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Abstract

The paper studies three classes of optimization problems with bilevel structure in-
cluding mathematical programs with equilibrium constraints (MPEC) and semi-
infinite problems (SIP). The main goal of the paper is to provide results which
establish the existence of feasible points of the problems. These results are based
on the so-called KKM Lemma. We are also interested in the convexity properties
of these problems.
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1 Introduction

Generalized semi-infinite problems are programs of the type

SIP: min
x

f .x/ s.t. �.x; t/ ≥ 0 ∀t ∈ H.x/ ; (1)

where H.x/ ⊂ Rm is the index set defined by a set-valued mappingH : Rn ⇒ Rm.
Bilevel problems are of the form

BL: min
x;y

f .x; y/ s.t. g.x; y/ ≥ 0;

andy is a solution of Q.x/ : min
t

F.x; t/ s.t. t ∈ H.x/ :
(2)
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We also consider mathematical programs with equilibrium constraints

MPEC: min
x;y

f .x; y/ s.t. g.x; y/ ≥ 0 ; y ∈ H.x/

and �.x; y; t/ ≥ 0 ∀t ∈ H.x/ :
(3)

These programs represent three important classes of optimization problems which have
been investigated in a large number of papers and books (seee.g., [2], [11]-[12] [6]
and the references therein). As usual in linear and nonlinear optimization, these papers
mainly deal with optimality conditions and numerical methods to solve the problems.
Typically the existence of a feasible point is tacitly assumed.

The aim of this paper however is to deal with the latter problem and to investi-
gate under which assumptions the existence of feasible points can be assured in ad-
vance. The results are based on the famous KKM Theorem (Knaster-Kuratowski-
Mazurkiewicz) (seee.g. [15]).

The paper is organized as follows. In Section 2, we analyze the relations between
the three types of optimization problems, SIP, BL and MPEC. In Section 3, we for-
mulate the existence problems and add some illustrative remarks. In Section 4, based
on the KKM approach, we derive results which a-priori establish the existence of fea-
sible points of our problems. Also convexity properties are studied. The Appendix
surveys the concepts from convex analysis and functional analysis needed to prove our
theorems.

2 Comparison between the structure of the problems

Obviously, SIP is a special case of MPEC. But also BL can be written in MPEC form
as follows: If we write the second constraint in BL equivalently as

y ∈ H.x/ and F.x; t/− F.x; y/ ≥ 0 ∀t ∈ H.x/ :

the BL problem becomes

BL2: min
x;y

f .x; y/ s.t. g.x; y/ ≥ 0 ; y ∈ H.x/

andF.x; t/− F.x; y/ ≥ 0 ∀t ∈ H.x/ :
(4)

Remark. Note however that there is a subtle difference in the interpretation of the
constraint

�.x; t/ ≥ 0 or �.x; y; t/ ≥ 0 ∀t ∈ H.x/ : (5)

In the case thatH.x/ is empty, for BL and MPEC, because of the additional condition
y ∈ H.x/, no feasible point.x; y/ exists (for thisx). For the SIP problem however
an empty index setH.x/ means that there are no constraints and such pointsx are
feasible.
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SIP and MPEC can also be transformed into a problem of bilevel structure. Beginning
with the SIP case, we assumeH.x/ 6= ∅; ∀x, and introduce the (lower level) problem

Q.x/ : min
t
�.x; t/ s.t. t ∈ H.x/ ; (6)

depending on the parameterx. Then (assuming thatQ.x/ is solvable) we can write

�.x; t/ ≥ 0 ∀t ∈ H.x/ ⇔ �.x; y/ ≥ 0 andy solvesQ.x/ :

So SIP takes the BL form:

SIP2: min
x;y

f .x/ s.t. �.x; y/ ≥ 0;

andy is a solution of Q.x/ : min
t
�.x; t/ s.t. t ∈ H.x/ :

(7)

This problem is a BL program with the special property that the objective functionf
does not depend ony and that the constraint function� in the first level coincides with
the objective function of the lower level.

To bring MPEC into BL form we apply the same trick as before, and consider the
program

Q.x; y/ : min
t
�.x; y; t/ s.t. t ∈ H.x/ ; (8)

depending on the parameter.x; y/. If we assume thatQ.x; y/ is solvable, then

�.x; y; t/ ≥ 0 ∀t ∈ H.x/ ⇔ �.x; y; t/ ≥ 0 andt solvesQ.x; y/ :

Consequently MPEC turns into a problem of BL type (withx replaced by.x; y/):

MPEC2: min
x;y;t

f .x; y/ s.t. g.x; y/ ≥ 0 ; y ∈ H.x/;

�.x; y; t/ ≥ 0

andt is a solution of Q.x; y/ : min
u
�.x; y;u/ s.t. u ∈ H.x/ :

(9)

Under the extra condition
�.x; y; y/ = 0 ; ∀y ; (10)

in MPEC2 we can ’eliminate’ thet variable as follows. In view of (10 ) we find

y ∈ H.x/ and�.x; y;u/ ≥ 0 ∀u ∈ H.x/ ⇔ y solvesQ.x; y/

and MPEC2 is equivalent with

MPEC3: min
x;y

f .x; y/ s.t. g.x; y/ ≥ 0 ; y ∈ H.x/;

andy is a solution of Q.x; y/ : min
u
�.x; y;u/ s.t. u ∈ H.x/ :

(11)

Remark. Note however that now the problem MPEC3 has a more complicated struc-
ture than BL, since in MPEC3 the lower level problemQ.x; y/ depends ony which
should at the same time solveQ.x; y/.

For a comparison from the structural and generic viewpoint between BL and SIP we
refer to [12], and between BL and MPEC we refer to [3].
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3 The feasibility problems and preliminaries

For the three problems SIP, BL and MPEC we consider the corresponding (basic)
feasibility sets:

MSI P = {x ∈ Rn
| �.x; t/ ≥ 0 ∀t ∈ H.x/}

M0
BL = {.x; y/ ∈ Rn

× Rm
| y ∈ H.x/ andF.x; t/− F.x; y/ ≥ 0 ∀t ∈ H.x/}

M0
M PEC = {.x; y/ ∈ Rn

× Rm
| y ∈ H.x/ and�.x; y; t/ ≥ 0 ∀t ∈ H.x/}

In the next section, conditions are derived which assure that these feasible sets are
non-empty. Moreover, the structure of the sets is analyzed. Note that if the feasible
set is non-empty and compact, the corresponding minimization problems will have
a solution provided that the objective function is continuous (lower semicontinuous).
We will prove the existence of minimizers without compactness assumptions.

We now add some remarks which could help to illustrate the results of the next
section. Letx be fixed and putK := H.x/,  .y; t/ := �.x; y; t/. The feasible set
M0

M PEC then reduces to

M = {y ∈ Rm
| y ∈ K and .y; t/ ≥ 0 ∀t ∈ K :}

By defining the (upper level) setM≥.y/ := {t |  .y; t/ ≥ 0} the feasibility problem
M 6= ∅ can equivalently be expressed in the geometrical form:

Find y ∈ K such thatK ⊆ M≥.y/ :

Considering the parametric program

P.y/ : v.y/ := min
t∈K

 .y; t/

this is equivalent to finding an elementy ∈ K such thatv.y/ ≥ 0.

Let now K be convex and consider two different cases.

Case that t→  .y; t/ is concave: Then the setM≥.y/ is convex and for anyy, P.y/
is a ‘concave’ program. (Alsov.y/ is concave iny.) In particular the minimizer is
attained at an extreme point ofK.

Case that t→  .y; t/ is convex: Then the complement ofM≥.y/ is convex and for
any y, the problemP.y/ is a ‘convex’ program.

The problems considered in the next section will be of the structure of the second case.
The KKM approach in the next section can be seen as a generalization of the following
way to prove feasibility based on asaddle point result.

Obviously (for compactK) M 6= ∅ is equivalent with

max
y∈K

min
t∈K

 .y; t/ ≥ 0 :
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Theorem 1 Let K be convex and compact. Suppose that y→  .y; t/ is quasiconcave
and usc (upper semicontinuous) and t→ �.y; t/ is quasiconvex and lsc (lower semi-
continuous). Assume furthermore that for any t∈ K, there exists an element y.t/ ∈ K
such that .y.t/; t/ ≥ 0. Then M6= ∅.

Proof. It is well-known (seee.g., [10]) that under the assumptions the relation

max
y∈K

min
t∈K

 .y; t/ = min
t∈K

max
y∈K

 .y; t/ :

holds. Then by using .y.t/; t/ ≥ 0, it follows

max
y∈K

min
t∈K

 .y; t/ = min
t∈K

max
y∈K

 .y; t/ ≥ min
t∈K

 .y.t/; t/ ≥ 0 ;

which proves the statement. 2

We discuss two examples.
Example. Consider the problem:

find y ∈ K := [−1;1] such that .y; t/ ≥ 0 ; ∀t ∈ K :

for the two cases

 .y; t/ =  1.y; t/ := −ty+ t2 and  .y; t/ =  2.y; t/ := −ty+ t2
+ �

with given constant� > 0. In the first case we have 1.y; y/ = 0 andy = 0 is the
unique feasible point. In the second case 2.y; y/= � > 0 and an easy analysis shows
that the feasible set is given byF2 = [−2

√
�;2

√
�]. Note that for� < 0 no feasible

point exists.
This is a typical example in the sense that a condition .y; y/ = 0 will typically

lead to (locally) unique solutions whereas a feasible set with interior points occurs in
case .y; y/ > 0 (see also the conditionf .x; y; y/ ≥ 0 in Corollary 1).

Example. Given symmetricm× m-matricesA; B;C such thatA;C andC + B− A
are positive semi-definite and 06= b ∈ Rm, a ∈ Rm; ‖a‖ ≤ 1 (‖ · ‖ the Euclidean norm)
we consider the feasibility problem:

find y ∈ K := {y ∈ Rm
| ‖y‖ ≤ 1} such that .y; t/ ≥ 0 ; ∀t ∈ K

where .y; t/ = −.aTt/2 .yT Ay/+ yT Bt + tTCt + bT.y− t/. By noticing

 .y; y/ = −.aT y/2 .yT Ay/+ yT By+ yTCy+ bT.y− y/ ≥ yT.C + B− A/y ≥ 0

we see that the assumptions of Theorem 1 are fulfilled and the above problem has a
feasible solutiony. Note that here,y = 0 is not feasible.
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4 Existence of feasible points and minimizers

In this section, based on the famous KKM Lemma, we will provide theorems establish-
ing the existence of feasible points and the existence of minimizers for the problems
above. We do not impose any compactness assumptions. The concepts from con-
vex analysis and functional analysis needed to prove the results are to be found in the
Appendix.

We firstly consider the following problem of the semi-infinite type:

min
x

h.x/ s.t. x ∈ M1 ; (12)

whereM1 = {x ∈ X | f .x; y; v/ ≥ 0 for all v ∈ H.x/ and for ally ∈ Y}. We prove our
basic result.

Theorem 2 Let X ⊂ Rn and Y⊂ Rm be nonempty, convex. Let f: X × Y × Y →

R be continuous, H: X ⇒ Y continuous with nonempty compact values and T∈

KK M.Y; X/. Suppose that

(i) For each compact subset C of Y, T.C/ is compact.
(ii) For each.x; v/ ∈ X × Y, the function y→ f .x; y; v/ is quasiconvex, and

for any y∈ Y, x∈ T.y/, it follows f.x; y; v/ > 0 ∀v ∈ H.x/ : (13)

(iii) There exists a compact subset K of X such that for each finite subset N of Y,
there exists a compact convex subset LN of Y containing N such that for each
x ∈ T.LN/ \ K, there exists y∈ LN such that f.x; y; H.x// * R+;

Then the set M1 is nonempty. If in addition H is convex and for each fixed y∈ Y, and
the function.x; v/→ f .x; y; v/ is quasiconcave then M1 is convex.

Suppose that (i),(ii),(iii) holds and M1 is convex. Suppose further that:

(iv) h is lsc and quasiconvex;

(v) there exists a compact subset D of M1 such that for each finite subset Q of M1,
there exists a compact convex subset LQ of M1 such that for each x∈ LQ \ D
there exists y∈ LQ such that h.y/ < h.x/.

Then there exists a solution of (12).

Proof. (a) Let us defineF.x; y/ = f .x; y; H.x//. Since f is a continuous function
andH is a continuous set-valued map with compact values, it follows from Lemma 5
that F : X × Y → R is a continuous set-valued map with nonempty compact values.
DefineA : X ⇒ Y via

A.x/ = {y ∈ Y | F.x; y/ 6⊆ R+}; whereR+ = [0;∞/ :
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We show now thatA.x/ is convex for eachx ∈ X. Indeed, if y1; y2 ∈ A.x/; � ∈

[0;1], it follows y1; y2 ∈ Y; F.x; y1/ 6⊆ R+; F.x; y2/ 6⊆ R+. We want to show that
F.x; �y1 + .1 − �/y2/ 6⊆ R+ for all � ∈ [0;1]. Suppose that there exists�0 ∈ [0;1]
such thatF.x; �0y1 + .1− �0/y2/ ⊆ R+. By quasiconvexity off wrt. y either

F.x; y1/ ⊆ F.x; �0y1 + .1− �0/y2/+ R+ ⊆ R+

or
F.x; y2/ ⊆ F.x; �0y1 + .1− �0/y2/+ R+ ⊆ R+ :

This leads to a contradiction. Therefore,F.x; �y1 + .1−�/y2/ 6⊆ R+ for all � ∈ [0;1].
We also have�y1 + .1− �/y2 ∈ Y. Hence�y1 + .1− �/y2 ∈ A.x/ andA.x/ is convex
for all x ∈ X.
Note that for eachy ∈ Y, the setA−.y/ is open. Indeed, sinceA−.y/ = {x ∈ X |

F.x; y/ ∩ .−∞;0/} 6= ∅ this follows directly from the fact thatF is lsc (see the defi-
nition in the appendix withU = .−∞;0/)

We wish to show that there existsx̄ ∈ X such thatF.x̄; y/ ≥ 0 for all y ∈ Y. Sup-
pose that for eachx ∈ X, there existy ∈ Y andu ∈ F.x; y/ such thatu < 0. Then
F.x; y/ 6⊆ R+ andy ∈ A.x/. i.e., A.x/ 6= ∅ for all x ∈ X. ThenX =

⋃
{A−.y/ | y ∈

Y} =
⋃

{intA−.y/ | y ∈ Y}.
By assumption, for each compact setC of Y, T.C/ is compact andLN \ K ⊆⋃

{A−.y/ | y ∈ LN} =
⋃

{intA−.y/ | y ∈ LN}. So, the assumptions of Lemma 6
hold and there exists.x̄; ȳ/ ∈ X × Y such thatx̄ ∈ T. ȳ/ and ȳ ∈ A.x̄/. Therefore
f .x̄; ȳ; H.x̄// 6⊆ R+ in contradiction to (13). Therefore, there existsx̄ ∈ X such that
F.x̄; y/ ≥ 0 for all y ∈ Y i.e., M1 is nonempty.

We now show that under the extra conditions the setM1 is convex. Letx1; x2 ∈

M1; � ∈ [0;1]. Then f .x1; y; v/ ≥ 0 for all y ∈ Y andv ∈ H.x1/, and f .x2; y; v/ ≥ 0
for all y ∈ Y andv ∈ H.x2/. We now prove

f .�x1 + .1− �/x2;Y; H.�x1 + .1− �/x2// ≥ 0 :

Suppose there exists�0 ∈ [0;1] such that f .�0x1 + .1 − �0/x2;Y; H.�0x1 + .1 −

�0/x2/ 6⊆ R+. Then there exists.y0; v0/ ∈ Y× H.�0x1 + .1−�0/x2/ such thatf .�0x1 +

.1− �0/x2; y0; v0/ < 0. SinceH is convex,H.�0x1 + .1− �0/x2/ ⊂ �0H.x1/+ .1−

�0/H.x2/, we findv0 = �0v1 + .1− �0/v2 for somev1 ∈ H.x1/ andv2 ∈ H.x2/. So,
f .�0x1 + .1− �0/x2; y0; �0v1 + .1− �0/v2/ < 0. By quasiconcavity off , either

f .x1; y0; v1/ ≤ f .�0x1 + .1− �0/x2; y0; �0v1 + .1− �0/v2/ < 0

or
f .x2; y0; v2/ ≤ f .�0x1 + .1− �0/x2; y0; �0v1 + .1− �0/v2/ < 0 ;

leading to a contradiction. This show that�x1 + .1− �/x2 ∈ M1 andM1 is convex.

To prove the existence of a minimizerx̄ of (12) let us suppose to the contrary
that for eachx ∈ M1, there existsy ∈ M1 such thath.y/ < h.x/. Let S : X ⇒ X be
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defined byS.x/ = {y ∈ M1 | h.y/ < h.x/}: Then x =∈ S.x/. Sinceh is lsc, S−.y/
is open for eachy ∈ X. Sinceh is quasiconvex,S.x/ is convex. By assumption
LQ \ D ⊆

⋃
{S−.y/ | y ∈ LQ} =

⋃
{intS−.y/ | y ∈ LQ}. Then it follows from Lemma

8 that there exists̄x ∈ X such thatS.x̄/ = ∅. Thush.y/ ≥ h.x̄/ for all y ∈ M1.
2

We emphasize that under the additional assumptions thatX and Y are compact the
situation simplifies (see the next remark).

Remark. Suppose that the setsX, Y in Theorem 2 are compact. Then the assumptions
(iii), (v) and the quasiconvexity of h are superfluous. It then follows directly thatM1

is nonempty and it is not difficult to show thatM1 is closed (thus compact). So, if
h is lsc, a minimizer of (12) exists (without the assumptions iii,iv,v). Note that the
condition iii is a sort of a constraint qualification. The same argument applies to all
further existence results.

Theorem 2 can be applied to problems of SIP-type in two different ways. Let us firstly
consider the SIP program

min
x

h.x/ s.t. x ∈ MSI P

whereMSI P = {x ∈ X | �.x; t/ ≥ 0 ∀t ∈ H.x/}.

Theorem 3 Let X⊂ Rn and Y⊂ Rm be nonempty, convex. Let H: X ⇒ Y be a convex
continuous map with nonempty compact values and T∈ KK M.Y; X/. Suppose that

(i) for each compact subset C of Y, T.C/ is compact and

for all y ∈ Y, x∈ T.y/, it follows �.x; v/ ≥ 0 ∀v ∈ H.x/ :

(ii) Suppose that� is affine and h: X → R is lsc. and quasiconvex and

(iii) there exists a compact subset D of X such that for each finite subset Q of X,
there exists a compact convex subset LQ of X such that for each x∈ LQ \ D
there exists a y∈ LQ such that h.y/ < h.x/.

Then the set MSI P is a nonempty convex set and a solution of SIP exists.

Proof. Let f : X × Y × Y → R be defined byf .x; y; v/ = �.x; v/, then it is easy to
see thatf satisfies the conditions of Theorem 2

2

We now consider the special case of SIP:

min
x

h.x/ s.t. x ∈ M ′

SI P ; (14)

whereM ′

SI P = {x ∈ X | �.x; y/≥ 0 ∀y ∈ Y} with Y ⊂ Rm. As a corollary of Theorem 2
we now obtain
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Theorem 4 Let X⊂ Rn and Y⊂ Rm be nonempty, convex sets. Let� : X × Y → R be
continuous, and T∈ KK M.Y; X/. Let the conditions (iv) and (v) of Theorem 2 hold
and suppose that

(i) for each compact subset C of Y, T.C/ is compact, for each x∈ X the function
y → �.x; y/ is quasiconvex and

for all y ∈ Y, x∈ T.y/, it follows �.x; y/ ≥ 0 :

(ii) for each y∈ Y the function x→ �.x; y/ is quasiconcave and for each fixed
x ∈ X, y→ �.x; y/ is quasiconvex;

(iii) there exist a compact subset K of X such that for each finite subset N of Y,
there exists a compact convex subset LN of Y containing N such that for each
x ∈ T.LN/ \ K , there exists y∈ LN such that�.x; y/ < 0.

Then the set M′SI P is nonempty and convex, and there exists a solution of the SIP in (14).

Proof. Let f : X × Y × Y → R be defined byf .x; y; v/ = �.x; y/, then it is easy to
see thatf satisfies the conditions of Theorem 2.

2

We emphasize that for the special caseY = X in the preceding Theorem, the condition
for T is superfluous since it is trivially satisfied by the mappingT.x/ = {x}.

We now come to the problems of MPEC type and define the mappingM : X ⇒ Y by

M.x/ = {y ∈ H.x/ | f .x; y; v/ ≥ 0 for all v ∈ H.x/} : (15)

Definition 1. A function f : R2m
→ R is called properly quasimonotone on the convex

setY ⊆ Rm if for every finite set{v1; v2; :::; vn} ⊆ Y the following holds:

inf
y∈co{v1;v2;:::;vn}

max
16 j6k

f .y; v j / ≥ 0

Lemma 1
(a) Let X ⊂ Rn and Y⊂ Rm be nonempty, and convex. Let f: X × Y × Y → R be
usc and let H: X ⇒ Y be a usc multivalued map with nonempty, closed and convex
values. Suppose

(i) the function fx : R2m
→ R, fx.y; v/ := f .x; y; v/ is properly quasimonotone;

(ii) for each x∈ X there exists a nonempty compact subset Kx of Y such that for
each finite subset Nx of H.x/, there exist a compact convex subset LNx of H.x/
containing Nx such that for each y∈ LNx \ Kx there existsv′

∈ LNx such that
y ∈ H.x/ and f.x; y; v′/ < 0.
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Then for each x∈ X the set M.x/ is a nonempty, closed subset of Y.

(b) If moreover y→ f .x; y; v/ is quasiconcave for every x∈ X; v ∈ Y, the set M.x/
(cf. (15) is also convex valued.

Proof. (a) For eachx ∈ X, let Qx : H.x/⇒ H.x/ be defined by

Qx.v/ = {y ∈ H.x/ | f .x; y; v/ ≥ 0} :

We wish to show thatQx is a KKM map. Suppose it is not. Then there exists a
finite set{v1; :::; vn} in H.x/ such thatco{v1; :::vn} * ∪

n
i=1Qx.vi /. Therefore there

existsy ∈ co{v1; :::vn} such thaty =∈ Qx.vi / for all i = 1; :::;n. SinceH.x/ is convex
and v1; :::; vn ∈ H.x/, we find y ∈ co{v1; :::vn} ⊂ H.x/. By y =∈ Qx.vi /, we have
f .x; y; vi / < 0 for all i = 1; :::;n. Since fx is properly quasimonotone there exists
1 ≤ j ≤ n such thatf .x; y; v j / ≥ 0. This leads to a contradiction showing thatQx is a
KKM map for eachx ∈ X.

Since f is usc, for eachx ∈ X and v ∈ Y, the setQx.v/ is closed. Since for
eachx ∈ X, there exists a nonempty compact subsetKx of H.x/ such that for each
finite subsetNx of H.x/, there exist a compact convex subsetLNx of H.x/ containing
Nx such that for eachx ∈ X, LNx \ Kx ⊆

⋃
{.Qx.v//

c
| v ∈ LN}. From Lemma 4, we

deduce that
⋂

{Qx.v/ | v ∈ H.x/} 6= ∅. Therefore for eachx ∈ X, there existsy ∈ H.x/
such thatf .x; y; v/ ≥ 0 for all v ∈ H.x/. This shows thatM.x/ 6= ∅ for eachx ∈ X.

For eachx ∈ X, M.x/ is closed. Indeed, ify ∈ M.x/, then there exists a sequence
yn ∈ M.x/ such thatyn → y. One hasyn ∈ H.x/, f .x; yn; v/ ≥ 0 for all v ∈ H.x/.
SinceH is an usc set-valued map with closed values, it follows from Lemma 3 thatH
is closed. Thereforey ∈ H.x/. We have f .x; yn; v/ ≥ 0. Since f is usc, this implies
f .x; y; v/ ≥ lim f .xn; yn; v/ ≥ 0. Consequently,y ∈ M.x/ andM.x/ is closed.
(b) We finally show thatM.x/ is convex for eachx ∈ X if the quasiconcavity condition
for f is satisfied. Indeed, ify1; y2 ∈ M.x/ and� ∈ [0;1] it follows f .x; y1; v/ ≥ 0,
f .x; y2; v/ ≥ 0 for all v ∈ H.x/ andy1; y2 ∈ H.x/. We havey� = �y1 + .1− �/y2 ∈

H.x/. Since f .x; y; v/ is quasiconcave wrt.y for anyv ∈ H.x/, either

f .x; y�; v/ ≥ f .x; y1; v/ ≥ 0 or f .x; y�; v/ ≥ f .x; y2; v/ ≥ 0

Thereforey� ∈ M.x/ andM.x/ is convex.
2

Remark. Condition (ii) of Lemma 1 (a) is satisfied ifH : X ⇒ Y is a multi-valued
map with nonempty compact values.

The next lemma provides us with a sufficient condition for proper quasimonotonicity.

Lemma 2 Let f : Rn
× Rm

× Rm
→ R be given and define fx.y; v/ = f .x; y; v/.

Suppose that for each fixed x∈ X, the relation f.x; y; y/ ≥ 0 holds for all y∈ Y
and for each fixed.x; y/ ∈ X × Y, the mappingv → f .x; y; v/ is quasiconvex. Then
fx : R2m

→ R is properly quasimonotone.
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Proof. Since for each fixed.x; y/ ∈ X× Y, the functionv→ f .x; y; v/ is quasiconvex,
we see that for any set{v1; v2; :::; vn} in Y, and anyy ∈ co{v1; v2; :::; vn}, there exists
1 ≤ j ≤ n such thatf .x; y; v j / ≥ f .x; y; y/ ≥ 0. Therefore

inf
y∈co{v1;v2;:::;vn}

max
1≤i≤n

f .x; y; vi / ≥ 0 or inf
y∈co{v1;v2;:::;vn}

max
1≤i≤n

fx.y; vi / ≥ 0

showing thatfx is properly quasimonotone.
2

Lemma 2 immediately leads to

Corollary 1 If in Lemma 1 the assumption that fx.y; v/ := f .x; y; v/ is proper quasi-
monotone is replaced by: for any.x; y/ ∈ X × Y,

f .x; y; y/ ≥ 0 and v → f .x; y; v/ is quasiconvex;

then the same conclusion holds.

The result of Lemma 1 will now lead to existence results for the minimization problem

min
.x;y/

h.x; y/ s.t. .x; y/ ∈ M0
M PEC ; (16)

whereM0
M PEC = {.x; y/ ∈ X × Y | y ∈ H.x/ and f .x; y; t/ ≥ 0 ∀t ∈ H.x/}:

Theorem 5
(a) If f is quasiconcave and H is convex and concave, then the set M0

M PEC is convex
(see also [3]).
(b) Let the assumptions of Lemma 1(a) hold. Suppose further that

(i) the function h is lsc and quasiconvex;
(ii) there exists a compact subset D of M0

M PEC , such that for each finite subset Q
of M0

M PEC, there exists a compact convex subset LQ containing Q such that for
each.x; y/ ∈ LQ \ D, there exist.u; v/ ∈ LQ such that h.u; v/ < h.x; y/.

Then the set M0M PEC is nonempty and there exists a minimizer of (16).

Proof. (a) To derive the convexity result forM0
M PEC consider.x1; y1/; .x2; y2/ ∈

M0
M PEC and� ∈ [0;1]. Then.xi ; yi / ∈ X × Y, yi ∈ H.xi / and f .xi ; yi ; v/ ≥ 0 for all

v ∈ H.xi /; i = 1;2. We have.�x1 + .1− �/x2; �y1 + .1− �/y2/ ∈ X × Y. SinceH is
concave,�y1 + .1− �/y2 ∈ H.�x1 + .1− �/x2/. Now choose anyv ∈ H.�x1 + .1−

�/x2/. SinceH is convex,i.e., v ∈ H.�x1 + .1−�/x2/⊆ �H.x1/+ .1−�/H.x2/, i.e.,
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there existsv1 ∈ H.x1/; v2 ∈ H.x2/ such thatv= �v1 + .1− �/v2. By quasiconcavity
of f , either

0 ≤ f .x1; y1; v1/ ≤ f .�x1 + .1− �/x2; �y1 + .1− �/y2; �v1 + .1− �/v2/ or

0 ≤ f .x2; y2; v2/ ≤ f .�x1 + .1− �/x2; �y1 + .1− �/y2; �v1 + .1− �/v2/

In any casef .�x1 + .1 − �/x2; �y1 + .1 − �/y2; v/ ≥ 0, implying �.x1; y1/+ .1 −

�/.x2; y2/ ∈ M0
M PEC. SoM0

M PEC is a convex subset ofX × Y.
(b) By Lemma 1 for anyx ∈ X the setM.x/ is nonempty. So, in particular,

M0
M PEC 6= ∅. To prove that a minimizer of (19) exists let us suppose that there is

no minimizer. Then for all.x; y/ ∈ M0
M PEC, there exists.u; v/ ∈ M0

M PEC such that
h.u; v/ < h.x; y/. Let the mappingS : M0

M PEC ( M0
M PEC be defined byS.x; y/ =

{.u; v/ ∈ M0
M PEC| h.u; v/− h.x; y/ < 0}. ThenS.x; y/ 6= ∅ for all .x; y/ ∈ X × Y.

Clearly, .x; y/ =∈ S.x; y/. Sinceh is lsc, S−.u; v/ is open for each.u; v/ ∈ M0
M PEC.

Sinceh is quasiconvex, the setS.x; y/ is convex for each.x; y/ ∈ M0
M PEC. By assump-

tion we find

LQ \ D ⊆

⋃
{S−.u; v/ | .u; v/ ∈ M0

M PEC} =

⋃
{ intS−.u; v/ | .u; v/ ∈ M0

M PEC} :

Then it follows from Lemma 8 that there exists.x̄; ȳ/ ∈ M0
M PEC such thatS.x̄; ȳ/= ∅.

Therefore, f .u; v/ ≥ f .x̄; ȳ/ for all .u; v/ ∈ M0
M PEC. This leads to contradiction and

a minimizer of (19) exists.
2

We now derive the results for the problems

min
.x;y/

h.x; y/ s.t. .x; y/ ∈ MM PEC ; (17)

MM PEC = {.x; y/ ∈ X × Y | g.x; y/ ≥ 0; y ∈ H.x/ and f .x; y; t/ ≥ 0 ∀t ∈ H.x/}.

Theorem 6 In addition to the assumptions in Theorem 5(b), let g: X× Y → R be qua-
siconcave. Suppose that H: X ⇒ Y maps according to H|A : A ⇒ B and graphH|A ⊆

F , where A= �XF , B = �YF , F = {.x; y/ ∈ X × Y | g.x; y/ ≥ 0}, i.e., A is the
standard projection ofF on X and B is the standard projection ofF on Y. Suppose
furthermore thatF is nonempty. Then the set MM PEC is nonempty and a minimizer of
(17) exists.

Proof. It is easy to see thatF is a nonempty, convex subset ofX × Y. Then alsoA is
a convex subset ofX ⊂ Rn and B a convex subset ofY ⊂ Rm and H|A : A ⇒ B. By
Theorem 5(b) there exists.x̄; ȳ/ ∈ A× B such that̄y ∈ H.x̄/ and f .x̄; ȳ; v/≥ 0 for all
v ∈ H.x̄/. Then.x̄; ȳ/ ∈ graphH|A ⊆ F . Henceg.x̄; ȳ/ ≥ 0. This shows thatMM PEC

is nonempty.
2
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Corollary 2 Let X; Y; g; h; H be as in Theorem 6 and let the assumptions of The-
orem 5(b) hold. Let F: X × Y → Rm be a continuous function and p: X → R be a
continuous convex function. Then there exists a solution.x̄; ȳ/ ∈ X × Y of the prob-
lem:

min
.x;y/

h.x; y/ s.t..x; y/ ∈ X × Y; g.x; y/ ≥ 0; y ∈ H.x/;

and 〈F.x; y/; y− v〉 + p.v/− p.y/ ≥ 0 for all v ∈ H.x/.

Proof. The functionf .x; y; v/ := 〈F.x; y/; y− v〉+ p.v/− p.y/ satisfiesf .x; y; y/=
0 and for each.x; y/ ∈ X× Y the functionv→ f .x; y; v/ is quasiconvex.f is a contin-
uous function. By Lemma 2 the functionfx : Y × Y → R is properly quasimonotone.
So the result follows from Theorem 6.

2

Remark .
(1) The results of Theorems 5 and 6 remain true if the assumption thatfx is properly
quasimonotone is replaced by the sufficient condition of Lemma 2.
(2) Corollary 2 is an existence theorem for mathematical programs with mixed vari-
ational inequality constraints. This type of program contains mathematical programs
with variational inequality constraints and mathematical bilevel programs.

We now can establish existence results for bilevel problems

min
.x;y/

h.x; y/ s.t. .x; y/ ∈ MBL ;

whereMBL = {.x; y/ ∈ X × Y | g.x; y/ ≥ 0; y ∈ H.x/ andy solves min
v∈H.x/

9.x; v/ }

Corollary 3 Let X; Y; h; H and g be as in Theorem 6. Let9 : X × Y → R be an
affine function. Then the set MBL is nonempty.

Proof. Consider the form (4) of a BL and definef .x; y; v/ :=9.x; v/−9.x; y/. Then
f is a quasiconcave and continuous function,f .x; y; y/ = 0 and for fixed.x; y/ ∈

X × Y the functionv → f .x; y; v/ is quasiconvex for each.x; y/ ∈ X × Y. Therefore
fx is properly quasimonotone. So, the conclusion follows directly from Theorem 6.

2

As a simple consequences of Theorem 6 we obtain another existence result for prob-
lems of semi-infinite type.

Theorem 7 Let X; Y, and g be as in Theorem 6. Let f: X × Y → R be a continuous
function. Suppose the mapping f is affine, H: X ⇒ Y maps according to H|A : A ⇒ B,
and graphH|A ⊆ F , where A= �xF ; B = �yF with F = {.x; y/ ∈ X× Y | g.x; y/≥
0; f .x; y/ ≥ 0}. Suppose,F is nonempty.
Suppose h is lsc and quasiconvex and there exists a compact subset K ofF such that

13



for each finite subset Q ofF , there exists a compact convex subset LQ of F containing
Q such that for each.x; y/ ∈ LQ \ K, there exists.u; v/ ∈ LQ such that h.u/ < h.x/.
Then there exists a solution of the program:

min
x;y

h.x/ s.t. .x; y/ ∈ X × Y; g.x; y/ ≥ 0; y ∈ H.x/

and f.x; v/ ≥ 0 for all v ∈ H.x/:

Proof. It is easy to see thatF is a nonempty convex subset ofX × Y. A is a
nonempty convex subset ofX andB is a nonempty convex subset ofY. Letq.x; y; v/=
f .x; v/− f .x; y/. Then the mappingq is an usc function,q.x; y; y/ = 0 and the map-
ping .x; y; v/ → q.x; y; v/ is quasiconvex. Thereforeqx.y; v/ = q.x; y; v/ is prop-
erly quasimonotone. Then it follows from Theorem 5 that there exists.x; y/ such that
.x; y/ ∈ F ; y ∈ H.x/ andq.x; y; v/= f .x; v/− f .x; y/≥ 0 or f .x; v/≥ f .x; y/≥ 0
for all v ∈ H.x/. So the feasible set of the problem above is nonempty. Let us define
M ′′

SI P = {x ∈ X| g.x; y/ ≥ 0 for somey ∈ H.x/ and f .x; v/ ≥ 0 for all v ∈ H.x/}. By
Theorem 5M ′′

SI P is a nonempty convex subset ofX. By following the same arguments
as in the proof of Theorem 5 we obtain the result.

2

5 Appendix

In this section, we survey the definitions, concepts and results needed to prove the
main theorems in the preceding section.

Let T : X ⇒ Y be a set-valued map from a spaceX to another spaceY. We denote
graph.T/ = {.x; y/ ∈ X × Y | y ∈ T.x/} the graph ofT. The inverseT− of T is the
set-valued mapT− : T.X/⇒ X defined byx ∈ T−.y/ if and only if y ∈ T.x/.

Let X andY be topological spaces (abbreviated by ts). A set-valued mapT : X ⇒
Y is calledclosedif graph.T/ is a closed subset ofX × Y. T is said to be upper
semicontinuous (in short usc) (respectively lower semicontinuous (in short lsc)) atx ∈

X, if for every open setU in Y with T.x/ ⊆ U (resp. T.x/ ∩ U 6= ∅) there exists
an open neighborhoodV.x/ of x such thatT.x′/ ⊆ U (resp. T.x′/ ∩ U 6= ∅) for all
x′

∈ V.x/. T is said to be usc (resp. lsc) onX if T is usc (resp. lsc) at every point of
X. T is continuous atx if T is both usc and lsc atx. Note that by definition (cf. also
[13]) T : X ⇒ Y is lsc atx ∈ X if and only if for anyy ∈ T.x/ and any net{x�} in X
converging tox, there is a net{y�} , y� ∈ T.x�/ with y� converging toy.

Let X be a convex subset of a topological vector space (in short tvs) and letY be a
ts. A set-valued mappingT : X ⇒ X is called a KKM mapping if for any finite subset
N of X:

.co N/ ⊆ T.N/ =

⋃
{T.x/ | x ∈ N} :

Consider now set-valued mappingsS;T : X ⇒ Y. ThenS is said to be a generalized
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KKM mapping w.r.t.T if for each finite subsetN of X the following holds

T.co N/ ⊆ S.N/ =

⋃
{S.x/ | x ∈ N} :

Here co N denotes the convex hull ofN. The set-valued mapT : X ⇒ Y is said to
have the KKM property (cf. [4]) if S : X ⇒ Y is a generalized KKM mapping w.r.t. to
T such that the family{S.x/ | x ∈ X} has the finite intersection property (i.e., any finite
subcollection has a nonempty intersection). We denote byKK M.X;Y/ the family of
all set-valued maps having the KKM property.

Lemma 3 (cf. [1]) Let X, Y be two Hausdorff tvs and T: X ⇒ Y be a set-valued map:

(i) If X is compact and T is usc with compact values, then T.X/ is compact.

(ii) If Y is compact and T is closed, then T is closed valued.

(iii) If T is an usc set-valued map with closed values, then T is closed.

Lemma 4 (cf. [15]) Let E be a Hausdorff tvs, Y be a convex subset of E, X be a
nonempty subset of Y, F: X ⇒ Y be a set-valued map satisfying the following condi-
tions:

(i) for each finite subset{x1; :::; xn} of X, co {x1; :::; xn} ⊂

n⋃
i=1

F.xi /.

(ii) for all x ∈ X, F.x/ is closed and there exists x0 ∈ X such that F.x0/ is compact.

(iii) There exists a nonempty compact subset K of Y such that for each finite subset
N of Y, there exists a compact convex subset LN of Y containing N such that
LN ∩ {∩F.x/ : x ∈ LN} ⊆ K.

Then
⋂
x∈X

F.x/ 6= ∅.

Lemma 5 (cf. [7]) Let E1; E2 and Z be Hausdorff ts, X and Y be nonempty subsets
of E1 and E2 respectively, F: X × Y × X ⇒ Z and S: X ⇒ X

(a) If S and F are both lsc, then T: X×Y ⇒ Z defined by T.x; y/=
⋃

u∈S.x/

F.x; y;u/=

F.x; y; S.x// is lsc on X× Y.

(b) If S and F are both usc with compact values, then T is an usc set-valued map
with compact values.
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Lemma 6 (cf. [8]) Let Y be a convex Hausdorff tvs, let X be a Hausdorff ts and let
T ∈ KK M.Y; X/. Suppose that for each compact subset C of Y, T.C/ is compact.
Let P : X ⇒ Y be a set-valued map such that for all x∈ X, P.x/ is convex and X=⋃

{int P−.y/ | y ∈ Y}.
Suppose that there exists a compact subset K of X such that for each finite subset N of
Y, there exists a compact convex subset LN of Y containing N such that T.LN/ \ K ⊆⋃

{intP−.y/ | y ∈ LN}. Then there exists.x̄; ȳ/ ∈ X × Y such thatx̄ ∈ T. ȳ/ and
ȳ ∈ P.x̄/.

Lemma 7 ([14]) Let X be a nonempty convex subset of a Hausdorff ts E , g: X× X →

R and f : X × X → R suppose the following conditions are satisfied:

(i) for each x∈ X, g.x; x/ ≥ 0;

(ii) for each y∈ X the function f.·; y/ is usc
(iii) for all x; y ∈ X, f.x; y/ < 0 implies g.x; y/ < 0;
(iv) for all x; y ∈ X the function g.x; ·/ : X → R is quasiconvex;

(v) there exists a nonempty compact set A⊆ E and a compact convex subset B⊆ X
such that for each x∈ X \ A there exists y∈ B such that f.x; y/ < 0

Then there exists̄x ∈ A such that f.x̄; y/ ≥ 0 for all y ∈ X.

As usual a functionf is called quasiconvex if all lower level sets are convex. and
quasiconcave if− f is quasiconvex.
Let X, Y be vector spaces. A set-valued mappingH : X ⇒ Y is called convex if for
anyx1; x2 ∈ X and 0≤ � ≤ 1 the relation

H.�x1 + .1− �/x2/ ⊆ �H.x1/+ .1− �/H.x2/

is satisfied and concave if the inverse inclusion⊇ holds.

The following Lemma is a special case of Theorem 7 in [5].

Lemma 8. Let X be a nonempty convex subset of a tvs E. LetS;T : X ⇒ X be
multivalued maps satisfying the following conditions :

(i) for all x ∈ X, coS.x/ ⊆ T.x/ ;

(ii) for all x ∈ X, x =∈ T.x/ andS−.y/ is open for eachy ∈ X;

(iii) there exists a nonempty compact convex subsetC ⊆ X and a nonempty compact
subsetK of X such that for eachx ∈ X \ K, there exists̄y ∈ C such thatx ∈

S−. ȳ/.

Then there exists̄x ∈ X such thatS.x̄/ = ∅.
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