giverx € IR” and a poinfy* € Y(X) such that aly* the condition LICQ holds
for Q(X). Then, there exist a neighborhood¥) of X and a G-function y : U(X) — IR", such
that V' (X) =V, y*(X) € Y(x) and y(x, y*(x)) = 0foralll € Lo(X, V), x € U(X).

Proof. The result follows by applying the implicit function theorem to the equations
uxy) =0, | eLyX V). O

Theorem 5 Suppose, the Kuhn-Tucker condition for GSIP is satisfiedaMM , i.e. (6) holds
with 7o = 1 and pointsy?, ..., ¥? € Yo(X). Suppose, the assumptions of Lemma 2 hold and
LICQ is satisfied for @x) at all active pointsy*, ... ,y°. Let furthermore f be convex (in x)
and y(x,y), | € L, be convex in(x, y). ThenX is a global minimizer of GSIP.
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Proof. By convexity of—g, for anyx e M, y/ € Y(x) we obtain,

0<g(x ¥) —9X V) < DX, V) (X=%) + DygX, V) (¥ =¥ . (23)
Choose now the nelghborhoblix) and the functiony’ = y!(x) according to Lemma 3 corre-
sponding to the pointg', . .. , Y° € Yo(X). Using convexity ol it follows
0=u(xy)—uXy) = DX ¥)(x—%) + Dyu (X y)(y - ¥) . (24)

Thus for anyx € U (X) N M we find by using the convexity of, the Kuhn-Tucker condition (6)
as well as (10), (23), (24) that

fX)—fX) > DFX)(X—X)
p

= Z (ng(xvixx—m— >, 7."Dxu|<7<,7")<x—7<>)

leLo(X, V)

Mv Ny

A%
|

j(Dyg()_(’ Y -V+ Y ADUE Y- 70)

leLo(X.¥)

A%

oY ?."(Dyumxvj)(yj—v"H Dxu|<7<,vi)<x—>—<>)z

leLoX,¥)

=

i=
Hence X is a local minimizer ortJ (X) N M. Sincef is convex (on the convex s&t), X is also a
global minimizer. O

We illustrate the convexity theory with a simple example.
Example 4 Given the GSIP withx, y € IR,

CP: min x st x+y>-—I forallyeY(x)
—1<x<1
whereY(x) = {y | —1—x2 <y <1+ x%. Itis not difficult to see geometrically that for

x € [—1, 1] the mappingY satisfies the condition (22). Moreover, LICQ is satisfied¥ox). The
functionsuy(x, y) =1+ X -y, Up(X,y) =1+ X4y, —g(X,y) =—X—y—7andf(x) =X
are convex. We now show that the Kuhn-Tucker condition is satisfiﬁd:a{—%.

The solution of the lower level problem

QX):  min y+i—_’1 st ui(xy) =0, Uxxy) >0
is given byy = —% with active constrainti, (X, ¥) = 0. With the Lagrange functiob¥(x, y, y) =

X+y—+ % — y(1+4 X2+ y) the Kuhn-Tucker condition foQ(X), DyLY(X,V¥,y) =1—y =0's
fulfilled with y = 1. Thus, the Kuhn Tucker condition for CP reads,

Df (x) = uDLY(X ¥, 7)) =1 - pn(1-y2X) =1-2u =0,
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and is satisfied withw = % By Theorem 5 the poirt = —% is a global solution of the convex
problem CP. Note, that by convexity efg the conditiong(x, y) > 0 has only to hold for the
lower and upper bounds i¥(x). Consequently, CP can equivalently be written as the finite
problem

) 7 7
min X  s.t. x—l—xzz—z, X+1+X22_Z,'

However, the second constraint is not concave and the transformation destroys (at least formally)
the global convexity structure of the problem CP.
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