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ABSTRACT. A semi-infinite programming problem is an optimization problem in which
finitely many variables appear in infinitely many constraints. This model naturally arises
in an abundant number of applications in different fields of mathematics, economics and
engineering. The paper, which intends to make a compromise between an introduction
and a survey, treats the theoretical basis, numerical methods, applications and historical
background of the field.

1. INTRODUCTION

1.1. Problem formulation. A semi-infinite program(SIP) is an optimization problem in
finitely many variablesx = .x1; : : : ; xn/ ∈ Rn on a feasible set described by infinitely many
constraints:

(1) P : min
x

f .x/ s.t. g.x; t/ ≥ 0 ∀t ∈ T;

whereT is an infinite index set. For the sake of shortness, we omit additional equality
constraintshi .x/ = 0; i = 1;2; :::;m:
By F we denote thefeasible setof P, whereasv := inf{ f .x/ | x ∈ F } is theoptimal value,
andS := {x ∈ F | f .x/ = v} is theoptimal setor set ofminimizersof the problem. We say
that P is feasibleor consistentif F 6= ∅; and setv = +∞ whenF = ∅: With the only ex-
ception of Section 4 and Subsection 6.3, we assume thatf is continuously differentiable on
Rn, thatT is a compact set inRm, and that the functionsg.:; :/ and∇xg.:; :/ are continuous
onRn

× T:

An important special case is given by thelinear semi-infinite problem(LSIP), where the
objective functionf and the constraint functiong are linear inx:

(2) P : min
x

c>x s.t. a.t/>x ≥ b.t/ ∀t ∈ T:

We also study here thegeneralized SIP(GSIP), for which the index setT = T.x/ is allowed
to be dependent onx,

(3) P : min
x

f .x/ s.t. g.x; t/ ≥ 0 ∀t ∈ T.x/:

During the last five decades the field of Semi-infinite Programming has known a tremendous
development. More than 1000 articles and 10 books have been published on the theory,
numerical methods and applications of SIP.
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1.2. Historical background. Although the origins of SIP are related to Chebyshev ap-
proximation, to the classical work of Haar on linear semi-infinite systems [41], and to the
Fritz John optimality condition [49], the term SIP was coined in 1962 by Charnes, Cooper
and Kortanek in some papers devoted to LSIP [17, 18, 19]. The last author, who contributed
significantly to the development of the first applications of SIP in economics, game theory,
mechanics, statistical inference, etc., has recently pointed out [56] the historical role of a
paper published by Tschernikow in 1963 [83]. Gustafson and Kortanek proposed, during
the early 1970s, the first numerical methods for SIP models arising in applications (see, for
instance, [40]). The publication around 1980 of the following six books converted SIP in a
mature and independent subfield in optimization. Two volumes ofLecture Notes on Math-
ematics, edited by Hettich [42] and by Fiacco and Kortanek [25], and four monographs by
Tichatschke [81], Glashoff and Gustafson [27], Hettich and Zencke [43] (providing numer-
ical methods and applications to approximation problems), and Brosowski [12] (devoted to
stability in SIP). More recently, Goberna and López presented in [32] an extensive approach
to LSIP, including both theory and numerical aspects. Reputed optimization books devoted
some chapters to SIPe.g., Krabs [57], Anderson and Nash [3], Guddatet al. [39], Bonnans
and Shapiro [8], and Polak [66]. We also mention the review article of Polak [65] (on math-
ematical foundations of feasible directions methods), and [45] where Hettich and Kortanek
surveyed, in a superb manner, theoretical results, methods and applications of SIP. Recently
Goberna [28] and Goberna and López ([33, 34]) reviewed the LSIP model. Following the
tracks of [4] and [12], during the last years, the stability analysis in SIP became an impor-
tant research issue (seee.g., [13, 14, 15, 16, 26, 30, 35, 36, 52, 55], etc., as a sample of
recent papers on this topic). Since a first contribution [44] the GSIP model (3) became a
topic of intensive research (seee.g., [53] and [54]).

1.3. Summary. The paper is organized as follows. After fixing the notation in§1.4, §2
gives an account of a representative collection of motivating SIP and GSIP models in many
different application fields.§3 presents the first order (primal and dual) optimality condi-
tions. §4 is focused on different families of LSIP problems (continuous, FM and LFM),
and the Haar duality theory is discussed in detail. Also in§4, some cone constrained opti-
mization problems (in particular, the semidefinite and the second order conic programming
problems) are presented as special cases of LSIP.§5 surveys the second order optimality
conditions, although proofs are not included due to the technical difficulties of the subject.
§6 introduces the principles of the main algorithmic approaches. Special attention is paid to
the discretization methods, including some results about the discretizability of the general
LSIP (with arbitrary index set), and to the exchange methods which are, in general, more ef-
ficient than the pure discretization algorithms. The last section,§7, is devoted to explore the
relationship between the GSIP model and other important classes of optimization problems,
like bi-level problems and mathematical programs with equilibrium constraints. The paper
finishes with the list of cited references, but the reader will find an exhaustive bibliography
on SIP and GSIP in [87].

1.4. Notation and preliminaries. 0p will denote the null-vector in the Euclidean space
Rp and‖:‖ represents the Euclidean norm.
If X ⊂ Rp, by aff X; conv X, coneX; D.X; x/; and X0 we shall denote the affine hull of
X, the convex hull ofX, the conical convex hull ofX (always including the null-vector),
the cone of feasible directions ofX at x, and the positive polar cone ofX (X0 := {d ∈ Rp

|

dᵀx ≥ 0 ∀x ∈ X}); respectively: From the topological side, intX; cl X and bdX represent
the interior, the closure and the boundary ofX, respectively, whereas rintX and rbdX
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are the relative interior and the relative boundary ofX, respectively (the interior and the
boundary in the topology relative to affX/.
Given a function f : Rp

→ [−∞;+∞[; the set
{(x

�

)
∈ Rp+1 | � ≤ f .x/

}
is called hypo-

graph of f and is denoted by hypof . The function f is a proper concave function if
hypo f is a convex set inRp+1 and dom f := {x ∈ Rp

| f .x/ > −∞} 6= ∅: The closure
cl f of a proper concave functionf is another proper concave function, defined as the
upper-semicontinuous hull off , i.e., .cl f /.x/ = lim supy→x f .y/: The following facts
are well-known: hypo.cl f / = cl .hypo f /; dom f ⊂ dom.cl f / ⊂ cl .dom f /; and both
functions f and cl f coincide except perhaps at points of rbd.dom f /:
The vectoru is a subgradient of the proper concave functionf at the pointx ∈ dom f if, for
everyy ∈ Rp; f .y/ ≤ f .x/− u>.y− x/: The set of all the subgradients off at x is called
subdifferential off at x, and is denoted by@ f .x/: The subdifferential is a closed convex set,
and the differentiability off at x is equivalent to@ f .x/ = {∇ f .x/}: Moreover,@ f .x/ 6= ∅

if x ∈ rint .dom f /; and@ f .x/ is a nonempty compact set if and only ifx ∈ int .dom f /:

For later purposes we give two theorems of the alternative (see [32] for a proof).

L EMMA 1. [Generalized Gordan Lemma]Let A⊂ Rp be a set such thatconv A is closed
(e.g.,A compact). Then exactly one of the following alternatives is true:

(i) 0 ∈ conv A.
(ii) There exists some d∈ Rp such that a>d < 0 ∀a ∈ A.

L EMMA 2. [Generalized Farkas Lemma] LetS⊂ Rp+1 be an arbitrary nonempty set of
vectors.a;b/, a ∈ Rp;b ∈ R such that the system� = {a>z ≥ b ; .a;b/ ∈ S} is feasible.
Then the following statements are equivalent:

(i) The inequalityc>z≥ 
 is a consequent relation of the system�.

(ii)
(

c



)
∈ cl K whereK = cone

{(a
b

)
∈ S ;

(
0p
−1

)}
.

2. EXAMPLES AND APPLICATIONS

In the review papers [45, 65], as well as in [32], the reader will find many applications of SIP
in different fields such as Chebyshev approximation, robotics, mathematical physics, engi-
neering design, optimal control, transportation problems, fuzzy sets, cooperative games,
robust optimization, etc. There are also significant applications in statistics ([20, 32]),e.g.,
the generalized Neyman-Pearson (present in the origin of linear programming), optimal ex-
perimental design in regression, constrained multinomial maximum-likelihood estimation,
robustness in Bayesian statistics, actuarial risk theory, etc. From this large list of applica-
tions we have chosen some for illustrative purposes.

Chebyshev approximation.Let be given a functionf ∈ C.Rm;R/ and a set of approximat-
ing functionsp.x; ·/ ∈ C.Rn

× Rm;R/, parameterized byx ∈ Rn. We want to approximate
f by functionsp.x; ·/ using the max-norm (Chebyshev-norm)‖ f ‖∞ = maxt∈T | f .t/| on
a compact setT ⊂ Rm. Minimizing the approximation error� := ‖ f − p‖∞ is a problem
that can be equivalently expressed as the SIP problem:

(4) min
x;�

� s.t. g±.x; t/ := ±
(

f .t/− p.x; t/
)
≤ � ∀t ∈ T:

In the so-calledreverse Chebyshev problemwe fix the approximation error� and make the
regionT as large as possible [48]. Suppose thatT = T.d/ is parameterized byd ∈ Rk and
thatv.d/ denotes the volume ofT.d/ (e.g. T.d/ = 5k

i=1[−di ;di ]). The reverse Chebyshev
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problem then leads to the GSIP (with a small� > 0, fixed):

(5) max
d;x

v.d/ s.t. ±
(

f .t/− p.x; t/
)
≤ � ∀t ∈ T.d/;

where the index setT.d/ depends on the variabled.
For more details on the relations between SIP and Chebyshev approximation we refer to
[27] and [43]. In [79] also the connection between approximation and GSIP has been dis-
cussed.

The minimal norm problem in the space of polynomials.A relevant class of functions
in optimization are the so calledd.c. functions(difference of convex functions). From the
infinite possible decompositions of such functions, a suitable d.c. representation of any d.c.
polynomial can be obtained by solving aminimal norm problem(MNP) [59]. This minimal
d.c. representation improves the computational efficiency of the global optimization algo-
rithms conceived to solve d.c. programs, by reducing the number of iterations needed to
find a global optimum [24]. A peculiarity of the MNP problem is that it can be transformed
into an equivalent quadratic SIP with linear constraints.
Let Rm [x] ; x = .x1; :::; xn/ be the vector space of polynomials of degree less than or equal
to m. Let B := { fi .x/; i ∈ I }; be the usual basis of monomials inRm [x]. Hence, each
polynomialz.x/ ∈ Rm [x] can be written asz.x/ =

∑
i∈I zi fi .x/, zi ∈ R; i ∈ I . In Rm [x]

we consider the norm‖ · ‖ defined by‖z‖ = .
∑

i∈I z2
i /

1=2. Let C ⊂ Rn be a closed convex
set and letKm.C/ be the nonempty closed convex cone of the polynomials inRm [x] which
are convex onC. Let .y1.x/; y2.x//; .w1.x/;w2.x// ∈ Km.C/ × Km.C/ be two pairs of
d.c. representations ofz.x/ on C, i.e., z.x/ = y1.x/− y2.x/ = w1.x/−w2.x/ on C. It can
be argued that the pair.y1.x/; y2.x// is better than the pair.w1.x/;w2.x// if

‖y1 + y2‖ ≤ ‖w1 +w2‖:

A d.c. representation ofz.x/ onC is minimal if it is better that any other d.c. representation
of z.x/ on C. Thus, the practical way of obtaining the minimal d.c. representation ofz.x/
on C is to solve the following problem.
Considerz.x/ ∈ Rm [x] and let .y1.x/; y2.x// ∈ Km.C/ × Km.C/ be such thatz.x/ =

y1.x/ − y2.x/, and definev.x/ := y1.x/ + y2.x/, which is a convex polynomial onC.
Hence, we can write

y1.x/ = .v.x/+ z.x//=2 and y2.x/ = .v.x/− z.x//=2;

sov.x/ = −z.x/+ 2y1.x/ = z.x/+ 2y2.x/. Thus, the MNP problem is expressed as fol-
lows:

(6) min
{
‖v‖ : v ∈ {−z+ 2Km.C/} ∩ {z+ 2Km.C/}

}
:

Next we describe the feasible set of the problem (6) by requiring the convexity of the
polynomials.v ± z/, which means that the Hessian matrices∇

2.v ± z/.x/ =
∑

i∈I .vi ±

zi /∇
2 fi .x/ must be positive semidefinite. We can then write

(7) u>

(∑
i∈I

.vi ± zi /∇
2 fi .x/

)
u ≥ 0; for all u ∈ Sn andx ∈ C;

whereSn
= {z ∈ Rn : ‖z‖ = 1}. In this way the problem (6) has been transformed into the

equivalent quadratic SIP problem, withT = Sn
× C;

P : min{‖v‖2
≡

∑
i∈I

v2
i } s.t. u>

(∑
i∈I

.vi ± zi /∇
2 fi .x/

)
u ≥ 0 ∀.u; x/ ∈ T:
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Mathematical physics.The so-called defect minimization approach for solving mathemat-
ical physics problems leads to SIP models, and is different from the common finite element
and finite difference approaches. We give an example.

Shape optimization problem: Consider the following boundary-value problem

(BVP): Given G0 ⊂ Rm (G0 is a simply connected open region, with smooth boundary
bd G0; and closure clG0), and a positive constantk > 0, find a functionu ∈ C2.cl G0;R/

such that its Laplacian1u =
@2u
@t21

+ : : :+ @2u
@t2m

satisfies

1u.t/ = k; ∀t ∈ G0;

u.t/ = 0; ∀t ∈ bd G0:

By choosing a linear spaceS =
{
u.x; t/ =

∑n
i=1 xiui .t/

}
; generated by appropriate trial

functionsui ∈ C2.Rm;R/, i = 1;2; :::;n; this BVP can approximately be solved via the
following SIP:

min
";x

" s.t. ±
(
1u.x; t/− k

)
≤ "; ∀t ∈ G0;

±u.x; t/ ≤ "; ∀t ∈ bd G0:

In [21] the following related, but more complicated, model has been considered theoreti-
cally. This is the so-calledshape optimization problem(SOP).

(SOP): Find a (simply connected) regionG ∈ Rm; with normalized volume�.G/ = 1; and
a functionu ∈ C2.cl G;R/ which solves the following optimization problem with given
objective functionF.G;u/ :

minG;u F.G;u/ s.t. 1u.t/ = k; ∀t ∈ G;
u.t/ = 0; ∀t ∈ bd G;
�.G/ = 1:

This is a problem with variable regionG which can be solved approximately via the fol-
lowing GSIP problem:

Choose some appropriate family of regionsG.z/, depending on a parameterz ∈ Rp, and
satisfying�.G.z// = 1 for all z. Fix some small error bound" > 0. Then we solve, with
trial functionsu.x; t/ from the setSabove, the program

min
z;x

F.G.z/;u.x; ·// s.t. ±
(
1u.x; t/− k

)
≤ "; ∀t ∈ G.z/;

±u.x; t/ ≤ "; ∀t ∈ bd G.z/:

Similar models such as themembrane packing problem with rigid obstacleare to be found
in [63]. For further contributions to the theory and numerical results of this defect mini-
mization approach we refere.g. to [78, 80].

Robotics. Many control problems in robotics lead to semi-infinite problems (cf. [46]). As
an example we discuss themaneuverability problem, which in [44] originally has led to the
concept of GSIP.

Let 2 = 2.�/ ∈ Rm denote the position of the so-called tool center point of the robot
(in robot coordinates) at time�. Let 2̇; 2̈ be the corresponding velocities, accelerations
(derivatives w.r.t.�). The dynamical equations have often the form

g.2; 2̇; 2̈/ := A.2/2̈+ F.2; 2̇/ = K;

with (external) forcesK ∈ Rm. HereA.2/ is the inertia matrix, andF describes the friction,
gravity, centrifugal forces, etc. The forcesK are bounded:K−

≤ K ≤ K+:
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For fixed2; 2̇, the set of feasible (possible) accelerations is given by

Z.2; 2̇/ = {2̈ | K−
≤ g.2; 2̇; 2̈/ ≤ K+

}:

Note that, sinceg is linear in2̈, for fixed .2; 2̇/, the setZ.2; 2̇/ is convex (intersection
of half-spaces). Let now be given anoperating region Q, e.g.

Q = {.2; 2̇/ ∈ R2m
| .2−; 2̇−/ ≤ .2; 2̇/ ≤ .2+; 2̇+/}:

Then, the set of feasible accelerations2̈, i.e., the set of accelerations which can be realized
in every point.2; 2̇/ ∈ Q, becomes

Z0 =

⋂
.2;2̇/∈Q

Z.2; 2̇/ = {2̈ | K−
≤ g.2; 2̇; 2̈/ ≤ K+; ∀.2; 2̇/ ∈ Q}:

The setZ0 is convex (as an intersection of the convex setsZ.2; 2̇/). For controlling the
robot one has to check whether a desired acceleration2̈ is possible,i.e. whether2̈ ∈ Z0.
Often this test takes too much time due to the complicated description ofZ0. A faster test
can be done as follows. First we have to find a simple bodyT (e.g. a ball or an ellipsoid) as
large as possible, which is contained inZ0. Then, instead of the tesẗ2 ∈ Z0 one performs
the faster check̈2 ∈ T.
The construction of an appropriate bodyT ⊂ Z0 leads to a GSIP as follows. Suppose that
the bodyT.d/ depends on the parameterd ∈ Rq and thatv.d/ is the volume ofT.d/. Then,
we wish to maximize the volume subject to the conditionT.d/ ⊂ Z0. This is the so-called
maneuverability problemand leads to the GSIP:

(8) max
d

v.d/ s.t. K−
≤ g.2; 2̇; 2̈/ ≤ K+; ∀.2; 2̇/ ∈ Q; 2̈ ∈ T.d/:

Geometry. Semi-infinite problems naturally arise in a geometrical setting. More precisely,
the outer approximation (covering) of a setT ⊂ Rm by a setS.x/, depending on a parameter
x ∈ Rn, leads to a SIP. To coverT from inside will yield a GSIP.
SupposeS.x/ is described byS.x/ = {t ∈ Rm

| g.x; t/ ≥ 0} andv.x/ denotes its volume.
In order to find the setS.x/ of smallest volume coveringT we have to solve the SIP:

min
x
v.x/ s.t. g.x; t/ ≥ 0 ∀t ∈ T:

In the inner approximation problem we maximize the volume such that the setS.x/ is
contained in the setT = {t ∈ Rm

| g.t/ ≥ 0}; and it is modeled by the GSIP:

max
x

v.x/ s.t. g.t/ ≥ 0 ∀t ∈ S.x/:

This problem is also known asdesign centering problem(seee.g. [75], [81]).

Optimization under uncertainty. We consider a linear program

min
x

c>x s.t. a>
j x− b j ≥ 0 ∀ j ∈ J;

whereJ a finite index set. Often in the model the dataa j andb j are not known exactly. It
is only known that the vectors.a j ;b j / may vary in a setTj ⊂ Rn+1. In a pessimistic model
we now can restrict the problem to suchx which are feasible for all possible data vectors.
This leads to a SIP

min
x

c>x s.t. a>x− b ≥ 0 ∀.a;b/ ∈ T := ∪ j∈JTj :

For more details we refer to [1, 6, 58, 71, 82]. In the next example we discuss such arobust
optimizationmodel in economics.
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Economics.In aportfolio problemwe wish to investK euros inton shares, say for a period
of one year. We investxi euros in sharei and expect, at the end of the period, a return ofti
euros per 1 euro investment in sharei.
Our goal is to maximize the portfolio valuev = t>x after a year wherex = .x1; : : : ; xn/ and
t = .t1; : : : ; tn/. The problem is that the valuesti are not known in advance (otherwise we
could invest all the money into the share with maximal valueti). However, knowledge from
the past and models from economics allow us to predict that the gain coefficientsti vary
between certain bounds. So we can assume that the vectort will be contained in a specific
compact subsetT ⊂ Rn.
In this robust optimizationmodel we now wish to maximize the gainv for theworst case
vectort ∈ T, and we are led to solve the linear SIP:

max
v;x

v s.t. t>x− v ≥ 0 ∀t ∈ T; and
∑

i

xi = K; x ≥ 0:

We refer to [75] for details and numerical experiments.

3. FIRST ORDER OPTIMALITY CONDITIONS

In this section, first order optimality conditions are derived for the SIP problemP in (1).
A feasible pointx ∈ F is called alocal minimizerof P if there is some" > 0 such that

(9) f .x/− f .x/ ≥ 0 ∀x ∈ F such that‖x− x‖ < ":

The minimizerx is said to beglobal if this relation holds for every" > 0. We callx ∈ F a
strict local minimizer of order p> 0 if there exist someq > 0 and" > 0 such that

(10) f .x/− f .x/ ≥ q||x− x||p
∀x ∈ F such that‖x− x‖ < ":

For x ∈ F we consider theactive index set:

Ta.x/ := {t ∈ T | g.x; t/ = 0}:

Sinceg is continuous andT is compact, the subsetTa.x/⊂ T is also compact. The condition
Ta.x/ = ∅ implies x ∈ int F and, nearx; the problemP can be seen as an unconstrained
minimization problem. So, throughout the paper, we assume that, at a candidate minimizer
x; the setTa.x/ is nonempty.
Now we introduce the so-called constraint qualifications. Thelinear independence con-
straint qualification(LICQ) is said to be satisfied atx ∈ F if the active gradients

.LICQ/ ∇xg.x; t/; t ∈ Ta.x/; are linearly independent:

TheMangasarian-Fromovitz constraint qualification(MFCQ) holds atx ∈ F if there exists
a directiond ∈ Rn such that

.MFCQ/ ∇xg.x; t/d > 0 ∀t ∈ Ta.x/:

A directiond ∈ Rn satisfying the condition MFCQ is called astrictly feasible direction.

Remark The condition LICQ implies MFCQ. To see this note that by LICQ the setTa.x/ cannot
contain more thann points,Ta.x/= {t1; : : : ; tr }; r ≤ n, and the system∇xg.x; t j /d = 1; j = 1; : : : ; r
has a solutiond. Moreover, in the proof of Lemma 3 we show that ifd is a strictly feasible direction
at x ∈ F and� > 0 is small enough, thenx+ �d ∈ int F ; which, obviously, will be non-empty.

A vectord ∈ Rn is astrictly feasible descent directionif it satisfies simultaneously

∇ f .x/d < 0; ∇xg.x; t/d > 0 ∀t ∈ Ta.x/:

L EMMA 3. [Primal necessary optimality condition]Let x ∈ F be a local minimizer of P.
Then, there will not exist a strictly feasible descent direction.
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Proof. Assume, reasoning by contradiction, thatd is a strictly feasible descent direction.
Then, f .x + �d/ < f .x/ holds for small� > 0. On the other hand, we show next the
existence of some�0 > 0 with the property

(11) g.x+ �d; t/ > 0 ∀� ∈ ]0; �0] and∀t ∈ T;

entailing thatx can not be a local minimizer (contradiction). Suppose now that (11) does
not hold. Then, for each natural numberk; there exists sometk ∈ T such that 0< �k < 1=k
andg.x + �kd; tk/ ≤ 0. SinceT is compact, there must exist some subsequence.�ks; tks/

such that�ks → 0 andtks → t∗ ∈ T. The continuity ofg.:; :/ then yieldsg.x+ �ksd; tks/ →

g.x; t∗/, which itself impliesg.x; t∗/ = 0 and, so,t∗ ∈ Ta.x/. On the other hand, the Mean
Value Theorem provides us with numbers 0< �̂ks < �ks such that

0 ≥ g.x+ �ksd; tks/− g.x; tks/ = �ks∇xg.x+ �̂ksd; tks/d

and, hence,∇xg.x+ �̂ksd; tks/d ≤ 0. So the continuity of∇xg.:; :/ entails

∇xg.x; t∗/d = lim
s→∞

∇xg.x+ �̂ksd; tks/d ≤ 0;

which contradicts the hypothesis ond. �

THEOREM 1. [First order sufficient condition]Let x be feasible for P. Suppose that there
is no d∈ Rn�{0n} satisfying

∇ f .x/d ≤ 0 and∇xg.x; t/d ≥ 0 ∀t ∈ Ta.x/:

Thenx is a strict local minimizer of SIP of order p= 1.

For a proof of this result we refer to [45] (and also to [73]).

Remark The assumptions of Theorem 1 are rather strong and can be expected to hold only in special
cases (see,e.g.,[45]). It is not difficult to see that the assumptions imply that the set of gradients
{∇xg.x; t/ | t ∈ Ta.x/} contains a basis ofRn. So, in particular,|Ta.x/| ≥ n.
More general sufficient optimality conditions need second order information (cf. Section 5 below).

We now derive the famousFritz John(FJ) andKarush-Kuhn-Tucker(KKT) optimality con-
ditions.

THEOREM 2. [Dual Necessary Optimality Conditions]Let x be a local minimizer of P.
Then the following conditions hold:

(a) There exist multipliers�0; �1; : : : ; �k ≥ 0and indices t1; : : : ; tk ∈ Ta.x/, k≤ n+1,
such that

∑k
j=0� j = 1 and

(12) �0∇ f .x/−

k∑
j=1

� j∇xg.x; t j / = 0>: (FJ-condition)

(b) If MFCQ holds atx, then there exist multipliers�1; : : : ; �k ≥ 0and indices t1; : : : ; tk ∈

Ta.x/, k ≤ n, such that

(13) ∇ f .x/−

k∑
j=1

� j∇xg.x; t j / = 0>: (KKT-condition)

Proof. (a) Consider the setS= {∇ f .x/} ∪ {−∇xg.x; t/ | t ∈ Ta.x/} ⊆ Rn. Sincex is a
local minimizer ofP, there is no strictly feasible descent directiond at x (cf. Lemma 3).
This means that

there is nod ∈ Rn such thats>d < 0 ∀s∈ S:
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Ta.x/ is compact and, by continuity of∇xg.x; ·/, S is also compact. Hence convS is a
compact convex set and 0n ∈ conv S(Lemma 1). In view of Caratheodory’s Theorem, 0n is
a convex combination of at mostn+ 1 elements ofS, i.e.,

(14)
k∑

j=1

� jsj = 0 sj ∈ S; � j ≥ 0;
k∑

j=1

� j = 1 with k ≤ n+ 1;

which implies (a).
(b) Now assume�0 = 0 in (12),i.e., for every j in (14) such that� j > 0 we havesj 6= ∇ f .x/
and, accordingly, there is an associatedt j ∈ Ta.x/ such thatsj = −∇xg.x; t j /: Then, ifd is
the direction involved in MFCQ the following contradiction arises:

0> −

k∑
j=1

� j∇xg.x; t j /d = 0>d = 0:
�

Convex semi-infinite programs.The semi-infinite programP is calledconvexif the ob-
jective function f .x/ is convex and, for every indext ∈ T, the constraint functiongt.:/ =

g.:; t/ is concave (i.e., −gt.:/ is convex). A local minimizer of a convex program is actually
a global one.
In this convex setting the following constraint qualification is usual. We say thatP satisfies
theSlater conditionif

.SCQ/ there existŝx such thatg.x̂; t/ > 0 ∀t ∈ T:

L EMMA 4. Let F be non-empty. Then P satisfies SCQ if and only if MFCQ holds at every
x ∈ F :

Proof. Assume, first, thatP satisfies SCQ. IfTa.x/ = ∅, then MFCQ is trivially satisfied.
Otherwise, ift ∈ Ta.x/ we have

∇xg.x; t/.x̂− x/ ≥ g.x̂; t/− g.x; t/ = g.x̂; t/ > 0;

andd := x̂ − x satisfies MFCQ. Now we choose a pointx ∈ F . By assumption MFCQ
holds atx with a vectord. In the proof of Lemma 3 (cf. (11)) it is shown that there exists
some�0 > 0 such that the point̂x := x+ �0d satisfies SCQ. �

As in convex finite programming, the KKT-conditions are sufficient for optimality.

THEOREM 3. Let P be a convex SIP. Ifx is a feasible point that satisfies the Kuhn-Tucker
condition (13), thenx is a (global) minimizer of P.

Proof. By the convexity assumption, we have for every feasiblex andt ∈ Ta.x/:

f .x/− f .x/ ≥ ∇ f .x/.x− x/

0 ≤ g.x; t/ = g.x; t/− g.x; t/ ≤ ∇xg.x; t/.x− x/:

Hence, if there are multipliers� j ≥ 0 and index pointst j ∈ Ta.x/ such that∇ f .x/ =∑k
j=1� j∇xg.x; t j /, we conclude

f .x/− f .x/ ≥ ∇ f .x/.x− x/ =

k∑
j=1

� j∇xg.x; t j /.x− x/ ≥ 0 :

�

More details on constraint qualifications for the SIP problem (like the semi-infinite versions
of the Kuhn-Tucker and Abadie constraint qualifications) can be found ine.g. [38].
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4. L INEAR SIP

4.1. Different models in LSIP. This section deals with the general LSIP

P : minc>x s.t. a>
t x ≥ bt ∀t ∈ T:

HereT is an arbitrary (infinite) set, and the vectorsc;at ∈ Rn; as well as the scalarsbt ∈ R;
are also arbitrary. The functionst 7→ at ≡ a.t/ and t 7→ bt ≡ b.t/ need not to have any
special property. As an intersection of closed halfspaces, the feasible set ofP is a closed
convex set.
We introduce different families of LSIP problems through some properties of their con-
straint systems� = {a>

t x ≥ bt ; t ∈ T}, which have a great influence on optimality, stability
and on the efficiency of algorithms:

(a) P is calledcontinuous([17, 18]), whenT is a compact Hausdorff topological space, and
a.t/ andb.t/ are continuous functions onT:
(b) A feasible problemP is said to belocally Farkas-Minkowski(LFM) ([64], extensions to
the convex SIP in [23] and [60]) when every linear inequalitya>x ≥ b which is aconsequent
relationof �; and such thata>x = b is a supporting hyperplane ofF ; is also a consequence
of a finite subsystem of�:
(c) P; assumed again to be feasible, isFarkas-Minkowski(FM) ([83, 86]) if every linear
consequent relation of� is a consequence of some finite subsystem.

An LFM problem exhibits a satisfactory behavior with respect to the duality theory, and
every FM problem is LFM (the converse holds provided thatF is bounded). On the other
hand, many approximation problems are modeled as continuous problems, but these prob-
lems behave badly w.r.t. stability duality and numerical methods unless a Slater pointx0

exists (a>
t x0 > bt ∀t ∈ T), in which case they also belong to the FM family:

Thefirst-moment cone, M; and thecharacteristic cone, K; play an important role in LSIP:

M := cone{at; t ∈ T} , K := cone

{(
at

bt

)
; t ∈ T;

(
0n

−1

)}
:

According to Lemma 2, the programP is FM if and only if the coneK is closed. Another
consequence of Lemma 2 is the characterization of the LFM problems as those feasible
LSIP problems such that

A.x/ = D.F ; x/0; ∀x ∈ F :

Here A.x/ = cone{at ; t ∈ Ta.x/} is calledactive coneat x and D.F ; x/ is the cone of
feasible directions ofF at x:

4.2. Optimality and duality. If P is a continuous LSIP problem, withT ⊂ Rm; the first
order optimality theory presented in Section 3 applies (cf. also [32, Chapter 7]).
In fact, the KKT condition now turns out to bec ∈ A .x/ : If the LSIP problem is LFM
we observe thatA.x/ is a closed cone (because it coincides withD.F ; x/0/ and, since
x is optimal if and only ifc ∈ D.F ; x/0; the LFM property itself becomes a constraint
qualification.
Associated withP, differentdualproblems can be defined. For instance, ifP is continuous,
a natural dual problem is

D0 : max
∫

T
b.t/d.�.t// s.t.

∫
T

a.t/d.�.t// = c; � ∈ M +.T/ ;

whereM +.T/ denotes the cone of the nonnegative regular Borel measures on the compact
Hausdorff spaceT. Nevertheless, our most general approach does not assume any particular
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property of the index set and, consequently, we introduce a dual problem that is always well-
defined. This can be accomplished by restricting, inD0; the feasible solutions to atomic
measures concentrating their mass on a finite set and yields the so-calledHaar dual

D : max
∑
t∈T

�tbt s.t.
∑
t"T

�tat = c; �t ≥ 0;

where we allow only for a finite number of thedual variables, �t; t ∈ T, to take positive
values. If� := .�t; t ∈ T/ is a feasible solution ofD (also called dual-feasible), we shall
consider thesupportof � :

supp� := {t ∈ T | �t > 0}:

By vD0 andvD we denote the optimal values ofD0 andD; respectively. IfP is a continuous
problem withT ⊂ Rm; a theorem of Rogosinsky [69] establishedvD0 = vD: Moreover, if
vD0 is attainable (i.e., ifD0 is solvable), thenvD is also attainable. For a general compact
Hausdorff spaceT, the equivalence betweenD0 andD (from the optimality point of view) is
established in [11]. Because of these equivalences, the Haar dual is much more convenient.
Next we consider the objective vectorc in P as aparameter. We analyze here the properties
of theoptimal value functionv : Rn

→ [−∞;+∞[ and theoptimal set mappingS : Rn ⇒
Rn; assigning to eachc ∈ Rn; the optimal valuev.c/ and optimal set (possibly empty)S .c/
of the problemP.c/ : min{c>x | x ∈ F }; respectively:
Obviously,c ∈ domS if and only if P.c/ is solvable (i.e., ifP.c/ has optimal solutions).
We shall also assume thatRn

6= F 6= ∅:

A crucial element in duality theory is the so-calledduality gap�.c/ := v.c/− vD.c/; where
vD.c/ denotes the optimal value of the associated dual problem

D.c/ : max
∑
t∈T

�tbt s.t.
∑
t"T

�tat = c; �t ≥ 0:

For this parametric dual problem only the right-hand side terms in the equality constraints
change, and we assumevD.c/ = −∞ whenc =∈ M, in other words when de dual problem
is not feasible.
Note that if x ∈ F and� = {�t; t ∈ T} is feasible for the dual problemD.c/, one has
c>x =

∑
t∈T �ta>

t x ≥
∑

t∈T �tbt; which gives rise to theweak dualityinequalityv.c/ ≥

vD.c/ (i.e.,�.c/ ≥ 0/: When�.c/ = 0; we say that there isno-duality gap.
Observe that, applying Lemma 2, (recall max∅ = −∞),

v.c/ = sup{� ∈ R | c>x ≥ � is a consequence of�} = sup

{
� ∈ R

∣∣∣∣ (
c
�

)
∈ cl K

}
:

Moreover, the dual optimal value can be rewritten as follows

(15) vD.c/ = sup

{
� ∈ R

∣∣∣∣ (
c
�

)
∈ K

}
;

and basic results from convex analysis (cf. [68]) yield straightforwardly the following state-
ments:

THEOREM 4. ([29, Theorem 8.1],[70])In relation to the parametric dual pair P.c/; D.c/;
with Rn

6= F 6= ∅; the following properties hold:

(i) v and vD are proper concave functions such thatv = cl vD and, so, their values
coincide at every point ofrint .domvD/,

(ii) hypo v = cl K,
(iii) S .c/ = @v.c/,
(iv) rint M ⊂ domS ⊂ domv ⊂ cl M; andrint .domvD/ = rint M,
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(v) For every c∈ rint M, we have�.c/ = 0 andS .c/ 6= ∅,
(vi) S .c/ is a (non-empty) compact set if and only if c∈ int M.

In contrast to (finite) linear programming, for LSIP, a strong duality result as in Theo-
rem 4(v) needs not to hold unless some constraint qualification is satisfied. This can be
seen from the following

EXAMPLE 1. P : min x2 s.t. t2x1 + tx2 ≥ 0; ∀t ∈ T = [0;1] andx2 ≥ −1.

Herev = 0 andvD = −1. Obviously, the conditionc ∈ rint M does not hold.

Cone constrained programs as special cases of LSIP.A cone constrained linear problem
is a program of the form

(16) min c>x s.t. y := Ax− b ∈ C;

whereC is a closed convex cone in a normed space. IfC ⊂ Rm and intC 6= ∅ such a problem
can be transformed into an LSIP satisfying the FM property (see [37] ). As important special
cases we discusssemidefinite programs

(SDP) min c>x s.t. Y :=
n∑

i=1

xi Ai − B ∈ Sm
+;

with symmetric matricesAi ; B ∈ Rm×m and Sm
+ being the cone of positive semidefinite

m× m-matrices, as well as thesecond order conic programs

(SOP) min c>x s.t. y := Ax− b ∈ Lm;

whereLm denotes the Lorentz coneLm := {y ∈ Rm
| ym ≥ .y2

1 + : : :+ y2
m−1/

1=2
}:

By definition,Y ∈ Sm
+ is equivalent tot>Yt ≥ 0 ∀t ∈ Cm = {t ∈ Rm

| ‖t‖ = 1}, where‖ · ‖

denotes the Euclidean norm. So the feasibility condition for SDP becomes
∑

i xi t> Ai t ≥

t> Bt or
a>.t/x ≥ b.t/ ∀t ∈ Cm with ai .t/ = t> Ai t; b.t/ = t> Bt;

which turns SDP into a LSIP problem.
For the program SOP we defineỹ = .y1; : : : ; ym−1/ and observe the identity

‖ỹ‖ = max
t̃∈Rm−1; ‖t̃‖=1

t̃> ỹ:

So the conditiony ∈ Lm; or ym ≥ ‖ỹ‖; can be written asym − t̃> ỹ ≥ 0 ∀‖t̃‖ = 1; and the
feasibility condition in SOP reads:

t>.Ax− b/ ≥ 0 or a>.t/x ≥ b.t/ ∀t ∈ T = {t = .t̃;1/ | ‖t̃‖ = 1};

with ai .t/ = t> Ai , Ai the i-th column ofA andb.t/ = t>b.
As a consequence of the previous considerations, the optimality conditions and duality
results for these special cone constrained programs are easily obtained from the general
theory for LSIP (cf. e.g.[22]). Applications of the abstract duality theory to the problem of
moments, LSIP, and continuous linear programming problems are discussed in [70].

5. SECOND ORDER OPTIMALITY CONDITIONS

A natural way to obtain optimality conditions for SIP is the so-calledreduction approach.
The advantage of this method is that we can deal in the same way with SIP and GSIP
problems. Since the approach is described in detail in [45], here we only sketch the results.
Consider the GSIP (3) and assume that the index set is given by

(17) T.x/ := {t ∈ Rm
| u.x; t/ ≥ 0q};
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whereu : Rn
× Rm

→ Rq, and thatf; g;u areC2-functions. The approach is based on the
fact that, forx ∈ F ; each active index

t j ∈ Ta.x/ = {t ∈ T.x/ | g.x; t/ = 0}

is a global minimizer of the so-calledlower level problem,

(18) Q.x/ : min
t

g.x; t/ s.t. ul .x; t/ ≥ 0 ; l ∈ L := {1; : : : ;q};

which represents a finite program depending on the parameterx. So, under some constraint
qualification eacht j ∈ Ta.x/ must satisfy theKarush-Kuhn-Tucker(KKT) condition, i.e.,
with the Lagrange functionL .x/

j of Q.x/; corresponding tot j ∈ Ta.x/, the relation

(19) ∇tL .x/
j .x; t j ; 
 j / = ∇tg.x; t j /−

∑
l∈L0.x;t j /


 jl ∇tul .x; t j / = 0>
m

holds with associated multipliers
 jl ≥ 0, and the active index setL0.x; t j / := {l ∈ L |

ul .x; t j / = 0}. The approach depends on thereduction assumptions:

(RA): All t j ∈ Ta.x/ are nondegenerate minimizers ofQ.x/ such that LICQ, SC (strict
complementary slackness), and SOC (strong second order conditions) hold at them (see
[45] and [47] for details).

Under the condition RA the following can be shown: The setTa.x/ is finite, i.e. Ta.x/ =

{t1; : : : ; tr}; and there are (locally defined)C1-functions t j .x/ and 
 j .x/ with t j .x/ =

t j ; 
 j .x/ = 
 j ; such that, for everyx nearx; t j .x/ is a local minimizer ofQ.x/ with corre-
sponding unique multiplier
 j .x/. With these functions the followingreductionholds in a
neighborhoodUx of x:
The pointx ∈ Ux is a local solution of the GSIP problemP if and only if x ∈ Ux is a local
solution of thelocally reduced (finite) program

(20) Pred.x/ : min f .x/ s.t. G j .x/ := g.x; t j .x// ≥ 0; j = 1; : : : ; r:

Moreover, for j = 1; : : : ; r , the following identity holds:

∇G j .x/ = ∇xL .x/
j .x; t j ; 
 j /:

Based on this result, the standard optimality conditions for the finite problemPred.x/ di-
rectly lead to optimality conditions for GSIP. To do so, we define the cone of critical direc-
tions

Cx := {d ∈ Rn
| ∇ f .x/d ≤ 0; ∇G j .x/d ≥ 0; j = 1; · · · ; r};

and recall that LICQ is said to hold atx if the vectors∇G j .x/; j = 1; · · · ; r; are linearly
independent. We give the following necessary and sufficient optimality conditions of FJ-
type for P (see also [76]).

THEOREM 5. Let for x ∈ F the assumptions RA be satisfied such that GSIP can locally
be reduced to Pred.x/. Then the following conditions hold:
(a) Suppose thatx is a local minimizer of P and that LICQ is satisfied. Then there exist
multipliers� ≥ 0r such that (with the expressions for∇xL and∇

2
xL below)

∇xL.x; �/ = 0>
n and d>∇

2
xL.x; �/d ≥ 0 ∀d ∈ Cx:

(b) Suppose that there exist multipliers� ≥ 0r such that

∇xL.x; �/ = 0>
n and d>∇

2
xL.x; �/d > 0 ∀d ∈ Cx \ {0}:

Thenx is a strict local minimizer of P of order 2.
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The expressions for∇xL.x; �/ and∇
2
xL.x; �/ read:

∇xL.x; �/ = ∇ f .x/−

r∑
j=1

� j∇xL .x/
j .x; t j ; 
 j /;

∇
2
xL.x; �/ = ∇

2 f .x/−

r∑
j=1

� j

(
∇

2
xL .x/

j .x; t j ; 
 j /− ∇t>j .x/∇
2
t L .x/

j .x; t j ; 
 j /∇t j .x/
)

+

r∑
j=1

� j

∑
l∈L0.x;t j /

(
∇

>
 jl .x/∇xul .x; t j /+ ∇
>

x ul .x; t j /∇
 jl .x/
)
:

Recall that under the assumption RA atx ∈ F , for each active index pointt j ∈ Ta.x/ the
KKT-equations (19) must be satisfied. Together with Theorem 5 we obtain the following
complete system of optimality conditionsfor SIP and GSIP:
If x ∈ F is a local minimizer with active index setTa.x/ = {t1; : : : ; tr}, such that the as-
sumptions of Theorem 5(a) are fulfilled, thenx must satisfy the equations

(21)

∇ f .x/−
∑r

j=1� j∇x

(
g.x; t j /−

∑
l∈L0.x;t j / 
 jl ul .x; t j /

)
= 0>

n ;

∀ j : g.x; t j / = 0;
∀ j : ∇tg.x; t j /−

∑
l∈L0.x;t j / 
 jl ∇tul .x; t j / = 0>

m;

∀ j and∀l ∈ L0.x; t j / : ul .x; t j / = 0;

with appropriate Lagrange multipliers� j and
 jl . This system hasK := n + r .m+ 1/+∑r
j=1 |L0.x; t j /| equations andK unknownsx; � j ; t j ; 
 j .

Remark Note that for common SIP-problems the system (21) simplifies. Since in this case the func-
tionsul do not depend onx, in the first equations the sum over
 jl ∇xul .x; t j / vanishes. Observe
that the first part of the system (21) has the structure of the KKT-equations in finite programming.
However, since in SIP the index variablet is not discrete and it may vary in a whole continuumT;
this system does not determine the active indicest j . To fix also thet j ’s, for all active index pointst j

we have to add the second system of KKT-equations in thet variable.

6. NUMERICAL METHODS

Nowadays the numerical approach to SIP has become an active research area. An excellent
review on SIP algorithms is [67]. Recently, the NEOS Server has included the program
NSIPS, coded in AMPL [84, 85].
As in finite programming we can distinguish between primal and dual solution methods. In
the so-called discretization methods the SIP problem is directly replaced by a finite problem
(FP).
As a first general observation we emphasize that, from the numerical viewpoint, SIP is
much more difficult than FP. The main reason is the difficulty associated with the feasibility
test forx. In a finite program,

FP : min
x

f .x/ s.t. g j .x/ ≥ 0 ∀ j ∈ J = {1;2; :::;m};

we only have to computem function valuesg j .x/ and to check whether all these values are
nonnegative. In SIP, checking the feasibility ofx is obviously equivalent to solve the global
minimization problemQ.x/ in the t variable:

Q.x/ : min
t

g.x; t/ s.t. t ∈ T;

and to check whether for a global solutiont the conditiong.x; t/ ≥ 0 holds.
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Note that, even for the LSIP, the problemQ.x/ is not in general a convex problem. As a
consequence of this fact, the LSIP problem cannot be expected to be solvable in polynomial
time. However, there are special subclasses of linear or convex semi-infinite programs
which can be solved polynomially. Interesting examples are semidefinite and second order
cone programming [62], as well as certain classes of robust optimization problems [6].

6.1. Primal methods. We discuss the so-called method offeasible directionsfor the SIP
problem. The idea is to move from a current (non-optimal) feasible pointxk to the next
point xk+1 = xk + �kdk in such a way thatxk+1 remains feasible and has a smaller objective
value. The simplest choice would be to move along a strictly feasible descent direction
which was defined as a vectord satisfying

(22) ∇ f .x/d < 0; ∇xg.x; t/d > 0 ∀t ∈ Ta.x/:

Feasible Direction Method(Zoutendijk, in case of FP) Choose a starting pointx0 ∈ F :

Step k: Stop ifxk is a FJ point.

(1) Choose a strictly feasible descent directiondk.
(2) Determine a solution�k for the problem:

(∗) min { f .xk + �dk/ | t > 0; xk + �dk ∈ F }:

Set xk+1 = xk + �kdk:

Let us consider the followingstableway to obtain a strictly feasible descent directiond
that takesall constraints into account. For finite programs this is the method suggested by
Topkis and Veinott (seee.g. [22]). We solve the LSIP:

(23)

mind;z z s.t. ∇ f .xk/d − z ≤ 0;

−∇xg.xk; t/d − z ≤ g.xk; t/; ∀t ∈ T;

±di ≤ 1; i = 1; : : : ;n:

L EMMA 5. If (23) has optimal value equal to zero, xk satisfies the FJ necessary optimality
conditions (12).

Proof. Note that.d; z/ = .0n;0/ is always feasible for (23). Suppose that the statement is
false and thatxk is not a FJ point. Then by Lemma 1, there exists a strictly feasible descent
directiond. With the same arguments as in the proof of Lemma 3, and by replacingx by
xk, we find that there is some�0 > 0 such that

g.xk; t/+ �∇xg.xk; t/d > 0 ∀� ∈]0; �0[; t ∈ T:

So, by choosing� > 0 such that�|di | ≤ 1; ∀i, we have shown that there existz0 < 0 and a
vectord.= �d/ with |di | ≤ 1; ∀i, satisfying

(24) ∇ f .xk/d < z0 and g.xk; t/+ ∇xg.xk; t/d > −z0 ∀t ∈ T:

Consequently (23) has optimal valuez≤ z0.
�

THEOREM 6. Assume that the Feasible Direction Method generates points xk and com-
putes directions dk as solutions of (23). Suppose further that a subsequence.xs/s∈S con-
verges tox, S⊆ N being an infinite subset of indices s. Then,x is a FJ point.

Proof. SinceF is closed, the limitx of the pointsxs ∈ F also belongs toF . Suppose that
the theorem is false and thatx is not a FJ point. Then arguing as in the proof of Lemma 5,



16 MARCO LÓPEZ, GEORG STILL

with xk replaced byx andz0 replaced by 2z, it follows that there existz< 0 and a vectord
with |di | ≤ 1; ∀i, satisfying

∇ f .x/d < 2z and g.x; t/+ ∇xg.x; t/d > −2z ∀t ∈ T:

The continuity ofg.x; t/; ∇ f .x/ and∇xg.x; t/; together with the compactness ofT; also
imply that

∇ f .xs/d < z and g.xs; t/+ ∇xg.xs; t/d > −z ∀t ∈ T;

must hold ifs is sufficiently large. So.d; z/ is feasible for (23), which in turn impliesz≥ zs

for every optimal solution.ds; zs/ of (23) atxs. In particular, we note

∇ f .xs/ds < z and g.xs; t/+ ∇xg.xs; t/ds > −z ∀t ∈ T:

Let � > 0 be such that‖∇ f .x/− ∇ f .x/‖ < |z|=3
√

n holds whenever‖x − x‖ < �. Then
‖ds‖ ≤

√
n; together with the inequality of Cauchy-Schwarz, yield

|.∇ f .x/− ∇ f .x//ds| ≤ ‖∇ f .x/− ∇ f .x/‖ · ‖ds‖ < |z|=3:

So, if ‖x− x‖ < � ands is large enough, we have:

∇ f .x/ds ≤ ∇ f .x/ds + |z|=3 ≤ ∇ f .xs/ds + 2|z|=3< z=3:

Applying the same reasoning to∇xg.x; t/, we therefore conclude that, for� small enough
and‖x− x‖ < �,

g.xs; t/+ ∇xg.x; t/ds ≥ −z=3 ∀t ∈ T:

We are interested in pointsx of the formx = xs + �ds; 0 < � < min
{
1; �=.2

√
n/

}
. If s

is so large that‖xs − x‖ < �=2, then‖x − x‖ < �. Moreover, the Mean Value Theorem
guarantees the existence of some 0< � < � such that

f .xs + �ds/ = f .xs/+ �∇ f .xs + �ds/ds < f .xs/+ �z=3:

Similarly, we find for anyt ∈ T

g.xs + �ds; t/ = g.xs; t/+ �∇xg.xs + �tds; t/ds

= .1− �/g.xs; t/+ �[g.xs; t/+ ∇xg.xs + �tds; t/ds]

≥ .1− �/g.xs; t/− �z=3> 0

(use the feasibilityg.xs; t/ ≥ 0), which tells usxs + �ds ∈ F . So, the minimization step (∗)
in the algorithm produces some�s ensuring a decreasing of at least

f .xs+1/− f .xs/ = f .xs + �sds/− f .xs/ ≤ −
�

2
√

n
|z|=3

for all sufficiently larges. Hence, f .xs/ → −∞ ass → ∞ contradicting our assumption
thatxs → x and, accordingly,f .xs/ → f .x/. �

Some fundamentals of the descent methods based on nonsmooth analysis can be found in
the review article [65].
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6.2. Dual methods. The so-called dual or KKT-approaches try to compute a solution of the
system of KKT optimality conditions. This is mostly achieved by applying some Newton-
type iterations. The theoretical basis of this approach is closely related to so-called generic
properties ofP. So we shortly discuss two variants of this KKT-approach and the related
genericity results for SIP or GSIP.

SQP-Method based on reduction. To solve SIP or GSIP we can apply any algorithm
from finite programming to the locally reduced problemPred.x/ described in Section 5.
An efficient way to do so is the SQP-version. We give a conceptual description (see [45,
Section 7.3] for more details).

Method based on the reduction:

Stepk: Start from a givenxk (not necessarily feasible).

(1) Determine the local minimat1; · · · ; trk of Q.xk/ in (18).
(2) Apply Nk steps of a SQP-solver (for finite programs) to the problem (20)

Pred.xk/ : min
x

f .x/ s.t. G j .x/ := g.x; t j .x// ≥ 0; j = 1; · · · ; rk;

leading to iteratesxk;i ; i = 1; · · · ; Nk.
(3) Setxk+1 = xk;Nk andk = k + 1.

Note that in this procedure we have to trace out the minimizer functionst j .xk/ numerically
by parametric optimization techniques. For a discussion of such a method combining global
convergence and local superlinear convergence we refer to [45].

Methods based on the system of KKT-equations.To solve the GSIP (3) we also can
try to compute a solution of the complete system of optimality conditions (21) by some
Newton-type iteration. The problem here is that we have to find a rough approximation
of a solution which can serve as a starting point for the locally (quadratically) convergent
Newton iteration. A possible procedure, described in [45], performs as follows:

(1) Compute an approximate solution of the semi-infinite program by some other method
(discretization or exchange method).

(2) Use this approximation as a starting point in the Newton iteration for solving (21).

Genericity results for SIP and GSIP. In the reduction approach presented in Section 5
the following has been assumed:

RC: For x ∈ F and a solutionx; � j ; y j ; 
 jl of (21) the following is true:

(1) LICQ holds: The vectors in the following set are linearly independent{
∇xL .x/

j .x; t j ; 
 j / = ∇xg.x; t j /−

∑
l∈L0.x;t j /


 jl ∇xul .x; t j /; t j ∈ Ta.x/

}
(2) The condition RA holds (see Section 5).

Note that in the Newton method for (21) the natural regularity conditions are that the Ja-
cobian of the system is regular at the solution point. It is not difficult to see, that both
assumptions are essentially equivalent and are related to the second order sufficient condi-
tions in Theorem 5(b).
The genericity question now is to examine whether RC are natural assumptions in the sense
that they are generically fulfilled. To answer this question we have to define the problem
set properly. For fixed dimensionsn;m;q the SIP problemP can be seen as an element of
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the space

P := {P = . f; g;u/} ≡ C∞.Rn;R/× C∞.Rn+m;R/× C∞.Rm;Rq/:

This function space is assumed to be endowed with the so-called strong Withney topology
[50]. By a generic subset of the setP we mean a subset which is dense and open inP .
The following result states that for the class of SIP problems the reduction approach and
the Newton method are generically applicable.

THEOREM 7. [51] The setP of all C∞-SIP problems contains an open and dense subset
P0 ⊂ P such that for all programs P∈ P0 the regularity condition RC is satisfied for all
x ∈ F .

Unfortunately the situation is much more complicated for GSIP where a genericity result
as in Theorem 7 is not true (seee.g., [72, Section 3]).

6.3. Discretization methods. In a discretization method we choosefinite subsetsT′ of T,
and instead ofP ≡ P.T/ we solve the finite programs

P.T′/ : min f .x/ s.t. g.x; t/ ≥ 0; ∀t ∈ T′:

Let v.T′/, F .T′/ andS .T′/ denote the minimal value, the feasible set, and the set of global
minimizers ofP.T′/. We call these finite subsetsT′ gridsor discretizations. The following
relation is trivial:

(25) T2 ⊂ T1 ⇒ F .T1/ ⊂ F .T2/ andv.T2/ ≤ v.T1/:

We consider different concepts here:P ≡ P.T/ is calledfinitely reducible if

there is a gridT′
⊂ T such thatv.T′/ = v.T/:

P is said to beweakly discretizableif there exists a sequence of gridsTk such that

v.Tk/ → v.T/:

Obviously, if P is finitely reducible, thenP is weakly discretizable. Note that the previous
concepts apply for the general SIP, but the following notion requiresT to be a subset of
a space with a metricd.·; ·/. We define ameshsize�.T′/ of a grid T′ by the Hausdorff
distance betweenT′ andT, �.T′/ := supt∈T mint′∈T′ d.t; t′/;.

P is calleddiscretizableif for each sequence of gridsTk satisfying�.Tk/ → 0 we have:

(i) P.Tk/ is solvable fork large enough,
(ii) for each sequence of solutionsxk ∈ S .Tk/ we have

d.xk;S .T// → 0; and v.Tk/ → v.T/ if k → ∞;

whered.x;S / := mins∈S ‖x − s‖. Note that from a numerical viewpoint, only the concept
of discretizability is useful.
We also introduce a local concept: Given a local minimizerx of P.T/; the SIP is called
locally discretizableat x if the relations above hold locally, i.e. if the problemPlocal.T/,
obtained as the restriction ofP.T/ to an open neighborhoodUx of x, is discretizable.

We start the discussion with negative examples about the possibilities for discretization.

EXAMPLE 2. Let us consider the nonconvex SIP problem

P : min x2 s.t..x1 − t/2 + x2 ≥ 0; ∀t ∈ T = [0;1]; and 0≤ x1 ≤ 1:

Obviously F = {x ∈ R2
| 0 ≤ x1 ≤ 1 andx2 ≥ 0}; v = 0; and S = {x ∈ R2

| 0 ≤ x1 ≤

1 andx2 = 0}: On the other hand, whichever gridT′ we take, it is evident thatv.T′/ < 0
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andS .T′/ is a (nonempty) finite set. SoP is not finitely reducible but it is discretizable (as
it is not difficult to see).

The preceeding problem is not a convex SIP because the concavity of the functionsg.·; t/
fails. Reconsidering the problem in Example 1 it is not difficult to see that herev.T′/ =

vD = −1, for every finite gridT′
⊂ T; whereasv = v.T/ = 0 (cf. Theorem 9).

Concerning the finite reducibility, the following result ([10], [45, Theorem 4.2]) comes
from Helly-type arguments: Assume thatP is a convex SIP, with bounded optimal value,
such thatT is a compact Hausdorff topological space, and that a specific Slater-like con-
dition holds (for every set ofn + 1 points t0; t1; :::; tn ∈ T; a point x̃ exists such that
g.x̃; ti / > 0 ; i = 0;1; :::;n/: Then the problemP is finitely reducible (with some exist-
ing T′

⊂ T,
∣∣T′

∣∣ = n).
Note that such a convex problemP is reducible if there exists a minimizer satisfying the
KKT condition (13) with a subsetT′

= {t1; : : : ; tk} of Ta.x/, k ≤ n. Indeed then, by Theo-
rem 3 the pointx is also a solution ofP.T′/.

For a general LSIP problem (with arbitraryT), we have the following result:

THEOREM 8. [32, Theorems 8.3 and 8.4]. Let us consider the problem

P : minc>x s.t. a>t x ≥ bt ∀t ∈ T;

where T is an arbitrary set.
(a) Assume that the optimal valuev is finite. Then the following statements are equivalent:

(i) P is finitely reducible,
(ii) We have

(c
v

)
∈ K;

(iii) D is solvable andvD = v (no duality gap),
(iv) D is solvable and P is weakly discretizable.

(b) Let us again consider P= P.c/ as a problem depending on c as a parameter. Then
P.c/ is finitely reducible for every c∈ Rn such thatv.c/ is finite if and only if the system
� = {a>

t x ≥ bt; t ∈ T} is FM.

Proof. (a) ”.i / ⇒ .ii /” Let T′ be a grid such thatv.T′/ = v.T/ ≡ v: According to the
duality theory in ordinary LP, the associated dualD.T′/ is solvable and there is no duality
gap; i.e. v.T′/ = vD.T′/: In other words, there exist optimal values of the dual variables
�t; t ∈ T′; such that ∑

t∈T′

�t

(
at

bt

)
=

(
c

vD.T′/

)
=

(
c
v

)
;

and
(c
v

)
∈ K; holds.

” .ii / ⇒ .iii /” From
(c
v

)
∈ K and (15) we getvD ≥ v: The weak duality inequality then

yieldsvD = v; and
(c
v

)
∈ K entails the solvability ofD:

” .iii / ⇒ .iv/” Next we proceed by proving thatvD = v (no duality gap) implies thatP is
weakly discretizable. Let us consider sequences{xk} and{�k} of feasible solutions ofP and
D, respectively, such that

(26) lim
k→∞

∑
t∈T

�ktbt = vD = v = lim
k→∞

c>xk:

Taking gridsTk := supp�k we write∑
t∈T

�ktbt ≤ vD.Tk/ = v.Tk/ ≤ vD.T/ = v.T/ ≤ c>xk;

and (26) impliesv.Tk/ → v.T/:
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” .iv/ ⇒ .i /” Assume thatTk; k = 1;2; :::; is a sequence of grids such that−∞ < v.Tk/ →

v.T/; and that� is an optimal solution ofD: Then the restriction of� to T0 := supp� is
also optimal forD.T0/; and we have

v.Tk/ = vD.Tk/ ≤ vD.T/ = vD.T0/ = v.T0/ ≤ v.T/:

In view of v.Tk/ → v.T/ we findv.T0/ = v.T/:
(b) Reasoning by contradiction, let us assume thatP.c/ is finitely reducible, for every
c ∈ Rn such thatv.c/ is finite, and that� = {a>

t x ≥ bt; t ∈ T} is not FM. Then, sinceK
is not closed (cf. Section 4.1), there will exist

(c0



)
∈ .cl K/�K: According to Lemma 2,

c>

0 x ≥ 
 is a linear consequence of� and thus,v.c0/≥ 
: Therefore,v.c0/ is finite (because
P.c0/ is feasible) and, so,P.c0/ is finitely reducible by assumption. Part (a) and (15)
conjointly entail−∞ < vD.c0/ ≤ 
: Part (a) also yields

( c0
v.c0/

)
∈ K andv.c0/ = vD.c0/:

Hencev.c0/ = vD.c0/ = 
; and we get a contradiction with
(c0



)
=∈ K:

Conversely, let us assume that� is FM. If the optimal valuev.c/ of P.c/ is finite, c>x ≥

v.c/ is a consequence of� and Farkas’ Lemma, together with the FM assumption, yields(
c

v.c/

)
= cl K = K:

Now, (a) applies. �

THEOREM 9. [32, Corollary 8.2.1]Assume that the optimal valuev of a general LSIP
problem P is finite. Then P is weakly discretizable if and only ifv = vD (no duality gap).

Proof. ” ⇐ ” Already established in the proof of ”.iii / ⇒ .iv/” in part (a) of Theorem 8.
” ⇒ ” Assume thatTk; k = 1;2; :::; is a sequence of grids such that−∞< v.Tk/→ v.T/≡

v: Then we can write
v.Tk/ = vD.Tk/ ≤ vD.T/ ≤ v.T/;

and taking limits fork → ∞ we concludevD.T/ = v.T/: �

We next give a sufficient condition for LSIP to be discretizable or weakly discretizable,
partially based on Theorem 4.

THEOREM 10. [32, Theorem 8.6 and Corollary 8.6.1]. Consider the feasible LSIP problem

P : minc>x s.t. a>t x ≥ bt ∀t ∈ T;

T being an arbitrary index set. If c∈ rint M; then P is weakly discretizable.
Moreover, if M is full dimensional and c∈ int M, thenS is bounded and P is discretizable,
provided that P is continuous.

COROLLARY 1. Let P be a continuous LSIP with bounded feasible setF : Then P is
discretizable.

Proof. If F is bounded, one hasM = Rn (cl M is the polar of the recession cone ofF ),
andc ∈ int M holds trivially. �

The following example illustrates the difference between weak discretizability and dis-
cretizability.

EXAMPLE 3. Consider the LSIP (with some fixed" > 0):

min x1 s.t. x1 + tx2 ≥ 0 ∀t ∈ T:=

{
[0;1]] Case A

[−";1] Case B

v = 0; and a minimizer ofP.T/ is, in both cases, given byx = .0;0/.
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Case A:The problem is weakly discretizable but not discretizable. For a gridT′ containing
t = 0 we havev.T′/ = v. On the other hand for anyT′ not containing 0 the value is
unbounded,v.T′/ = −∞.
Case B:The problem is discretizable as it can easily be shown. Note that in Case B the
conditionc ∈ int M is satisfied, but not in Case A.

The following algorithm is based on the discretizability concept and from now on we as-
sumeT ⊂ Rm.

Conceptual discretization method

Step k: Given a gridTk ⊂ T and a small value� > 0.

(1) Compute a solutionxk of P.Tk/.
(2) Stop ifxk is feasible within the fixed accuracy�, i.e. g.xk; t/ ≥ −� ∀t ∈ T.

Otherwise, select a finer discretizationTk+1, i.e., �.Tk+1/ < �.Tk/.
We begin with some general convergence results for the discretization method.

L EMMA 6. If P ≡ P.T/ is continuous, Tk; k = 1;2; ::; is a sequence in2T such that
�.Tk/ → 0 as k→ ∞; and xk ∈ F .Tk/; k = 1;2; :::; converges tox, thenx ∈ F ≡ F .T/:

Proof. For a fixedt ∈ T; �.Tk/ → 0 entails the existence of a sequence of indicestk ∈ Tk;

k = 1;2; :::; such thattk → t ask → ∞: Thus,g.xk; tk/≥ 0; k = 1;2; :::; and taking limits,
for k → ∞; the continuity ofP allows us to writeg.x; t/ ≥ 0. Since we took an arbitrary
t ∈ T; we concludex ∈ F : �

THEOREM 11. Let F .T1/ be compact and let the sequence of discretizations Tk satisfy

T1 ⊂ Tk ∀k ≥ 2 and�.Tk/ → 0 for k → ∞ :

Then P.T/ is discretizable.
Proof. By assumption and usingT1 ⊂ Tk ⊂ T the feasible setsF .T/, F .Tk/, of P.T/,
P.Tk/ respectively, are compact and satisfyF .T/ ⊂ F .Tk/ ⊂ F .T1/; k ∈ N. Conse-
quently, solutionsxk of P.Tk/ exist. Suppose now that a sequence of such solutions does
not satisfyd.xk;S .T// → 0. Then there exist" > 0 and a subsequencexk� such that

d.xk� ;S .T// ≥ � > 0 ∀� :

Sincexk� ∈ F .T1/ we can select a convergent subsequence. Without restriction we can
assumexk� → x; � → ∞. In view of F .T/ ⊂ F .Tk/ the relationf .xk� / ≤ v.T/ holds and
thus by continuity off we find

f .x/ ≤ v.T/ :

We now show thatx ∈ S .T/ in contradiction to our assumption. To do so it suffices to prove
thatx ∈ F .T/. Let t ∈ T be given arbitrarily. Since�.Tk� / → 0 for � → ∞ we can choose
tk� ∈ Tk� , such thattk� → t. In view of g.xk� ; tk� / ≥ 0, by taking the limit� → ∞, it follows
g.x; t/ ≥ 0, i.e.x ∈ F .T/. �

Next we consider local discretizability for general nonlinear SIP and we assume for the
rest of this subsection that the functiong is continuously differentiable onRn

× T. Recall
that theMangasarian Fromovitz constraint qualification(MFCQ) holds atx ∈ F if there
exists a vectord ∈ Rn such that∇xg.x; t/d > 0; ∀t ∈ Ta.x/: BecauseTa.x/ is compact and
∇xg.x; :/ is continuous, there must exist� such that

(27) ∇xg.x; t/d ≥ � > 0 ∀t ∈ Ta.x/:
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L EMMA 7. Let be given a sequence of grids Tk ⊂ T with�k := �.Tk/ → 0.

(a) Let K be a compact subset ofRn. Then there exists c> 0 such that for all k large
enough:

g.xk; t/ ≥ −c�k ∀t ∈ T and∀xk ∈ F .Tk/∩ K :

(b) Let MFCQ be satisfied atx with the vector d. Then, there exist positive numbers�

and"1 such that for all k large enough:

xk + ��kd ∈ F .T/ ∀xk ∈ F .Tk/ with ‖xk − x‖ < "1 :

Proof. (a) Let tk be a solution of mint∈T g.xk; t/ and let t̂k be a point inTk such that
||t̂k − tk|| ≤ �k. By Lipschitz continuity ofg (∇tg.·; ·/ is continuous) and usingg.xk; t̂k/≥ 0
we find

g.xk; t/ ≥ g.xk; tk/ ≥ g.xk; tk/− g.xk; t̂k/ ≥ −c||t̂k − tk|| ≥ −c�k ∀t ∈ T;

for some Lipschitz constantc > 0.
(b) To prove the statement we proceed in two steps. Firstly, for" > 0 we consider the
relative open set

T"
a .x/ := {t ∈ T | ||t − t|| < " for somet ∈ Ta.x/}:

By MFCQ (see (27)) using the continuity of∇xg there is some" > 0 such that

∇xg.x; t/d ≥
�

2
∀t ∈ T"

a .x/ and∀x such that||x− x|| < ":

Thus if ||xk − x|| < ", and for allt ∈ T"
a .x/ and small�k; we find using (a)

g.xk + ��kd; t/ = g.xk; t/+ ��k∇xg.xk; t/d + o.��k/

≥ −c�k + �
�

2
�k + o.��k/(28)

= �k.�
�

2
− c/+ o.��k/ ≥ 0;

provided that we choose� such that� �
2 > c. Secondly, we consider the compact setT \

T"
a .x/. By continuity ofg, for given" > 0, there exists"0 > 0 such that

(29) g.x; t/ > 0 ∀t ∈ T \ T"
a .x/ and∀x such that||x− x|| < "0:

Now we chosexk ∈ F .Tk/ and�k such that with"1 := min{"=2; "0=2}, the relations‖xk −

x‖ < "1 and‖��kd‖ < "1 hold. Then, using

‖xk + ��kd − x‖ ≤ ‖xk − x‖ + ��k‖d‖ < min{"; "0};

(28) and (29) yieldg.xk + ��kd; t/ ≥ 0 ∀t ∈ T. �

THEOREM 12. Letx be a local minimizer of P.T/ of order p (p≥ 1). Suppose that MFCQ
holds atx. Then P is locally discretizable atx. More precisely, there is some� > 0 such
that for any sequence of grids Tk ⊂ T with�.Tk/ → 0 and any sequence of solutionsxk of
the locally restricted problem Plocal.Tk/ (see the definition of discretizability):

(30) ||xk − x|| ≤ ��.Tk/
1=p:

Proof. Consider the SIP restricted to the closed ball clB�.x/ (B�.x/ := {x | ‖x − x‖ < �})
with small� chosen such that� < "; "1 (with " in (10) and"1 in Lemma 7) :

Plocal.Tk/ : min f .x/ s.t. x ∈ F .Tk/∩ cl B�.x/:

Obviously, sincex ∈ F .Tk/ andF .Tk/ ∩ cl B�.x/ is compact (and nonempty), a solution
xl

k of Plocal.Tk/ exists. Note thatx is the unique (global) minimizer ofPlocal.T/. Put�k :=
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�.Tk/ and consider any sequence of solutionsxl
k of Plocal.Tk/. In view of F .T/ ⊂ F .Tk/

andxl
k + ��kd ∈ F .T/∩ cl B�.x/ (for largek, according to Lemma 7(b)), we find

f .xl
k/ ≤ f .x/ ≤ f .xl

k + ��kd/ :

Sincex is a minimizer of orderp (see (19)) it follows

||xl
k + ��kd − x||p

≤
1
q

(
f .xl

k + ��kd/− f .x/
)

≤
1
q

(
f .xl

k + ��kd/− f .xl
k/

)
= O.�k/:

Finally, the triangle inequality yields usingp ≥ 1,

(31) ||xl
k − x|| ≤ ||xl

k + ��kd − x|| + ||��kd|| = O.�
1=p
k /:

In particular||xl
k − x|| < � for largek, andxk := xl

k are (global) minimizers of the prob-
lem Plocal.Tk/; restricted to the open neighborhoodB�.x/, i.e., xk are local minimizers of
P.Tk/. �

Remark The result of Theorem 12 remains true for the global minimization problemP if the feasi-
ble setF of P is restricted to a compact subset inRn.
It has been shown in [77] that a convergence rate||xk − x|| = O.�

2=p
k / occurs if the grids

Tk of meshsizes�k are chosen in a special way.

6.4. Exchange methods.We also outline theexchange methodwhich is often more effi-
cient than a pure discretization method. This method can be seen as a compromise between
the discretization method and the continuous reduction approach in Section 6.2.

Conceptual exchange method

Step k: Given a gridTk ⊂ T and a fixed small value� > 0.

(1) Compute a solutionxk of P.Tk/.
(2) Compute local solutionstkj ; j = 1; : : : ; jk ( jk ≥ 1) of Q.xk/ (cf. (18)) such that one

of them, saytk1, is a global solution, i.e.,g.xk; tk1/ = min
t∈T

g.xk; t/:

(3) Stop, ifg.xk; tk1/ ≥ −�, with an approximate solutionx := xk. Otherwise, update

(32) Tk+1 = Tk ∪ {tkj ; j = 1; : : : ; jk}:

THEOREM 13. Suppose that the (starting) feasible setF .T1/ is compact. Then, the ex-
change method (with� = 0) either stops with a solutionx = xk0 of P.T/ or the sequence
{xk} of solutions of P.Tk/ satisfies d.xk;S .T// → 0.

Proof. We consider the case that the algorithm does not stop with a minimizer ofP.T/. As
in the proof of Theorem 11, and by virtue of our assumptions, a solutionxk of P.Tk/ exists,
xk ∈ F .T1/; and with the subsequencexk� → x we find

f .x/ ≤ v.T/:

Without loss of generality, we writexk → x: Again we have to showx ∈ F or, equivalently,
'.x/ ≥ 0 for the value function'.x/ of Q.x/. In view of'.xk/ = g.xk; tk1/ (see Algorithm,
step ii) we can write

'.x/ = '.xk/+ '.x/− '.xk/ = g.xk; tk1/+ '.x/− '.xk/:
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Sincetk1 ∈ Tk+1 we haveg.xk+1; tk1/ ≥ 0 and, by continuity ofg and'; we find

'.x/ ≥
(
g.xk; tk1/− g.xk+1; tk1/

)
+

(
'.x/− '.xk/

)
→ 0 for k → ∞:

�

We refer to the review paper [45] for more details on this approach.

7. GSIPAND RELATED PROBLEMS

In this section we shortly survey the recent developments in GSIP. Optimality conditions
have been established in Section 5 and for applications we refer to Section 2.
We wish to discuss relations of GSIP with other important classes of optimization prob-
lems namelybilevel problems(BL) (e.g., [5]) andmathematical programs with equilibrium
constraints(MPEC) (e.g., [61]). For shortness we only deal with the first class. Bilevel
problems are of the form

(33)
BL: minx;t f .x; t/ s.t. g.x; t/ ≥ 0;

andt is a solution of Q.x/ : mint F.x; t/ s.t. t ∈ T.x/:

The problem GSIP can be transformed into a BL program as follows. Let us assumeT.x/ 6=

∅; ∀x, and recall the (lower level) problem (see (18))

(34) Q.x/ : min
t

g.x; t/ s.t. t ∈ T.x/;

depending on the parameterx. Then (assuming thatQ.x/ is solvable) we can write

g.x; t/ ≥ 0 ∀t ∈ T.x/ ⇔ g.x; t/ ≥ 0 andt solvesQ.x/:

So GSIP takes the BL form:

(35)
GSIPBL: minx;t f .x/ s.t. g.x; t/ ≥ 0;

andt is a solution of Q.x/ : mint g.x; t/ s.t. t ∈ T.x/:

This problem is a BL program with the special property that the objective functionf does
not depend ont and that the constraint functiong in the first level coincides with the lower
level objective function.

Remark Note however that there is a subtle difference between the interpretation of the original
constraints,g.x; t/ ≥ 0 ∀t ∈ T.x/, and the feasibility condition in the bilevel form (35) for the case
that T.x/ is empty. In the form (35), in this case, because of the additional conditiont ∈ T.x/,
no feasible point.x; t/ exists (for thisx). For the GSIP problem however an empty index setT.x/
means that there are no constraints and such pointsx are feasible.

For a comparison between BL and GSIP from a structural and generic viewpoint we refer
to [74] (and between BL and MPEC to [7]).

To solve programs with bilevel structure numerically it is convenient to reformulate the
problems as nonlinear programs. We will restrict ourselves to the GSIP problem (35) and
we assume again that the setsT.x/ are defined explicitly via (17) with aC1-function u :
Rn+m

→ Rq. Let alsog be fromC1. If t is a solution ofQ.x/ satisfying some constraint
qualification, thent must necessarily satisfy the Kuhn-Tucker conditions:

(36) ∇tg.x; t/− 
>
∇tu.x; t/ = 0>

m and
>u.x; t/ = 0;
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with some multiplier 0q ≤ 
 ∈ Rq. So we can consider the program

(37)

min
x;t;


f .x/ s.t. g.x; t/ ≥ 0;

∇tg.x; t/− 
>
∇tu.x; t/ = 0>

m;


>u.x; t/ = 0;


 ≥ 0q; u.x; t/ ≥ 0q:

This program is a relaxation of GSIPBL in the sense that, under a constraint qualification
for Q.x/, the feasible set of (35) is contained in the feasible set of (37). In particular, any
solution .x; t; 
/ of (37) with the property thatt is a minimizer ofQ.x/, must also be a
solution of the original program. If in addition to the constraint qualification, the problem
Q.x/ is convex, then (37) is equivalent with the original GSIP program.
In the form (37), GSIP is transformed into a nonlinear program with complementarity con-
straints and the problems can be solved numerically, for instance by some interior point
approach. For GSIP problems this has been done successfully in [75].
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26 MARCO LÓPEZ, GEORG STILL

[19] A. Charnes, W.W. Cooper, K.O. Kortanek, On the Theory of Semi-Infinite Programming and
a Generalization of the Kuhn-Tucker Saddle Point Theorem for Arbitrary Convex Functions,
Naval Research Logistics Quarterly 16 (1969) 41-51.

[20] M. Dall’Aglio, On Some Applications of LSIP to Probability and Statistics, in M.A. Goberna,
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[34] M.A. Goberna, M.A. Ĺopez, Linear semi-infinite programming theory: an updated survey,
European Journal of Operations Research 143 (2002) 390–405.

[35] M.A. Goberna and M.A. Ĺopez and M.I. Todorov,Stability Theory for Linear Inequality Systems, SIAM
Journal on Matrix Analysis and Applications, 17, 730-743, (1996).
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Semi-infinite programming. Recent Advances, Nonconvex Optimization and Its Applications
57, Kluwer, Dordrecht, 2001, pp. 135-165.

[71] A.L. Soyster, Convex programming with set-inclusive constraints and applications to inexact
linear programming, Operations Research 21 (1973) 1154-1157.

[72] O. Stein , Bilevel strategies in Semi-infinite Programming, Kluwer, Boston (2003).
[73] O. Stein, G. Still, On optimality conditions for generalized semi-infinite programming prob-

lems, Journal of Optimization Theory and Applications 104 (2000) 443-458.
[74] O. Stein, G. Still, On generalized semi-infinite optimization and bilevel optimization, European

Journal of Operational Research 142(3) (2002) 444-462.
[75] O. Stein, G. Still, Solving semi-infinite optimization problems with interior point techniques,

SIAM Journal on Control and Optimization 42(3) (2003) 769–788.
[76] Still G., Generalized semi-infinite programming: Theory and methods, European Journal of

Operational Research 119, (1999), 301-313.
[77] Still G., Discretization in semi-infinite programming: the rate of convergence, Math. Program.

91 (2001), no. 1, Ser. A, 53–69.
[78] G. Still, Approximation theory methods for solving elliptic eigenvalue problems, Z. Angew.

Math. Mech. 83 (7) (2003) 468-478.
[79] G. Still, Approximation and Optimization: Classical results and new developments, Paramet-

ric optimization and related topics VII, Aportaciones Mat. Investig. 18, Soc. Mat. Mexicana,
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