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ABSTRACT. We consider equilibrium constrained optimization problems, which have a general for-
mulation that encompasses well-known models such as mathematical programs with equilibrium con-
straints, bilevel programs, and generalized semi-infinite programming problems. Based on the cele-
bratedKKM lemma, we prove the existence of feasible points for the equilibrium constraints. More-
over, we analyze the topological and analytical structure of the feasible set. Alternative formulations
of an equilibrium constrained optimization problem (ECOP) that are suitable for numerical purposes
are also given. As an important first step for developing efficient algorithms, we provide a genericity
analysis for the feasible set of a particular ECOP, for which all the functions are assumed to be linear.
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1. INTRODUCTION

An equilibrium constrained optimization problem(ECOP) is a mathematical program, for which

an embedded set of constraints is used to model the equilibrium conditions in various applications.

This equilibrium concept corresponds to a desired state such as the optimality conditions for the

inner problem of a bilevel optimization model, or the Nash equilibrium of a game played by rational

players. For an introduction to ECOP we refer to [14] and [15]. Applications of ECOP appear not

only in economics (Cournot oligopoly, Stackelberg games, generalized Nash equilibrium) but also

in optimum design problems in mechanics (contact problems with friction, elasticity problems with

obstacles etc., see [15]).

This paper is concerned with the analysis of some structural properties of an ECOP. In order to

pursue this analysis, we frequently use standard terms from generalized convexity and set valued

analysis. For an unfamiliar reader, we have added an appendix section (Appendix A) that reviews

the definitions of these terms.
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2 EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS

Let f : Rn+m → R, φ : Rn+2m → R be real valued functions andK : Rn ⇒ Rm a set valued

mapping with closed values. A general form of an ECOP is now given by

(1.1)

min
x,y

f(x, y)

s.t (x, y) ∈ Z
y ∈ K(x)
φ(x, y, v) ≥ 0, ∀v ∈ K(x) ,

wherex ∈ Rn, y, v ∈ Rm and the setZ ⊆ Rn+m is a closed nonempty set. The constraints

(1.2) φ(x, y, v) ≥ 0, ∀v ∈ K(x),

depending on the parameterx andy, are called the parametric equilibrium constraints. For nota-

tional convenience, we now introduce the so-called graph(K) (see [2]) of the set valued mapping

K given by

graph(K) := {(x, y) ∈ Rn+m : y ∈ K(x)}

and the setE ⊆ Rn+m defined by

E := {(x, y) ∈ Rn+m : φ(x, y, v) ≥ 0, ∀v ∈ K(x)}.

This notation allows us to denote the feasible set of (1.1) by

(1.3) F := Z ∩ E ∩ graph(K).

Hence, we can rewrite the ECOP as follows.

(1.4)
min
x,y

f(x, y)

s.t (x, y) ∈ F .
A frequently used instance of (1.2) arises when for everyx the setK(x) is closed, convex, and the

functionφ is given by

(1.5) φ(x, y, v) := 〈v − y, F (x, y)〉.

The parametric equilibrium constraints (1.2) associated with the functionφ in (1.5) and the closed

convex setK(x), are called the (parametric) Stampacchia variational inequalities. Moreover, it is

well-known (see [9]) that if the functiony → F (x, y) in (1.5) is pseudomonotone (see Definition

A.1), then the functionφ can be replaced by

(1.6) φ(x, y, v) := 〈v − y, F (x, v)〉.

Accordingly, the parametric equilibrium constraints defined by the functionφ in (1.6) are known

as the (parametric) Minty variational inequalities. Notice that in the literature an ECOP is called

a mathematical program with equilibrium constraints (MPEC) whenφ has the form (1.5). In this

paper we have chosen the more general form (1.2) so that in addition to MPECs, our model also

includes bilevel programs and semi-infinite problems.

In Section2 of this paper we investigate under which sufficient conditions on the set valued

mappingK and the functionφ, the setE ∩ graph(K) is nonempty. In Section3 we then study

under which conditions onK andφ, the setE ∩ graph(K) is closed and convex. In Section4 we

derive different formulations of an ECOP as a nonlinear programming problem. We are especially

interested in formulations, which are suitable for numerical purposes. Finally, in Section5 we give

a genericity analysis for the structure of the feasible set of a linear ECOP (where all the problem
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functions are linear). This genericity analysis constitutes the first step towards developing efficient

algorithms.

2. EXISTENCE OFFEASIBLE SOLUTIONS

In this section we are interested in some sufficient conditions, which guarantee that the equilib-

rium constraints defining the setE ∩ graph(K), allow feasible points. By the definition of the sets

E and graph(K), it is clear thatE ∩ graph(K) 6= ∅ if and only if there exists somex ∈ Rn such

that

V (φ,K(x)) := {y ∈ K(x) : φ(x, y, v) ≥ 0, ∀v ∈ K(x)} 6= ∅.

From now on, we fixx arbitrarily, defineC ∈ <m by C := K(x) andφx : R2m → R by

φx(y, v) := φ(x, y, v), and assume thatC is nonempty and convex. Recall that by our general

assumption in Section 1, the setC is also closed. First observe that

(2.1) V (φx, C) = ∩v∈CΦ(v) ,

where the set valued mappingΦ : C ⇒ C is defined by

(2.2) Φ(v) := {y ∈ C : φx(y, v) ≥ 0}.

In order to prove that the setV (φx, C) is nonempty, we will apply to relation (2.1) the celebrated

lemma ofKnaster-Kuratowski-Mazurkiewicz(KKM lemma) discussed in the Appendix. If we

additionally know that the setΦ(v) is convex for everyv ∈ C (this holds if the functiony →
φx(y, v) is quasiconcave (see Definition A.2) for everyv ∈ C), then theKKM lemma is a direct

consequence of the separation result for disjoint closed convex sets in a finite dimensional vector

space, and for this special case one can actually prove a stronger result. Since this is not well-known,

an elementary proof of this stronger result is also presented in the Appendix B.

The proof of the next result follows immediately from Definition A.3 and A.4.

Lemma 1. If the set valued mappingΦ is given by relation (2.2), then the following conditions are

equivalent:

(1) The functionφx : R2m → R is properly quasimonotone (see Definition A.3) onC.

(2) The mappingΦ is a KKM-mapping (see Definition A.4).

In general it is difficult to verify that the functionφx is properly quasimonotone, or equivalently

(see Lemma 1), thatΦ is a KKM-mapping. Therefore, a sufficient condition involving a well-known

function class is given in the next lemma.

Lemma 2. If the functionφx : R2m → R satisfiesφx(y, y) ≥ 0 for everyy ∈ C and v →
φx(y, v) is quasiconvex (see Definition A.2) onC for everyy ∈ C, then the functionφx is properly

quasimonotone onC.
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Proof. Let {v1, ..., vk} ⊆ C be given. Since the functionv → φx(y, v) is quasiconvex onC for

everyy ∈ C it follows for everyy ∈ C that

max1≤i≤k φx(y, vi) = maxv∈co({v1,...,vk}) φx(y, v)

and this implies, usingφx(y, y) ≥ 0 for everyy ∈ C, that

max1≤i≤k φx(y, vi) = maxv∈co({v1,...,vk}) φx(y, v) ≥ 0

for everyy belonging toco({v1, ..., vk}). Therefore we obtain that

infy∈co({v1,...,vk}) max1≤i≤k φx(y, vi) ≥ 0

and the result is verified. �

As an immediate consequence of Lemma 1 and Theorem B.3 (or B.4) of the Appendix, we now

have the following result.

Theorem 1. Lety → φx(y, v) be upper semicontinuous (see Definition A.5) for everyv ∈ C, then

the following statements hold:

(1) If the functionφx is properly quasimonotone onC, then for every finite set{v1, ..., vk} ⊆ C

we have

co({v1, · · · , vk}) ∩ ∩k
i=1Φ(vi) 6= ∅.

(2) If additionally the functiony → φx(y, v) is quasiconcave onC for everyv ∈ C, then the

functionφx is properly quasimonotone if and only if for every finite set{v1, ..., vk} ⊆ C

we have

co({v1, · · · , vk}) ∩ ∩k
i=1Φ(vi) 6= ∅.

Proof. Sincey → φx(y, v) is upper semicontinuous for everyv ∈ C, all its upper level sets are

closed. In combination withφx being properly quasimonotone, this implies by Lemma 1 thatΦ is

a KKM mapping with closed values. Applying now Theorem B.3 yields the first part. To show the

second part we observe that the quasiconcavity of the functiony → φx(y, v) onC for everyv ∈ C,

ensures that the set valued mappingΦ has convex values. Applying now Theorem B.4 shows the

second part. �

By the above result, we know that every finite intersection∩vi∈CΦ(vi), is nonempty. To show

that the intersection∩v∈CΦ(v) is also nonempty (or equivalently,V (φx, C) 6= ∅), we need to

impose a compactness-type assumption.

Theorem 2. Suppose there exist some compact setsB ⊆ C andS ⊆ C satisfying

(2.3) infv∈B φx(y, v) < 0

for everyy ∈ C\S. If the functiony → φx(y, v) is upper semicontinuous for everyv ∈ C andφx

is properly quasimonotone onC, then the setV (φx, C) is nonempty.
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Proof. Since there exist compact setsB ⊆ C andS ⊆ C satisfyinginfv∈B φx(y, v) < 0 for every

y ∈ C\S we obtain that the set valued mappingΦ given by relation (2.2) satisfies

(2.4) ∩v∈BΦ(v) = {y ∈ C : infv∈B φx(y, v) ≥ 0} ⊆ S.

Moreover, using thaty → φx(y, v) is upper semicontinuous for everyv ∈ C, we obtain thatΦ
has closed values and so by relation (2.4) the set∩v∈BΦ(v) is a closed subset of a compact set and

hence compact. This implies that the mappingΦ : C\B ⇒ C given by

Φ(v) = Φ(v) ∩ (∩v∈BΦ(v))

has compact values. Since∩v∈CΦ(v) = ∩v∈C\BΦ(v), it is now sufficient, in view of the finite in-

tersection property of compact sets (see [16]) applied to the collection{Φ(v) : v ∈ C\B}, to verify

that the intersection∩k
i=1Φ(vi) is nonempty for every finite collection{v1, · · · , vk} ⊆ C\B. To

show this, let{v1, · · · , vk} ⊆ C\B be given and consider an arbitrary finite set{vk+1, · · · , vk+l} ⊆
B. By Theorem 1, it follows that

co({v1, ..., vk+l}) ∩ (∩k+l
i=1Φ(vi)) 6= ∅,

and since{v1, · · · , vk+l} ⊆ B ∪ {v1, · · · , vk}, this implies that

(2.5) ∩k+l
i=k+1Θ(vi) 6= ∅ ,

where

Θ(v) := Φ(v) ∩ (∩k
i=1Φ(vi) ∩ co(B ∪ {v1, · · · , vk})).

Since the setB is compact, the setco(B ∪ {v1, · · · , vk}) is also compact, and hence for every

v ∈ B, the nonempty setΘ(v) is compact. Using now again the finite intersection property for

compact sets applied to the collection{Θ(v) : v ∈ B}, we obtain by relation (2.5) that

(∩k
i=1Φ(vi)) ∩ co(B ∪ {v1, · · · , vk}) = ∩v∈BΘ(v) 6= ∅,

and we have verified the desired result. �

Remark 1. If the setC is compact, then clearly the compactness-type assumption listed in rela-

tion (2.3) is trivially satisfied by takingS = B = C, and so this condition is only nontrivial for

a noncompact, convex and closed setC. Moreover, it is straightforward to see that the typical

compactness-type condition used in the literature (see[8] and references therein) does imply rela-

tion (2.3). Actually, this compactness-type condition is a generalization of a similar condition forφ

given by (1.5) (see[12]).

Before we conclude this section, we can illustrate our feasibility results on the Stampacchia

variational inequalities. It is clear that the functionv → φx(y, v) in (1.5) is linear and the condition

φx(y, y) ≥ 0 holds. Thus, by Lemma 2,φx is a properly quasimonotone function. We make the

common assumptions as in the literature (see [8, 7]) and suppose that for an arbitraryx, the function

y → F (x, y) is continuous and the set valued mappingK has compact convex values (or assume

that the compactness-type condition (2.3) holds, see Remark 1). Then, as a direct consequence of

Theorem 2, we state that there exists a feasible solution for the Stampacchia variational inequality
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problem. As a last note, it is well-known in the variational inequality literature that compactness-

type assumptions can be further relaxed by imposing additional assumptions on the functionF (see

[8]).

3. STRUCTURE OF THEFEASIBLE SET

Recall from (1.3) that the feasible set of an ECOP is given by

F = Z ∩ E ∩ graph(K).

In this section we analyze the topological structure ofF in order to state some conditions under

which the intersectionE ∩ graph(K) is closed and convex. We start with stating the conditions for

closedness.

Lemma 3. If the set valued mappingK is closed (see Definition A.6) and lower semicontinuous

(see Definition A.8), and the functionφ is upper semicontinuous, then the setE ∩ graph(K) is

closed.

Proof. Since the set graph(K) is closed by hypothesis, it is sufficient to show that the setE is

closed. Let(xn, yn) belong toE and suppose(xn, yn) converges to(x, y). Choose any element

v ∈ K(x). SinceK is lower semicontinuous it follows that one can find some sequencevn ∈
K(xn) converging tov. Hence,φ(xn, yn, vn) ≥ 0 and by the upper semicontinuity ofφ we obtain

thatφ(x, y, v) ≥ 0. Sincev is an arbitrary element ofK(x) this implies that(x, y) ∈ E and the

result is proved. �

In the next counterexample we illustrate that the condition forK being lower semicontinuous is

crucial in the above result.

Example 1. Consider the ECOP withφ(x, y, v) = (v − y), K(x) = {1} ∪ {v : −x ≤ v ≤ 0}
wherex, y, v ∈ R. Then the equilibrium constraintsv − y ≥ 0,∀v ∈ K(x) lead to the condition

−x ≥ y for x ≥ 0
1 ≥ y for x < 0 .

So the points in{(x, y) : x = 0, 0 < y ≤ 1} are boundary points ofE but do not belong toE and

also the setE ∩ graph(K) is not closed:

E ∩ graph(K) = {(x,−x) : x ≥ 0} ∪ {(x, 1) : x < 0}.

Let nowK be defined explicitly by

(3.1) K(x) = {v ∈ Rm : G(x, v) ≤ 0},

whereG : Rn+m → Rq is a continuous function andv → G(x, v) is convex for everyx ∈ Rn.

Clearly, the graph ofK becomes

(3.2) graph(K) = {(x, v) : v ∈ K(x)} = {(x, v) : G(x, v) ≤ 0}.
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In this case, the set valued mappingK has closed convex values. In the next result we specify

sufficient conditions forK to be lower semicontinuous.

Lemma 4. Let the functionG : Rn+m → Rq be continuous, and assume thatv → G(x, v) is

convex. If the setK0(x) := {v ∈ Rm : G(x, v) < 0} is nonempty for everyx ∈ Rn (Slater

condition), then the set valued mappingK is lower semicontinuous.

Proof. We will first show that the set valued mappingK0 is lower semicontinuous. Fixx ∈ Rn

and consider an arbitrary sequencexn converging tox. For anyv ∈ K0(x) it follows by definition

thatG(x, v) < 0 and by the continuity ofG this implies that there exists somen0 ∈ N such that

G(xn, v) < 0 for everyn ≥ n0. Hence it holds thatv ∈ K0(xn) for everyn ≥ n0 and so by

takingvn = v for n ≥ n0 we have verified thatK0 is lower semicontinuous. Since the function

v → G(x, v) is convex for everyx ∈ Rn andK0(x) is nonempty we obtain for everyv0 ∈ K0(x)
andv ∈ K(x) that the convex combinationvλ := λv0 + (1 − λ)v belongs toK0(x) for every

0 < λ < 1. This implies thatcl(K0(x)) = K(x). Using now that lower semicontinuity is preserved

under taking closures we obtain that the set valued mappingK is lower semicontinuous. �

Next we study the convexity of the feasible setF . We assume that graph(K) is convex.

Lemma 5. If the set valued mappingK is concave and convex, and the functionφ is quasiconcave,

then the setE ∩ graph(K) is convex.

Proof. The set graph(K) is convex from the hypothesis. It is now sufficient to show that the set

E is convex. Let(x1, y1), (x2, y2) ∈ E and forλ ∈ (0, 1) definexλ := λx1 + (1 − λ)x2 and

yλ := λy1 +(1−λ)y2. Since the set-valued mappingK is concave, it follows for everyv ∈ K(xλ)
that there exists somev1 ∈ K(x1) andv2 ∈ K(x2), such that

v = λv1 + (1− λ)v2.

As a direct consequence ofφ being quasiconcave, we have

φ(xλ, yλ, v) ≥ min{φ(x1, y1, v1), φ(x2, y2, v2)} ≥ 0 .

Sincev is an arbitrary element of the setK(xλ), we conclude that(xλ, yλ) belongs toE. �

Notice that the conditions of Lemma 5 are rather strong. However, these assumptions are satis-

fied for certain applications. In the following examplesK is both concave and convex.

• The mappingK is constant,i.e., K(x) = C, ∀x. Then it is immediately clear that the set

valued mapping is concave and convex.

• LetK be defined by

K(x) := {v ∈ Rm : G(v −Ax) ≤ 0}.

whereG : Rm → Rq is convex andA anm × n matrix. Then by settingw := v − Ax or

v = w +Ax andC0 := {w ∈ Rm | G(w) ≤ 0} we obtain

K(x) = {w +Ax | G(w) ≤ 0} = C0 +Ax .



8 EQUILIBRIUM CONSTRAINED OPTIMIZATION PROBLEMS

From this representation it is obvious thatK is both concave and convex.

• In Section 6 we analyze the (linear) case

K(x) = {v ∈ Rm | B1x+B2v ≤ β} .

It is not difficult to show that in this caseK is both concave and convex if rank[B1 B2] =
rankB2 ≤ m (i.e., if K is defined (essentially) by no more conditions than the dimension

m).

In the linear case (Section 6) we consider functions of the formφ(x, y, v) = (v − y)T γ (full linear

case) andφ(x, y, v) = (v−y)T (C1x+C2y+C3v+γ) . In the first caseφ is (trivially) quasiconcave

but in the other case, except for[C1 C2 C3] = 0, it is not.

4. FORMULATION OF AN ECOPAS A NONLINEAR PROGRAM

In this section we are interested in reformulations of ECOP, which are suitable for the numerical

solution of the problems. We transform an ECOP to a problem with bilevel structure and obtain a

formulation of the program as a nonlinear problem with complementarity constraints.

To deal with the equilibrium constraints (1.2) of ECOP, consider the optimization problem

(Q(x, y))
min

v
φ(x, y, v)

s.t. v ∈ K(x),

depending on the parameter(x, y). Obviously (assuming thatQ(x, y) is solvable), for a solution

v = v(x, y) of Q(x, y), we can write

(4.1)

E ∩ graph(K) = {(x, y) : y ∈ K(x) and the solutionv of Q(x, y) satisfiesφ(x, y, v) ≥ 0} .

Recall that the feasible set of an ECOP is given byF = Z ∩ E ∩ graph(K). So an ECOP can be

written in the form

(P2)

min
x,y,v

f(x, y)

s.t. (x, y) ∈ Z
y ∈ K(x)
φ(x, y, v) ≥ 0
v is a solution ofQ(x, y).

Remark 2. In view of the constraints

φ(x, y, v) ≥ 0 ∀v ∈ K(x)

(if the setsK(x) are infinite) formally an ECOP can be seen as a so-calledgeneralized semi-infinite

problem(GSIP) (seee.g. [19], [18]). In the formP2 it is a typicalbilevel problem(seee.g [4]).

Under the extra assumption

(4.2) φ(x, y, y) = 0 for all y ,
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the parameterv in P2 can be eliminated as follows. Condition (4.2) implies for anyy ∈ K(x):

min
v∈K(x)

φ(x, y, v) ≤ φ(x, y, y) = 0,

i.e., if a minimizerv of Q(x, y) satisfiesφ(x, y, v) ≥ 0 (thus= 0), theny must also solveQ(x, y).
SoE ∩ graph(K) = {(x, y) : y ∈ K(x), y is a solution ofQ(x, y) } andP2 simplifies:

(P̃2)

min
x,y

f(x, y)

s.t. (x, y) ∈ Z
y ∈ K(x)
y is a solution ofQ(x, y).

We now assume that the setsZ andK(x) are given explicitly in the form

Z = {(x, y) ∈ Rn+m : g(x, y) ≤ 0}, K(x) = {v ∈ Rm : G(x, v) ≤ 0}

with C1-functionsg : Rn+m → Rp andG : Rn+m → Rq. Let alsoφ be fromC1.

Let ∇vφ(x, y, v) and∇vG(x, v) denote the derivatives with respect tov. If v is a solution

of Q(x, y) which satisfies someconstraint qualification(CQ) thenv must necessarily satisfy the

Karush-Kuhn-Tucker conditions(KKT conditions):

∇vφ(x, y, v) + λT∇vG(x, v) = 0
λTG(x, v) = 0

with some multiplier0 ≤ λ ∈ Rm. So we can consider the following relaxation of the ECOP

problemP2.

(P3)

min
x,y,v

f(x, y)

s.t. φ(x, y, v) ≥ 0
∇vφ(x, y, v) + λT∇vG(x, v) = 0
λTG(x, v) = 0
λ,−g(x, y),−G(x, y),−G(x, v) ≥ 0

P3 is a relaxation ofP2 in the sense that (under CQ) the feasible set of the ECOP is contained in the

feasible set ofP3. In particular, any solution(x, y, v) of P3 with the property thatv is a minimizer

of Q(x, y), must also be a solution of the ECOP.

In case that (4.2) holds, problemP3 reduces to (seẽP2):

(P̃3)

min
x,y

f(x, y)

s.t. ∇vφ(x, y, y) + λT∇vG(x, y) = 0
λTG(x, y) = 0
λ,−g(x, y),−G(x, y) ≥ 0

Convexity conditions forQ(x, y). Let us now consider the special case thatQ(x, y) represents a

convex problem,i.e., for any fixedx andy the functionφ(x, y, v) is convex inv, and for any fixed

x, the functionG(x, v) is convex inv. Then, it is well-known that the KKT conditions atv are

sufficient forv to be a solution ofQ(x, y). So in this case any solution(x, y) of P3 (or P̃3) provides

a solution of an ECOP. If moreover CQ is satisfied forQ(x, y) (which is automatically fulfilled if

v → G(x, v) is linear), thenP3 (or P̃3) is equivalent with the original ECOP.
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In the formP3 andP̃3, an ECOP is transformed into a nonlinear program with complementarity

constraints (seee.g., [17]). In this form the problems can be solved numerically, for instance by an

interior point method (seee.g., [24]).

The linear case. In the next section we will analyze ECOP for the case that all problem functions

are linear,f(x, y) = c1x+ c2y, and

gi(x, y) = a1
ix+ a2

i y ≤ αi, i ∈ I, Gj(x, y) = b1jx+ b2jy ≤ βj , j ∈ J .

Here and in the rest of the paper we omit the transposed sign in the inner products,i.e., ax denotes

aTx. For the functionφ(x, y, v) = (v − y)F (x, y, v), we consider the case

φ(x, y, v) = (v − y)(C1x+ C2y + C3v + γ)

with matrices and vectors of obvious dimension. We assume that the (m×m) matrixC3 is positive

semi-definite. Then the problemQ(x, y) is convex and by the discussions above, ECOP andP̃3 are

equivalent. By replacingC2y + C3y by C2y (for notational simplicity) our problem̃P3 takes the

form

(LECOP)

minx,y c1x+ c2y

s.t. a1
ix+ a2

i y ≤ αi, i ∈ I := {1, . . . , p}
b1jx+ b2jy ≤ βj , j ∈ J := {1, . . . , q}
C1x+ C2y + γ +

∑
j∈J(x,y)

λjb
2
j = 0

λj ≥ 0, j ∈ J(x, y)

where for(x, y) ∈ Rn ×Rm, we define the active index setsJ(x, y) := {j ∈ J : b1jx+ b2jy = βj}
and alsoI(x, y) := {i ∈ I : a1

ix+ a2
i y = αi}.

Remark 3. For the special caseF (x, y, v) = γ, i.e.,C1, C2 = 0, the problem ECOP, or equiva-

lently P̃3, can be written as a commonlinear bilevel problem

minx,y c1x+ c2y

s.t. a1
ix+ a2

i y ≤ αi, i ∈ I
y is a solution ofQ(x, y) :
min γv − γy

s.t. b1jx+ b2jv ≤ βj , j ∈ J,

andLECOP becomes

(LBL)

minx,y c1x+ c2y

s.t. a1
ix+ a2

i y ≤ αi, i ∈ I
b1jx+ b2jy ≤ βj , j ∈ J
γ +

∑
j∈J(x,y)

λjb
2
j = 0,

λj ≥ 0, j ∈ J(x, y).

So for this special case the third constraints become ’independent’ from the other constraints which

means thatLECOP has a more complicated structure than the bilevel problemLBL.

In [20] a genericity analysis was done for linear bilevel (i.e. for the caseLBL). Note that also the

(full) linear caseφ(x, y, v) = ax + by + cv leads (viaP3) to a problem of bilevel structure. In the
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next section we are going to analyze the structure ofLECOP from a generic point of view (structure

in the general case).

5. THE GENERIC STRUCTURE OFL INEAR ECOP

In the present section we reconsider the (linear) ECOP of the formLECOP. We are going to

analyze the structure ofLECOP from a generic point of view (structure in the general case). In [20]

a genericity analysis was done for the linear bilevel problemsLBL, which corresponds to the case

[C1 C2] = 0 (see Remark 1). Since both problemsLBL andLECOP have a similar structure, the

genericity analysis forLECOP can be performed with similar techniques. We therefore present the

results here in a concise form but emphasize that the more general problemLECOP leads to a more

complicated structure of the feasible set than problemLBL.

First we introduce some abbreviations

z = (x, y), c = (c1, c2), ai = (a1
i , a

2
i ), bj = (b1j , b

2
j ) ∈ Rn+m andC = (C1, C2).

We define the matricesA,B,B2 with rowsai, i ∈ I, bj , j ∈ J , b2j , j ∈ J , respectively, and for the

vectorsα = (α1, . . . , αp), β = (β1, . . . , βq), we also introduce theconstraint sets

QA = {z : Az ≤ α}, QB = {z : Bz ≤ β}, Q = QA ∩QB .

This leads to the following compact form

(LECOP)

min cz

s.t. Az ≤ α

Bz ≤ β

Cz + γ +
∑

j∈J(x,y)

λjb
2
j = 0

λj ≥ 0, j ∈ J(x, y).

Note that if we assume thatQ is compact (bounded) and that the feasible set ofLECOP is non-empty,

it is clear that a solution always exists.

For linear bilevel problems, the feasible set simply consists of a union of faces (of dimensionn)

of the polyhedronQ. Moreover, for the special caseI = ∅, the feasible set (in general non-convex)

is (path-)connected. Both facts are no more true forLECOP.

Genericity. For fixed problem parameters(n,m, p, q), anyLECOP can be seen as an element from

theproblem set

P = {P = (c, A,B, α, β, C, γ)} ≡ RK with K = n+ (n+m+ 1)(m+ p+ q).

Throughout the paper, by a generic subsetP0 of P ≡ RK we mean a set, which is open inRK and

has a complement set of measure zero (notationµ(RK \ P0) = 0). Note that this implies that the

setP0 is dense inRK . For details on genericity we refer to [6] and [11].

Our genericity analysis will be based on the following ’non-trivial’ result (see [6]).
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Lemma 6. Let p : RK → R be a polynomial function,p 6≡ 0. Then, the solution setp−1(0) =
{w ∈ RK | p(w) = 0} is a closed set of measure zero. Equivalently the complementG = RK \
p−1(0) is a generic set inRK .

Remark 4. The result of Lemma 6 will be used repeatedly as follows. By noticing thatdetA =∑
π∈Πl

signπ a1 π(1) · · · al π(l) defines a polynomial mappingp : Rl·l → R we directly are led

to the following result: LetVl denote the set of real(l × l)-matrices,Vl = {A = (aij)i,j=1,...,l

| aij ∈ R} ≡ Rl×l. Then, the setV 0
l = {A ∈ Vl | detA = 0} is a closed set of measure zero in

Rl×l. Equivalently the setV r
l = Vl \ V 0

l of regular matrices is generic inRl·l.

In the sequel,z0 = (x0, y0) will be a point such that with appropriate multipliersλj , j ∈ J(z0),
the constraints ofLECOP are fulfilled. We then callz0 or (z0, λ) a feasible point forLECOP. Often the

abbreviationI0 = I(z0), J0 = J(z0) will be used.

We say that at a feasible point(z0, λ) thestrict complementary slackness condition holdsif for

all j ∈ J :

(SC) λj > 0 ⇔ (βj − bjz0) = 0.

Among others it will be analyzed whether generically the condition SC holds at a solution ofLECOP.

The answer will be negative.

Remark 5. For the special case thatQA is contained in the interior ofQB (implyingQ = QA) our

problem takes the form of a common LP:

(LECOP)

min cz

Az ≤ α

Cz = −γ.
Here, the generic structure is simply given by the well-known generic structure of such an LP.

We now are going to analyze the structure of the feasible set ofLECOP near a feasible point

(z0, λ0) and define

Ja
0 = {j ∈ J0 : [λ0]j = 0} andJn

0 = J0 \ Ja
0 .

The following observation is crucial for the analysis below. Since the vector−(Cz0 + γ) ∈ Rm is

an element of cone{b2j , j ∈ Jn
0 } by Caratheodory’s theorem we can assume

(5.1) |Jn
0 | ≤ m.

Consider now a feasible directiond0 at (z0, λ0) given by a solution(d0, δ0) of the system:

(5.2)

aid ≤ 0, i ∈ I0
bjd ≤ 0, j ∈ Ja

0

bjd = 0, j ∈ Jn
0

Cd+
∑

j∈J0

δjb
2
j = 0,

δj(bjd) = 0, j ∈ Ja
0

δj ≥ 0.

The following necessary condition for local minimizers is obvious.
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Lemma 7. Let (z0, λ0) be feasible forLECOP. Then, ifz0 is a local minimizer, there is no solution

(d, δ) of (5.2) such thatcd < 0, i.e., there is no feasible descent direction.

Note that for any solution(d, δ) of (5.2) the points(z(t), λ(t)) = (z0 + td, λ0 + tδ) are feasible

for LECOP if t ≥ 0 is not too large. As a first genericity result we obtain the following lemma.

Lemma 8. Generically for any local solutionz0 ofLECOP the condition|I(z0)|+ |J(z0)| ≥ n must

hold.

Proof. Suppose that|I0| + |J0| < n (I0 = I(z0), J0 = J(z0)). We will show that generically this

implies that there is a solution(d, δ) of (5.2) satisfyingcd < 0 and the result follows by Lemma 6.

To do so consider the system

cd = −1
aid = 0, i ∈ I0
bjd = 0, j ∈ J0

Cd+
∑

j∈J0

δjb
2
j = 0

δj = 1, j ∈ J0

with s := 1 + |I0| + |J0| + m + |J0| equations inn + m + |J0| ≥ s unknowns. Generically the

system matrix has full rank (see Remark 4) and thus admits a solution. �

Noticing thaty0 is a boundary point ofK(x0) if and only if J(x0, y0) 6= ∅, we obtain the

following result as a corollary.

Corollary 1. Generically for any local minimizerz0 = (x0, y0) of LECOP which satisfies|I(z0)| <
n, y0 must be a boundary point ofK(x0).

The next theorem states that in the generic case the feasible set of anLECOP is n-dimensional (in

thez-space).

Theorem 3. Generically the (projection onto thez-space of the) feasible set ofLECOP consists of a

(finite) union of polyhedra of dimensionn.

Proof. Let be given(z0, λ0), feasible forLECOPwith corresponding index setsI0, J0, J
a
0 , J

n
0 , |Jn

0 | ≤
m (see (5.1)). We will show that generically nearz0 the feasible set (in thez-space) has exactly

dimensionn.

dimension at mostn: Any feasible point(z, λ) must be a solution of an equation

bjz = βj , j ∈ Jn
0

Cz +
∑

j∈Jn
0

λjb
2
j = −γ

for some subsetJn
0 ⊂ J with |Jn

0 | ≤ m. Generically this system has full rank|Jn
0 | +m and thus

its solution set is of dimensionn+m+ |Jn
0 | −m− |Jn

0 | = n in the(z, λ)-space. Consequently its

dimension in thez-space (projection) cannot exceedn.
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dimension at leastn: Note first that(z0, λ0) is a solution of the equations

(5.3)

aiz = αi, i ∈ I0
bjz = βj , j ∈ J0

Cz +
∑

j∈Jn
0

λjb
2
j = −γ.

Generically this system has full rank

k = min{|I0|+ |J0|+m,n+m+ |Jn
0 |}

with |Jn
0 | ≤ m. Moreover, the system ofn+m+ |Jn

0 | unknowns must satisfy the relation

(5.4) |I0|+ |J0|+m ≤ n+m+ |Jn
0 | or equivalently|I0|+ |Ja

0 | ≤ n.

To see this assume that|I0|+|J0|+m ≥ n+m+|Jn
0 |+1, then the vector(α, β,−γ) ∈ R|I0|+|J0|+m

(right-hand side of (5.3)) is contained in the (n + m + |Jn
0 |)-dimensional space spanned by the

columns of the system matrix in (5.3), (a closed set of measure zero inR|I0|+|J0|+m). This is

generically excluded.

Consider now the system

aid = −1, i ∈ I0
bjd = 0, j ∈ Jn

0

bjd = −1, j ∈ Ja
0

Cd+
∑

j∈Jn
0

δjb
2
j = 0.

Since generically|I0| + |Ja
0 | ≤ n must hold (see (5.4)) this is a system of|I0| + |J0| + m ≤

n+m+ |Jn
0 | equations inn+m+ |Jn

0 | unknowns. So generically there is a solution(d, δ) of this

system (possibly zero in the caseI0 = Ja
0 = ∅). By construction, for anyt1 > 0 small enough, the

point

(z1, λ1) = (z0, λ0) + t1(d, δ)

is feasible forLECOP with I(z1) = ∅, J(z1) = Jn
0 ([λ1]j > 0, j ∈ J(z1)). Consequently, near

(z1, λ1) all points(z, λ) = (z1, λ1)+t(d, δ), t > 0 (small) are feasible if(d, δ) solves the equations

(5.5)
bjd = 0, j ∈ Jn

0

Cd+
∑

j∈Jn
0

δjb
2
j = 0.

This system of|Jn
0 |+m equations generically has a solution set of dimension

n+m+ |Jn
0 | − |Jn

0 | −m = n

in the (z, λ)-space. But generically also the projection of this solution set to thez-space is of

dimensionn. To see this, consider the system (5.5). Since|Jn
0 | ≤ m we can decompose the system

as  B 0
C1 B2

1

C2 B2
2

( d

δ

)
=

 0
0
0


with a |Jn

0 | × |Jn
0 |-matrixB2

2 , which is generically regular. From the last|Jn
0 | equations we can

eliminateδ,

δ = −(B2
2)−1C2d
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resulting in the system

Bd = 0
(C1 −B2

1(B2
2)−1C2)d = 0

with m equations for then + m unknowns. With the help of Lemma 6 it is not difficult to show

that also this system generically has full rankm, i.e., generically the solution space has dimension

n+m−m = n. �

Remark 6. More precisely, according to the proof of Theorem 3, generically, the feasible set (pro-

jected onto thez-space) ofLECOP has the following structure. The polyhedronQ is generically either

empty or has full dimensionn+m. SoLECOP consists of the sub-polyhedron{z ∈ Q : Cz+γ = 0}
(generically empty orn-dimensional) together with a (finite) union ofn-dimensional sub-polyhedra

on faces defined by the equalitiesbjz = βj . Note that by convexity, each of these faces can only

contain one of these feasible polyhedra.

Finally, by a simple example we show that, in caseI = ∅, in contrast toLBL (see Remark 4 and

[20]), the feasible set ofLECOP need not be connected.

Example 2. Consider theLECOP with n = m = 1 and the feasible set defined by ((z = (x, y))

bjz ≤ βj , j ∈ J := {1, 2, 3, 4}
Cz + γ = −

∑
j∈J(z) λjb

2
j .

The feasible set is given by the points inQ := {z | bjz ≤ βj , j = 1, . . . , 4} which satisfy one of

the relationsCz = −γ or

(5.6)
bjz = βj

Cz + γ = −λb2j , λ ≥ 0 ,

for the indicesj ∈ J . The structure of the feasible set depends on the choice of the dataC, b1 etc.

Let us now chooseC = (0,−1), γ = 0, β1 = β2 = β3 = β4 = 1 and

b1 = (0, 1), b2 = (−1, 1/2), b3 = (1, 1/2), b4 = (0,−1) .

Then the feasible set consists of the setF0 = {z = (x, y) ∈ Q | Cz = −γ} = {(x, 0) | −1 ≤ x ≤
1} and the parts on the faces ofQ given by (5.6) forj = 1, . . . , 4:

F1 = {z = (x, y) ∈ Q | b1z = 1, Cz = −λb21, λ ≥ 0} = {(x, 1) | −1/2 ≤ x ≤ 1/2}

F2 = {(1
2
y − 1, y) | 0 ≤ y ≤ 1}

F3 = {(1− 1
2
y, y) | 0 ≤ y ≤ 1}

F4 = {(x,−1) | −1.5 ≤ x ≤ 1.5}

So obviously, the feasible setF = ∪4
j=0Fj is not connected. Note that this situation is stable with

respect to (small) perturbations of the parameter values.
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We end up with an observation which is important from a theoretical and practical point of view.

For any given subsetJ0 ⊂ J we consider the LP:

(P (J0))

min cz

s.t. Az ≤ α

Bz ≤ β

bjz = βj , j ∈ J0

Cz + γ +
∑

j∈J0

λjb
2
j = 0,

λj ≥ 0, j ∈ J0.

So obviously, to solveLECOP amounts to solving the problem:

• Find the index setJ0 (J0 ⊂ J) such that the objective value ofP (J0) is minimal.

In a forthcoming paper we describe adescent methodwhich by updatingJ0 in each step finds a

local minimizer ofLECOP. With regard to the problemP (J0) we can directly deduce the following

• Generically, every pointz0 in Q , i.e., every feasible point ofLECOP, satisfies|I(z0)| +
|J(z0)| ≤ n+m.

• Generically each problemP (z0) attains a (unique) solution at a (non-degenerate) vertex

(z0, λ0) of the corresponding polyhedron. In particularn + m + |J0| constraints must be

active. This implies that precisely forn − |I(z0)| indicesj ∈ J , eitherλj = 0 for j ∈ J0

must be active, orbjz0 = βj , for j ∈ J \ J0. So in the extreme caseI = ∅ the (SC)

condition is violated forn indices.

Conclusion.

This paper studies a form of anequilibrium constrained optimization problem(ECOP) which con-

tains bilevel programs(BL) and generalized semi-infinite problems(GSIP) as special instances.

The relation and differences between these three types of problems is analysed. Based on the KKM

lemma, under certain convexity assumptions, the existence of feasible points can be proven. For

a special linear ECOP a full genericity analysis is given which constitutes the basis for efficient

algorithms to compute (local) minimizer of ECOP.

APPENDIX A

We refer to [3] for generalized convexity related definitions and for definitions from set valued-

analysis we refer to [2].

Definition A.1. A functionψ : Rm → Rm is called pseudomonotone if for everyx, y ∈ Rm

〈ψ(x), x− y〉 ≥ 0 implies that〈ψ(y), x− y〉 ≥ 0.

Definition A.2. A functionψ : Rn → R is called quasiconvex if all its sublevel sets are convex. A

functionψ is quasiconcave if−ψ is quasiconvex.
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Definition A.3. A functionψ : R2m → R is called properly quasimonotone on the convex set

X ⊆ Rm if

infy∈co({x1,...,xk}) max1≤i≤k ψ(y, xi) ≥ 0

for every finite set{x1, ..., xk} ⊆ X.

Definition A.4. A set valued mappingΨ : X ⇒ X is called a KKM-mapping if

co({x1, ..., xk}) ⊆ ∪k
i=1Ψ(xi)

for every finite set{x1, ..., xk} ⊆ X.

Definition A.5. A functionψ : X → X is called upper semicontinuous if all its upper level sets are

closed. Similarly, it is called lower semicontinuous if all its lower level sets are closed.

Definition A.6. A set valued mappingΨ : X ⇒ X is called closed if the set graph(Ψ) is closed.

Definition A.7. A set valued mappingΨ : X ⇒ X is convex if and only if

λΨ(x1) + (1− λ)Ψ(x2) ⊆ Ψ(λx1 + (1− λ)x2)

for everyx1, x2 ∈ X and0 ≤ λ ≤ 1. Accordingly, we call a set-valued mappingΨ concave if

Ψ(λx1 + (1− λ)x2) ⊆ λΨ(x1) + (1− λ)Ψ(x2)

for everyx1, x2 ∈ X and0 ≤ λ ≤ 1.

Definition A.8. A set valued mappingΨ : X ⇒ X is called lower semicontinuous atx ∈ X if for

everyv ∈ Ψ(x) and for every sequencexn converging tox, there exists a sequencevn ∈ Ψ(xn),
such thatvn converges tov. Ψ is called lower semicontinuous if it is lower semicontinuous at every

x ∈ X.

APPENDIX B

To show that under certain conditions the intersection in relation (2.2) is nonempty, we apply

the important KKM lemma from nonlinear analysis. Before introducing this lemma, letei be the

ith unit vector inRn, i = 1, ..., n and introduce for every subsetJ ⊆ N := {1, ..., n} the simplex

∆J , given by

(5.7) ∆J := co({ej : j ∈ J}) ⊆ Rn.

Definition B.1. The collection of setsEj ⊆ Rn, 1 ≤ j ≤ n satisfies the KKM property if for every

subsetJ ⊆ {1, ..., n} it holds that∆J ⊆ ∪j∈JEj .

The KKM lemma is now given by the following result (cf. [25], [13], [5]).

Theorem B.1. If Ei ⊆ Rn, i = 1, ..., n are closed sets satisfying the KKM property, then it follows

that∩n
i=1Ei 6= ∅.
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TheKKM lemma is equivalent with Sperner’s lemma (see [23]) and Sperner’s lemma can be

proved by combinatorial arguments (cf. [1] or Theorem3.4.3 of [21]). If the setsEi, 1 ≤ i ≤ n,

are additionally convex, then an elementary proof of the KKM lemma can be given (see Theorem

B.2) by using the next result of Berge (cf. [22]). The result of Berge is based on the well-known

separating hyperplane result for disjoint finite dimensional compact convex sets and its proof can be

found in [22].

Lemma B.1. If Ci ⊆ Rn, 1 ≤ i ≤ r andr ≥ 2 are closed convex sets satisfying∪r
i=1Ci is convex

and for anyJ ⊆ {1, ..., r} with |J | = r − 1 it holds that∩j∈JCj is nonempty, then it follows that

∩r
i=1Ci is nonempty.

Before giving a proof of an improvement of theKKM lemma for closed convex sets based on

Lemma B.1, we introduce the following definition.

Definition B.2. The collection of setsEi ⊆ Rn, 1 ≤ i ≤ n, satisfies the simplex finite intersection

property if for every subsetJ ⊆ N := {1, ..., n} it holds that∆J ∩ (∩j∈JEj) 6= ∅.

For convex sets one can now give the following improvement of the KKM lemma by elementary

methods. This proof is adapted from the proof of a related result in [10].

Theorem B.2. If Ei ⊆ Rn, 1 ≤ i ≤ n, is a collection of closed convex sets the following conditions

are equivalent:

(1) The collectionEi, 1 ≤ i ≤ n, satisfies the simplex finite intersection property.

(2) The collectionEi, 1 ≤ i ≤ n, satisfies the KKM property.

Proof. To prove the implication2 ⇒ 1 we verify by induction that for everyr ≤ n andJ ⊆
{1, ..., n} satisfying|J | ≤ r it holds that

(5.8) ∆J ∩ (∩j∈JEj) 6= ∅,

if the collectionEi, 1 ≤ i ≤ n, satisfies the KKM property. Since the KKM property holds it

follows thatej ∈ Ej and so relation (5.8) holds forr = 1. Suppose now that relation (5.8) holds

for r = l − 1 and consider a subsetJ ⊆ N := {1, ..., n} consisting ofl elements. Since the sets

Ej , j ∈ J are closed and convex also the nonempty setsEj ∩∆J , j ∈ J are closed and convex. By

the KKM property we obtain∆J ⊆ ∪j∈JEj and this implies

(5.9) ∪j∈J(Ej ∩∆J) = ∆J .

Moreover, it follows by the induction hypothesis for everyj ∈ J that the set∆J/{j}∩(∩j∈J/{j}Ej)
is nonempty and since clearly

∆J/{j} ∩ (∩j∈J/{j}Ej) ⊆ ∩j∈J/{j}(Ej ∩∆J)

we obtain for everyj ∈ J that

(5.10) ∩j∈J/{j}(Ej ∩∆J) 6= ∅.
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Using now relations (5.9) and (5.10) we may apply Berge’s lemma withCi replaced byEi ∩ ∆J

and this shows∆J ∩ (∩j∈JEj) 6= ∅ completing the induction step. To show the implication1 ⇒ 2
we need to verify forEi, 1 ≤ i ≤ n satisfying the simplex finite intersection property that for any

subsetJ ⊆ N := {1, .., n} with |J | ≤ r and1 ≤ r ≤ n it follows that

(5.11) ∆J ⊆ ∪j∈JEj .

If r = 1, thenJ ⊆ N := {1, ..., n} consists of one elementj and so by the simplex finite intersec-

tion property we obtain that

ej = ∆J ∈ Ej ,

showing that relation (5.11) holds forr = 1. Suppose now relation (5.11) holds for any subset

J with |J | ≤ r − 1 and letx ∈ ∆J with |J | = r. This meansx =
∑

j∈J λjej with λj ≥ 0
and

∑
j∈J λj = 1. If someλj equals0 we may apply the induction hypotheses and so without

loss of generality we may assume thatλj > 0 for everyj ∈ J. Since the collectionEi, 1 ≤ i ≤
n, satisfies the simplex finite intersection property it follows that there exists some nonnegative

sequenceµj , j ∈ J satisfying
∑

j∈J µj = 1 and

(5.12) x :=
∑

j∈J
µjej ∈ ∩j∈JEj .

Introducing now the finite number

ν := max{µjλ
−1
j : j ∈ J}

we obtain usingµ, λ ∈ ∆J thatν ≥ 1. If ν = 1 this implies thatµj = λj for everyj ∈ J and so

by relation (5.12) it follows thatx = x ∈ ∪j∈JEj and we are done. Thereforeν > 1 and consider

now

λ∗j :=
λj − ν−1µj

1− ν−1
, j ∈ J .

By the definition ofν we obtain
∑

j∈J λ
∗
j = 1 andλ∗j ≥ 0. Sinceλ∗j = 0 for somej ∈ J it follows

by our induction hypothesis that

x∗ :=
∑

j∈J
λ∗jej ∈ Ej∗

for somej∗ ∈ J.Moreover, by relation (5.12) we obtainx ∈ Ej∗ and sincex = ν−1x+(1−ν−1)x∗

it follows by the convexity ofEj∗ thatx ∈ Ej∗ ⊆ ∪j∈JEj . This completes the induction step.�

We will now extend the KKM lemma to set valued mappingsΨ : C ⇒ C with nonempty values.

Definition B.3. The set valued mappingΨ : C ⇒ C is called a KKM mapping ifco({v1, ..., vk}) ⊆
∪k

j=1Ψ(vj) for every finite subset{v1, ..., vk} of the setC.

An important consequence of the KKM lemma to set valued mappings is given by the following

result.

Theorem B.3. If Ψ : C ⇒ C is a set valued KKM mapping with closed values, then it follows for

every finite set{v1, ..., vk} ⊆ C that

co({v1, ..., vk}) ∩ (∩k
j=1Ψ(vj)) 6= ∅.
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Proof. Introduce for every1 ≤ i ≤ k the setsEi := {λ ∈ ∆N :
∑k

j=1 λjvj ∈ Ψ(vi)}. Since the

setsΨ(vi), i = 1, .., k are closed, it follows that the setsEi ⊆ Rn are also closed. Moreover, if

J ⊆ {1, ..., k} andλ := (λ1, ..., λk) ∈ ∆J ⊆ Rn we obtain, usingco({vj : j ∈ J}) ⊆ ∪j∈JΨ(vj),
that ∑k

j=1
λjvj =

∑
j∈J

λjvj ∈ ∪j∈JΨ(vj).

This shows thatλ belongs to∪j∈JEj and so∆J ⊆ ∪j∈JEj . Applying now the KKM lemma yields

the desired result. �

If the set valued mappingΨ : C ⇒ C has closed convex values one can show the following

improvement of Theorem B.3.

Theorem B.4. If Ψ : C ⇒ C is a set valued mapping with closed convex values, then it follows

thatΨ is a KKM mapping if and only if for every finite set{v1, ..., vk} ⊆ C it holds that

co({v1, ..., vk}) ∩ (∩k
j=1Ψ(vj)) 6= ∅.

Proof. If Ψ is a KKM mapping we obtain by Theorem B.3 the desired result. To prove the reverse

implication we adapt in an obvious way the proof of Theorem B.2. �
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