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ABSTRACT. We consider equilibrium constrained optimization problems, which have a general for-
mulation that encompasses well-known models such as mathematical programs with equilibrium con-
straints, bilevel programs, and generalized semi-infinite programming problems. Based on the cele-
bratedK K M lemma, we prove the existence of feasible points for the equilibrium constraints. More-
over, we analyze the topological and analytical structure of the feasible set. Alternative formulations
of an equilibrium constrained optimization problem (ECOP) that are suitable for numerical purposes
are also given. As an important first step for developing efficient algorithms, we provide a genericity
analysis for the feasible set of a particular ECOP, for which all the functions are assumed to be linear.
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1. INTRODUCTION

An equilibrium constrained optimization problgfl8COP) is a mathematical program, for which

an embedded set of constraints is used to model the equilibrium conditions in various applications.
This equilibrium concept corresponds to a desired state such as the optimality conditions for the
inner problem of a bilevel optimization model, or the Nash equilibrium of a game played by rational
players. For an introduction to ECOP we refer to [14] and [15]. Applications of ECOP appear not
only in economics (Cournot oligopoly, Stackelberg games, generalized Nash equilibrium) but also
in optimum design problems in mechanics (contact problems with friction, elasticity problems with
obstacles etc., see [15]).

This paper is concerned with the analysis of some structural properties of an ECOP. In order to
pursue this analysis, we frequently use standard terms from generalized convexity and set valued
analysis. For an unfamiliar reader, we have added an appendix section (Appendix A) that reviews
the definitions of these terms.
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2 EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS

Let f : R™™™ — R, ¢ : R"*?™ — R be real valued functions anfd : R™ = R™ a set valued
mapping with closed values. A general form of an ECOP is now given by
min - f(z,y)
T,y

(1.1) st (zy) ez
y € K(z)
¢(z,y,v) >0, Yo e K(x),

wherez € R", y,v € R™ and the seZ C R**™ is a closed nonempty set. The constraints
1.2) o(x,y,v) >0, Yv e K(x),

depending on the parameterandy, are called the parametric equilibrium constraints. For nota-
tional convenience, we now introduce the so-called gfaph(see [2]) of the set valued mapping
K given by
graph(K) := {(z,y) e R"™™ : y € K(2)}

and the sefy C R*™™ defined by

E = {(z,y) e R"™ : ¢(z,y,v) >0, Vv € K(x)}.
This notation allows us to denote the feasible set of (1.1) by
(1.3) F:=ZnEngraphK).
Hence, we can rewrite the ECOP as follows.
min  f(z,y)
z,y
st (z,y) € F.
A frequently used instance of (1.2) arises when for euetlye set/ (x) is closed, convex, and the
function¢ is given by
(15) gb(x,y,v) = <U*y,F(l’,y)>
The parametric equilibrium constraints (1.2) associated with the fungtiar(1.5) and the closed
convex seti (x), are called the (parametric) Stampacchia variational inequalities. Moreover, it is

well-known (see [9]) that if the functiop — F(z,y) in (1.5) is pseudomonotone (see Definition
A.1), then the functior can be replaced by

(1.6) o(z,y,v) = (v —y, F(x,v)).

Accordingly, the parametric equilibrium constraints defined by the funetiam (1.6) are known

as the (parametric) Minty variational inequalities. Notice that in the literature an ECOP is called
a mathematical program with equilibrium constraints (MPEC) whéras the form (1.5). In this
paper we have chosen the more general form (1.2) so that in addition to MPECs, our model also
includes bilevel programs and semi-infinite problems.

(1.4)

In Section2 of this paper we investigate under which sufficient conditions on the set valued
mappingK and the functionp, the setE N graph(K) is nonempty. In Sectio we then study
under which conditions ok and¢, the sett’ N grapH K) is closed and convex. In Sectidnwve
derive different formulations of an ECOP as a nonlinear programming problem. We are especially
interested in formulations, which are suitable for numerical purposes. Finally, in Séctiergive
a genericity analysis for the structure of the feasible set of a linear ECOP (where all the problem
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functions are linear). This genericity analysis constitutes the first step towards developing efficient
algorithms.

2. EXISTENCE OFFEASIBLE SOLUTIONS

In this section we are interested in some sufficient conditions, which guarantee that the equilib-
rium constraints defining the sétn graph K), allow feasible points. By the definition of the sets
FE and grapliK), it is clear thatF’ N graph(K') # 0 if and only if there exists some € R™ such
that

V(o K(x)) :={y € K(z) : ¢(x,y,v) 20, Vv e K(z)} # 0.

From now on, we fixz arbitrarily, defineC € ®™ by C := K(z) and¢, : R*™ — R by
¢x(y,v) = ¢(x,y,v), and assume that' is nonempty and convex. Recall that by our general
assumption in Section 1, the g€tis also closed. First observe that

(2.1) Ve, C) = Npec®(v)
where the set valued mappidg: C = C'is defined by

(2.2) ®(v) :={y € C: ¢, (y,v) > 0}.

In order to prove that the s&t(¢,., C') is nonempty, we will apply to relation (2.1) the celebrated
lemma of Knaster-Kuratowski-Mazurkiewiog< K M lemma) discussed in the Appendix. If we
additionally know that the seb(v) is convex for everyw € C (this holds if the functiony —
¢.(y,v) is quasiconcave (see Definition A.2) for every: C'), then theK K M lemma is a direct
consequence of the separation result for disjoint closed convex sets in a finite dimensional vector
space, and for this special case one can actually prove a stronger result. Since this is not well-known,
an elementary proof of this stronger result is also presented in the Appendix B.

The proof of the next result follows immediately from Definition A.3 and A.4.

Lemma 1. If the set valued mapping is given by relation (2.2), then the following conditions are
equivalent:

(1) The functionp,, : R?™ — R is properly quasimonotone (see Definition A.3)@n
(2) The mappingp is a KKM-mapping (see Definition A.4).

In general it is difficult to verify that the functiog,. is properly quasimonotone, or equivalently
(see Lemma 1), thai is a KKM-mapping. Therefore, a sufficient condition involving a well-known
function class is given in the next lemma.

Lemma 2. If the functiong, : R*™ — R satisfies¢,(y,y) > 0 for everyy € C andv —
o, (y,v) is quasiconvex (see Definition A.2) 6hfor everyy € C, then the functiorp, is properly
guasimonotone of'.
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Proof. Let {v1,...,vx} C C be given. Since the function — ¢, (y, v) is quasiconvex ol for
everyy € C it follows for everyy € C that
maxi<i<k o (Z/, Ui) = MaXyeco({vi,...,vx }) (o (ya U)

and this implies, using..(y,y) > 0 for everyy € C, that

maxij<i<k ¢m(y7 Ui) = maX?;Eco({m,...,vk}) ¢x(ya U) > 0

for everyy belonging toco({vy, ..., v } ). Therefore we obtain that

infyeco(for,....on}) MaX1<i<k Gz (y,vi) >0

and the result is verified. O

As an immediate consequence of Lemma 1 and Theorem B.3 (or B.4) of the Appendix, we now
have the following result.

Theorem 1. Lety — ¢..(y,v) be upper semicontinuous (see Definition A.5) for eveeyC, then
the following statements hold:

(1) If the functiong, is properly quasimonotone d, then for every finite s€t, ..., vy} C C
we have

co({vr, -+ ve}) NN, @(vs) # 0.

(2) If additionally the functiory — ¢.(y,v) is quasiconcave of¥' for everyv € C, then the
function¢,, is properly quasimonotone if and only if for every finite &et, ...,vx} C C
we have

co({or, -+ ,ur}) NN B(v) # 0.

Proof. Sincey — ¢.(y,v) is upper semicontinuous for evetye C, all its upper level sets are
closed. In combination witk,, being properly quasimonotone, this implies by Lemma 1 dhat

a KKM mapping with closed values. Applying now Theorem B.3 yields the first part. To show the
second part we observe that the quasiconcavity of the fungtien¢,. (y, v) on C for everyv € C,
ensures that the set valued mappindpas convex values. Applying now Theorem B.4 shows the
second part. |

By the above result, we know that every finite intersection.c®(v;), is nonempty. To show
that the intersectiom,c-®(v) is also nonempty (or equivalently; (¢, C) # 0), we need to
impose a compactness-type assumption.

Theorem 2. Suppose there exist some compact ets C and S C C satisfying

(23) infvEB (b:v(ya U) <0

for everyy € C\S. If the functiony — ¢,.(y,v) is upper semicontinuous for everye C and ¢,
is properly quasimonotone afi, then the seV (¢, C') is nonempty.
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Proof. Since there exist compact sd8sC C andS C C satisfyinginf,c g ¢, (y,v) < 0 for every
y € C\S we obtain that the set valued mappibgyiven by relation (2.2) satisfies

(24) ﬂvqu)(U) = {y S C: inf’UEB QSJL(Z/:U) Z O} g S.

Moreover, using thay — ¢.(y,v) is upper semicontinuous for everye C, we obtain thatd
has closed values and so by relation (2.4) thexsetz ®(v) is a closed subset of a compact set and
hence compact. This implies that the mappingC\ B = C given by

P(v) = @(v) N (Nues®(v))

has compact values. Sincecc®(v) = Nyec\ P (v), it is now sufficient, in view of the finite in-
tersection property of compact sets (see [16]) applied to the colleghi¢n) : v € C\ B}, to verify
that the intersectiom?_, ®(v;) is nonempty for every finite collectiofw;, - -- ,v} € C\B. To
show this, le{ vy, - - - , v} € C\ B be given and consider an arbitrary finite §et 1, - - - , vg11} C
B. By Theorem 1, it follows that

CO({Ulv "'»'UkJrl}) n (ﬂf:f@(vz)) 7é 07

and sinc€{vy, - -+ , v} € BU{vy,- -, v}, this implies that
(2.5) N O) #0,
where

Ov) := ®(v) N (N, ®(v;) Nco(BU {vy,- -+, vx})).

Since the seB is compact, the seto(B U {v1,--- ,vx}) is also compact, and hence for every
v € B, the nonempty se®(v) is compact. Using now again the finite intersection property for
compact sets applied to the collectip@(v) : v € B}, we obtain by relation (2.5) that

(ﬂf:16(vi)) Neco(BU{vy, - ,v}) = Nyep®(v) #£ 0,
and we have verified the desired result. O

Remark 1. If the setC' is compact, then clearly the compactness-type assumption listed in rela-
tion (2.3) is trivially satisfied by taking = B = C, and so this condition is only nontrivial for

a noncompact, convex and closed 6et Moreover, it is straightforward to see that the typical
compactness-type condition used in the literature (8¢and references therein) does imply rela-
tion (2.3). Actually, this compactness-type condition is a generalization of a similar conditign for
given by (1.5) (sefl2]).

Before we conclude this section, we can illustrate our feasibility results on the Stampacchia
variational inequalities. It is clear that the function~ ¢,.(y,v) in (1.5) is linear and the condition
¢.(y,y) > 0 holds. Thus, by Lemma 24, is a properly quasimonotone function. We make the
common assumptions as in the literature (see [8, 7]) and suppose that for an ashith@rfunction
y — F(x,y) is continuous and the set valued mappiichas compact convex values (or assume
that the compactness-type condition (2.3) holds, see Remark 1). Then, as a direct consequence of
Theorem 2, we state that there exists a feasible solution for the Stampacchia variational inequality
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problem. As a last note, it is well-known in the variational inequality literature that compactness-
type assumptions can be further relaxed by imposing additional assumptions on the flih(gem

[8)).

3. STRUCTURE OF THEFEASIBLE SET

Recall from (1.3) that the feasible set of an ECOP is given by
F=ZnEngraphK).

In this section we analyze the topological structurefoin order to state some conditions under
which the intersectio’ N grapH K) is closed and convex. We start with stating the conditions for
closedness.

Lemma 3. If the set valued mapping is closed (see Definition A.6) and lower semicontinuous
(see Definition A.8), and the functiehis upper semicontinuous, then the ¢&t graph(K) is
closed.

Proof. Since the set graflk’) is closed by hypothesis, it is sufficient to show that the Bas
closed. Let(z,,y,) belong toE and supposéz,,,y,) converges tqz,y). Choose any element
v € K(z). SinceK is lower semicontinuous it follows that one can find some sequepce
K (z,,) converging tow. Hence ¢(x,,, yn, v,) > 0 and by the upper semicontinuity ¢fwe obtain
that¢(z,y,v) > 0. Sincew is an arbitrary element ok () this implies that(z,y) € F and the
result is proved. O

In the next counterexample we illustrate that the conditionifdseing lower semicontinuous is
crucial in the above result.

Example 1. Consider the ECOP withh(z,y,v) = (v —y), K(z) = {1} U{v : —z < v < 0}
wherez, y, v € R. Then the equilibrium constrainis— y > 0,Vv € K(z) lead to the condition

—x > y forxz>0
1 > y forz<O.

So the points i{ (z,y) : « = 0,0 < y < 1} are boundary points of but do not belong t& and
also the sefy N graph(K) is not closed:

EngraphK) = {(z,—z) : > 0} U {(x,1) : z < 0}.

Let now K be defined explicitly by
(3.1) K(z) ={v e R™: G(x,v) <0},

whereG : R"™™ — R? is a continuous function and — G(x,v) is convex for everyr € R™.
Clearly, the graph of becomes

3.2 grapii’) = {(z,v) : v € K(z)} = {(z,v) : G(z,v) < 0}.



EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS 7

In this case, the set valued mappihghas closed convex values. In the next result we specify
sufficient conditions forK” to be lower semicontinuous.

Lemma 4. Let the functionG : R**™ — R? be continuous, and assume that— G(z,v) is
convex. If the sef(y(z) := {v € R™ : G(z,v) < 0} is nonempty for every € R™ (Slater
condition, then the set valued mappirg is lower semicontinuous.

Proof. We will first show that the set valued mappitg, is lower semicontinuous. Fix € R"
and consider an arbitrary sequenggconverging tax. For anyv € Ky(«) it follows by definition
thatG(z,v) < 0 and by the continuity of7 this implies that there exists somg € N such that
G(z,,v) < 0 for everyn > ng. Hence it holds that € Ky(z,) for everyn > ny and so by
takingv,, = v for n > ny we have verified thak(, is lower semicontinuous. Since the function
v — G(x,v) is convex for everyr € R™ and K (z) is nonempty we obtain for every, € Ko(x)
andv € K(z) that the convex combinatiom, := Avy + (1 — A)v belongs toK,(z) for every

0 < A < 1. Thisimplies thatl(Ky(z)) = K(z). Using now that lower semicontinuity is preserved
under taking closures we obtain that the set valued mapiginglower semicontinuous. O

Next we study the convexity of the feasible g&tWe assume that grapR’) is convex.

Lemma 5. If the set valued mapping is concave and convex, and the functipis quasiconcave,
then the sef’ N graph(K) is convex.

Proof. The set graphi) is convex from the hypothesis. It is now sufficient to show that the set
E is convex. Let(xz1,y1),(z2,y2) € F and forA € (0,1) definexy := Az; + (1 — A)aq and

yx := Ay1 + (1 — N)ye. Since the set-valued mappigis concave, it follows for every € K(z))

that there exists somg € K(x1) andvs € K(x2), such that

v=2A+ (1—A)vs.
As a direct consequence ¢fbeing quasiconcave, we have

¢(anyA7U) 2 min{¢($1,y17?}1)a¢($2ayz»v2)} 2 0.

Sincew is an arbitrary element of the s&t(x, ), we conclude thatz, y,) belongs taF. O

Notice that the conditions of Lemma 5 are rather strong. However, these assumptions are satis-
fied for certain applications. In the following exampl&sis both concave and convex.

e The mappingX is constantj.e, K(x) = C, Vz. Then it is immediately clear that the set
valued mapping is concave and convex.
e Let K be defined by

K(z):={veR™: G- Az) < 0}.

whereG : R™ — RR? is convex and4d anm x n matrix. Then by settingy := v — Ax or
v=w+ Az andCyp := {w € R™ | G(w) < 0} we obtain

K(z)={w+ Az | G(w) <0} = Cy + Az .
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From this representation it is obvious tHstis both concave and convex.
e In Section 6 we analyze the (linear) case

K(z) ={veR™| B2+ B> <} .

It is not difficult to show that in this cas& is both concave and convex if rafk! B?] =
rank B2 < m (i.e., if K is defined (essentially) by no more conditions than the dimension

m).

In the linear case (Section 6) we consider functions of the fofmy, v) = (v — y) T~ (full linear
case) and(z, y,v) = (v—y)T(Clo+C%y+C3v+7) . Inthe first case is (trivially) quasiconcave
but in the other case, except far! C? C3] = 0, itis not.

4. FORMULATION OF AN ECOPAS A NONLINEAR PROGRAM

In this section we are interested in reformulations of ECOP, which are suitable for the numerical
solution of the problems. We transform an ECOP to a problem with bilevel structure and obtain a
formulation of the program as a nonlinear problem with complementarity constraints.

To deal with the equilibrium constraints (1.2) of ECOP, consider the optimization problem

min  ¢(z,y,v)
v

(Q(=,v)) st. veK(z),

depending on the parameter, y). Obviously (assuming thap(x, y) is solvable), for a solution
v =v(z,y) of Q(z,y), we can write
(4.1)

EngraphK) = {(z,y) : y € K(z) and the solutiow of Q(x, y) satisfiesp(x, y,v) > 0} .
Recall that the feasible set of an ECOP is givenfoy= Z N E N grapi{K). So an ECOP can be
written in the form

min  f(z,y)

z,Y,v

st (x,y)€eZ
(Pz) y € K()
¢z, y,v) =0
v is a solution ofQ(z, y).

Remark 2. In view of the constraints
o(z,y,v) >0 Yv € K(x)

(if the setsK (z) are infinite) formally an ECOP can be seen as a so-cafjederalized semi-infinite
problem(GSIP) (see.g. [19] [18]). In the formP; it is a typicalbilevel problem(seee.g [4).

Under the extra assumption

4.2) o(xz,y,y) =0 forally ,
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the parametes in P, can be eliminated as follows. Condition (4.2) implies for gny K (x):

min (b(x,y,v) < ¢($>y7y) =0,
veK (x)

i.e., if a minimizerv of Q(z, y) satisfiesp(z, y,v) > 0 (thus= 0), theny must also solv&)(x, y).
SoENgrapiK) = {(z,y) : y € K(z), y is a solution ofQ(x,y) } and P, simplifies:
min  f(z,y)
Sty (z,y) € Z
y € K(z)
y is a solution ofQ (z, y).

(P2)

We now assume that the séfsand K () are given explicitly in the form
Z = {(x,y) e R"™ : g(x,y) <0}, K(x)={veR™:G(x,v) <0}

with Ct-functionsg : R**™ — RP andG : R*™™ — RY. Let also¢ be fromC™.

Let V,¢(z,y,v) and V,G(x,v) denote the derivatives with respectdo If v is a solution
of Q(z,y) which satisfies someonstraint qualification(CQ) thenv must necessarily satisfy the
Karush-Kuhn-Tucker conditio®&KT conditions):
Vod(z,y,v) + ATV, G(x,v) = 0
MNG(x,v) = 0
with some multiplier0 < A € R™. So we can consider the following relaxation of the ECOP
problempP;.

min  f(z,y)
st o(z,y,v) >0
(Ps) Voo (z,y,v) + ATV,G(z,v) =0
MG(x,v) =0
A —=g(x,y), —G(z,y), =G(z,v) 2 0
Pj is arelaxation of?; in the sense that (under CQ) the feasible set of the ECOP is contained in the
feasible set ofs. In particular, any solutiofiz, y, v) of P; with the property that is a minimizer
of Q(z,y), must also be a solution of the ECOP.

In case that (4.2) holds, problef reduces to (seg’z):

min  f(z,y)
Y
- st Vué(z,y,y) + ATV,G(z,y) =0
(Ps) T
M G(x,y) =0

)‘7 _9(337:1/)7 —G(Qﬁ,y) Z 0

Convexity conditions for Q(x,y). Let us now consider the special case tét;, y) represents a
convex problemi.e, for any fixedz andy the function¢(z, y, v) is convex inv, and for any fixed
x, the functionG(z,v) is convex inv. Then, it is well-known that the KKT conditions atare
sufficient forv to be a solution of)(z, y). So in this case any solutidt, y) of P (or P;) provides
a solution of an ECOP. If moreover CQ is satisfied @, y) (which is automatically fulfilled if
v — G(z,v) is linear), thenP; (or ]53) is equivalent with the original ECOP.
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In the form P and P5, an ECOP is transformed into a nonlinear program with complementarity
constraints (see.g, [17]). In this form the problems can be solved numerically, for instance by an
interior point method (see.g, [24]).

The linear case. In the next section we will analyze ECOP for the case that all problem functions
are linearf(z,y) = c'z + c*y, and

gi(my)=ajz+aiy<o;, i€l, Gilz,y)=bx+by<p;, jeJ.

Here and in the rest of the paper we omit the transposed sign in the inner pro@ucis, denotes
a”'z. For the functionp(z, y,v) = (v — y)F(z,y,v), we consider the case

¢(x,y,0) = (v —y)(Clz + C?y + C®v + )
with matrices and vectors of obvious dimension. We assume thatiherf,) matrix C? is positive
semi-definite. Then the proble@(z, y) is convex and by the discussions above, ECOPI%nake
equivalent. By replacing'2y + C3y by C2y (for notational simplicity) our problen®; takes the

form

min, , clz+c2y

s.t. alr+aty <o i€l:={1,...,p}
(Lecon) b;x+b?y§5j7 jed:={1,...,q}
Clz+C%+vy+ > MNb2=0

jed(zy)

X 20, j€J(z,y)
where for(z,y) € R x R™, we define the active index sef$x, y) == {j € J : bjz + b3y = (;}
and alsal (z,y) :=={i € [ : a}x + a?y = o; }.

Remark 3. For the special casé'(z,y,v) = v, i.e.,C',C? = 0, the problem ECOP, or equiva-
lently Py, can be written as a commdinear bilevel problem
min, , clz+cPy
s.t. alr+aly <o i€l
y is a solution ofQ(z, y) :
min  yv — vy
st bjx+bju< B, jed
and Lgcop becomes
ming , clr + 2y
s.t. alr+aty <o, i€l
(LgL) b}x—kb?yﬁﬁj, jed

v+ Y AbE =0,
JEJ(2,y)
)\j Z 07 .7 S J(xay)

So for this special case the third constraints become 'independent’ from the other constraints which
means thaf gcop has a more complicated structure than the bilevel problayn

In [20] a genericity analysis was done for linear bilevel (i.e. for the das® Note that also the
(full) linear casep(z,y,v) = ax + by + cv leads (viaPs) to a problem of bilevel structure. In the
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next section we are going to analyze the structuréfe from a generic point of view (structure
in the general case).

5. THE GENERIC STRUCTURE OFLINEAR ECOP

In the present section we reconsider the (linear) ECOP of the fargg.. We are going to
analyze the structure dfzcop from a generic point of view (structure in the general case). In [20]
a genericity analysis was done for the linear bilevel probléms which corresponds to the case
[Cy C3] = 0 (see Remark 1). Since both probleths and Lecop have a similar structure, the
genericity analysis folgcop can be performed with similar techniques. We therefore present the
results here in a concise form but emphasize that the more general prbplgpieads to a more
complicated structure of the feasible set than problgm

First we introduce some abbreviations

2= (z,y), c=(c,c?), a; = (aj,a?), b; = (b},b?) € R"*™ andC = (C*, C?).

(2R’ J2 7
We define the matriced, B, B with rowsa;,i € I, b;,5 € J, b?,j € J, respectively, and for the
vectorsa = (o, ..., 0p), 8= (61, ..., 0,), we also introduce theonstraint sets

QA:{Z:AZSQ}a QB:{ZBZSﬂ}v Q:QAOQB-

This leads to the following compact form

min cz
st. Az<a«a
(Leco) Bz<p
Cz+~v+ )\jb? =0

jeJ(z,y)
A >0, jeJ(z,y).

Note that if we assume thét is compact (bounded) and that the feasible sdt@fris non-empty,
it is clear that a solution always exists.

For linear bilevel problems, the feasible set simply consists of a union of faces (of dimefsion
of the polyhedrorQ. Moreover, for the special cage= (), the feasible set (in general non-convex)
is (path-)connected. Both facts are no more truelfgip.

Genericity. For fixed problem paramete(s, m, p, ¢), any Lecor Can be seen as an element from
theproblem set

P = {P=(c.A,B,a,3,C.7)} = R with K = n + (n+m + 1)(m +p+q).

Throughout the paper, by a generic sulBgbf P = R* we mean a set, which is opentf* and
has a complement set of measure zero (notati@” \ P;) = 0). Note that this implies that the
setP, is dense iRX . For details on genericity we refer to [6] and [11].

Our genericity analysis will be based on the following 'non-trivial’ result (see [6]).
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Lemma 6. Letp : RX — R be a polynomial functiory # 0. Then, the solution set*(0) =
{w € R¥ | p(w) = 0} is a closed set of measure zero. Equivalently the compleGieatR% \
p~1(0) is a generic set iR,

Remark 4. The result of Lemma 6 will be used repeatedly as follows. By noticinglthal =

Y rem, SIONT a1 (1) - - a; - defines a polynomial mapping: R — R we directly are led
to the following result: Lel; denote the set of redl x [)-matrices,V; = {A = (aij)ij=1,....1

| a;; € R} = R Then, the se¥,® = {A € V| det A = 0} is a closed set of measure zero in
RY!, Equivalently the selt;” = V; \ V° of regular matrices is generic iR'.

In the sequelzy = (x0, yo) Will be a point such that with appropriate multipliexs, j € J(zp),
the constraints ofgcop are fulfilled. We then calty or (2o, A) a feasible point fof.ecop. Often the
abbreviation/y = I(zg), Jo = J(z0) will be used.

We say that at a feasible poifify, A) the strict complementary slackness condition hafder
allje J:

(SC) /\j >0& (ﬁj — ijO) =0.

Among others it will be analyzed whether generically the condition SC holds at a solutig&f
The answer will be negative.

Remark 5. For the special case thd) 4 is contained in the interior of) 5 (implying@ = Q 4) our
problem takes the form of a common LP:
min cz
(Lecon) Az < «
Cz=—.
Here, the generic structure is simply given by the well-known generic structure of such an LP.

We now are going to analyze the structure of the feasible sét-@fr near a feasible point
(20, Ao) and define
Ji ={j € Jo:[Xo]; =0} andJg = Jo \ Jg.
The following observation is crucial for the analysis below. Since the veet6tz, + v) € R™ is
an element of con¢b?, j € Jg'} by Caratheodory’s theorem we can assume

(5.1) | < m.
Consider now a feasible directialy at (2o, \g) given by a solutior{dy, dy) of the system:
ad < 0, i€l
bid < 0, jeJg
bjd = 0, jeJp
(5-2) Cd+ Y 62 = 0,
j€Jo
(SJ(de) = 0, jEJél
5; > 0.

The following necessary condition for local minimizers is obvious.
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Lemma 7. Let (2o, \p) be feasible fotl.ecop. Then, ifzg is a local minimizer, there is no solution
(d, ) of (5.2) such thatd < 0, i.e., there is no feasible descent direction.

Note that for any solutiolid, §) of (5.2) the pointgz(t), A(t)) = (20 + td, Ao + t0) are feasible
for Lecopif t > 0 is not too large. As a first genericity result we obtain the following lemma.

Lemma 8. Generically for any local solutiony of Lecop the conditionI(zo)| + |J(20)| > n must
hold.

Proof. Suppose thatly| + |Jo| < n (Io = I(20), Jo = J(z0)). We will show that generically this
implies that there is a solutiof, §) of (5.2) satisfyinged < 0 and the result follows by Lemma 6.
To do so consider the system

cd = -1
a;d = 0, i €Iy
bjd = 0, j€Jo
Cd+ Y 607 = 0
Jj€Jo
5j = 1, 7€ Jo
with s := 1 + |Iy| + |Jo| + m + |Jo| equations im + m + |Jy| > s unknowns. Generically the
system matrix has full rank (see Remark 4) and thus admits a solution. O

Noticing thatyy is a boundary point ofs (zg) if and only if J(zo,y0) # 0, we obtain the
following result as a corollary.

Corollary 1. Generically for any local minimizet, = (xo, yo) Of Lecop Which satisfies$l (zy)| <
n, yo Must be a boundary point @€ (z).

The next theorem states that in the generic case the feasible sef.gfqlis n-dimensional (in
the z-space).

Theorem 3. Generically the (projection onto thespace of the) feasible set bfcop consists of a
(finite) union of polyhedra of dimension

Proof. Let be given(zy, Ao), feasible forLecopwith corresponding index sefs, Jo, J§, J§, || <
m (see (5.1)). We will show that generically negrthe feasible set (in the-space) has exactly
dimensionn.

dimension at most: Any feasible poin{z, A) must be a solution of an equation
b]‘Z = Bj, j S J(SL

CZ + Z )\]bi = -7
JEJT

for some subsef’ C J with |J7'| < m. Generically this system has full raf}'| + m and thus
its solution set is of dimensiom+ m + |J}'| — m — |J}| = nin the(z, A)-space. Consequently its
dimension in the:-space (projection) cannot exceed
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dimension at least: Note first that(zg, o) is a solution of the equations

a;z =qa;, €Iy

(5.3) bjz =B, Jj€Jo
Cz+ Z )\jb? = —7.
jeldy
Generically this system has full rank
k = min{|Io| + |Jo| + m,n +m + ||}

with |J'| < m. Moreover, the system of + m + |J§'| unknowns must satisfy the relation
(5.4) [To| + |Jo] + m < n+m + |J§| or equivalentiyIp| + | J§| < n.

To see this assume thdg|+|Jo|+m > n+m-+|J|+1, then the vectofa, 8, —y) € Rlfol+IJol+m
(right-hand side of (5.3)) is contained in the ¢ m + |J{'|)-dimensional space spanned by the
columns of the system matrix in (5.3), (a closed set of measure zeRd!in1/ol+™)  This is
generically excluded.

Consider now the system

ad = -1, 1€y

bjd = 0, jeJy

bjd = -1, jeJg
Cd+ Y 5jb? = 0.

JET
Since genericallyly| + |J§| < n must hold (see (5.4)) this is a system|df| + |Jo| + m <
n+m + |J§| equations im + m + | J§'| unknowns. So generically there is a soluti@hnd) of this
system (possibly zero in the cage= J§ = 0). By construction, for any; > 0 small enough, the
point

(21, A1) = (20, Ao) + t1(d, 9)
is feasible forLecop With I(z1) = 0,J(z1) = J§ ((\]; > 0, j € J(z1)). Consequently, near
(21, A1) all points(z, A) = (z1, A1) +t(d, §),t > 0 (small) are feasible ifd, §) solves the equations

bjd=0, jeJp

(5.5) Cd+ Y §;2 =0.

JeJ
This system ofJ§'| + m equations generically has a solution set of dimension
n+m+|Jg| = |Jg| —m=n
in the (z, A\)-space. But generically also the projection of this solution set tozthpace is of
dimensionn. To see this, consider the system (5.5). Sipkd < m we can decompose the system

B 0
d
C, B2

with a |J¢| x |Jg|-matrix B2, which is generically regular. From the Idst'| equations we can
eliminated,
§=—(B3)"'Cd



EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS 15

resulting in the system
Bd=0
(C1 = B¥(B3)~'C2)d =0
with m equations for the: + m unknowns. With the help of Lemma 6 it is not difficult to show
that also this system generically has full ranki.e., generically the solution space has dimension

n+m-—m=n. O

Remark 6. More precisely, according to the proof of Theorem 3, generically, the feasible set (pro-
jected onto the-space) oflccop has the following structure. The polyhedrQris generically either
empty or has full dimensiom+ m. SoLgcop cONsists of the sub-polyhedrdn € Q : Cz+~ =0}
(generically empty on-dimensional) together with a (finite) unionmfdimensional sub-polyhedra

on faces defined by the equalitiégs: = 3;. Note that by convexity, each of these faces can only
contain one of these feasible polyhedra.

Finally, by a simple example we show that, in cdse (), in contrast talg_ (see Remark 4 and
[20]), the feasible set afcop NEEd NOt be connected.

Example 2. Consider thel.gcop Withn = m = 1 and the feasible set defined ly & (z,y))

bz < B, jed={1,234}

The feasible set is given by the pointin= {z | b;z < 3;, j = 1,...,4} which satisfy one of
the relationsC'z = —~ or

bjz = ﬁj

5.6
(5-6) Czty = =A%, A0,

for the indicesj € J. The structure of the feasible set depends on the choice of thedateetc.
Let us now choos€' = (0, —1), v =10, /1 =02 =03 =4 =1and

by = (0,1), by = (—1,1/2), bs = (1,1/2), by = (0, —1) .

Then the feasible set consists of theRet= {2z = (z,y) € Q | Cz = —v} = {(z,0) | —~1 <z <
1} and the parts on the faces @fgiven by (5.6) forj =1, ..., 4:

Fi = {z=(z,9) €Q|bhz=1 Cz=-N{,A20} ={(z,1) | ~1/2< 2 < 1/2}
1
Bo= {(gy-Lyl0<y<1}
1
s = {0l-gyy|0<y<1}
Fy = {(@-1)|-15<z <15}

So obviously, the feasible sét= Uj_, F; is not connected. Note that this situation is stable with
respect to (small) perturbations of the parameter values.
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We end up with an observation which is important from a theoretical and practical point of view.
For any given subsefy ¢ J we consider the LP:

min cz
st. Az <«
Bz<g
(P(JO)) ij — ﬂj» jG JO
Cz4+y+ X M\b5 =0,
Jj€Jo
/\j >0, j€Jo.

So obviously, to solvd.ecop amounts to solving the problem:
e Find the index sefl, (Jo C J) such that the objective value &f(.Jy) is minimal.

In a forthcoming paper we describedascent methodhich by updatingJ, in each step finds a
local minimizer of Lecop. With regard to the problen?(Jy) we can directly deduce the following

e Generically, every point, in @ , i.e, every feasible point of.ccop, Satisfies|Z(zo)| +
|J(z0)| < n+m.

e Generically each problen?(z;) attains a (unique) solution at a (non-degenerate) vertex
(20, Ao) of the corresponding polyhedron. In particutar- m + |.Jy| constraints must be
active. This implies that precisely far— |I(z)| indicesj € J, either); = 0 for j € Jy
must be active, ob;zy = ;, for j € J \ Jy. So in the extreme case = () the (SC)
condition is violated for indices.

Conclusion.

This paper studies a form of aguilibrium constrained optimization probleECOP) which con-

tains bilevel programs(BL) and generalized semi-infinite problenf&SIP) as special instances.

The relation and differences between these three types of problems is analysed. Based on the KKM
lemma, under certain convexity assumptions, the existence of feasible points can be proven. For
a special linear ECOP a full genericity analysis is given which constitutes the basis for efficient
algorithms to compute (local) minimizer of ECOP.

APPENDIXA

We refer to [3] for generalized convexity related definitions and for definitions from set valued-
analysis we refer to [2].

Definition A.1. A functiony : R™ — R™ is called pseudomonotone if for everyy € R™
(W(x),z —y)y > 0implies that(y)(y),x — y) > 0.

Definition A.2. A functiony : R™ — R is called quasiconvex if all its sublevel sets are convex. A
function is quasiconcave - is quasiconvex.
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Definition A.3. A functiony : R?™ — R is called properly quasimonotone on the convex set
X CR™if

infyeco(fay,....r ) MaX1<i<k (Y, ;) > 0
for every finite sefxy, ...,z } C X.
Definition A.4. A set valued mapping : X = X is called a KKM-mapping if
co({x1, ..., x}) C UL U(x;)
for every finite sefx1, ...,z } C X.

Definition A.5. Afunctiony : X — X is called upper semicontinuous if all its upper level sets are
closed. Similarly, it is called lower semicontinuous if all its lower level sets are closed.

Definition A.6. A set valued mapping : X = X is called closed if the set grapffr) is closed.

Definition A.7. A set valued mapping : X = X is convex if and only if
AV (z1) + (1= N)P(x2) CI(Axy + (1 — N)xg)

for everyx;,z, € X and0 < A < 1. Accordingly, we call a set-valued mappirfigconcave if
Uz + (1= Nag) CAU(z1) + (1 — A\)T(x)

for everyx;,zo € X and0 < A < 1.

Definition A.8. A set valued mapping : X = X is called lower semicontinuous ate X if for
everyv € ¥(z) and for every sequence, converging taz, there exists a sequeneg € ¥(z,,),
such that,, converges t@. W is called lower semicontinuous if it is lower semicontinuous at every
re X.

APPENDIXB

To show that under certain conditions the intersection in relation (2.2) is nonempty, we apply
the important KKM lemma from nonlinear analysis. Before introducing this lemma; lle¢ the
it" unit vector inR™,i = 1,...,n and introduce for every subsétC N := {1,...,n} the simplex
A, given by

(5.7) Ay :=co({e; :jeJ}) CR"
Definition B.1. The collection of set&; C R",1 < j < n satisfies the KKM property if for every
subset/ C {1, ...,n} it holds thatA ; C U;csE;.

The KKM lemma is now given by the following resultf( [25], [13], [5]).

Theorem B.1. If E; C R™, ¢ =1, ...,n are closed sets satisfying the KKM propettyen it follows
thatn?, E; # 0.
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The K KM lemma is equivalent with Sperner’s lemma (see [23]) and Sperner’s lemma can be
proved by combinatorial argumentsf,([1] or Theorem3.4.3 of [21]). If the setsFE;,1 < i < n,
are additionally convex, then an elementary proof of the KKM lemma can be given (see Theorem
B.2) by using the next result of Bergef([22]). The result of Berge is based on the well-known
separating hyperplane result for disjoint finite dimensional compact convex sets and its proof can be
found in [22].

LemmaB.1. If C; CR",1 < ¢ <randr > 2 are closed convex sets satisfyinf) , C; is convex
and for anyJ C {1,...,r} with |J| = r — 1 it holds thatn,c ;C; is nonempty, then it follows that
NI_,C; is nonempty.

Before giving a proof of an improvement of ti€K M lemma for closed convex sets based on
Lemma B.1, we introduce the following definition.

Definition B.2. The collection of set&; C R",1 < i < n, satisfies the simplex finite intersection
property if for every subset C N := {1, ...,n} it holds thatA ; N (N;c s E;) # 0.

For convex sets one can now give the following improvement of the KKM lemma by elementary
methods. This proof is adapted from the proof of a related result in [10].

Theorem B.2. If E; C R",1 < ¢ < n, is acollection of closed convex sets the following conditions
are equivalent:

(1) The collectionE;, 1 < i < n, satisfies the simplex finite intersection property.
(2) The collectionE;, 1 < i < n, satisfies the KKM property.

Proof. To prove the implicatior2 = 1 we verify by induction that for every < n andJ C
{1,...,n} satisfying|J| < r it holds that

(5.8) Ay N (NjesE;) # 0,

if the collectionE;,1 < ¢ < n, satisfies the KKM property. Since the KKM property holds it
follows thate; € E; and so relation (5.8) holds for = 1. Suppose now that relation (5.8) holds
forr = | — 1 and consider a subsgtC N := {1,...,n} consisting ofl elements. Since the sets
E;,j € J are closed and convex also the nonempty 8818 A ;, j € J are closed and convex. By
the KKM property we obtaim\ ; C U, s E; and this implies

(5.9) Ujes (Ej NAy) = Ay.

Moreover, it follows by the induction hypothesis for evgrg J that the seAJ/g} N (ﬁjeJ/mEj)

is nonempty and since clearly

B N NessgyEi) € Njesygy (B N AT)
we obtain for every € J that

(5.10) Nies Gy (BN Ay) # 0.
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Using now relations (5.9) and (5.10) we may apply Berge’s lemma @jtreplaced byE; N A
and this shows\ ; N (N,e,E;) # 0 completing the induction step. To show the implicatios> 2

we need to verify forlE;, 1 < ¢ < n satisfying the simplex finite intersection property that for any
subset/ C N := {1,..,n} with |J| < randl < r < n it follows that

(5.11) Ay CUjesEj .

If r=1,thenJ C N := {1, ...,n} consists of one elemeritand so by the simplex finite intersec-
tion property we obtain that

e;=A;€e b,
showing that relation (5.11) holds fer = 1. Suppose now relation (5.11) holds for any subset
Jwith [J| < r —1and letz € A; with |[J| = 7. This meanse = >, ; Aje; with A; > 0
and Zjej A; = 1. If some \; equalsO we may apply the induction hypotheses and so without
loss of generality we may assume thgt> 0 for everyj € J. Since the collectiorfy;, 1 < i <
n, satisfies the simplex finite intersection property it follows that there exists some nonnegative
sequence;,j € J satisfyingzjej p; =land

(5.12) Z = ZJ_GJ,ujej € Njesl;.
Introducing now the finite number

vi= max{,uj)\;l cjed}
we obtain using:, A € A thaty > 1. If v = 1 this implies thay:; = A; for everyj € J and so
by relation (5.12) it follows that = = € U,c;E; and we are done. Therefore> 1 and consider
now

N—vu

* L J
Aj = T ,J€eJ.

By the definition ofv we obtainzjej A7 =1land\}; > 0. SinceA; = 0 for somej € J it follows
by our induction hypothesis that

x* = Zje] /\;ej € Ej*
for somej* € J. Moreover, by relation (5.12) we obtaine F;- and sincer = v~ 'z+(1—v~1)z*
it follows by the convexity ofF;- thatx € F;- C UjcsE;. This completes the induction stepd
We will now extend the KKM lemma to set valued mappings C = C with nonempty values.
Definition B.3. The set valued mapping : C' = C'is called a KKM mapping ifo({v1, ..., v;}) C
U%_, U(v;) for every finite subseftvy, ..., vi } of the seC.
An important consequence of the KKM lemma to set valued mappings is given by the following

result.

Theorem B.3. If ¥ : C' = C'is a set valued KKM mapping with closed values, then it follows for
every finite sefvy, ..., vx} C C that

co{vy, ..., vk }) N (ﬂ?zl\If(vj)) # 0.
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Proof. Introduce for everyl < i < k the setsk; := {\ € Ay : Z?Zl Ajv; € ¥(v;)}. Since the
sets¥(v;), @ = 1,..,k are closed, it follows that the sef§ C R™ are also closed. Moreover, if
J CAL, ... k}andX := (A\q,...,A\x) € Ay C R™ we obtain, usingo({v; : j € J}) C Ujec ¥ (v;),

that
k

Zj:l )\jvj = ZjEJ )\jvj € UjEJ\If('Uj).
This shows thah belongs toJ;c ;s E; and soA ; C Ujec s E;. Applying now the KKM lemma yields
the desired result. O

If the set valued mappin@ : C' = C has closed convex values one can show the following
improvement of Theorem B.3.

Theorem B.4. If ¥ : C = C is a set valued mapping with closed convex values, then it follows
that ¥ is a KKM mapping if and only if for every finite sgt;, ..., v} C C' it holds that

co({vy, ..., vk }) N (ﬁ.’;:lllf(vj)) £ ).

Proof. If ¥ is a KKM mapping we obtain by Theorem B.3 the desired result. To prove the reverse
implication we adapt in an obvious way the proof of Theorem B.2. O

REFERENCES

[1] Aigner, M. and G.M. ZieglerProofs from THE BOOKSpringer Verlag, New York, 1999.

[2] Aubin, J.B. and H.Frankowsk&et valued AnalysiBirkhauser Verlag, Boston, 1990.

[3] Avriel, M, Diewert, W.E., Schaible, S. and I. ZanG@eneralized ConcavityMathematical Concepts and Methods in
Science and Engineering. Plenum Press, New York, 1988.

[4] Bard, J. FPractical bilevel optimizationKluwer Academic Publishers, Dordrecht, 1998.

[5] Engelking, R.Outline of general TopologWorth-Holland, 1968.

[6] Gibson, C. G., Wirthrfiller, K., Du Plessis, A. A. and E.J.N. Looijenggopological stability of smooth mappings
volume 552 ofLecture Notes in MathematicSpringer Verlag, Berlin, 1976.

[7] Han, J., Huang, Z. and S.-C. Fang. Solvability of variational inequality problenapopear in Journal of Optimization
Theory and Applications

[8] Harker, P. T. and J.-S. Pang. Finite-dimensional variational inequality and nonlinear complementarity problems: a
survery of theory, algorithm, and applicatioMathematical Programmingt8(2):161-220, 1990.

[9] John, R. Variational inequalities and pseudomonotone functions. In Crouizeix, J.P., Martinez-Legaz, J.E and M. \olle,
editor, Generalized Convexity, Generalized Monotonicfigges 291-301. Kluwer Academic Publishers, Dordrecht,
1998.

[10] John, R. A Note on Minty Variational Inequalities and Generalized Monotonicity. In N.Hadjisavvas, J.E Martinez-
Legaz, and J-P Penot, editofdeneralized Convexity and Generalized Monotonicity, Lecture Notes in Economics and
Mathematical Systems 50@ages 240-246. Springer Verlag, Berlin, 2001.

[11] Jongen, H., Th., Jonker, P. and F. Twhtonlinear Optimization in Finite DimensionKluwer Academic Publisher,
Dordrecht, 2000.

[12] Karamardian S. The complementarity problévtathematical Programming:107-129, 1972.

[13] Knaster, B., Kuratowski, K. and Mazurkiewicz, S. Ein Beweis des Fixpunktsaizesdimensionalen SimplexEund.

Math. 14 pages 132-137, 1929.

[14] Luo, Z.-Q., Pang, J.-S. and D. Ralpflathematical Programs with Equilibrium ConstrainSambridge University
Press, Cambridge, 1997.

[15] Outrata, J., Kocvara M, Zowe NMonsmooth Approach to Optimization Problems with Equilibrium Constraifitaver
Academic Publishers, Dordrecht, 1998.

[16] Rudin, W.Principles of Mathematical AnalysiMcGraw-Hill, New York, 1976.

[17] Scheel, H. and S. Scholtes. Mathematical programs with complementarity constraints: Stationarity, optimality, and
sensitivity. Mathematics of Operations Researé&®:1-22, 2000.

[18] Stein, O .Bi-level Strategies in Semi-infinite Programmitduwer Publisher, Boston, 2003.

[19] Still, G. Generalized semi-infinite programming: Theory and methBdsopean Journal of Operational Reseaych
119:301-303, 1999.



EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS 21

[20] still, G. Linear bilevel problems: Genericity results and an efficient method for computing local mMetizematical
Methods of Operational Researdsb:383-400, 2002.

[21] van Mill, J. Infinite Dimensional Topology: Prerequisites and Introductibiorth-Holland, Amsterdam, 1989.

[22] Walk, M. Theory of Duality in Mathematical Programmin8pringer Verlag, Wien, 1989.

[23] Yang, Z.Simplicial Fixed Point Algorithms and ApplicationBhD thesis, Center for Economic Research, University
of Tilburg, 1996.

[24] A. Yoshise. Complementarity problems. In T. Terlaky, editoterior point methods of Mathematical Programmijng
pages 297-367. Kluwer, Dordrecht, 1996.

[25] Yuan, G.X.-Z.KKM Theory and Applications in Nonlinear AnalysMarcel Dekker, New York, 1999.



