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Abstract

Generalized semi-infinite optimization problems (GSIP) are considered. The
difference between GSIP and standard semi-infinite problems (SIP) is illus-
trated by examples. By applying the ’Reduction Ansatz’, optimality condi-
tions for GSIP are derived. Numerical methods for solving GSIP are consid-
ered in comparison with methods for SIP. From a theoretical and a practical
point of view it is investigated, under which assumptions a GSIP can be trans-
formed into a SIP.
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1 Introduction

We are concerned with generalized semi-infinite optimization problems GSIP of the
following form:

GSIP: min f(x) subject to x ∈M = {x ∈ IRn | g(x, y) ≥ 0, y ∈ Y (x)}
with Y (x) = {y ∈ IRr | vl(x, y) ≥ 0, l ∈ L}

and L, a finite index set. If not stated otherwise, we assume, that the functions
f, g, vl are C2-functions and that the set valued mapping Y satisfies

Y : IRn → 2IR
r

, Y (x) ⊂ C0, for all x ∈ IRn with C0 ⊂ IRr compact. (1)

For the special case that the set Y = Y (x) does not depend on x, i.e. vl(x, y) =
vl(y), l ∈ L, the problem GSIP is a common semi-infinite problem and will be
abbreviated by SIP. If moreover Y is a finite set then GSIP reduces to a finite
optimization problem.

For a function f(x) the derivative will be denoted by Df(x) and for a function
h(x, y, t) by Dxh, Dyh, Dth (row vectors) we denote the partial derivatives w.r.t.
the variables x, y, t.

For brevity we omit equality constraints in M and Y (x). The paper is organized
as follows. In Section 2 we give some examples of GSIP and try to illustrate the
difference between GSIP and SIP. Optimality conditions for GSIP are derived in
Section 3 by reducing GSIP to a finite problem. Section 4 treats numerical methods.
We show that the numerical solution of GSIP can be much more difficult than the
solution of SIP. This leads to the question, under which conditions a GSIP can be
transformed into a SIP. We answer this question from a theoretical and a practical
viewpoint. It is shown that a transformation of GSIP to SIP is possible if in all
points of Y (x) the Mangasarian Fromovitz Constraint Qualification (MFCQ) is
satisfied.
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2 Examples

In this section we give some examples of GSIP. Chebyshev approximation problems
lead to semi-infinite problems (cf. e.g.[4]) but also to GSIP. We give an illustrative
example.

Example 1 (Chebyshev approximation and reverse Chebyshev approximation)
Let be given f(y) ∈ C2(IR2, IR) and a space of approximating functions p(x, y),
p ∈ C2(IRn × IR2, IR), parameterized by x ∈ IRn. We want to approximate f by
functions p(x, ·) in the max-norm (Chebyshev-norm) on a compact set Y ⊂ IR2. To
minimize the approximation error ε, leads to the problem:

min
x,ε

ε s. t. g±(x, y) := ±
(
f(y)− p(x, y)

)
≤ ε for all y ∈ Y . (2)

This is a SIP, since Y does not depend on (x, ε). The so-called reverse Cheby-
shev problem consists of fixing the approximation error ε and making the region
Y as large as possible (see [8] for such problems). Suppose, the set Y = Y (d)
is parameterized by d ∈ IR2 and v(d) denotes the volume of Y (d) (e.g. Y (d) =
[−d1, d1] × [−d2, d2]). The reverse Chebyshev problem then leads to the GSIP (ε
fixed).

max
d,x

v(d) s. t. g±(x, y) := ±
(
f(y)− p(x, y)

)
≤ ε for all y ∈ Y (d) . (3)

Many control problems in robotics lead to semi-infinite problems (cf. [5]). We give
an example.

Example 2 (Maneuverability problem)
Let Θ = Θ(t) ∈ IRm denote the position of the so-called tool center point of the
robot (in robot coordinates). Let Θ̇, Θ̈ be the corresponding velocities, accelerations
(derivatives w.r.t. t). The dynamical equation has (often) the form

g(Θ, Θ̇, Θ̈) := A(Θ)Θ̈ + F (Θ̇, Θ̈) = K,

with (external) forces K ∈ IRm. Here, A(Θ) is the inertia matrix and F describes
the friction, gravity, centrifugal forces, etc. The forces K are bounded by

K− ≤ K ≤ K+ .

For fixed Θ, Θ̇, the set of feasible (possible) accelerations is given by

Z(Θ, Θ̇) = {Θ̈ | K− ≤ g(Θ, Θ̇, Θ̈) ≤ K+}.

Note that, since g is linear in Θ̈, for fixed (Θ, Θ̇), the set Z(Θ, Θ̇) is convex (inter-
section of half-spaces). Let now be given an ’operating region’ Q, e.g.

Q = {(Θ, Θ̇) ∈ IR2m | (Θ−, Θ̇−) ≤ (Θ, Θ̇) ≤ (Θ+, Θ̇+)}

with bounds (Θ−, Θ̇−) and (Θ+, Θ̇+). Then, the set of feasible accelerations Θ̈
(accelerations which can be realized in every point (Θ, Θ̇) ∈ Q) becomes

Z0 =
⋂

(Θ,Θ̇)∈Q

Z(Θ, Θ̇) = {Θ̈ | K− ≤ g(Θ, Θ̇, Θ̈) ≤ K+, for all (Θ, Θ̇) ∈ Q}.

The set Z0 is convex (as an intersection of the convex sets Z). For the steering of
the robot one has to check whether a desired acceleration Θ̈ is possible, i.e. whether
Θ̈ ∈ Z0. Often, this check takes to much time due to the complicated description

2



of Z0. Then, one is interested in a simple body Y (e.g. a ball) as large as possible,
which is contained in Z0. Instead of the test Θ̈ ∈ Z0 one performs the (quicker)
check Θ̈ ∈ Y . Suppose the body Y (d) depends on the parameter d ∈ IRq and v(d) is
the volume of Y (d). Then, to maximize the volume of the body gives the following
GSIP called the maneuverability problem,

max
d

v(d) s.t. K− ≤ g(Θ, Θ̇, Θ̈) ≤ K+, for all (Θ, Θ̇) ∈ Q, Θ̈ ∈ Y (d). (4)

Both examples are problems of the following type. The geometrical interpretation
is:

Given a family of sets S(x) ⊂ IRp depending on x ∈ IRn, find a ’body’ Y of a given
form and a value x such that Y is contained in S(x) and Y is as large as possible.

The mathematical formulation is as follows. Suppose S(x) is defined by

S(x) = {y ∈ IRp | g(x, y, t) ≥ 0, for all t ∈ Q}

where Q is a given compact set in IRs and g ∈ C2(IRn×IRp×IRs, IR). Let the body
Y (d) ⊂ IRp be parameterized by d ∈ IRq (by finitely many inequalities). Let v(d) be
a measure of the size of Y (d) (e.g. the volume). To maximize v(d) for Y (d) ⊂ S(x)
becomes:

max
d,x

v(d) s.t. g(x, y, t) ≥ 0 for all y ∈ Y (d), t ∈ Q . (5)

This problem ’contains’ the maneuverability problem (4) (choose n = 0, i.e. no
variable x, t = (Θ, Θ̇), y = Θ̈) and the reverse Chebyshev problem (no t-variable).

We give some illustrative theoretical examples to point out the difference be-
tween GSIP and SIP.

The feasible set M = {x ∈ IRn | g(x, y) ≥ 0, y ∈ Y } of SIP is always closed.
This need not be the case for GSIP. Consider the problem with x, y ∈ IR,

min
x

x2 s.t. x ≤ y for all y ∈ Y (x) = {y | v(x, y) = (y + 1)2 + x2 ≤ 0} .

Then

Y (x) =
{
∅ for x 6= 0
−1 for x = 0

and M = IR \ {0} .

Note that since f(x) = x2 is minimal at x = 0, this GSIP doesn’t have a solution.
This behavior, that M is not closed, can only occur if the MFCQ (cf. Section 5) is
not satisfied for some point y ∈ Y (x) (the mapping Y is not lower semi-continuous).
In our example, this happens for x = 0, y = −1, where we have v(x, y) = 0 and
Dyv(x, y) = 2(y + 1) = 0. See also [9, Section 2] for this phenomenon.

Another difference between SIP and GSIP is, roughly speaking, that for GSIP
the feasible set may have re-entrant corners. For SIP this is excluded in the gen-
eral (generic) case (see [10] for a discussion of this phenomenon called disjunc-
tive problems). We give an example of a GSIP with M having re-entrant cor-
ners: (x ∈ IR2, y ∈ IR)

M = {x | g(x, y) := y − x2 ≥ 0, y ∈ Y (x)}, Y (x) = {y | y ≥ x1, y ≥ −x1} (6)

The feasible set becomes

M = {x ∈ IR2 | |x1| ≥ x2} .

Here at the re-entrant corner point x = (0, 0) the MFCQ is fulfilled for the (active)
point y = 0 of Y (x). Such a re-entrant corner is excluded, if Linear Independency
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Constraint Qualification (LICQ) is satisfied on Y (x). (This follows from Theorem 3a
below; under LICQ on Y (x) GSIP is equivalent to a ’smooth’ SIP).

We finally point out that, in contrast to SIP, even if all problem functions of
GSIP are linear, the feasible set need not be convex. The following is well-known
for SIP (e.g. [4]):

If for any fixed y, the function −g(x, y) is convex in x, then the feasible set M of
SIP is convex.

This follows directly from the fact: Given x1, x2 ∈M, α ∈ [0, 1] then

g(αx1 + (1− α)x2, y) ≥ αg(x1, y) + (1− α)g(x2, y) ≥ 0 for all y ∈ Y,

i.e. αx1 + (1− α)x2 ∈M .

For GSIP the situation is more complicated. Consider for example the feasible
set M (of a GSIP) in (6). M is not convex although all functions involved are linear.

3 Reduction Ansatz and optimality conditions

In this section we briefly review the ’Reduction Ansatz’ to obtain optimality con-
ditions for GSIP. For x ∈M we define the set of active points

Y0(x) = {y ∈ Y (x) | g(x, y) = 0} .

Obviously, for feasible x ∈ M , any point y ∈ Y0(x) is a (global) minimum of the
following parametric optimization problem (the so-called lower level problem):

Q(x) : min
y
g(x, y) s.t. y ∈ Y (x) . (7)

Given x ∈M , for y ∈ Y (x) we define the active index set L0(x, y) w.r.t. Q(x),

L0(x, y) = {l ∈ L | vl(x, y) = 0}.

and the Lagrange function with γ ∈ IR|L0(x,y)|,

Ly(x, y, γ) = g(x, y)−
∑

l∈L0(x,y)

γlvl(x, y). (8)

By assumption (1), the sets Y (x) are compact. Thus, for any x, a global minimizer
of Q(x) exists. We will assume, that the following conditions are satisfied for the
lower level problem.

Ared: We have for any y ∈ Y0(x):

1. LICQ: Dyvl(x, y), l ∈ L0(x, y) are linearly independent.

2. Kuhn-Tucker condition: There exists a multiplier γ ∈ IR|L0(x,y)| such that

DyLy(x, y, γ) = 0

and γl > 0, l ∈ L0(x, y) (strict complementary slackness).

3. The second order condition (SOC): With γ in 2.,

ηTD2
yLy(x, y, γ)η > 0, for all η ∈ T (x, y) \ {0}

where T (x, y) = {η ∈ IRr | Dyvl(x, y)η = 0, l ∈ L0(x, y)}.
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We obtain the following stability result.

Theorem 1 Suppose, for x ∈ M , that the assumption Ared is satisfied. Then,
the set Y0(x) (possibly empty) contains only finitely many points,

Y0(x) = {y1, · · · , yp}

and for any yj ∈ Y0(x) (i.e. yj is a minimizer of Q(x)), the following holds:
There exist a neighborhood U of x and C1-functions yj : U → IRr, yj(x) = yj , γjl :
U → IR, γjl (x) = γjl , l ∈ L0(x, y), j = 1, · · · , p, such that for any x ∈ U the value
yj(x) is a local minimizer of Q(x) (locally unique near yj) with corresponding mul-
tipliers γjl (x). The value functions gj(x) = g(x, yj(x)) are C2-functions satisfying
for x ∈ U with the Lagrange functions Lj := Lyj in (8) the relations,

Dgj(x) = DxLj(x, yj(x), γj(x))
D2gj(x) = D2

xLj(x, yj(x), γj(x)) −DT yj(x)D2
yLj(x, yj(x), γj(x))Dyj(x)

−
∑

l∈L0(x,yj)

DT γjl (x)Dxvl(x, yj(x)) +DT
x vl(x, y

j(x))Dγjl (x).

Proof. The proof is done by applying the implicit function theorem to the following
Karush-Kuhn-Tucker equations for Q(x), near (x, yj , γj), with Lagrange functions
Lj = Lyj (cf. (8)):

F (x, y, γ) :=
DyLj(x, y, γ) = 0
vl(x, y) = 0, l ∈ L0(x, yj) .

Under assumption Ared the Jacobian D(y,γ)F (x, yj , γj) is regular and the formula
for Dgj(x), D2gj(x) can be obtained by implicitly differentiating the equation
F (x, yj(x), γj(x)) = 0. For more details we refer to [7]. 2

Let the assumptions of Theorem 1 hold. Then, in a neighborhood U of x the feasible
set M of GSIP can be described by finitely many constraints: For any x ∈ U we
have

x ∈M ⇐⇒ gj(x) := g(x, yj(x)) ≥ 0, j = 1, · · · , p. (9)

Consequently, x is a local minimizer of GSIP if and only if x is a solution of the
following reduced problem

GSIPred(x) : min
x
f(x) s.t. gj(x) := g(x, yj(x)) ≥ 0, j = 1, · · · , p. (10)

GSIPred(x) is a common finite optimization problem. Thus, the standard optimal-
ity conditions of finite optimization can be applied to obtain optimality conditions
for GSIP. To that end we define the cone

C(x) = {ξ ∈ IRn | Df(x)ξ ≤ 0, Dgj(x)ξ ≥ 0, j = 1, · · · , p}

and the Lagrange function (of the upper level)

L̃(x, µ) = µ0f(x)−
p∑
j=1

µjgj(x) .

The following Theorem gives necessary and sufficient optimality conditions of F.
John type for GSIP. For more details, necessary conditions and sufficient conditions
under weaker assumptions, see [7] but also [9].
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Theorem 2 Suppose, for x ∈ M , that the assumption Ared is satisfied such that
by Theorem 1, in a neighborhood U of x, GSIP can be locally reduced to GSIPred(x)
according to (10). Then the following holds.
a. Suppose, x is a local minimizer of GSIP. Then, to any ξ ∈ C(x) there exists a
multiplier µ ≥ 0 such that (with DxL̃, D2

xL̃ given below)

DxL̃(x, µ) = 0 and ξTD2
xL̃(x, µ)ξ ≥ 0 .

b. Suppose, for any ξ ∈ C(x) \ {0}, that there exists a multiplier µ ≥ 0 such that

DxL̃(x, µ) = 0 and ξTD2
xL̃(x, µ)ξ > 0 .

Then x is a (strict) local minimizer of GSIP.

The expressions for DxL̃(x, µ) and D2
xL̃(x, µ) read:

DxL̃(x, µ) = µ0Df(x)−
p∑
j=1

µjDxg(x, yj) +
p∑
j=1

µj

( ∑
l∈L0(x,yj)

γjlDxvl(x, yj)
)

D2
xL̃(x, µ) = µ0D

2f(x)−
p∑
j=1

µjD
2
xg(x, yj) +

p∑
j=1

µjD
T yj(x)D2

yLj(x, yj, γj)Dyj(x)

+
p∑
j=1

µj
∑

l∈L0(x,yj)

(
γjlD

2
xvl(x, y

j) +DT γjl (x)Dxvl(x, yj) +DT
x vl(x, y

j)Dγjl (x)
)

(the first and second terms in DxL̃(x, µ) and D2
xL̃(x, µ) are present in finite opti-

mization, the third term in D2
xL̃(x, µ) is the additional term for SIP and the third

term in DxL̃(x, µ) and the fourth term in D2
xL̃(x, µ) are typical for GSIP, contain-

ing the dependence of vl (and Y ) on x.)

Proof. The formulas for DxL̃ and D2
xL̃ follow immediately by using the formulas

for Dgj , D2gj in Theorem 1. 2

4 Numerical methods

In this section we briefly discuss the question of how to compute a solution of GSIP
numerically. For a review of methods for SIP we refer to [6], [2] (see also [1]). Below,
it will be shown that the numerical solution of GSIP might be much more difficult
than the solution of SIP.

Note that with the lower level problem Q(x) (cf. (7)) the GSIP can equivalently
be stated as:

GSIP : min f(x) s.t. g(x, y(x)) ≥ 0, where y(x) is a global solution of Q(x).

In this form, GSIP has the form of a so-called bi-level problem.
We firstly turn to a method based on local reduction as described in Theorems 1

and 2. This method can directly be generalized from SIP to GSIP. We give a con-
ceptual description (see [6, Section 7.3]).

6



Algorithm
Step k: Given xk (not necessarily feasible)

1. Determine the local minima y1, · · · , ypk of Q(xk).

2. Apply Nk steps (of a finite programming algorithm) to the locally reduced
problem (cf. (10)) with yj(x) the local solutions of Q(x) (cf. (7)),

GSIPred(xk) : min
x
f(x) s.t. gj(x) := g(x, yj(x)) ≥ 0, j = 1, · · · , pk ,

leading to iterates xk,i, i = 1, · · · , Nk.

3. Put xk+1 = xk,Nk and k = k + 1.

The iteration in sub-step 2 can be done by performing ’sequential quadratic pro-
gramming Newton’ steps applied to the Karush-Kuhn-Tucker system of GSIPred(xk).
For a discussion of such a method combining globally convergence and locally super-
linear convergence we refer to [6].

Unfortunately, there arise serious difficulties when trying to generalize the so-
called exchange or discretization methods from SIP to GSIP. A detailed description
of these methods for SIP can be found in [6, Sections 7.1,7.2]. For brevity we will
only point out the difficulty. Both methods make use of a discretization of the set
Y .

For SIP, this results into a finite problem

SIPd : min
x

f(x) s.t. g(x, y) ≥ 0 for all y ∈ Yd

where Yd ⊂ Y is a finite discretization of the compact set Y . For GSIP we would
have to choose finite discretizations Yd(x) of Y (x) and to solve

GSIPd : min
x

f(x) s.t. x ∈Md := {x ∈ IRn | g(x, y) ≥ 0 for all y ∈ Yd(x)}

This problem represents a (finite) optimization problem of which the number (and
quality) of the constraints may change with x. There are no standard procedures
for solving such problems GSIPd.

Problems GSIPd may have all undesirable properties of a GSIP. Even if for the
corresponding GSIP the feasible set M is closed, this need not to be the case for
the set Md of GSIPd. Consider an illustrative example of a set Md :

Md = {x ∈ IR | g(x, y) = x− y ≥ 0, y ∈ Yd(x)}, Yd(x) =
{
{−1, 1} if x ≥ 0
{−1} if x < 0

We find
Md = [−1, 0) ∪ [1,∞) .

In view of these difficulties it is important to investigate which type of GSIP can be
transformed to a problem of simpler structure. In [12] a class of GSIP is investigated
which can be solved approximately by solving a finite number of convex problems.

5 Transformation of GSIP into SIP

In this section we ask under which conditions a GSIP can be transformed into a
SIP. In [14] it has been pointed out that this transformation can be done (at least
theoretically) under appropriate compactness assumptions and the assumption that
LICQ is satisfied on Y (x). On the other hand, in [3] it has been shown that if
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the MFCQ is satisfied on Y (x), for x near x, the feasible sets Y (x) of the lower
level problem are homeomorphic to Y (x). Thus, a transformation of GSIP into
SIP should be possible under MFCQ. Before stating the results we introduce two
assumptions.
AMFCQ: Suppose, g, vl ∈ C1(IRn × IRr, IR), l ∈ L. The following is valid with a
compact set K ⊂ IRn, such that M ∩K 6= ∅.

1. The mapping Y satisfies condition (1).

2. For all x, y, x ∈ K, y ∈ Y (x) the Mangasarian Fromovitz Constraint Quali-
fication holds:

there exists ξ (= ξ(x, y)) such that Dyvl(x, y)ξ > 0, l ∈ L0(x, y) (11)

ALICQ: The following is valid with a compact set K ⊂ IRn, such that the condition
AMFCQ holds with MFCQ (cf. (11)) replaced by the stronger Linear Independency
Constraint Qualification:

the vectors Dyvl(x, y), l ∈ L0(x, y) are linearly independent.

Let in the sequel Sr denote the unit sphere, Sr = {b ∈ IRr | ||b|| = 1}, and
Bκ(y), κ > 0, the ball Bκ(y) = {y ∈ IRr | ||y − y|| < κ}.

Theorem 3 (Transformation of GSIP into SIP)
a. Let be given GSIP such that ALICQ is satisfied. Then, there are finitely many
C1-functions Gj(x, z) and sets Zj = [aj1, b

j
1] × · · · × [ajr, b

j
r] in IRr, j = 1, · · · , P ,

such that

x ∈M ∩K ⇐⇒ Gj(x, z) ≥ 0 for all z ∈ Zj , j = 1, · · · , P.

b. Let be given GSIP such that AMFCQ is satisfied. Then, there are finitely many
Lipschitz continuous functions gj(x, b, τ), j = 1, · · · , N , such that

x ∈M ∩K ⇐⇒ gj(x, b, τ) ≥ 0 for all b ∈ Sr, τ ∈ [0, 1], j = 1, · · · , N.

Proof.
a. A detailed proof can be found in [14]. The proof is based on so-called standard-
diffeomorphism which by using coordinate-transformations, locally near a given
point (x, y), x ∈ K, x ∈ Y (x) transforms the set Y (x) to canonical form.
b. Let be given xj ∈ K, yj ∈ Y (xj). Let ξ0 be a MFCQ-vector satisfying for
(xj , yj) the conditions (11) and ||ξ0|| = 1. Define the point

yj∗ = yj + ρξ0 (12)

with ρ > 0 (which will be chosen later). Taylor expansion of vl(xj , yj +ρξ0) around
(xj , yj) shows that for small ρ > 0 we have yj∗ ∈ int Y (yj). For fixed l ∈ L0(xj , yj)
we define

ξl =
Dyvl(xj , yj)
||Dyvl(xj , yj)||

.

The MFCQ implies −ξT0 ξl < 0. Now, consider a vector b ∈ Sr such that b
T
ξl < 0.

By choosing ρ > 0 small enough (cf. (12)), there exists a minimum value t = t such
that for b = b the ray

yj∗ + tb, t > 0

intersects the solution set of vl(xj , y) = 0 near yj. We apply the implicit function
theorem to the equation

F (x, b, t) := vl(x, yj∗ + tb) = 0
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(for (x, b, t) near (xj , b, t)). This is possible since by b
T
ξl < 0 we haveDtF (xj , b, t) =

Dyvl(xj , y
j
∗ + tb) b 6= 0 (here we use yj∗ + tb ≈ yj and Dyvl(xj , yj) b 6= 0). Conse-

quently, there exist neighborhoods U × V of (xj , b) and W of t and a C1-function
t : U × V →W such that t(xj , b) = t and the value t(x, b) is the unique solution in
W of

vl(x, yj∗ + t(x, b)b) = 0, (x, b) ∈ U × V .

Consider, with ε > 0 (small) such that −ξT0 ξl =: −ε0 < −ε, the compact set

Cε = {b ∈ Sr | bT ξl ≤ −ε} .

By standard arguments using the partition of unity we can glue together finitely
many of the functions t(x, b) constructed above, which were defined locally near
points (xj , b), b ∈ Cε such that the following holds: There exist ρ > 0 and a
neighborhood U l of xj and a C1-function tl : U l × Cε → IR, tl(xj ,−ξ0) = ρ such
that for (x, b) ∈ U l × Cε ,

vl(x, yj∗ + τtl(x, b)b) ≥ 0 (= 0) ⇐⇒ τ ∈ [0, 1] (τ = 1).

Using the formula −bT ξl = cosϕ, for the angle ϕ between b and −ξl, we find for
b ∈ Cε (small ρ (cf. (12)),

tl(xj , b) =
tl(xj , ξl)
−bT ξl +O(ρ) .

By continuity, in view of tl(xj ,−ξ0) = ρ, − ξT0 ξ
l = −ε0 < 0 we can choose

ε1, ε2, ε3 such that ε0 > ε1 > ε2 > ε3 > 0 and such that for all x ∈ U l it fol-
lows:

tl(x, b)
{
≤ 2ρ if bT ξl ≤ −ε1
≥ 2ρ if − ε2 ≤ bT ξl ≤ −ε3 .

By defining for x ∈ U l

t̃l(x, b) :=
{

min{2ρ, tl(x, b)} for b ∈ Cε2
2ρ for b ∈ Sr \ Cε2 ,

we obtain a Lipschitz function t̃l. By construction, for (x, y) in a neighborhood
U l ×B2ρ(y

j
∗) of (xj , yj), we have

vl(x, y) ≥ 0 ⇐⇒ y = yj∗ + τ t̃l(x, b)b with τ ∈ [0, 1], b ∈ Sr . (13)

This construction can be done for any l ∈ L0(xj , yj) (with a common choice of a
small ρ for all l). Then, we put

tj(x, b) := min
l∈L0(xj,yj)

t̃l(x, b) and Uj := ∩l∈L0(xj ,yj)U
l. (14)

As the ’minimum’ of Lipschitz functions, this function tj is also Lipschitz continuous.
Using (13), for x in the neighborhood Uj of xj , we have

Y (x) ∩B2ρ(yj∗) = {y = yj∗ + τtj(x, b)b | τ ∈ [0, 1], b ∈ Sr} .

This implies that for x ∈ Uj the following two conditions are equivalent:

g(x, y) ≥ 0 for all x ∈ Uj , y ∈ Y (x) ∩B2ρ(y
j
∗)

gj(x, b, τ) := g(x, yj∗ + τtj(x, b)b) ≥ 0, for all τ ∈ [0, 1], b ∈ Sr . (15)

By an appropriate partition of the unity in IRn we can define a Lipschitz function
(still denoted by gj) which is zero for IRn \Uj but coincides with the function gj (cf.
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(15)) on a smaller neighborhood Ûj contained in Uj . By the assumption AMFCQ,
the set S = {(x, y) | x ∈ K, y ∈ Y (x)} is compact. Hence, S can be covered by
finitely many neighborhoods Ûj×B2ρ(y

j
∗) of points (xj , yj) ∈ S. The corresponding

functions gj(x, b, τ), j = 1, · · · , N , are Lipschitz continuous on IRn×Sr× [0, 1] and
in view of the the equivalence of the constraints in (15) the statement follows. 2

Remark 1 In the proof of Theorem 3b we have constructed functions tj(x, b)
(cf. (14)). For any point (xj , yj) with yj on the boundary of Y (xj) these functions
tj(x, b) locally near xj yield a parameterization of the boundary of Y (x). Hence, this
construction implicitly contains the following result: If Y (x) satisfies MFCQ, then
locally near x the boundaries ∂Y (x) are (Lipschitz-) homeomorphic to ∂Y (x). Our
proof is similar but more elementary than the construction used in [3, Theorem B] to
obtain this result (among others). We also refer to [14], where a related construction
has been used to obtain optimality conditions for GSIP.

Under further convexity assumptions, the local transformation used in the proof of
Theorem 3 yields a global transformation of a GSIP into SIP.

As: Let be given an open set K0 ⊂ IRn, (K0∩M 6= ∅), such that for all x ∈ K0, the
sets Y (x) are star-shaped in the following sense: There exist continuous functions
c : K0 → IRr, r : K0 × Sr → IR, satisfying for all x ∈ K0, b ∈ Sr

c(x) + τ r(x, b)b
{
∈ int Y (x), τ ∈ [0, 1)
/∈ Y (x), τ ∈ (1,∞) . (16)

Here the interior of Y (x) is denoted by int Y (x). Note that since Y (x) is closed this
implies that c(x) + r(x, b)b, b ∈ Sr is a parameterization of the boundary ∂Y (x).

The following lemma gives a sufficient condition for As.

Lemma 1 The condition As is fulfilled if the following holds on an open set
K0 ⊂ IRn (K0 ∩M 6= ∅)

i. The set-valued map satisfies (1) for all x ∈ K0.

ii. For any x ∈ K0 the Slater condition is satisfied, i.e. there exists a point
y ∈ IRr such that vl(x, y) > 0, l ∈ L. (This in particular implies that the sets
Y (x) have inner points.)

iii. For any x ∈ K0 the functions −vl(x, y) are convex functions of y ∈ IRr and
vl ∈ C(K0 × IRr, IR), l ∈ L.

Proof. By conditions i and iii all sets Y (x) are convex and compact. Let x be
fixed and c be an inner point of Y (x). We firstly show, that for any (fixed) x in a
neighborhood U of x and b ∈ Sr there exists a value r(x, c, b) such that

c+ tb

{
∈ int Y (x), 0 ≤ t < r(x, c, b)
/∈ Y (x), t > r(x, c, b) . (17)

To this aim we choose U such that c ∈ int Y (x) for all x ∈ U and define

h(x, c, b, t) := min
l∈L

vl(x, c+ tb) (18)

which is continuous (in x, c, b and t). We have h(x, c, b, 0) > 0 and for a value tm > 0
(large enough) h(x, c, b, tm) < 0 for all b ∈ Sr (since Y (x) is bounded). Note that
since −vl(x, y) are convex in y, the function −h is convex in t. Since h is continuous
and the upper-level set {t ≥ 0 | h(x, c, b, t) ≥ 0} (⊂ [0, tm]) is compact the following
function is well-defined,

r(x, c, b) := arg max{t ≥ 0 | h(x, c, b, t) ≥ 0} . (19)
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Using convexity, it follows easily that for the solution function r(x, c, b) the relations
(17) hold. Moreover, by continuity arguments, this function r(x, c, b) is continuously
depending on x ∈ U, b (and c). Now, we will show that we can choose a continuous
function c(x) such that c(x) ∈ int Y (x) for x ∈ K. For x ∈ U we obviously have
constructed a parameterization of Y (x) of the form

Y (x) = {y = c+ tb | b ∈ Sr, t ∈ [0, r(x, c, b)]} .

Hence, with the transformation T : [0, 1]× Sr → IRr given by T (t, b) = c+ tb, the
volume v(x) and the bary-center c(x) of the convex sets Y (x), x ∈ U are given by:

v(x) =
∫
Y (x)

dy =
∫
b∈Sr

∫ r(x,c,b)

0
|detDT (t, b)|dt db

c(x) =
1

v(x)

∫
Y (x)

y dy =
∫
b∈Sr

∫ r(x,c,b)

0
(c+ tb) |detDT (t, b)| dt db .

Obviously, both functions v(x), c(x) are continuous. We finally show, that c(x) is
an inner point of Y (x). To do so, consider for fixed x the support function (with
d ∈ Sr)

s(d) := max
y∈Y (x)

dT y .

In convexity theory it is well-known that a point c is an inner point of the convex
set Y (x) if and only if,

s(d) > dT c for all d ∈ Sr

(cf. e.g. [13, Theorem 13.1] ). Since c is an inner point of Y (x) by choosing U
sufficiently small we can assume that there exists κ > 0 such that the ball Bκ(c)
lies in the interior of Y (x). Consequently we obtain for any d ∈ Sr

s(d)− dT c(x) =
1

v(x)

∫
Y (x)

(s(d) − dT y) dy ≥ 1
v(x)

∫
Bκ(c)

(s(d)− dT y) dy > 0 ,

i.e. c(x) ∈ int Y (x). Now, we choose c = c(x) and put r(x, b) := r(x, c(x), b) (cf.
(19)). Then, by substituting t = τ r(x, b), the relation (17) is equivalent with (16)
and the functions c(x) and r(x, b) satisfy the conditions in As. 2

Under the assumption As the GSIP can be transformed into SIP.

Theorem 4 Suppose that the assumption As is fulfilled in the open set K0 ⊂ IRn,
(K0 ∩M 6= ∅).
a. Then, the problem GSIP restricted to K0 can be written equivalently in the form
of the following SIP:

min f(x) s.t. x ∈ K0 and
ĝ(x, b, τ) := g(x, c(x) + τ r(x, b)b) ≥ 0 for all b ∈ Sr, τ ∈ [0, 1] (20)

b. If moreover, for any fixed x, the function −g(x, y) is convex in y ∈ IRr, then
the inequality constraints in (20) can be replaced by

g̃(x, b) := ĝ(x, b, 1) = g(x, c(x) + r(x, b)b) ≥ 0 for all b ∈ Sr . (21)

Proof.
a. The proof follows immediately by noticing that As implies

Y (x) = {y ∈ IRr | y = c(x) + τ r(x, b)b, b ∈ Sr, τ ∈ [0, 1]} .

11



b. It suffices to show that we have (for fixed x ∈ K0)

ĝ(x, b, 1) ≥ 0, b ∈ Sr =⇒ ĝ(x, b, τ) ≥ 0, b ∈ Sr, τ ∈ [0, 1] . (22)

Obviously, the points y = c(x) + τr(x,−b)(−b) and y = c(x) + τr(x, b)b, τ ∈ [0, 1]
are points on the line segment between y− := c(x) + r(x,−b)(−b) and y+ :=
c(x) + r(x, b)b. Using the convexity of −g w.r.t. y the relation (22) follows. 2

Remark 2 Even if in Theorem 4 in addition to As we would assume that ALICQ is
satisfied, the functions r(x, b) and then ĝ would only be Lipschitz continuous but in
general not C1-functions. So, to solve the transformed problem (20) we cannot use
the ’Newton-method’ but we have to apply a discretization method. We emphasize,
that for an application of the transformation in Theorem 4 we need not have these
functions c(x), r(x, b) explicitly. We only have to compute the corresponding values
on every actual discretization.

Often, additional conditions on the problem functions (such as linearity) can be
used to get a simpler transformation of the GSIP into a SIP. When for example the
conditions of Lemma 1 and of Theorem 4b are both satisfied, then, the conditions
g(x, y) ≥ 0 only need to hold for all extreme points of Y (x). A special class of
variational problems is treated in [11]. For an example in connection with the
maneuverability problem we refer to [5].
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