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Abstract

The paper studies three classes of optimization problems with bilevel structure in-
cluding mathematical programs with equilibrium constraints (MPEC) and semi-
infinite problems (SIP). The main goal of the paper is to provide results which
establish the existence of feasible points of the problems. These results are based
on the so-called KKM Lemma. We are also interested in the convexity properties
of these problems.
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1 Introduction
Generalized semi-infinite problems are programs of the type

SIP: n)w(inf(x) sit. ¢(X,t) >0 Vte H(X), (1)

whereH(x) ¢ R™ is the index set defined by a set-valued mappihg R" = R™,
Bilevel problems are of the form

BL: min f(x,y) s.t. a(x,y) >0,
- @)

andy is a solution of Q(X) : mtinF(x, t) sit. te HX).
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We also consider mathematical programs with equilibrium constraints

MPEC: minf(x,y) st gx,y) >0, ye H(X)
X,y

3)
and ¢(x,y,t) >0 Vte H(X) .

These programs represent three important classes of optimization problems which have
been investigated in a large number of papers and bookse(ge¢?], [11]-[12] [6]

and the references therein). As usual in linear and nonlinear optimization, these papers
mainly deal with optimality conditions and numerical methods to solve the problems.
Typically the existence of a feasible point is tacitly assumed.

The aim of this paper however is to deal with the latter problem and to investi-
gate under which assumptions the existence of feasible points can be assured in ad-
vance. The results are based on the famous KKM Theokemagter-Kuratowski-
Mazurkiewicz (seee.g.[15]).

The paper is organized as follows. In Section 2, we analyze the relations between
the three types of optimization problems, SIP, BL and MPEC. In Section 3, we for-
mulate the existence problems and add some illustrative remarks. In Section 4, based
on the KKM approach, we derive results which a-priori establish the existence of fea-
sible points of our problems. Also convexity properties are studied. The Appendix
surveys the concepts from convex analysis and functional analysis needed to prove our
theorems.

2 Comparison between the structure of the problems

Obviously, SIP is a special case of MPEC. But also BL can be written in MPEC form
as follows: If we write the second constraint in BL equivalently as

ye H(x) and FXxt)—F(Xy)>0 Vte HX).
the BL problem becomes

BL,: n)?lyn f(x,y) s.t gx,y) >0, ye HX)

4
andF(x,t) — F(X,y) >0 Vte H(X). “)
Remark. Note however that there is a subtle difference in the interpretation of the
constraint
d(X,1) >0 or ¢(x,y,t) >0 Vte H(x). (5)

In the case thal (x) is empty, for BL and MPEC, because of the additional condition
y € H(x), no feasible poin{(x, y) exists (for thisx). For the SIP problem however
an empty index seH (x) means that there are no constraints and such pgiare
feasible.



SIP and MPEC can also be transformed into a problem of bilevel structure. Beginning
with the SIP case, we assuriigx) # @, vx, and introduce the (lower level) problem

Q) : mtin ¢(x,t) s.t. te H(X), (6)
depending on the parameterThen (assuming thad(x) is solvable) we can write
(X, 1) >0 Vte HX) < ¢(x, y) > 0andy solvesQ(x) .
So SIP takes the BL form:
SIP;: n)?lyn f(x) s.t d(X,y) >0,

andy is a solution of Q(x) : mtin (X, t) sit. te H(X) .

(7)

This problem is a BL program with the special property that the objective fundtion
does not depend onand that the constraint functiahin the first level coincides with
the objective function of the lower level.

To bring MPEC into BL form we apply the same trick as before, and consider the
program
QX y): min ¢(x, ;) s.t. te HX), 8)

depending on the parametey, y). If we assume tha®(x, y) is solvable, then
X, y,t) >0 VvVie HX) <& ¢(Xx Yy, t) > 0andt solvesQ(x,y) .
Consequently MPEC turns into a problem of BL type (witheplaced by(x, y)):
MPEG,: rxnsllrg f(x,y) s.t g(x,y) >0, ye H(x),
d(X, Y, 1) >0 (9)

andt is a solution of Q(x,y): ming(x,y,u) s.t. ue H(x).
u

Under the extra condition
¢(X’ y’ y) = 0 ’ Vy ’ (10)

in MPEG, we can 'eliminate’ the variable as follows. In view of (10 ) we find

ye H(X) and¢(X,y,u) >0 Yue H(X) <  ysolvesQ(X,Y)
and MPEG is equivalent with
MPEG;: min f(x,y) s.t gx,y) >0, ye H(X),
Y
andy is a solution of Q(x,y): min¢(x,y,u) s.t. ue H(x) . (11)
u

Remark. Note however that now the problem MPERas a more complicated struc-
ture than BL, since in MPE£the lower level problenQ(x, y) depends ory which
should at the same time sol@(x, y).

For a comparison from the structural and generic viewpoint between BL and SIP we
refer to [12], and between BL and MPEC we refer to [3].
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3 The feasibility problems and preliminaries

For the three problems SIP, BL and MPEC we consider the corresponding (basic)
feasibility sets:

Msip = {xeR"|¢(x t) >0 Vte H(X)}
M%L = {(X,Y) eR"xR"|ye H(x) andF(x,t) — F(x,y) > 0 Vt € H(x)}
Mypee = {(Xy) e R"x R™|ye H(x) andé(x, y,t) > 0 Vt e H(x)}

In the next section, conditions are derived which assure that these feasible sets are
non-empty Moreover, the structure of the sets is analyzed. Note that if the feasible
set is non-empty and compact, the corresponding minimization problems will have
a solution provided that the objective function is continuous (lower semicontinuous).
We will prove the existence of minimizers without compactness assumptions.

We now add some remarks which could help to illustrate the results of the next
section. Letx be fixed and puK = H(x), ¥ (y,t) := ¢(X, y,1). The feasible set
M, pec then reduces to

M={yeR"|ye Kandy(y,t) >0 Vte K .}

By defining the (upper level) sé¥l. (y) := {t | ¥(y,t) > O} the feasibility problem
M = @ can equivalently be expressed in the geometrical form:

Findy e K such thatk C M. (y) .
Considering the parametric program
P(y) : v(y) = min ¥ (y, t)

this is equivalent to finding an elemeypnt K such thaw(y) > 0.

Let now K be convex and consider two different cases.

Case that t> (Y, t) is concave: Then the seM. (y) is convex and for any, P(y)
is a ‘concave’ program. (Alse(y) is concave iny.) In particular the minimizer is
attained at an extreme point Kf.

Case that t— (Y, t) is convex: Then the complement d¥1.. (y) is convex and for
anyy, the problemP(y) is a ‘convex’ program.

The problems considered in the next section will be of the structure of the second case.
The KKM approach in the next section can be seen as a generalization of the following
way to prove feasibility based onsaddle point result

Obviously (for compacK) M # @ is equivalent with

max min y(y,t) = 0.
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Theorem 1 Let K be convex and compact. Suppose that y (Y, t) is quasiconcave
and usc (upper semicontinuous) anebt ¢(y, t) is quasiconvex and Isc (lower semi-
continuous). Assume furthermore that for ary K, there exists an elementty € K
such thaty(y(t),t) > 0. Then M#£ @.

Proof. Itis well-known (seee.g, [10]) that under the assumptions the relation

max min y(y, t) = min maxy(y, 1) .

holds. Then by usingr(y(t), t) > 0, it follows
Max min Yy, t) = min max Yy, ) = min y(y®),t) = 0,

which proves the statement. g

We discuss two examples.
Example. Consider the problem:

findy e K :=[-1, 1] such that/(y,t) >0, Vte K.
for the two cases

YYD =Yy, t) = —ty+t* and Yy, t) = ya(y, 1) i= —ty+ P+«

with given constantr > 0. In the first case we hawg,(y, y) = 0 andy = 0 is the
unique feasible point. In the second casgy, y) = « > 0 and an easy analysis shows
that the feasible set is given gf = [—2./«, 2,/«]. Note that fore < 0 no feasible
point exists.

This is a typical example in the sense that a conditigy, y) = 0 will typically
lead to (locally) unique solutions whereas a feasible set with interior points occurs in
casey (Y, y) > 0 (see also the conditioh(x, y, y) > 0 in Corollary 1).

Example. Given symmetrian x m-matricesA, B, C such thatA, CandC+ B - A
are positive semi-definite and8b € R™, ae R™, |a]l <1 (| - || the Euclidean norm)
we consider the feasibility problem:

findye K:={yeR™| |yl < 1} suchthat/(y,t) >0, Vte K
wherey(y,t) = —(a't)? (y"Ay) + y"'Bt+t"Ct+ b" (y — t). By noticing
vy, y) =—@"y)° (y'AY) +y' By+y'Cy+b'(y—y) >y (C+B-Ay=>0

we see that the assumptions of Theorem 1 are fulfilled and the above problem has a
feasible solutiory. Note that herey = 0 is not feasible.



4 Existence of feasible points and minimizers

In this section, based on the famous KKM Lemma, we will provide theorems establish-
ing the existence of feasible points and the existence of minimizers for the problems
above. We do not impose any compactness assumptions. The concepts from con-
vex analysis and functional analysis needed to prove the results are to be found in the
Appendix.

We firstly consider the following problem of the semi-infinite type:

min h(x) s.t. xe Mg, (12)
X

whereM; = {xe X | f(x,y,v) > 0forallve H(x) and for ally € Y}. We prove our
basic result.

Theorem 2 Let Xc R" and Y R™ be nonempty, convex. Let:iX x Y x Y —
R be continuous, H X = Y continuous with nonempty compact values and T
KKM(Y, X). Suppose that

(i) For each compact subset C of Y(Q) is compact.
(i) Foreach(x,v) e X x Y, the function y» f(X,y, v) is quasiconvex, and

forany ye Y, xe T(y), itfollows f(x,y,v) >0 Vve H(X) . (13)

(i) There exists a compact subset K of X such that for each finite subset N of Y,
there exists a compact convex subsgtdf Y containing N such that for each
x € T(Ln) \ K, there exists ¥ Ly such that {x, y, H(x)) € R,;

Then the set Mis nonempty. If in addition H is convex and for each fixed Yy, and
the function(x, v) — f(Xx, Y, v) is quasiconcave then Ms convex.

Suppose that (i),(ii),(iii) holds and Ms convex. Suppose further that:

(iv) hislsc and quasiconvex;

(v) there exists a compact subset D of &tich that for each finite subset Q of M
there exists a compact convex subsgtdf M; such that for each x Lo \ D
there exists ¥ Lg such that lty) < h(x).

Then there exists a solution of (12).

Proof. (a) Letus defind=(x,y) = f(x,y, H(x)). Sincef is a continuous function
andH is a continuous set-valued map with compact values, it follows from Lemma 5
thatF : X x Y —» R is a continuous set-valued map with nonempty compact values.
DefineA: X = Yvia

AX)={ye Y| F(xy) ZR,}, whereR, =0, c0) .
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We show now thatA(x) is convex for eaclx € X. Indeed, ify;, y, € A(X), a €
[0, 1], it follows y1, Yo €Y, F(X,y1) Z Ry, F(X ¥2) € R.. We want to show that
F(x,Ay1+ (1 —A)y,) € R, for all A € [0,1]. Suppose that there existg € [0, 1]
such thatF (x, Agy1 + (1 — A9)Y2) C R,.. By quasiconvexity off wrt. y either

F(X, y1) € F(X, Aoy1+ (1 —2X0)Y2) + Ry C R,

or
F(X, ¥2) C F(X, 2oy1 + (1= A0)Y2) + Ry C Ry .

This leads to a contradiction. TherefoFe(x, Ay; + (1—X1)y.) R, forall » € [0, 1].
We also have.y; + (1 — A1)y, € Y. Hencery; + (1 — 1) Y, € A(X) and A(X) is convex
forall x e X.

Note that for eachy € Y, the setA=(y) is open. Indeed, sincA=(y) = {x € X |
F(x,y) N (—o0,0)} # @ this follows directly from the fact thaf is Isc (see the defi-
nition in the appendix with = (—oo, 0))

We wish to show that there exists= X such that~(X, y) > O forally € Y. Sup-
pose that for eacl € X, there existy € Y andu € F(x, y) such thatu < 0. Then
F(x,y) Z R, andy € A(x). i.e, A(X) # @ forall xe X. ThenX = J{A(y) |y e
Y} = U{intA(y) | y e Y}. L

By assumption, for each compact etof Y, T(C) is compact and_y \ K C
U{A (y) | y € Ly} = U{intA=(y) | y € Ly}. So, the assumptions of Lemma 6
hold and there existéx, y) € X x Y such thatx € T(y) andy € A(X). Therefore
f(X,y, H(X)) € R, in contradiction to (13). Therefore, there exigt& X such that
F(X,y) > 0forallye Y i.e, M; is nonempty.

We now show that under the extra conditions theMetis convex. Letxs, X, €
My, A €[0,1]. Thenf(xy,y,v) >0forallyeYandv e H(xy),andf(x, y,v) >0
forall y e Y andv € H(xz). We now prove

fOXe+ 1 =2)%, Y, HAx + (1 - 4)%2)) = 0.

Suppose there existy € [0, 1] such thatf(AgX; + (1 — Ag)Xo, Y, H(AoXy + (1 —
Ao)X2) Z R,.. Thenthere exist6y, vg) € Y x H(AoXy + (1 — Ag)X2) such thatf (Aox; +
(1 — X0)X2, Yo, vo) < 0. SinceH is convex,H (AoX; + (1 — Ag)X2) C AgH(X1) + (1 —
Mo)H(X2), we findvg = Agvy + (1 — Ag) v for somev; € H(X;) andv, € H(X2). So,
f(hoXe + (1 — Xo)X2, Yo, Aov1 + (1 — Ag)v2) < 0. By quasiconcavity off, either

f (X1, Yo, v1) < F(RoXs 4+ (1 — Ao)X2, Yo, Aov1 + (1 — Ap)v2) <O

or
f(X2, Yo, v2) < f(hoXe 4+ (1 — Xo)X2, Yo, Aov1 + (L —Ag)v2) <O,

leading to a contradiction. This show that; + (1 — A)X, € M; and My is convex.

To prove the existence of a minimiz&rof (12) let us suppose to the contrary
that for eachx € My, there existsy € M; such thath(y) < h(x). LetS: X = X be
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defined byS(x) = {y € My | h(y) < h(x)}. Thenx ¢ S(x). Sinceh is Isc, S (y)
is open for eachly € X. Sinceh is quasiconvexS(x) is convex. By assumption
Lo\DCU{S (y) | ye Lo} = U{intS (y) | y € Lg}. Then it follows from Lemma
8 that there exist& € X such thatS(x) = @. Thush(y) > h(X) forall y € M;.

O

We emphasize that under the additional assumptionsXhand Y are compact the
situation simplifies (see the next remark).

Remark. Suppose that the se¥§ Y in Theorem 2 are compact. Then the assumptions

(iii), (v) and the quasiconvexity of h are superfluous. It then follows directly khat

is nonempty and it is not difficult to show thd; is closed (thus compact). So, if

h is Isc, a minimizer of (12) exists (without the assumptions iii,iv,v). Note that the

condition iii is a sort of a constraint qualification. The same argument applies to all
further existence results.

Theorem 2 can be applied to problems of SIP-type in two different ways. Let us firstly
consider the SIP program

minh(x) s.t. xe Mgp
X

whereMgp={xe X | ¢p(x,1) >0 Vt € H(X)}.

Theorem 3 Let Xc R"and YC R™be nonempty, convex. Let:kX = Y be a convex
continuous map with nonempty compact values ardKIK M (Y, X). Suppose that

(i) for each compact subset C of Y(Q) is compact and

forally e Y, xe T(y), itfollows ¢(x,v) >0 Vve H(X).

(i) Suppose thap is affine and h X — R is Isc. and quasiconvex and

(i) there exists a compact subset D of X such that for each finite subset Q of X,
there exists a compact convex subsgtdf X such that for each ¥ Lo\ D
there exists a ¥ Lq such that ity) < h(x).

Then the set Myp is a nonempty convex set and a solution of SIP exists.

Proof. Let f : X x Y x Y — R be defined byf (X, y, v) = ¢(X, v), then it is easy to
see thatf satisfies the conditions of Theorem 2
O

We now consider the special case of SIP:
minh(x) s.t. xe Mgp, (14)
X

whereMg,, = {Xxe X|¢(X,y) >0 Vye Y}withY Cc R™ As a corollary of Theorem 2
we now obtain



Theorem 4 Let Xc R"and Yc R™be nonempty, convex sets. petX x Y — R be
continuous, and e KKM(Y, X). Let the conditions (iv) and (v) of Theorem 2 hold
and suppose that

(i) for each compact subset C of Y(Q) is compact, for each ¥ X the function
y — ¢(X, y) is quasiconvex and

forally e Y, xe T(y), itfollows ¢(x,y) >0 .

(i) for each ye Y the function x> ¢(X, y) is quasiconcave and for each fixed
X € X, y— ¢(X,y) is quasiconvex;

(i) there exist a compact subset K of X such that for each finite subset N of Y,
there exists a compact convex subsgtdf Y containing N such that for each
x e T(Ly) \ K, there exists ¥ Ly such thatp(x, y) < O.

Thenthe set I{} . is nonempty and convex, and there exists a solution of the SIP in (14).

Proof. Let f : X x Y x Y — R be defined byf (X, y, v) = ¢(X, y), then it is easy to
see thatf satisfies the conditions of Theorem 2.
O

We emphasize that for the special case X in the preceding Theorem, the condition
for T is superfluous since it is trivially satisfied by the mapping) = {x}.

We now come to the problems of MPEC type and define the mapgdingK = Y by
M(X)={ye HX) | f(x,y,v) >0forallve H(X)}. (15)

Definition 1. A function f : R?™ — R is called properly quasimonotone on the convex
setY C R™ if for every finite sef{ vy, vy, ..., vy} C Y the following holds:

inf max f(y,vi{) >0
yecofv, vy, ...,vun} 1K<k (y J) -
Lemmal
(@) Let Xc R"and Yc R™be nonempty, and convex. Let Kx Y x Y — R be

usc and let H: X = Y be a usc multivalued map with nonempty, closed and convex
values. Suppose

(i) the function f: R®™ — R, f(y,v) := f(X,V, v) is properly quasimonotone;

(i) for each xe X there exists a nonempty compact subsgbKY such that for
each finite subset ,Nof H(x), there exist a compact convex subsgt &f H(x)
containing N such that for each ¥ Ly, \ Ky there exista’ € Ly, such that
y e H(x) and f(x,y,v) <O.



Then for each x X the set Mx) is a nonempty, closed subset of Y.

(b) If moreover y— f(X,Y, v) is quasiconcave for every X, v € Y, the set Mx)
(cf. (15) is also convex valued.

Proof. (a) Foreach e X, let Qx: H(x) = H(x) be defined by
Qx(v) ={ye HX) | f(x,y,v) >0} .

We wish to show thaQy is a KKM map. Suppose it is not. Then there exists a
finite set{vy, ..., vn} in H(X) such thatco{vy, ...vn} € UL, Qx(vi). Therefore there
existsy € co{vy, ...vy} such thaty ¢ Qy(v;) foralli =1, ..., n. SinceH(x) is convex
and vy, ..., vp, € H(X), we findy € cofvy, ...vn} € H(X). By y ¢ Qx(vi), we have
f(x,y,vi) <Oforalli=1,...,n. Since fy is properly quasimonotone there exists
1 < j < nsuchthatf (x, y, vj) > 0. This leads to a contradiction showing ti@tis a
KKM map for eachx € X.

Since f is usc, for eachx € X andv € Y, the setQy(v) is closed. Since for
eachx e X, there exists a nonempty compact subisgiof H(x) such that for each
finite subsetN, of H(x), there exist a compact convex subkgf of H(x) containing
Ny such that for eaclt € X, Ly, \ Ky C [J{(Qx(v))¢ | v € Ly}. From Lemma 4, we
deduce thaf){Q«(v) | v € H(X)} # @. Therefore for eack € X, there existy € H(x)
such thatf (x, y, v) > O for all v € H(x). This shows thaM (x) # @ for eachx € X.

For eachx € X, M(X) is closed. Indeed, iy € M(x), then there exists a sequence
Yn € M(X) such thaty, — y. One hasy, € H(x), f(X, yn, v) > 0 for all v € H(X).
SinceH is an usc set-valued map with closed values, it follows from Lemma 3Hhat
is closed. Thereforg € H(x). We havef (X, y,, v) > 0. Sincef is usc, this implies
f(X,y,v) > limf (X, Yo, v) > 0. Consequentlyy e M(x) andM(x) is closed.

(b) We finally show thaM (x) is convex for eacl € X if the quasiconcavity condition
for f is satisfied. Indeed, i¥1, y, € M(x) andA € [0, 1] it follows f(X, y1, v) > 0O,
f(X, ¥, v) > 0forallve H(x) andy;, y, € H(X). We havey, = Ay:+ (1—X1)Y> €
H(x). Sincef (X, y, v) is quasiconcave wrty for anyv € H(x), either

fOX Y, v) > F(X,y1,v) >0 or f(X V., v)> f(X y2,v)>0

Thereforey, € M(x) andM(x) is convex.
O

Remark. Condition (ii) of Lemma 1 (a) is satisfied H : X = Y is a multi-valued
map with nonempty compact values.

The next lemma provides us with a sufficient condition for proper quasimonotonicity.
Lemma?2 Let f:R" x R™ x R™ —» R be given and definexfy, v) = f(x,y, v).
Suppose that for each fixedexX, the relation fx,y,y) > 0 holds for all ye Y

and for each fixedx, y) € X x Y, the mapping — f (X, Yy, v) is quasiconvex. Then
f, : R°™ — R is properly quasimonotone.
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Proof. Since for each fixedx, y) € X x Y, the functiorv — f (X, y, v) is quasiconvex,
we see that for any s¢t,, vy, ..., vy} InY, and anyy € cofvy, vy, ..., vn}, there exists
1< j <nsuchthatf(x,y,v;) > f(X,y,y) > 0. Therefore

inf max f(x,y,v) >0 or inf max fy(y, vi) >0

yeco{vy,vo,...,vp} 1<i<n yeco{vy,va,...,vn} 1<i<n

showing thatfy is properly quasimonotone.

Lemma 2 immediately leads to

Corollary 1 If in Lemma 1 the assumption that(y, v) := (X, y, v) is proper quasi-
monotone is replaced by: forary,y) e X x Y,

f(x,y,y) >0 and v— f(x, Yy, v)is quasiconvex

then the same conclusion holds.

The result of Lemma 1 will now lead to existence results for the minimization problem

Enir; h(x,y) st (X, y) e Mpec, (16)
Xy

WhereM&PEC: {x,yye XxY|ye HXxX)yandf(x,y,t) >0 VvVt e H(X)}.

Theorem 5

(@) If f is quasiconcave and H is convex and concave, then the §etMs convex
(see also [3]).

(b) Letthe assumptions of Lemma 1(a) hold. Suppose further that

() the function his Isc and quasiconvex;

(ii) there exists a compact subset D of,M. , such that for each finite subset Q
of MYz, there exists a compact convex subsgtcbntaining Q such that for
each(x,y) € Lo\ D, there exis{u, v) € Lg such that lfu, v) < h(x, y).

Then the set B} is nonempty and there exists a minimizer of (16).

Proof. (@) To derive the convexity result fa$, .. consider(xs, y1), (X2, Y2) €
MY pec andx € [0, 1]. Then(x;, yi) € X x Y, yi € H(x) and f(x;, yi, v) > O for all
ve H(X), i=1,2. We havaix; + (L — 1) X, Ay1 + (1 — A1) y,o) € X x Y. SinceH is
concave)ry; + (L — i)y, € H(AX; + (1 — X)Xz). Now choose any € H(Ax; + (1 —
A)X2). SinceH isconvexj.e,ve HAX + (1—1)X) CAHX) + (1—A)H(X), 1.e,
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there exist®; € H(Xy), v, € H(X2) such thab = Av; + (1 — A)v,. By quasiconcavity
of f, either

O S f(Xla yla U]_) S f()\'xl + (1 - )\')XZa )\'yl + (1 - )\')yZa )\.U]_ + (1 - )\')UZ) or

0< f(Xg, Yo, v2) < F(AX1+ (L= 2A)X, AY1+ (L= A) Yo, Ava + (L= A)vp)

In any casef (AX; + (1 — X)X, Ay1 + (L — L) Yo, v) > 0, implying A(Xq, Y1) + (1 —
1) (X2, Y2) € MY pec: SOMY e is a convex subset of x Y.

(b) By Lemma 1 for anyx € X the setM(x) is nonempty. So, in particular,
MY pec # 0. To prove that a minimizer of (19) exists let us suppose that there is
no minimizer. Then for alkx, y) € MY ¢, there existyu, v) € MY ¢ such that
h(u, v) < h(x,y). Let the mappingS: MY scc — M e be defined byS(x, y) =
{(u,v) € MY pecl h(u,v) —h(x,y) < 0}. ThenS(x,y) # @ for all (x,y) € X x Y.
Clearly, (x,y) ¢ S(x,y). Sincehis Isc, S (u, v) is open for eachu, v) € MY pcc
Sincehis quasiconvex, the s&(x, y) is convex for eacltx, y) € M{, .. By assump-
tion we find

Lo\ D C (JIS (U v) | (U, v) € Mypect = [JUINtS (U, v) | (U, v) € Mypec) -

Then it follows from Lemma 8 that there exigt§ ¥) € My,pc such thatS(x, ¥) = 0.
Therefore,f (u, v) > f(X, ¥) for all (u, v) € M{,pc. This leads to contradiction and
a minimizer of (19) exists.

O
We now derive the results for the problems
'(’nir)] h(x,y) s.t. (X, ¥) € Mupec, (17)
X,y

Mupec={(X,y) e Xx Y |g(X,y) >0, ye HX)and f(x, y,t) > 0 Vt € H(X)}.

Theorem 6 In addition to the assumptions in Theorem 5(b), lebgx Y — R be qua-
siconcave. Suppose that:kX = Y maps accordingto H : A= B and graphHa C
F,where A=nx¥, B=avF, F ={(X,y) € Xx Y| g(x,y) >0}, ie, Ais the
standard projection off on X and B is the standard projection &f on Y. Suppose
furthermore that is nonempty. Then the setyMec is nonempty and a minimizer of
(17) exists.

Proof. It is easy to see thaf is a nonempty, convex subset Xfx Y. Then alsoA is
a convex subset ok ¢ R" and B a convex subset of c R™andH|,: A= B. By
Theorem 5(b) there existg, y) € A x Bsuchthaty e H(X) and f (X, y, v) > O for all
v e H(X). Then(x, ¥) € graptH|» C ¥. Henceg(X, y) > 0. This shows thaMy pec
iS nonempty.

O

12



Corollary 2 Let X, Y, g, h, H be as in Theorem 6 and let the assumptions of The-
orem 5(b) hold. Let E X x Y — R™ be a continuous function and:pX — R be a
continuous convex function. Then there exists a solutioi) € X x Y of the prob-
lem:

miq h(x, y) st.(x,y) e XxY, g(X,y) >0, ye H(X),
XYy
and (F(x,y),y—v)+ p(v) — p(y) >0 forall v e H(x).

Proof. The functionf (x, y, v) ;= (F(X, ¥), y—v) + p(v) — p(y) satisfiesf (X, y, y) =
0 and for eachix, y) € X x Y the functiorv — f (X, y, v) is quasiconvexf is a contin-
uous function. By Lemma 2 the functiofy : Y x Y — R is properly quasimonotone.
So the result follows from Theorem 6.

O

Remark .

(1) The results of Theorems 5 and 6 remain true if the assumptiorf ttigproperly
guasimonotone is replaced by the sufficient condition of Lemma 2.

(2) Corollary 2 is an existence theorem for mathematical programs with mixed vari-
ational inequality constraints. This type of program contains mathematical programs
with variational inequality constraints and mathematical bilevel programs.

We now can establish existence results for bilevel problems

min h(x,y) s.t. (X,y) € Mg_,
(x.y)
whereMg, = {(X,y) e Xx Y| g(x,y) >0, ye H(x) andy solves w(ir)nlf(x, v) }
ve X

Corollary 3 Let X Y, h, H and g be as in Theorem 6. Lgt: X x Y —» R be an
affine function. Then the setgvlis nonempty.

Proof. Consider the form (4) of a BL and defirféx, y, v) := W (X, v) — W(X, ¥). Then

f is a quasiconcave and continuous functidrix, y, y) = 0 and for fixed(x, y) €

X x Y the functionv — f (X, y, v) is quasiconvex for eactx, y) € X x Y. Therefore

fy is properly quasimonotone. So, the conclusion follows directly from Theorem 6.
O

As a simple consequences of Theorem 6 we obtain another existence result for prob-
lems of semi-infinite type.

Theorem 7 Let X Y, and g be asin Theorem 6. Let K x Y — R be a continuous
function. Suppose the mapping f is affine, XI—= Y maps accordingto H: A= B,
and graphHa C F,where A=n,F, B=nyF with F ={(X,y) e Xx Y| g(X, y) >
0, f(x,y) > 0}. Suppose¥ is nonempty.

Suppose h is Isc and quasiconvex and there exists a compact subsét 8uoh that
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for each finite subset Q df , there exists a compact convex subsgbEF containing
Q such that for eactlix, y) € Lo \ K, there existgu, v) € Lg such that fiu) < h(x).
Then there exists a solution of the program:

min h(x) st (X,y)e XxY, gix,y) >0, ye H(X)
X,y

and f(x, v) > Oforall v e H(x).

Proof. It is easy to see thaf is a nonempty convex subset &fx Y. Ais a
nonempty convex subset #fandB is a nonempty convex subsetbflLetq(x, y, v) =
f(x,v) — (X, y). Then the mappingis an usc functiong(x, y, y) = 0 and the map-
ping (X, Y, v) = q(X, Y, v) is quasiconvex. Thereforg(y, v) = q(X, Y, v) iS prop-
erly quasimonotone. Then it follows from Theorem 5 that there existg) such that
(X y)e F, ye HX) andq(x, y,v) = f(x,v) = f(X,y) >0or f(x,v) > f(x,y) >0
for all v € H(x). So the feasible set of the problem above is nonempty. Let us define

$p=1{xe X] g(x,y) > 0forsomey € H(x) and f (x,v) > O forallv e H(x)}. By
Theorem SM¢,  is a nonempty convex subset ¥f By following the same arguments
as in the proof of Theorem 5 we obtain the result.

O

5 Appendix

In this section, we survey the definitions, concepts and results needed to prove the
main theorems in the preceding section.

LetT: X =Y be a set-valued map from a spaXé¢o another spac¥. We denote
graphT) = {(x,y) € X x Y | y e T(x)} the graph ofT. The inversel~ of T is the
set-valued mag ~ : T(X) = X defined byx e T~ (y) ifand only if y € T(x).

Let X andY be topological spaces (abbreviated by ts). A set-valued ald =
Y is calledclosedif graph(T) is a closed subset oX x Y. T is said to be upper
semicontinuous (in short usc) (respectively lower semicontinuous (in short Iscy) at
X, if for every open setJ in Y with T(x) C U (resp. T(x) N U # @) there exists
an open neighborhood (x) of x such thatT (x') C U (resp. T(xX') " U # @) for all
X € V(x). T is said to be usc (resp. Isc) ofif T is usc (resp. Isc) at every point of
X. T is continuous ak if T is both usc and Isc at Note that by definitiondf. also
[13]) T: X = YisIsc atx € X if and only if for anyy € T(x) and any nefx,} in X
converging ta, there is a nety,} , Y. € T(X,) with y, converging toy.

Let X be a convex subset of a topological vector space (in short tvs) alet
ts. A set-valued mapping@ : X = X is called a KKM mapping if for any finite subset
N of X:

(co N) S T(N) = J{T(x) | xe N}.

Consider now set-valued mappingsT : X = Y. ThenSis said to be a generalized
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KKM mapping w.r.t. T if for each finite subsel of X the following holds
T(co N) € S(N) = |_J{S(x) | xe N} .

Here co N denotes the convex hull dfi. The set-valued map : X = Y is said to
have the KKM propertydf. [4]) if S: X = Y is a generalized KKM mapping w.r.t. to
T such that the familyS(x) | x € X} has the finite intersection properiyg(, any finite
subcollection has a nonempty intersection). We denot& KM (X, Y) the family of
all set-valued maps having the KKM property.

Lemma 3 (cf. [1]) Let X, Y be two Hausdorff tvs and:TX = Y be a set-valued map:
(i) If X is compact and T is usc with compact values, thé€X)lis compact.
(i) If Y is compact and T is closed, then T is closed valued.

(i) If T is an usc set-valued map with closed values, then T is closed.

Lemma 4 (cf. [15]) Let E be a Hausdorff tvs, Y be a convex subset of E, X be a
nonempty subset of Y,:FX =2 Y be a set-valued map satisfying the following condi-
tions:

n
(i) for each finite Subsefy, ..., Xa} of X, €O {X1, ... X} C | J F (4.
i=1

(i) forall x € X, F(x) is closed and there existg & X such that Kxp) is compact.

(iif) There exists a nonempty compact subset K of Y such that for each finite subset
N of Y, there exists a compact convex subseblY containing N such that
Ln N {NF(X): xe Ly} C K.

Then( ) F(x) # 0.

xe X

Lemma5 (cf. [7]) Let E;, E; and Z be Hausdorff ts, X and Y be nonempty subsets
of E; and E respectively, EXxYx X==Zand S X = X

(@) If Sand F are bothIsc, thenTX x Y = Z defined by Tx, y) = U F(X, y,u)=
ue S(x)
F(X,y, S(x))islscon Xx Y.

(b) If S and F are both usc with compact values, then T is an usc set-valued map
with compact values.
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Lemma 6 (cf. [8]) Let Y be a convex Hausdorff tvs, let X be a Hausdorff ts and let
T e KKM(Y, X). Suppose that for each compact subset C of ¥G)Tis compact.
Let P: X = Y be a set-valued map such that for alExXX, P(x) is convex and X%

Ufint P~(y) | ye Y}

Suppose that there exists a compact subset K of X such that for each finite subset N of
Y, there exists a compact convex subsebtY containing N such that(Ly) \ K C
UJ{intP~(y) | y € Ly}. Then there exist$x, y) € X x Y such thatx € T(y) and

y € P(X).

Lemma 7 ([14]) Let X be a nonempty convex subset of a Hausdorffts EX g X —

Rand f: X x X — R suppose the following conditions are satisfied:

(i) for each xe X, g(x, x) > 0;
(i) for each ye X the function f-, y) is usc
(i) forallx,ye X, f(x,y) < Oimplies gx,y) < 0;
(iv) for all x, y € X the function gx, -) : X — R is quasiconvex;

(v) there exists a nonempty compact set A and a compact convex subseCBX
such that for each ¥ X\ A there exists ¥ B such that fx,y) <0

Then there exist®& € A such that fx,y) > Oforall y € X.

As usual a functionf is called quasiconvex if all lower level sets are convex. and
guasiconcave if f is quasiconvex.

Let X, Y be vector spaces. A set-valued mappkig X = Y is called convex if for
anyXxs, X, € Xand 0< A < 1 the relation

HAXi+ (1—=2A)X) CAH(X) + (1 —=2)H(X2)
is satisfied and concave if the inverse inclusipholds.

The following Lemma is a special case of Theorem 7 in [5].

Lemma 8. Let X be a nonempty convex subset of a tvs E. BT : X = X be
multivalued maps satisfying the following conditions :

(i) forall xe X,coSx) C T(x);
(i) forall x e X, x ¢ T(x) andS (y) is open for eacly € X;

(i) there exists a nonempty compact convex sulset X and a nonempty compact
subsetK of X such that for eaclx € X\ K, there existsy € C such thatx €

S (Y).
Then there exist& € X such thatS(x) = 0.
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