SEMI-INFINITE PROGRAMMING

MARCO LOPEZ, GEORG STILL

ABSTRACT. A semi-infinite programming problem is an optimization problem in which
finitely many variables appear in infinitely many constraints. This model naturally arises
in an abundant number of applications in different fields of mathematics, economics and
engineering. The paper, which intends to make a compromise between an introduction
and a survey, treats the theoretical basis, numerical methods, applications and historical
background of the field.

1. INTRODUCTION

1.1. Problem formulation. A semi-infinite program{SIP) is an optimization problem in
finitely many variablex = (x,, ..., Xn) € R" on a feasible set described by infinitely many
constraints:

Q) P: mxin f(X) sit. gx,t) >0 VteT,

whereT is an infiniteindex set For the sake of shortness, we omit additional equality
constrainthj(x) =0,i=1,2,...,m.

By ¥ we denote théeasible sebf P, whereas ;= inf{ f (X) | x e ¥} is theoptimal value
ands ;= {Xe F | f(X) = v} is theoptimal setor set ofminimizersof the problem. We say
that P is feasibleor consistentf F £ @, and setv = 400 when¥ = @. With the only ex-
ception of Section 4 and Subsection 6.3, we assumeftigtontinuously differentiable on
R", thatT is a compact set iiR™, and that the functiong(., .) andVg(., .) are continuous
onR" x T.

An important special case is given by theear semi-infinite problenfLSIP), where the
objective functionf and the constraint functiogare linear inx:

(2) P: min c'x st at)'x>bt) vteT.

We also study here thgeneralized SIRGSIP), for which the index st = T(x) is allowed
to be dependent ox

3) P: mxin f(x) s.it. gix,t) >0 Vie T(x).

During the last five decades the field of Semi-infinite Programming has known a tremendous
development. More than 1000 articles and 10 books have been published on the theory,
numerical methods and applications of SIP.
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1.2. Historical background. Although the origins of SIP are related to Chebyshev ap-
proximation, to the classical work of Haar on linear semi-infinite systems [41], and to the
Fritz John optimality condition [49], the term SIP was coined in 1962 by Charnes, Cooper
and Kortanek in some papers devoted to LSIP [17, 18, 19]. The last author, who contributed
significantly to the development of the first applications of SIP in economics, game theory,
mechanics, statistical inference, etc., has recently pointed out [56] the historical role of a
paper published by Tschernikow in 1963 [83]. Gustafson and Kortanek proposed, during
the early 1970s, the first numerical methods for SIP models arising in applications (see, for
instance, [40]). The publication around 1980 of the following six books converted SIP in a
mature and independent subfield in optimization. Two volumdseofure Notes on Math-
ematics edited by Hettich [42] and by Fiacco and Kortanek [25], and four monographs by
Tichatschke [81], Glashoff and Gustafson [27], Hettich and Zencke [43] (providing numer-
ical methods and applications to approximation problems), and Brosowski [12] (devoted to
stability in SIP). More recently, Goberna andpez presented in [32] an extensive approach

to LSIP, including both theory and numerical aspects. Reputed optimization books devoted
some chapters to SK¥g, Krabs [57], Anderson and Nash [3], Gudeatl. [39], Bonnans

and Shapiro [8], and Polak [66]. We also mention the review article of Polak [65] (on math-
ematical foundations of feasible directions methods), and [45] where Hettich and Kortanek
surveyed, in a superb manner, theoretical results, methods and applications of SIP. Recently
Goberna [28] and Goberna anépez ([33, 34]) reviewed the LSIP model. Following the
tracks of [4] and [12], during the last years, the stability analysis in SIP became an impor-
tant research issue (see, [13, 14, 15, 16, 26, 30, 35, 36, 52, 55], etc., as a sample of
recent papers on this topic). Since a first contribution [44] the GSIP model (3) became a
topic of intensive research (seq, [53] and [54]).

1.3. Summary. The paper is organized as follows. After fixing the notatior$1d, §2

gives an account of a representative collection of motivating SIP and GSIP models in many
different application fields§3 presents the first order (primal and dual) optimality condi-
tions. §4 is focused on different families of LSIP problems (continuous, FM and LFM),
and the Haar duality theory is discussed in detail. Alsednsome cone constrained opti-
mization problems (in particular, the semidefinite and the second order conic programming
problems) are presented as special cases of [§5IBurveys the second order optimality
conditions, although proofs are not included due to the technical difficulties of the subject.
86 introduces the principles of the main algorithmic approaches. Special attention is paid to
the discretization methods, including some results about the discretizability of the general
LSIP (with arbitrary index set), and to the exchange methods which are, in general, more ef-
ficient than the pure discretization algorithms. The last sectibris devoted to explore the
relationship between the GSIP model and other important classes of optimization problems,
like bi-level problems and mathematical programs with equilibrium constraints. The paper
finishes with the list of cited references, but the reader will find an exhaustive bibliography
on SIP and GSIP in [87].

1.4. Notation and preliminaries. 0, will denote the null-vector in the Euclidean space
RP and||.|| represents the Euclidean norm.

If X c RP, by aff X, conv X, coneX, D(X, x), and X° we shall denote the affine hull of
X, the convex hull ofX, the conical convex hull oK (always including the null-vector),
the cone of feasible directions dfatx, and the positive polar cone of (X0 := {d € RP |
dTx > 0Vx € X}), respectively From the topological side, inX, cl X and bdX represent
the interior, the closure and the boundaryXgfrespectively, whereas rin¢ and rbdX
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are the relative interior and the relative boundaryXptespectively (the interior and the
boundary in the topology relative to aX).

Given a functionf : RP — [—oo0, +oo[, the set{(}) e RP* |« < f(x)} is called hypo-
graph of f and is denoted by hypé. The function f is a proper concave function if
hypo f is a convex set ilRPT! and domf := {x € RP | f(x) > —oo} # @. The closure

cl f of a proper concave functior is another proper concave function, defined as the
upper-semicontinuous hull of, i.e., (cl f)(x) = limsup,_,, f(y). The following facts
are well-known: hypdcl f) = cl (hypo f), dom f c dom(cl f) c cl (dom f), and both
functions f and cl f coincide except perhaps at points of raibm f).

The vectow is a subgradient of the proper concave functioat the pointx € dom f if, for
everyy e RP, f(y) < f(x) —u' (y—x). The set of all the subgradients bfat x is called
subdifferential off atx, and is denoted b§f (x). The subdifferential is a closed convex set,
and the differentiability off at x is equivalent tadf (x) = {V f(X)}. Moreover,df (x) # @

if X e rint (dom f), andaf (x) is a nonempty compact set if and onlyiE int (dom f).

For later purposes we give two theorems of the alternative (see [32] for a proof).

LEMMA 1. [Generalized Gordan Lemmagt Ac RP be a set such thatonv A is closed
(e.g.,A compact). Then exactly one of the following alternatives is true:

(i) 0 e convA.
(i) There exists some«dRP such that dd < 0Vae A.

LEMMA 2. [Generalized Farkas Lemma] L&c RP+! be an arbitrary nonempty set of
vectors(a, b), a € RP, b e R such that the system= {a'z> b, (a,b) € S} is feasible.
Then the following statements are equivalent:

(i) The inequalityc”z > y is a consequent relation of the system
(i) (;) e ¢l K whereK = cone{(ﬁ) €S, (Epl)} _

2. EXAMPLES AND APPLICATIONS

In the review papers [45, 65], as well as in [32], the reader will find many applications of SIP
in different fields such as Chebyshev approximation, robotics, mathematical physics, engi-
neering design, optimal control, transportation problems, fuzzy sets, cooperative games,
robust optimization, etc. There are also significant applications in statistics ([20e32]),

the generalized Neyman-Pearson (present in the origin of linear programming), optimal ex-
perimental design in regression, constrained multinomial maximume-likelihood estimation,
robustness in Bayesian statistics, actuarial risk theory, etc. From this large list of applica-
tions we have chosen some for illustrative purposes.

Chebyshev approximation Let be given a functiorf € C(R™, R) and a set of approximat-
ing functionsp(x, -) e C(R" x R™, R), parameterized by € R". We want to approximate
f by functionsp(x, -) using the max-norm (Chebyshev-noriif || = maxet | f(t)] on
a compact sef ¢ R™. Minimizing the approximation error := || f — p|l iS @ problem
that can be equivalently expressed as the SIP problem:

(4) r](ugn e st gxh==£(f)—px.t)<e VteT.

In the so-calledeverse Chebyshev probleme fix the approximation errar and make the
regionT as large as possible [48]. Suppose fhiat T(d) is parameterized bg € R and
thatv(d) denotes the volume &f(d) (e.g. T(d) = H}‘Zl[—di, di]). The reverse Chebyshev
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problem then leads to the GSIP (with a sma# 0, fixed):
(5) max v(d) st. £ (f(t)—px.t)) <e vt e T(d),
X

where the index s€f (d) depends on the variabte

For more details on the relations between SIP and Chebyshev approximation we refer to
[27] and [43]. In [79] also the connection between approximation and GSIP has been dis-
cussed.

The minimal norm problem in the space of polynomials. A relevant class of functions

in optimization are the so callaetic. functiongdifference of convex functions). From the
infinite possible decompositions of such functions, a suitable d.c. representation of any d.c.
polynomial can be obtained by solvingranimal norm problentMNP) [59]. This minimal

d.c. representation improves the computational efficiency of the global optimization algo-
rithms conceived to solve d.c. programs, by reducing the number of iterations needed to
find a global optimum [24]. A peculiarity of the MNP problem is that it can be transformed
into an equivalent quadratic SIP with linear constraints.

LetRm[X], X= (X, ..., Xn) be the vector space of polynomials of degree less than or equal
tom. Let B:= {fj(x),i € |}, be the usual basis of monomials ky,[X]. Hence, each
polynomial z(x) € Ry [X] can be written ag(x) = >,z fi(x),z e R, i € I. In Ry [X]

we consider the norrfi- || defined byl|z]| = (3., Z)/2. LetC c R" be a closed convex

set and leKy(C) be the nonempty closed convex cone of the polynomial&iiix] which

are convex orC. Let (y1(X), Y2(X)), (w1(X), w2(X)) € Kn(C) x Kn(C) be two pairs of

d.c. representations afx) onC, i.e., z(X) = y1(X) — Y2(X) = w1(X) — w2(X) onC. It can

be argued that the paiy1(x), y2(x)) is better than the paiwi(X), w2(X)) if

ly1 + yoll < [lw1+ w2l

A d.c. representation d@(x) on C is minimalif it is better that any other d.c. representation
of z(x) on C. Thus, the practical way of obtaining the minimal d.c. representatia@iof
on C is to solve the following problem.

Considerz(x) € Ry[X] and let (y1(X), y2(X)) € Kn(C) x Kn(C) be such thatz(x) =
y1(X) — y2(x), and definev(x) := y1(X) + y2(X), which is a convex polynomial of.
Hence, we can write

yi(x) = (v(X) +2(x))/2 and ya2(x) = (v(X) — 2(x))/2,
SOv(X) = —z(X) + 2y1(X) = z(X) + 2y2(X). Thus, the MNP problem is expressed as fol-
lows:
(6) min{|lv]l : v € {=z+ 2Kn(C)} N {z+ 2Kn(C)}}.

Next we describe the feasible set of the problem (6) by requiring the convexity of the
polynomials(v + z), which means that the Hessian matrié&gv + z)(x) = D (it
) V2 f;(x) must be positive semidefinite. We can then write

7) u' (Z(vi + 7)) V21 (x))u >0, forallue S"andx e C,
iel

whereS' = {ze R": ||z|| = 1}. In this way the problem (6) has been transformed into the

equivalent quadratic SIP problem, with= S" x C,

P: min{[v]®=D v} st uT(Z(viizi)szi(x))uzo Y(u,x) eT.

iel iel
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Mathematical physics.The so-called defect minimization approach for solving mathemat-
ical physics problems leads to SIP models, and is different from the common finite element
and finite difference approaches. We give an example.

Shape optimization problenConsider the following boundary-value problem

(BVP): Given Gy c R™ (G is a simply connected open region, with smooth boundary
bd Go, and closure cl5p), and a positive constakt> 0, find a functionu € C?(cl Go, R)

such that its Laplacianu = % +...+ % satisfies

1 m

Au(t) = Kk, vt € Gg,

ut) = 0, vt € bd Gg.
By choosing a linear spacg= {u(x, t)y = > XU (t)}, generated by appropriate trial
functionsu; € C2(R™, R), i = 1,2, ..., n, this BVP can approximately be solved via the
following SIP:

min & s.t. +(Au(x,t)—k) < & VteG,

e,X
Fux,t) < e VtebdGyp.
In [21] the following related, but more complicated, model has been considered theoreti-
cally. This is the so-calledhape optimization proble(sOP).

(SOP): Find a (simply connected) regi@e R™, with normalized volume.(G) = 1, and

a functionu € C?(cl G, R) which solves the following optimization problem with given

objective functionF (G, u) :

ming,y F(G, u) s.t. Au(t) =

ut) =
w(G) =

This is a problem with variable regio® which can be solved approximately via the fol-

lowing GSIP problem:

vVt e G,
Vvt € bd G,

PO X

Choose some appropriate family of regicB¢z), depending on a parametee RP, and
satisfyingu (G(z)) = 1 for all z. Fix some small error bounel > 0. Then we solve, with
trial functionsu(x, t) from the setSabove, the program

MinF(G(2),u(x,)) st *£(Auxt)—k) < e vteG(2),
’ fu(xt) < e ViebdG(2).
Similar models such as tmembrane packing problem with rigid obstaele to be found

in [63]. For further contributions to the theory and numerical results of this defect mini-
mization approach we refexg.to [78, 80].

Robotics. Many control problems in robotics lead to semi-infinite problenis[@6]). As
an example we discuss theaneuverability problepwhich in [44] originally has led to the
concept of GSIP.

Let ® = ©(r) € R™ denote the position of the so-called tool center point of the robot
(in robot coordinates) at time. Let ®, ® be the corresponding velocities, accelerations
(derivatives w.r.t.t). The dynamical equations have often the form

9(0,0,0) = A©®)0 + F(0,0) =K,

with (external) forceX € R™. Here A(®) is the inertia matrix, ané describes the friction,
gravity, centrifugal forces, etc. The forcksare boundedkK~ < K < K™,
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For fixed®, O, the set of feasible (possible) accelerations is given by
2(0,0)={0 | K~ <g(0,0,0) < K}

Note that, sincey is linear in®, for fixed (©, ©®), the setZ(®, ®) is convex (intersection
of half-spaces). Let now be given aperating region Qe.g.

Q=1{(©,0)ecR™|(07,07) < (0,0) < (0F,0M).

Then, the set of feasible acceleratighsi.e., the set of accelerations which can be realized
in every point(®, ®) € Q, becomes

Zo= () 2(©,0)={6]|K” <g(®,0,0)<K" v(©,0)ecQ).
(©,0)eQ

The setZ, is convex (as an intersection of the convex s&t®, ©)). For controlling the
robot one has to check whether a desired acceleratinpossiblej.e. whether® e Z.
Often this test takes too much time due to the complicated descriptidp. oA faster test
can be done as follows. First we have to find a simple bbdg.g. a ball or an ellipsoid) as
large as possible, which is containeddp. Then, instead of the tesi € Zy one performs
the faster checlo € T.

The construction of an appropriate bo@lyc Zg leads to a GSIP as follows. Suppose that
the bodyT (d) depends on the parametke RY and thatv(d) is the volume ofT (d). Then,
we wish to maximize the volume subject to the conditiof) c Zp. This is the so-called
maneuverability problerand leads to the GSIP:

(8  maxu(d) st K~ <g(@, ©,0) <K', V(©,0)eQ, 6eT(d).

Geometry. Semi-infinite problems naturally arise in a geometrical setting. More precisely,
the outer approximation (covering) of a §ett R™ by a setS(x), depending on a parameter

x € R", leads to a SIP. To covdr from inside will yield a GSIP.

SupposeS(x) is described byS(x) = {t e R™ | g(x,t) > 0} andv(x) denotes its volume.

In order to find the seB(x) of smallest volume coverin@ we have to solve the SIP:

mxin v(X) st gx,t)>0 VvteT.
In the inner approximation problem we maximize the volume such that th&(sgtis
contained in the séf = {t e R™| g(t) > 0}, and it is modeled by the GSIP:

m)?XU(x) s.t. gt) >0 Vte S(x).
This problem is also known atesign centering probleifseee.g.[75], [81]).
Optimization under uncertainty. We consider a linear program

X—bj>0 Vje,

min ¢c'x s.t. ajT
X

whereJ a finite index set. Often in the model the dataandb; are not known exactly. It
is only known that the vector&;j, bj) may vary in a seTj C R™1 In a pessimistic model
we now can restrict the problem to sukhwhich are feasible for all possible data vectors.
This leads to a SIP

min c'x st a'x—b>0 V(ab)eT:=UjT].

For more details we refer to [1, 6, 58, 71, 82]. In the next example we discuss soiuhsa
optimizationmodel in economics.
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Economics.In aportfolio problemwe wish to invesK euros inton shares, say for a period
of one year. We invest; euros in sharéand expect, at the end of the period, a returh of
euros per 1 euro investment in share

Our goal is to maximize the portfolio value= t x after a year wherg = (xy, ..., X,) and
t= (t1,...,t,). The problem is that the valu¢sare not known in advance (otherwise we
could invest all the money into the share with maximal vajueHowever, knowledge from
the past and models from economics allow us to predict that the gain coeffigienary
between certain bounds. So we can assume that the vegilbbe contained in a specific
compact subsek c R".

In this robust optimizatiormodel we now wish to maximize the gainfor the worst case
vectort € T, and we are led to solve the linear SIP:

maxv st. t'x—wv>0 VteT, andeizK,xzo.
i

v, X

We refer to [75] for details and numerical experiments.

3. FIRST ORDER OPTIMALITY CONDITIONS
In this section, first order optimality conditions are derived for the SIP protitem(1).
A feasible poin € ¥ is called docal minimizerof P if there is some > 0 such that
9) fx)—f(x) >0 VX € F such that|x —X|| < e.
The minimizerX is said to beglobal if this relation holds for every > 0. We callx e ¥ a
strict local minimizer of order p- 0O if there exist somg > 0 ande > 0 such that
(10) f(x)— f(X)>qlIx—X||P VX € F such that]|x — X| < e.
Forx e F we consider thactive index set

Ta(X) ' ={te T|gXt) =0}

Sincegis continuous and is compact, the subs&(X) c T is also compact. The condition
Ta(X) = @ impliesX € int F and, neaiX, the problemP can be seen as an unconstrained
minimization problem. So, throughout the paper, we assume that, at a candidate minimizer
X, the sefT,(X) is nonempty.
Now we introduce the so-called constraint qualifications. Tihear independence con-
straint qualification(LICQ) is said to be satisfied &te ¥ if the active gradients

(LICQ) Vxg(X, 1), te Ta(X), are linearly independent
TheMangasarian-Fromovitz constraint qualificatigMFCQ) holds ak € ¥ if there exists
a directiond € R" such that

(MFCQ) Vyg(X, t)d > 0 Vt e Ta(X).
A directiond € R" satisfying the condition MFCQ is calleds#rictly feasible direction.
Remark The condition LICQ implies MFCQ. To see this note that by LICQ theTz€x) cannot
contain more than points,Ta(X) = {t1, ..., t}, r <n,and the systerW,g(X, tj))d=1, j=1,...,r
has a solutiorl. Moreover, in the proof of Lemma 3 we show thatlifs a strictly feasible direction
atx € ¥ andr > 0is small enough, ther+ td € int #, which, obviously, will be non-empty.
A vectord € R" is astrictly feasible descent directiafit satisfies simultaneously
ViX)d <0, Vig(X,t)d > 0 Vt e Ta(X).

LemmA 3. [Primal necessary optimality conditiohftX € F be a local minimizer of P.
Then, there will not exist a strictly feasible descent direction.
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Proof. Assume, reasoning by contradiction, tluais a strictly feasible descent direction.
Then, f(X+ zd) < f(X) holds for smallt > 0. On the other hand, we show next the
existence of somey > 0 with the property

(11) gX+1td,t) >0 Vre]0,1p]andvte T,

entailing thatX can not be a local minimizer (contradiction). Suppose now that (11) does
not hold. Then, for each natural numberthere exists somi € T such that O< 7y < 1/k
andg(X+ wd, ty) < 0. SinceT is compact, there must exist some subsequéngety,)

such thatry, — 0 andty, — t* € T. The continuity ofg(., .) then yieldsg(X + = d, ty,) —

g(x, t*), which itself impliesg(X, t*) = 0 and, sot* € T,(X). On the other hand, the Mean
Value Theorem provides us with numbers:Cr, < i, such that

0> g(X+ w.d, tk,) — g(X, tk,) = i, VxO(X + 7. d, ty,)d

and, henceVyg(X + 7« d, t,)d < 0. So the continuity oVg(., .) entails

Vyg(X, t*)d = SIL"QO Vxg(X+ 71, d, t,)d < O,
which contradicts the hypothesis dn O
THEOREM 1. [First order sufficient condition]etX be feasible for P. Suppose that there
is no de R™\ {0} satisfying

VIi(X)d < 0and Vig(X, t)d > 0 Vt € Ta(X).
ThenX is a strict local minimizer of SIP of order $ 1.
For a proof of this result we refer to [45] (and also to [73]).

Remark The assumptions of Theorem 1 are rather strong and can be expected to hold only in special
cases (see.g.,[45]). It is not difficult to see that the assumptions imply that the set of gradients
{Vxg(X,1) | t € Ta(X)} contains a basis &". So, in particular|Ta(X)| > n.

More general sufficient optimality conditions need second order informatfoBé€ction 5 below).

We now derive the famougritz John(FJ) andKarush-Kuhn-Tucke(KKT) optimality con-
ditions.

THEOREM 2. [Dual Necessary Optimality Conditionskt X be a local minimizer of P.
Then the following conditions hold:

(a) There exist multiplierg.g, i1, ..., ux > 0andindicest, ..., tx € Ta(X), k< n+1,
such thatZ‘Jf:O wj=1land

k
(12) poV (%) — Z 1jVxg(X, 1)) =0". (FJ-condition)
=1
(b) If MFCQ holds afx, then there exist multiplieps,, ..., ukx > 0andindicesty, ..., tx €
Ta(X), k < n, such that

k
(13) VE®) — D ujVxg(X.tj) =0".  (KKT-condition)

j=1
Proof. (a) Consider the seS= {Vf(X)} U {—=Vxg(X, 1) |t € Ta(X)} € R". SinceXxis a
local minimizer of P, there is no strictly feasible descent directimat X (cf. Lemma 3).
This means that

there is nad € R" suchthas'd < 0vse S.
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Ta(X) is compact and, by continuity d¥,g(X, -), Sis also compact. Hence coi®is a
compact convex set ang @ convS(Lemma 1). In view of Caratheodory’s Theorer,i®
a convex combination of at most+ 1 elements of, i.e.,
k k

(14) > ujsj=0 sjeS uj=0 > uj=1withk<n+1,

j=1 j=1
which implies (a).
(b) Now assumerp = 0in (12),i.e., for everyjin (14) such that.j > O we haves; # V f (X)
and, accordingly, there is an associatged T,(X) such thas; = —Vyg(X, tj). Then, ifd is
the direction involved in MFCQ the following contradiction arises:

k
0>—=> ujVxg(X t)pd=0"d=0.

j=1 ]
Convex semi-infinite programs.The semi-infinite progrank is calledconvexif the ob-
jective function f (x) is convex and, for every indexe T, the constraint functiogy(.) =
g(.,t) is concavei(e., —g;(.) is convex). A local minimizer of a convex program is actually
a global one.
In this convex setting the following constraint qualification is usual. We sayRIsattisfies
the Slater conditionf

(SCQ there existX such thag(X,t) > 0 vVt e T.

LEMMA 4. Let ¥ be non-empty. Then P satisfies SCQ if and only if MFCQ holds at every
Xe F.

Proof. Assume, first, thaP satisfies SCQ. IT,(X) = @, then MFCQ is trivially satisfied.
Otherwise, ift € T;(X) we have

Vxg(X, 1) (X—=X) > g(X, t) —g(X, t) = g(X, t) > 0,

andd := X — X satisfies MFCQ. Now we choose a polt #. By assumption MFCQ
holds atx with a vectord. In the proof of Lemma 3df. (11)) it is shown that there exists
somerg > 0 such that the point := X + 7od satisfies SCQ. O

As in convex finite programming, the KKT-conditions are sufficient for optimality.

THEOREM 3. Let P be a convex SIP. ¥is a feasible point that satisfies the Kuhn-Tucker
condition (13), therx is a (global) minimizer of P.

Proof. By the convexity assumption, we have for every feasidadt € T, (X):
fx)-fXx > VIR X=X
0<gxH=9gxD—-gXh =< ViIXHX=X).
Hence, if there are multipliers; > 0 and index pointd; € Ta(X) such thatV f(X) =
le(:l,uj Vxg(X, Tj), we conclude

k
F0— f(X) = VIR (X=%) = D 1jVg® [)(x—%) > 0.
=1

O

More details on constraint qualifications for the SIP problem (like the semi-infinite versions
of the Kuhn-Tucker and Abadie constraint qualifications) can be fouedjiri38].
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4. LINEAR SIP
4.1. Different models in LSIP. This section deals with the general LSIP
P: minc'x st a/ x> b vteT.

HereT is an arbitrary (infinite) set, and the vectars; € R", as well as the scalats € R,

are also arbitrary. The functioris—» a; = a(t) andt — by = b(t) need not to have any
special property. As an intersection of closed halfspaces, the feasible Bas af closed
convex set.

We introduce different families of LSIP problems through some properties of their con-
straint systems = {a X > by, t € T}, which have a great influence on optimality, stability
and on the efficiency of algorithms:

(a) P is calledcontinuoug[17, 18]), whenT is a compact Hausdorff topological space, and
a(t) andb(t) are continuous functions oh

(b) A feasible problen® is said to bdocally Farkas-Minkowsk{LFM) ([64], extensions to
the convex SIP in [23] and [60]) when every linear inequaditi > b which is aconsequent
relation of o, and such thaa" x = b is a supporting hyperplane @, is also a consequence
of a finite subsystem af.

(c) P, assumed again to be feasible Farkas-Minkowsk(FM) ([83, 86]) if every linear
consequent relation af is a consequence of some finite subsystem.

An LFM problem exhibits a satisfactory behavior with respect to the duality theory, and
every FM problem is LFM (the converse holds provided tfiais bounded). On the other
hand, many approximation problems are modeled as continuous problems, but these prob-
lems behave badly w.r.t. stability duality and numerical methods unless a Slatexpoint
exists &' x° > by vt € T), in which case they also belong to the FM family

Thefirst-moment coneM, and thecharacteristic congK, play an important role in LSIP:

M := conefa, te T} , K::cone!( a ),teT;( 0”1)].
t —

According to Lemma 2, the prografis FM if and only if the coneK is closed. Another
consequence of Lemma 2 is the characterization of the LFM problems as those feasible
LSIP problems such that

A(X) = D(F,x)°, vxe F .

Here A(x) = cone{a; , t € Ta(X)} is calledactive coneat x and D(F, X) is the cone of
feasible directions off atx.

4.2. Optimality and duality. If P is a continuous LSIP problem, with c R™, the first
order optimality theory presented in Section 3 applé#sdlso [32, Chapter 7]).

In fact, the KKT condition now turns out to bee A(X). If the LSIP problem is LFM
we observe thatA(X) is a closed cone (because it coincides with¥ , X)°) and, since
X is optimal if and only ifc € D(F,X)°, the LFM property itself becomes a constraint
qualification.

Associated withP, differentdual problems can be defined. For instance? i continuous,

a natural dual problem is

Do: max/ b(t)d(r(t)) s.t. /a(t)d(k(t)):c, reMT(T),
T T

whereM T (T) denotes the cone of the nonnegative regular Borel measures on the compact
Hausdorff spac@&. Nevertheless, our most general approach does not assume any particular
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property of the index set and, consequently, we introduce a dual problem that is always well-
defined. This can be accomplished by restrictingDiy the feasible solutions to atomic
measures concentrating their mass on a finite set and yields the soHta#iedual

D: makatbt s.t. Zktat =c, >0,

teT teT
where we allow only for a finite number of thiial variables A¢, t € T, to take positive
values. IfA := (A, t € T) is a feasible solution oD (also called dual-feasible), we shall
consider thesupportof 1 :

SuppAr :={te T | A > 0}.
By vp, andvp we denote the optimal values Bp andD, respectively. IfP is a continuous
problem withT c R™, a theorem of Rogosinsky [69] establishes, = vp. Moreover, if
vp, IS attainable (i.e., iDg is solvable), thenp is also attainable. For a general compact
Hausdorff spaceé, the equivalence betweddy andD (from the optimality point of view) is
established in [11]. Because of these equivalences, the Haar dual is much more convenient.
Next we consider the objective vectoin P as aparameter We analyze here the properties
of theoptimal value function : R" — [—oo, +oo[ and theoptimal set mapping : R" =
R", assigning to eache R", the optimal value(c) and optimal set (possibly empty)c)
of the problemP(c) : min{c" x| x € F}, respectively
Obviously,c € dom§ if and only if P(c) is solvable (i.e., ifP(c) has optimal solutions).
We shall also assume thRf' £ F # 0.
A crucial element in duality theory is the so-callgwllity gaps(c) := v(c) — vp(c), where
vp(c) denotes the optimal value of the associated dual problem

D(c) : maxZAtbt s.t. Zktat =c, &> 0.
teT teT

For this parametric dual problem only the right-hand side terms in the equality constraints
change, and we assumg(c) = —oo whenc ¢ M, in other words when de dual problem
is not feasible.
Note that ifx e F andA = {\;, t € T} is feasible for the dual probler®(c), one has
cTx =D 1 Ma’ X > > 1 Aby, Which gives rise to theveak dualityinequality v(c) >
vp(c) (i.e.,8(c) > 0). Whend(c) = 0, we say that there iso-duality gap.
Observe that, applying Lemma 2, (recall nflest —oc0),

. c
v(c) = sufe € R | ¢ x > « is a consequence off = sup (xe]R‘ ( ) ecl K}.
o
Moreover, the dual optimal value can be rewritten as follows

(Z)K

and basic results from convex analysit [68]) yield straightforwardly the following state-
ments:

(15) vp(C) = sup{a eR

THEOREM 4. ([29, Theorem 8.1],[70])n relation to the parametric dual pair &), D(c),
with R" £ F +# ¢, the following properties hold:

(i) v andvp are proper concave functions such that cl vp and, so, their values
coincide at every point afnt (domuvp),
(i) hypov =cl K,
(iii) S(c) = av(c),
(iv) rint M c dom$ c domwv c ¢l M, andrint (domvp) =rint M,
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(v) For every ce rint M, we haves(c) = 0 and.S(c) # ¢,
(vi) S(c)is a (non-empty) compact set if and only i&dnt M.

In contrast to (finite) linear programming, for LSIP, a strong duality result as in Theo-
rem 4(v) needs not to hold unless some constraint qualification is satisfied. This can be
seen from the following

EXAMPLE 1. P: minx st t2Xi+tx >0, Vte T=]0,1]andx, > —1.
Herev = 0 andvp = —1. Obviously, the conditior € rint M does not hold.

Cone constrained programs as special cases of LSIR cone constrained linear problem
is a program of the form

(16) minc'x st y:=Ax—beC,
whereC is a closed convex cone in a normed spac€. df R™ and intC # ¢ such a problem

can be transformed into an LSIP satisfying the FM property (see [37]). As important special
cases we discusemidefinite programs

n
(sbP)  minc'x st Y:i=> xA-BeS],
i=1
with symmetric matricesh;, B e R™™ and S} being the cone of positive semidefinite
m x m-matrices, as well as treecond order conic programs

(soP minc'x st y:=Ax—belL™

whereL™ denotes the Lorentz coné" ;= {y € R™ | i > (Y2 +...+ Y2 V2.
By definition,Y e S'is equivalent ta" Yt > 0Vt € Cyy = {t e R™ | |It]| = 1}, where] - ||
denotes the Euclidean norm. So the feasibility condition for SDP bec@paﬁT At >
t" Btor

a' (Hh)x>b(t) VteCyn witha(t) =t' At, b(t) =t"Bt,
which turns SDP into a LSIP problem.
For the program SOP we defife= (yi, ..., ¥m-1) and observe the identity

Iyl = max 'y

feR™1, ||f=1
So the conditiory € L™, or y, > ||Y]l, can be written agm — 'y > 0 V||t|| = 1, and the
feasibility condition in SOP reads:

tT(Ax—=b)>0 or a'(t)x>b() vie T={t=( 1) ||f| =1},

with a; (t) = tT A;, A thei-th column of A andb(t) = t'b.

As a consequence of the previous considerations, the optimality conditions and duality
results for these special cone constrained programs are easily obtained from the general
theory for LSIP €f. e.g.[22]). Applications of the abstract duality theory to the problem of
moments, LSIP, and continuous linear programming problems are discussed in [70].

5. SECOND ORDER OPTIMALITY CONDITIONS

A natural way to obtain optimality conditions for SIP is the so-caleduction approach

The advantage of this method is that we can deal in the same way with SIP and GSIP
problems. Since the approach is described in detail in [45], here we only sketch the results.
Consider the GSIP (3) and assume that the index set is given by

a7) T(x) :={te R™|u(x,t) > 0qg},
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whereu : R" x R™ — RY, and thatf, g, u areC?-functions. The approach is based on the
fact that, forx e F, each active index

fjeTa®)={te T® | 9(X,1) =0}
is a global minimizer of the so-callddwer level problem
(18) QX): mtin gXx, ) stuXxt)>0,lelL:={1,...,q},

which represents a finite program depending on the paramesa, under some constraint
qualification eaclt; € Ta(X) must satisfy theKarush-Kuhn-Tucke(KKT) condition, i.e.,

with the Lagrange functiouLJ@ of Q(X), corresponding td; € Ta(X), the relation

(19) VP X G, 7)) =Vigx T — D vV (x §j) =0y,

|EL0(Y,TJ‘)
holds with associated multiplierg; > 0, and the active index séip(X,tj) '={l e L |
u (X, tj) = 0}. The approach depends on tieeluction assumptions

(RA): All t; € Ta(X) are nondegenerate minimizers Q{X) such that LICQ, SC (strict
complementary slackness), and SOC (strong second order conditions) hold at them (see
[45] and [47] for detalls).

Under the condition RA the following can be shown: The &gK) is finite, i.e. To(X) =
{t1,...,%}, and there are (locally defined)l—functionstj(x) and y;j(x) with t;(X) =
tj, yj(X) = ¥;, such that, for everx nearX, tj(x) is a local minimizer ofQ(x) with corre-
sponding unique multipliep;(x). With these functions the followingeductionholds in a
neighborhoodJx of X:

The pointx € Ux is a local solution of the GSIP problemif and only if x € Ux is a local
solution of thelocally reduced (finite) program

(20) PedX) : minf(x) s.t. Gj(x):=g(xtj(x)) >0, j=1,...,r.
Moreover, forj = 1, ...,r, the following identity holds:
VGj(X) = VxLP (X, 1}, 7).

Based on this result, the standard optimality conditions for the finite proBlemix) di-
rectly lead to optimality conditions for GSIP. To do so, we define the cone of critical direc-
tions

Cx:={deR"|Vf(X)d <0, VG;(x)d>0, j=1,---,r},
and recall that LICQ is said to hold &tif the vectorsVG;j(X), j=1,---,r, are linearly
independent. We give the following necessary and sufficient optimality conditions of FJ-
type for P (see also [76]).

THEOREM 5. LetforX e ¥ the assumptions RA be satisfied such that GSIP can locally
be reduced to By(X). Then the following conditions hold:

(a) Suppose that is a local minimizer of P and that LICQ is satisfied. Then there exist
multipliersz > O; such that (with the expressions kL and VZL below)

ViL(X, @) =0 and d ViL(x,)d>0 Vde Cx.
(b) Suppose that there exist multipligis> O such that
ViL(X, ) =0] and d V2L(x,)d>0 vde Cx\ {0}.
ThenX is a strict local minimizer of P of order 2.
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The expressions fd¥x L (X, 7z) and V2L (X, i) read:

r
VLX) = VI = D VL X8, 7)),
j=1

:
VLR = VA0 - D (VL R 6. 7)) - Y VALY (%, T, 7) V()
j=1

;

+ D I Z (VTyi RVl (X, ) 4+ Viu (X, ) V(%) -

=1 leLo(xi))

Recall that under the assumption RAXa¢ ¥, for each active index poirtj € Ta(X) the
KKT-equations (19) must be satisfied. Together with Theorem 5 we obtain the following
complete system of optimality conditidios SIP and GSIP:
If X € F is a local minimizer with active index sé@t(X) = {f1, ..., &}, such that the as-
sumptions of Theorem 5(a) are fulfilled, themust satisfy the equations

V00 = g 5V (906 1) = Zerey YU 6 1)) =OF,

(21) vij: g(x, tj) =0,
- T

VJ . Vtg(xa t]) - ZlELo(X,tJ‘) le V'[ul (Xa t]) = Oma

Vjandvl e Lo(X, tj) : u(x,tj) =0,

with appropriate Lagrange multipliegs; andy;j. This system ha& :=n+4r(m+41) +
zrj:l|Lo(>‘<, tj)| equations and unknownsx, uj, tj, ¥;.

Remark Note that for common SIP-problems the system (21) simplifies. Since in this case the func-
tions Uy do not depend o, in the first equations the sum ovgy VU, (X, tj) vanishes. Observe

that the first part of the system (21) has the structure of the KKT-equations in finite programming.
However, since in SIP the index varialilés not discrete and it may vary in a whole continuiin

this system does not determine the active indtgeo fix also thet;’s, for all active index points;

we have to add the second system of KKT-equations i tlagiable.

6. NUMERICAL METHODS

Nowadays the numerical approach to SIP has become an active research area. An excellent
review on SIP algorithms is [67]. Recently, the NEOS Server has included the program
NSIPS, coded in AMPL [84, 85].

As in finite programming we can distinguish between primal and dual solution methods. In
the so-called discretization methods the SIP problem is directly replaced by a finite problem
(FP).

As a first general observation we emphasize that, from the numerical viewpoint, SIP is
much more difficult than FP. The main reason is the difficulty associated with the feasibility
test forx. In a finite program,

FP: mxin f(x) st. gi(x)>0 Vjeld={12 .., m},

we only have to compute function valuesy; (X) and to check whether all these values are
nonnegative. In SIP, checking the feasibilityxak obviously equivalent to solve the global
minimization problemQ(X) in thet variable:

QX : min g(x.t) st teT,

and to check whether for a global solutibthe conditiong(x, ) > 0 holds.
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Note that, even for the LSIP, the proble@(X) is not in general a convex problem. As a
consequence of this fact, the LSIP problem cannot be expected to be solvable in polynomial
time. However, there are special subclasses of linear or convex semi-infinite programs
which can be solved polynomially. Interesting examples are semidefinite and second order
cone programming [62], as well as certain classes of robust optimization problems [6].

6.1. Primal methods. We discuss the so-called methodfeésible directionsor the SIP
problem. The idea is to move from a current (non-optimal) feasible pQitd the next

point Xk, 1 = Xk + t«dk in such a way thaxy, 1 remains feasible and has a smaller objective
value. The simplest choice would be to move along a strictly feasible descent direction
which was defined as a vectdsatisfying

(22) VEd <0,  V,gXtd>0 Vte Ta(X).

Feasible Direction Method(Zoutendijk, in case of FP) Choose a starting peing 7.
Step k:  Stop ifxg is a FJ point.
(1) Choose a strictly feasible descent directiign
(2) Determine a solutiomy for the problem:
™ min {f(xx +tdk) |t > 0, Xk + tdk € F}.
Set X1 = Xk + k.

Let us consider the followingtableway to obtain a strictly feasible descent directidn
that takesall constraints into account. For finite programs this is the method suggested by
Topkis and Veinott (see.g.[22]). We solve the LSIP:

mingzz s.t. Vix)d—z < 0,
(23) —Vxg(X, )d =2z < g(X,t), VteT,
+di < 1, i=1,...,n.

LemMA 5. If (23) has optimal value equal to zerq, gatisfies the FJ necessary optimality
conditions (12).

Proof. Note that(d, z) = (On, 0) is always feasible for (23). Suppose that the statement is
false and thakg is not a FJ point. Then by Lemma 1, there exists a strictly feasible descent
directiond. With the same arguments as in the proof of Lemma 3, and by repladiyg

Xk, we find that there is someg > 0 such that

(X, 1) + TVxg(Xk, t)d > 0 V1 €]0, 79[, t e T.

So, by choosing > 0 such that|d;| < 1, Vi, we have shown that there ex®t< 0 and a
vectord(= td) with |d;| < 1, Vi, satisfying

(24) Vixpd <zg and g(xgt)+ Vxg(xk, H)d > —zp VteT.

Consequently (23) has optimal valae z,.
[l

THEOREM 6. Assume that the Feasible Direction Method generates poingd com-
putes directions gas solutions of (23). Suppose further that a subsequéxge-s con-
verges tdk, SC N being an infinite subset of indices s. Thgtis a FJ point.

Proof. Since¥ is closed, the limik of the pointsxs € # also belongs t¢F . Suppose that
the theorem is false and thais not a FJ point. Then arguing as in the proof of Lemma 5,
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with xx replaced by andz, replaced by 2, it follows that there exist < 0 and a vectod
with |di| < 1, Vi, satisfying

ViX)d <2z and g(Xt)+ Vxg(X,t)d > —2z Vvte T.

The continuity ofg(x, t), V f(x) andVxg(x, t), together with the compactnessBf also
imply that

Vi(xs)d <z and g(Xs,t) + Vxg(Xs, )d > —z Vte T,

must hold ifsis sufficiently large. Sad, z) is feasible for (23), which in turn implies> zg
for every optimal solution(ds, z5) of (23) atxs. In particular, we note

Vi(Xs)ds <z and g(Xs, t) + Vxg(Xs, t)ds > —z Vte T.

Let§ > 0 be such thafV f(x) — Vf(X)| < |z|/3+/n holds whenevef{x — X|| < §. Then
lds|l < +/n, together with the inequality of Cauchy-Schwarz, yield

[(VE(X) = VIX)ds| < V() = VI -IIdsll < 12]/3.
So, if [x—X|| < § andsis large enough, we have:
Vi(X)ds < VIX)ds+ |2]/3 < VT(xs)ds + 2|7]/3 < z/3.

Applying the same reasoning ¥g(x, t), we therefore conclude that, férsmall enough
and||x—X| < §,

0(Xs, 1) + Vxg(X, t)ds > —z/3 Vte T.
We are interested in pointsof the formx = xs+ tds, 0 < v < min{1,5/(2/m}. If s

is so large thaf|xs — X|| < §/2, then||x —X|| < 8. Moreover, the Mean Value Theorem
guarantees the existence of some @ < t such that

f (Xs + Tds) = f (Xs) + TV f (XS + ads)ds < f (Xs) + TZ/3.
Similarly, we find foranyt € T

O(Xs+ 1ds, t) = 0O(Xs, t) + 7VxQ(Xs + ats, t)ds
= (1-19Xs t) + 7[9(Xs, 1) + Vxg(Xs + artds, 1)dg]
> (1-1)g(Xs, t) —712/3>0

(use the feasibility(xs, t) > 0), which tells usxs + tds € ¥ . So, the minimization steg)
in the algorithm produces someensuring a decreasing of at least

b)
f (X — f(xs) = f(x ds) — f(xs) < ———=|2|/3
(Xs+1) (Xs) (Xs + 7s0s) (Xs) < Zﬁl |/
for all sufficiently larges. Hence, f (Xxs) —» —oco ass — oo contradicting our assumption
thatxs — X and, accordinglyf (xs) —» f(X). O

Some fundamentals of the descent methods based on nonsmooth analysis can be found in
the review article [65].
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6.2. Dual methods. The so-called dual or KKT-approaches try to compute a solution of the
system of KKT optimality conditions. This is mostly achieved by applying some Newton-
type iterations. The theoretical basis of this approach is closely related to so-called generic
properties ofP. So we shortly discuss two variants of this KKT-approach and the related
genericity results for SIP or GSIP.

SQP-Method based on reduction. To solve SIP or GSIP we can apply any algorithm
from finite programming to the locally reduced probld®q(x) described in Section 5.

An efficient way to do so is the SQP-version. We give a conceptual description (see [45,
Section 7.3] for more details).

Method based on the reduction:
Stepk: Start from a giverxy (not necessarily feasible).

(1) Determine the local minimg, - - - , t;, of Q(x) in (18).
(2) Apply N steps of a SQP-solver (for finite programs) to the problem (20)

Pred(Xk) : mxin f(x) s.t. Gj(X) :==g(X, tj(x)) =0, j=1,---,rk,

leading to iterateg i, i =1,---, Nk.
(3) Setxir1 = Xk n, andk = k+ 1.

Note that in this procedure we have to trace out the minimizer functigrg) numerically
by parametric optimization techniques. For a discussion of such a method combining global
convergence and local superlinear convergence we refer to [45].

Methods based on the system of KKT-equations.To solve the GSIP (3) we also can

try to compute a solution of the complete system of optimality conditions (21) by some
Newton-type iteration. The problem here is that we have to find a rough approximation
of a solution which can serve as a starting point for the locally (quadratically) convergent
Newton iteration. A possible procedure, described in [45], performs as follows:

(1) Compute an approximate solution of the semi-infinite program by some other method
(discretization or exchange method).
(2) Use this approximation as a starting point in the Newton iteration for solving (21).

Genericity results for SIP and GSIP. In the reduction approach presented in Section 5
the following has been assumed:

RC: Forx e ¥ and a solutiorx, uj, yj, yj of (21) the following is true:
(1) LICQ holds: The vectors in the following set are linearly independent

{vxL}X)(x,t,-,y,-)=vxg(x,t,->— > i Vxui(x. 1)), t,-eTa<x>}
leLo(x,tj)

(2) The condition RA holds (see Section 5).

Note that in the Newton method for (21) the natural regularity conditions are that the Ja-
cobian of the system is regular at the solution point. It is not difficult to see, that both
assumptions are essentially equivalent and are related to the second order sufficient condi-
tions in Theorem 5(b).

The genericity question now is to examine whether RC are natural assumptions in the sense
that they are generically fulfilled. To answer this question we have to define the problem
set properly. For fixed dimensiomsm, g the SIP problenP can be seen as an element of
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the space

P:={P=(fg,u}=C?°R"R)x C°R"™, R) x C*°R™ RY).
This function space is assumed to be endowed with the so-called strong Withney topology
[50]. By a generic subset of the sétwe mean a subset which is dense and opef.in

The following result states that for the class of SIP problems the reduction approach and
the Newton method are generically applicable.

THEOREM 7. [51] The setP of all C*°-SIP problems contains an open and dense subset
P C P such that for all programs R % the regularity condition RC is satisfied for all
xe F.
Unfortunately the situation is much more complicated for GSIP where a genericity result
as in Theorem 7 is not true (seay, [72, Section 3]).
6.3. Discretization methods. In a discretization method we choodfgsite subsetsl” of T,
and instead oP = P(T) we solve the finite programs
P(T’): min f(x) st g(x,t)>0, VteT.

Letv(T"), F (T’) andS(T’) denote the minimal value, the feasible set, and the set of global
minimizers of P(T’). We call these finite subsets grids or discretizations The following
relation is trivial:

(25) T.cTi = F(T)cF(T)andv(Ty) < v(Ty).
We consider different concepts hefe= P(T) is calledfinitely reducible if
there is a gridl’ c T such that(T") = v(T).
P is said to baveakly discretizabld there exists a sequence of grifissuch that
v(Tk) = v(T).

Obviously, if P is finitely reducible, therP is weakly discretizable. Note that the previous
concepts apply for the general SIP, but the following notion requirés be a subset of
a space with a metrid(-, -). We define aneshsizep(T’) of a grid T’ by the Hausdorff
distance betweemn’ andT, p(T’) := sup.t Minget d(t, t'),.

P is calleddiscretizabldf for each sequence of grid& satisfyinge(Tyx) — 0 we have:

(i) P(Ty) is solvable fork large enough,
(ii) for each sequence of solutiorg € S(Ty) we have

dXk, S(T)) - 0, and v(Tx) = v(T) if k— oo,

whered(x, §) := ming |[X — s||. Note that from a numerical viewpoint, only the concept
of discretizability is useful.

We also introduce a local concept: Given a local minimizef P(T), the SIP is called
locally discretizableat X if the relations above hold locally, i.e. if the probleRfca! (T),
obtained as the restriction &(T) to an open neighborhoddk of X, is discretizable.

We start the discussion with negative examples about the possibilities for discretization.
ExAMPLE 2. Let us consider the nonconvex SIP problem
P: mn x sSt(X—t)°2+x >0, vte T=[0,1], and0< x; < 1.

Obviously F ={xeR?|0<x; <1 andx, >0}, v=0, and S ={XeR? |0 < X; <
1 andx, = 0}. On the other hand, whichever grid we take, it is evident that(T") < 0
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ands(T’) is a (nonempty) finite set. SB is not finitely reducible but it is discretizable (as
it is not difficult to see).

The preceeding problem is not a convex SIP because the concavity of the furggtians
fails. Reconsidering the problem in Example 1 it is not difficult to see that hefF& =

vp = —1, for every finite gridT’ ¢ T, whereas» = v(T) = 0 (cf. Theorem 9).

Concerning the finite reducibility, the following result ([10], [45, Theorem 4.2]) comes
from Helly-type arguments: Assume th&tis a convex SIP, with bounded optimal value,
such thatT is a compact Hausdorff topological space, and that a specific Slater-like con-
dition holds (for every set ofi + 1 pointstg,t1,...,tn € T, a pointX exists such that
gX,tj)) > 0,i =0,1,...,n). Then the problenP is finitely reducible (with some exist-
ingT' c T, |T|=n).

Note that such a convex probleRis reducible if there exists a minimizer satisfying the
KKT condition (13) with a subset’ = {t1, ..., tx} of Ta(X), k < n. Indeed then, by Theo-
rem 3 the poink is also a solution oP(T’).

For a general LSIP problem (with arbitrafy, we have the following result:

THEOREM 8. [32, Theorems 8.3 and 8.4 et us consider the problem
P: minc'x st gx>b vteT,
where T is an arbitrary set.
(a) Assume that the optimal valués finite. Then the following statements are equivalent:
(i) P is finitely reducible,

(i) We have(?) € K,

(iii) D is solvable andp = v (no duality gap),

(iv) D is solvable and P is weakly discretizable.
(b) Let us again consider B P(c) as a problem depending on ¢ as a parameter. Then

P(c) is finitely reducible for every e R" such thatv(c) is finite if and only if the system
o={alx>b, teT}is FM.

Proof. (&) "(i) = (ii)” Let T’ be a grid such that(T’") = v(T) = v. According to the
duality theory in ordinary LP, the associated di|IT’) is solvable and there is no duality
gap; i.e.v(T") = vp(T’). In other words, there exist optimal values of the dual variables

At, t € T/, such that
31(5) = (o) = ()
= "\by vo(T') v)’
and({) € K, holds.
"(ii) = (iii )" From () € K and (15) we gebp > v. The weak duality inequality then
yieldsvp = v, and({) e K entails the solvability oD.
" (iii ) = (iv)" Next we proceed by proving thatp = v (no duality gap) implies thal is

weakly discretizable. Let us consider sequeriggsand{i} of feasible solutions oP and
D, respectively, such that

2 li A = =v= i T X
(26) |mz kbt =vp=v Jim ¢

k=00 teT
Taking gridsTi := suppig we write

D bt < vp(Ti) = v(Tk) < vp(T) = v(T) < c'x,
teT

and (26) implie(Tx) — v(T).
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"(iv) = (i)" Assume thafly, k=1, 2, ..., is a sequence of grids such thato < v(Tk) —
v(T), and that: is an optimal solution oD. Then the restriction of to Ty := suppa is
also optimal forD(Tp), and we have

v(Tk) = vo(Tk) < vo(T) = vp(To) = v(To) < v(T).

In view of v(Tx) — v(T) we findv(Ty) = v(T).

(b) Reasoning by contradiction, let us assume th&t) is finitely reducible, for every
¢ € R" such thatv(c) is finite, and thatr = {a/ x > by, t € T} is not FM. Then, sinc&
is not closed ¢f. Section 4.1), there will exis(t‘;f) € (cl K)\ K. According to Lemma 2,

ch > yisalinear consequence@fand thusyp(cg) > y. Thereforep(cp) is finite (because
P(cg) is feasible) and, soP(cp) is finitely reducible by assumption. Part (a) and (15)
conjointly entail—oo < vp(cp) < y. Part (a) also yieldﬁv(cgo)) e K andv(cp) = vp(Co).
Hencev(cg) = vp(Cy) = y, and we get a contradiction Wit@)) ¢ K.

Conversely, let us assume thats FM. If the optimal valuev(c) of P(c) is finite,c"x >
v(c) is a consequence ofand Farkas’' Lemma, together with the FM assumption, yields

c
(v(c)) =clK =K.

Now, (a) applies. O

THEOREM 9. [32, Corollary 8.2.1]JAssume that the optimal valueof a general LSIP
problem P is finite. Then P is weakly discretizable if and only={ vp (no duality gap).

Proof. " & " Already established in the proof ofili ) = (iv)” in part (a) of Theorem 8.
" = "Assume thafly, k=1, 2, ..., is a sequence of grids such thato < v(Tx) = v(T) =
v. Then we can write
v(Tk) = vp(Tk) < vp(T) < v(T),
and taking limits folk — oo we concludevp (T) = v(T). O
We next give a sufficient condition for LSIP to be discretizable or weakly discretizable,
partially based on Theorem 4.
THEOREM 10. [32, Theorem 8.6 and Corollary 8.6.Jonsider the feasible LSIP problem
P: minc'x st gx>b vteT,
T being an arbitrary index set. If € rint M, then P is weakly discretizable.

Moreover, if M is full dimensional and € int M, thensS is bounded and P is discretizable,
provided that P is continuous.

COROLLARY 1. Let P be a continuous LSIP with bounded feasible ‘BefThen P is
discretizable.

Proof. If F is bounded, one hasl = R" (cl M is the polar of the recession cone %),
andc € int M holds trivially. O

The following example illustrates the difference between weak discretizability and dis-
cretizability.

EXAMPLE 3. Consider the LSIP (with some fixed> 0):

[0,1]] Case A

[-e,1] Case B

v =0, and a minimizer ofP(T) is, in both cases, given By= (0, 0).

min x; S.t. x+txo >0 VteT:=
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Case A:The problem is weakly discretizable but not discretizable. For agrimbntaining

t = 0 we havev(T’) = v. On the other hand for any’ not containing 0 the value is
unboundedy(T’) = —co.

Case B:The problem is discretizable as it can easily be shown. Note that in Case B the
conditionc € int M is satisfied, but not in Case A.

The following algorithm is based on the discretizability concept and from now on we as-
sumeT c R™.

Conceptual discretization method

Step k: Given a gridi c T and a small value > 0.

(1) Compute a solutiory of P(Ty).
(2) Stop ifxg is feasible within the fixed accuraey i.e.g(xx, t) > —a Vte T.
Otherwise, select a finer discretizatidg, 1, i.e., p(Tkr1) < p(Tk).

We begin with some general convergence results for the discretization method.

LEMMA 6. If P = P(T) is continuous, I, k= 1,2, .., is a sequence iR such that
o(Ty) > 0ask— oo, and % € F (Tx), k=1, 2, ..., converges t&, thenx e F = F (T).

Proof. For a fixedt € T, p(Tx) — 0 entails the existence of a sequence of indiges Tk,
k=1,2,..., suchthaty — task — oo. Thus,g(xk, tx) > 0, k=1, 2, ..., and taking limits,
for k > oo, the continuity ofP allows us to writeg(X, t) > 0. Since we took an arbitrary
te T, we concludex e F. O

THEOREM 11. Let ¥ (T1) be compact and let the sequence of discretizatiQrealisfy
TicTkvk>2andp(Ty) > 0 fork— .

Then RT) is discretizable.

Proof. By assumption and usin@y c Tx c T the feasible set§ (T), ¥ (Tk), of P(T),

P(Tk) respectively, are compact and satisf(T) c F (Tx) € F(T1), k e N. Conse-
guently, solutions¢, of P(Ty) exist. Suppose now that a sequence of such solutions does
not satisfyd(xx, S(T)) — 0. Then there exist > 0 and a subsequengg, such that

d(X,, S(T)) >e>0 Vv.

Sincexk, € ¥ (T1) we can select a convergent subsequence. Without restriction we can
assume, — X, v — oo. Inview of F (T) c ¥ (Ty) the relationf (x¢,) < v(T) holds and
thus by continuity off we find
f(x) <v(T).
We now show thax € §(T) in contradiction to our assumption. To do so it suffices to prove
thatx € ¥ (T). Lett € T be given arbitrarily. Since(T,) — 0 for v — oo we can choose
ty, € Tk,, such that,, — t. In view of g(xx,, t,) > 0, by taking the limitv — oo, it follows
g(x, ) >0,i.e.xe F(T). 0

Next we consider local discretizability for general nonlinear SIP and we assume for the
rest of this subsection that the functigns continuously differentiable oR" x T. Recall

that theMangasarian Fromovitz constraint qualificatigMFCQ) holds aik € ¥ if there
exists a vectod € R" such thatvxg(X, t)d > 0, Vi € T,(X). Becausel,(X) is compact and
Vx9(X, .) is continuous, there must exissuch that

27) Vig(X,1)d > k > 0 Vi e Ta(X).
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LEMMA 7. Letbe given a sequence of gridsd@ T with py := p(Tx) — O.

(@) Let K be a compact subset®f'. Then there exists s 0 such that for all k large
enough:

g(Xk,t) > —Ccoxk Vte Tandvxxke F(Ty) NK.

(b) Let MFCQ be satisfied a with the vector d. Then, there exist positive numbers
ande; such that for all k large enough:

Xk +tokd e F(T) Vxge F(Tp) with ||[xk — X|| < ez .

Proof. (a) Lett, be a solution of mipt g(xk, t) and letfy be a point inTy such that
|1tk — t|| < px. By Lipschitz continuity ofg (V;g(-, -) is continuous) and usingyx, fx) > 0
we find

g%, t) > g%, tk) > 9(Xk, t) — g%, k) > —cllfc — tkl| > —cox VteT,

for some Lipschitz constamt> O.
(b) To prove the statement we proceed in two steps. Firstlye ferO we consider the
relative open set

To(X):={teT]||[t—1|| <eforsomet e Ta(X)}.
By MFCQ (see (27)) using the continuity &g there is some > 0 such that
Vyeg(x, )d > g vt € T¢(X) andvx such that|x — X|| < e.
Thus if[|x« — X|| < ¢, and for allt e T (X) and smallpy, we find using (a)
g+ okd, ) = g%, 1) + ok Vxg(Xk, 1)d + 0(Tpk)

K
(28) > —Cpi+ 75k + O(7o)

K
= Pk(fi —C) +0(tpk) > 0,
provided that we choosesuch thatr5 > c¢. Secondly, we consider the compact $e{
TZ (X). By continuity ofg, for givene > 0, there existsg > 0 such that
(29) g(x,t) >0 Vte T\ T;(X)andvxsuch thaf|x —X|| < &o.
Now we chose € F (Tx) andpk such that withe; := min{e/2, £9/2}, the relationg|xx —
X|| < £1 and||zpkd|| < €1 hold. Then, using
1% + Tokd = X|| < [Ix — Xl + zoklld]l < minfe, o},

(28) and (29) yieldy(xk + tokd, 1) >0Vt e T. O
THEOREM 12. LetX be a local minimizer of PT) of order p (p> 1). Suppose that MFCQ
holds atx. Then P is locally discretizable & More precisely, there is sonee> 0 such

that for any sequence of gridg © T with p(Tx) — 0 and any sequence of solutioRsof
the locally restricted problem 'P@(Ty) (see the definition of discretizability):

(30) % — XI| < op(T)YP.

Proof. Consider the SIP restricted to the closed baBgi{X) (B, (X) := {X| |[X—X|| < «})
with smallx chosen such that < ¢, 1 (with £ in (10) ande1 in Lemma 7) :
pocal Ty minf(x) st xe F(Ty)Ncl B(X).

Obviously, sincex € F (Tx) and F (Tx) N cl B, (X) is compact (and nonempty), a solution
x|, of Plocal(Ty) exists. Note thak is the unique (global) minimizer d?'°¢@(T). Putpy :=
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p(Tk) and consider any sequence of solutiah®f P'° (Ty). In view of F (T) ¢ F (Ti)
ande + tokd € F (T) Ncl B.(X) (for largek, according to Lemma 7(b)), we find

f(xd) < () < F(x+ oxd) .

Sincex is a minimizer of ordemp (see (19)) it follows

|1X + Tokd — X||P

IN

1
5 (f (X + zord) — (X))

1
< aﬁuhwmm—ﬂﬂﬁzowu
Finally, the triangle inequality yields using > 1,
(31) 1% — XII < 11X, + zod — XI| + |70l = O (o).

In particular||xl( —X|| < « for largek, andX := XL are (global) minimizers of the prob-
lem P'°c@l(T,), restricted to the open neighborhoBg(X), i.e., X are local minimizers of
P(Tw). -

Remark The result of Theorem 12 remains true for the global minimization prolifafrthe feasi-
ble set¥ of Pis restricted to a compact subseiRf.
It has been shown in [77] that a convergence tRig— X|| = O(pﬁ/p) occurs if the grids
Ty of meshsizegy are chosen in a special way.

6.4. Exchange methods.We also outline thexchange methodhich is often more effi-
cient than a pure discretization method. This method can be seen as a compromise between
the discretization method and the continuous reduction approach in Section 6.2.

Conceptual exchange method

Step k: Given a gridi c T and a fixed small value > 0.

(1) Compute a solutiory of P(Ty).
(2) Compute local solution%‘, i=1,...,jk (jk = 1) of Q(xx) (cf. (18)) such that one

of them, sayt%, is a global solution, i.eg(x, t¥) = rtann g (X, t).
€
(3) Stop, ifg(xx, t'{) > —a, With an approximate solutior:= xx. Otherwise, update

(32) T =T U, j=1,..., j.

THEOREM 13. Suppose that the (starting) feasible $etT,) is compact. Then, the ex-
change method (witlh = 0) either stops with a solutior = x, of P(T) or the sequence
{xk} of solutions of RTy) satisfies dxx, S(T)) — O.

Proof. We consider the case that the algorithm does not stop with a minimiZe(Tof. As
in the proof of Theorem 11, and by virtue of our assumptions, a solugioh P(Tyk) exists,
Xk € F (T1), and with the subsequengg, — X we find

f(X) < u(T).

Without loss of generality, we writg, — X. Again we have to show € F or, equivalently,
¢(X) > 0 for the value functiorp(x) of Q(x). In view of p(Xx) = g(Xk, t‘{) (see Algorithm,
step ii) we can write

9(X) = 9(%) + 9(X) — p(X) = g(Xk, ) 4+ 9(X) — 9(X).
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Sincet € Ty;1 we haveg(xci1, t&) > 0 and, by continuity ofy ande, we find

e(X) > (90, t) — g(Xur1, 1) + (9(X) — 9(x)) = 0 fork — oo.

We refer to the review paper [45] for more details on this approach.

7. GSIPAND RELATED PROBLEMS

In this section we shortly survey the recent developments in GSIP. Optimality conditions
have been established in Section 5 and for applications we refer to Section 2.

We wish to discuss relations of GSIP with other important classes of optimization prob-
lems namehpilevel problemgBL) (e.g, [5]) andmathematical programs with equilibrium
constraints(MPEC) (.g, [61]). For shortness we only deal with the first class. Bilevel
problems are of the form

BL: ming: f(x,t) s.t. g(xt) >0,

(33) andt is a solution of Q(x) : mintF(x,t) s.t. t € T(X).

The problem GSIP can be transformed into a BL program as follows. Let us a3qvmng
@, Vx, and recall the (lower level) problem (see (18))

(34) Q) : mtin gix, t) st teT(x),

depending on the parameterThen (assuming thdD(x) is solvable) we can write
gx, 1) >0vte T(X) <& g(xt) > 0andt solvesQ(x).

So GSIP takes the BL form:

GSIPgL: mingt f(X) s.t. g(x,t) >0,

(35) andt is a solution of Q(x): min; g(x,t) s.t. te T(x).

This problem is a BL program with the special property that the objective fundtidoes
not depend o and that the constraint functianin the first level coincides with the lower
level objective function.

Remark Note however that there is a subtle difference between the interpretation of the original
constraintsg(x, t) > 0Vt € T(x), and the feasibility condition in the bilevel form (35) for the case
that T(x) is empty. In the form (35), in this case, because of the additional conditoi (x),

no feasible pointx, t) exists (for thisx). For the GSIP problem however an empty index&et)
means that there are no constraints and such peiats feasible.

For a comparison between BL and GSIP from a structural and generic viewpoint we refer
to [74] (and between BL and MPEC to [7]).

To solve programs with bilevel structure numerically it is convenient to reformulate the
problems as nonlinear programs. We will restrict ourselves to the GSIP problem (35) and
we assume again that the s@t&x) are defined explicitly via (17) with &-functionu :

R™M 5 RY. Let alsog be fromC?. If t is a solution ofQ(x) satisfying some constraint
qualification, thent must necessarily satisfy the Kuhn-Tucker conditions:

(36) Vig(x,t) —yTViu(x, t) = 0Of andyTu(x,t) =0,
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with some multiplier @ < y € R9. So we can consider the program

thlr; f(x) s.t. g(x,t) >0,
Vig(x, t) — yTViu(x, t) = O,
yTu(x,t) =0,
y > 0g, u(x, t) > Qq.

(37)

This program is a relaxation of GSIP in the sense that, under a constraint qualification
for Q(x), the feasible set of (35) is contained in the feasible set of (37). In particular, any
solution (x, t, ) of (37) with the property that is a minimizer of Q(x), must also be a
solution of the original program. If in addition to the constraint qualification, the problem
Q(x) is convex, then (37) is equivalent with the original GSIP program.

In the form (37), GSIP is transformed into a nonlinear program with complementarity con-
straints and the problems can be solved numerically, for instance by some interior point
approach. For GSIP problems this has been done successfully in [75].
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