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1. Introduction This paper deals with optimization problems of the form
P: min f(x) s.t. gix) = 0, jeld:={1...,q
X
rnx)s(x)y = 0, iel:={1,...,m (1)
nex, sx) > 0, iel.

As usual, such a program will be called a MPEC problem. All functifrg, ri, s : R" — R are assumed to @?-functions.
The constraints; (X)s(X) = 0, ri(x), S(x) > 0 are calleccomplementarity constraints

This class of MPEC problems is a topic of intensive recent researcle Ge®,6,[8/10[ 11, 12, 14, 15, 16] and the references
in these contributions). Complementarity constraints arise in problems with equilibrium conddfo@siifata,Kocvara and
Zowe [13]) or as special cases in the so-called Kuhn Tucker approach for solving problems with a bilevel struceug (see
8.

We say that at a local solutionof P thestrict complementary slackneissfulfilled if the relation
(SC): rnX)+sX) >0, Viel (2)

is satisfied. The problem in MPEC is that typically the condition SC is not satisfied at a sctutibf®. It is also well-

known that theMangasarian Fromovitz constraint qualificatighMFCQ) of standard finite programming (and thus the stronger
Linear Independency constraint qualificati¢hlCQ)) fails to hold at any feasible point d? (seee.g, [2]). So, to solve

these complementarity constrained programs numerically, we cannot use standard software of nonlinear programming since the
standard algorithms always rely on LICQ.

To circumvent this problem the followingarametric smoothingpproach can be applied. InsteadPfve consider the per-
turbed problem
P;: min f(x) s.t. gix) = 0, jeld
X
ri(X)s (X) T, iel ®3)
nx,sx = 0, iel,
wherer > 0 is a small perturbation parameter. In this paper we intend to analyze the convergence behavior of this approach.

Let in the followingy, ¢, denote the marginal valueg,, 7, the feasible sets anfl, S the sets of minimizers oP = Py, P,
respectively. We expect, by letting— 0, that a solutiorx, of P, converges to a solutioxof P.

It will be shown that under natural (generic) assumptions the convergence rate for

F.— F andfor X, - X isoforder O(/7).
The assumptions MPEC-LICQ , MPEC-SC and MPEC-S@( (§),(13) [1§)) will play a crucial role in the convergence
analysis.

The paper is organized as follows. Section 2 illustrates the convergence behavior on some motivating examples and discusses
natural regularity conditions. Section 3 reviews the genericity resulis In [16] and presents necessary and sufficient optimality
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conditions for a minimizek of P of order one and two under natural assumptions. In Section 4 the convergence behavior of
the perturbed feasible sét is analyzed from a local and global viewpoint. Finally, in the last section we prove the existence of
local minimizersx, of P, near a local minimizex of P and their unicity. We show that generically the rife — X|| = O(/7)

takes place.

We introduce some notation. The distance between a gant a setf is defined byd(X, ) = min{||x— X|| | x € F}. We

also use the notatioB, (X) = {X | ||Xx — X| < &} and denote its closure ¥, (X). The norm||x| will always be the Euclidean
norm.

In the rest of this introduction we will discuss earlier results related to our investigations. The parametric afgroach (3) has
been used for the first time by Luo et al. [12] in connection with equilibrium constrained problems. Here congtigiat®

had been perturbed tgw; = o (cf. [12, p.280]). For problems of the typE] (1) this smoothing method has been applied

by Facchinei etl. [4], Fukushima and Pan@l[6] and Hul [9] (using NCP-functions). In these papers the convergence to a B-
stationary point has been established (under appropriate regularity assumptions). In Stein and Still [18], such a convergence is
obtained for a similar (interior point) approach for solving semi-infinite programming problems. A referee draw our attention

to the (preprint) of Ralph and WrigHt [114]. Here a convergejfite— X|| < O(r'/*) has been shown (see also CoroII 5.2).

Under an additional MPEC-SC condition we will prove the convergeiXee- X|| = O(%/2) (cf. Theore). With respect

to this result the present contribution is complementary to the paper [14].

Other regularizations of MPEC problems have been considered in the literature such as:

P min f(x) s.t. gj(x) > 0, jel
" rxsx) < t, iel
ri(x),sx) = 0, iel.
ps min f(x) s.t. gix > 0, jeld
' TS < T,
ri(x),sx)y > 0, iel.

Scholtes[[1]7] answered the question under which assumptions a stationary(pdiot P:, v | 0, converges to a B-stationary
point of P. In [14] itis shown that (under natural conditions) the solutkon) of P converge to a (nearby) solutictof MPEC
with orderO(t). Similar results are stated for the probléif.

We emphasis that these regularizatioris |5§ structurally completely differ from the smoothing approdeh For B, e.g,
the following is shown in[[1l7, Th.3.1,Cor.3.2]: ¥is a solution ofP where MPEC-LICQ and MPEC-SC holds then for the
(nearby) minimizerg, of P: (for r small enough) the complementarity constram(s) s (x) < 7, i € Is(X), arenot active(cf.
Section 2 for a definition of;s(X)). More precisely,

X)) =s(%)=0, VielsX),

is true. This fact can also be deduced from Corolfary 8f1 Section 3). In particular, in the case= I,5(X) (for all small

7 > 0) the solutiorg, of P: coincides with the solutioR of P. In Hu and Ralph([8] the following parametric version®@has
been studied.

P: minf(x7) st gix,7) > 0, jel
rnx,-s(x,) = 0, iel
rnx, o, sxrn > 0, iel

under the assumptiof, gj, ri, s € C? (wrt. all variables). Lek be a local minimizer oP(0) (i.e., T = 0). In contrast to our
perturbationP; in (3), under natural assumptions, the parametric progfém can be analyzed using the (smooth) Implicit
Function Theorem so that roughly speaking the perturba®on behavesnore smoothlghan the perturbatio®,. (In fact,

by using the result of Corollafy 3.1, the probld®ir) can be analyzed as the parametric version of the relaxed prdB4€r

(see Corollary 3]1)i.e. it can be treated as a standard parametric optimization problem.) In particular under the assumption
that MPEC-LICQ and MPEC-SOC holdsxathe value functiorp(z) of P(7) is differentiable at = 0 implying

lo(T) — ¢l = O(7)

and a similar behavior for the minimizers. This contrasts withmiblesmoothbehavior¢(t) — ¢| = O(4/7) for the perturbation
P: (see Examplg2]1 and Corollgry b.1).

REMARK 1.1 For numerical purposes it is convenient to model the constra{ms (X) = t andr;(x), s (x) > 0 equivalently
by a unique constraing, (r; (X), S (X)) = 0 whereg, is a so-called parameterized NCP-function (egg[3] and [€]).

REMARK 1.2 We emphasize that all results in this paper remain valid for probReoastaining additional equality constraints
¢ (X) = 0 if we assume additional linear independence of the grad¥ntx). To keep the presentation as clear as possible we
omit these equality constraints.

The smoothing approadh, is directly connected with the interior point method for solving finite optimization problems (FP).
To solve a program

FP: minf(x) st g;x)>0, jeld
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one tries to solve the perturbed KKT-system

0
T, Vjeld

VEx) = Vigxu
gj (X

andu;, gj(x) > 0. This is a special case of a feasible set of a prolfRerfincluding equality constraints). In Orban and Wright

[20] the convergence behavior of solutions . of E, has been analyzed (via properties of the log barrier function) also for

the case that the strict complementarity condition (SC) is not satisfied at the saiufiasf Ey. Here also a convergence rate

O(4/7) has been established (under the weaker MFCQ assumption). So the results of Section 5 can be seen as a generalization
of (some of the) results in [20].

E,:

2. Motivating examples and regularity conditions We begin with some illustrative examples and formulate regularity
conditions to avoid some negative convergence behavior.

EXAMPLE 2.1 min Xg+X% St X% =0, X;,X%X >0.

Here the seff, convergeso the set¥ and the solutionZ, = (4/z, 4/7) of P, converges to the solutidh= 0 of P with a rate

% — Xl = v2- yTandlg, — ¢| = V2 /7.

EXAMPLE 2.2 min(x;—1)2 st X-€X4 =0, X,e*>0,g(X) :=x >0.

Here ¥ = {(X, 0) | X, > 0} coincides with the sef of minimizers. The feasible sef, = {(x;, t€") | X, > 0} however does
notconvergeto . The (unique) minimizer of, is given byX, = (—Int, 1), implying d(X., §) — oco. The problem here is
that the feasible set is not compact.

In the next example (from a preliminary version|[of[16]) the perturbed feasiblg sesmallerthan 7.

EXAMPLE 2.3 min (x3 —1)2+x3 st X% =0, X;-X%=0, X;,X, X >0.

The minimizer is given b = (0, 0, 1). The feasible sef, is smallerthan & and the (unique) minimizex, = (2r,1/2,1/2)
does not converge ta The problem here is that the feasible $etloes not satisfy MPEC-LICQ (at any poit, x,, X3) € F,
see[(6)).

In the following example the feasible st behaves well but the rate of convergencd|xf— X|| is arbitrarily slow.

EXAMPLE 2.4 minx; +x st X -%=0, X;,%>0

with g > 0. The minimizerx = (0, 0) of the problem and the solutions &%, X, = ((f/q)l/(qﬂ), ql/(q+1)fq/(q+1))’ show the
convergence ratgx, — X|| = O(¢¥/@*D),

In the sequel we are interested in the convergence behavior and the rate of convergence
F—F, ¢.—>¢ and X, —->X%X if 7—0,

for the feasible sets, the value functions and the solutiodarfid P,. To avoid the negative behavior in the Examples 2-4 we
need some (natural) assumptions.

Firstly, motivated by Example 2.2, we assume throughout the paper that the feasible sets are compact. Note that in practice
this does not mean a restriction since it is advisable to add (if necessary) to the congifaints 0 , e.g. box constraints,
x| < K, v=1,...,n, for some large numbdf > 0. So, in the sequel we assume that forral 0

F.cX whereX c R" is compact 4)

Under this condition, in particular, global solutions®fand P, exist (unless the feasible set is empty). Moreover we assume
throughout the paper that all functiofisg;, ri, s are fromC?(X, R). Then, in particular, the functions are Lipschitz continuous
on X, i.e, there is somé& > 0 such that

1f (%) — f0l < L- X=X VR xe X. (5)

To avoid the bad behavior in Exampple2.3 we have to assume a constraint qualification for the feasible set. To do so, for a point
x € F we define the active index selgx) = {j € J| gj(x) =0}, Is(X) ={iel (X)) =s(X) =0}, I, (X)={iel|r(x) =

0, s(x) > 0}andls(x) ={i e | | ri(x) > 0,s(x) = 0}. We say that at the feasible poxEe ¥ the condition MPEC-LICQ

holds, if the active gradients

Vgi(x), j€IX), Vrix), iels(x)Ul(x), Vs(X), e ls(X)Uls(x) (6)
are linearly independent.

As we shall see later on, this condition will imply that locally arounthe set?, converges to the sef with a rateO(/7).
To assure the global convergence we have to assume that MPEC-LICQ holds globatlyat MPEC-LICQ is fulfilled
at every pointx e F. We emphasize that this assumption is generically fulfilled as will be shown in the next seatfon. (

Theorenj 311).
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3. Optimality conditions for minimizer of P In this section we are interested in necessary and sufficient optimality
conditions for local minimizers of. New characterizations for minimizers of order one are given and known optimality
conditions for solutions of order twaf, e.g, [12] and [16]) are extended. We also review the genericity results for problems
P in [16] which will play an important role throughout the article.

Recall thaix € ¥ is said to be a local minimizer d® of orderw > 0 if in a neighborhood, (X), ¢ > 0, of X with somex > 0:
f(x) > £(X) +«lx=X||” vxe F NB:AX) . (7)
The pointx is called a global minimizer of ordes if we can choose = oc.
Perhaps the most natural way to obtain optimality conditions for P is to consider the MPEC problem as a problem which is

piecewise built up by finitely many common finite programs. To this end et¥ be given. For any subsé c 1,s(X) we
definel§ = Is(X)\ lo and consider the common finite optimization problem

P, (X) : min f(x) s.t. gix = 0, jeldX®
" rx)=0,s(x) > 0, i€l
nx)>0,sx) = 0, iel§ (8)
nx) = 0, iel (X
sxX) = 0, ielsx)

With the feasible setg,,(X) of P, (X), obviously, the followingpiecewise (or disjunctivejescription holds (see alsog. [12,
Chapter 4],[[15, p.6]).

LEMMA 3.1 LetX be feasible for P. Then we have:
(@) There exists a neighborhood (&) (¢ > 0) of X such that

FnB®= |J (H®NB.®X).
loClrs(X)
(b) The pointx € ¥ is a local minimizer of ordet» of P if and only ifX is a local minimizer of ordew of R, (X) for all
lo C Lis(X).

By this lemma, all optimality conditions and genericity results for the common probigy(s) directly lead to corresponding
results for the complementarity constrained progfariio do so, let us recall some notatidd, (X) denotes the cone ofitical
directionsfor Py, (X) atX,

Vixd < 0, Vgixd = 0, jeldX
vrix)d = 0, VsXd > 0, ielg
C,(X)=1deR"| Vri(xd > 0, Vsxd = 0, iel§ (9)
vxd = 0, iel.(X)
VsX)d = 0, ielgX)

The pointX € #,(X) is called aKarush-Kuhn-Tucker point (KKT pointdr P, (X) if there exist multipliersy, p, o such that

VikX v, pi0) = VIR = D yVgiR— D [a V() +0iVs(X)]
jed(®) ielrs(X)
- D aVi® = D> oiVs(x) =0 (10)
el (X) iels(X)
and i >0, jeJ(X), pi >0, iel5,0i>0,i€lg, (11)

whereL denotes thé.agrange functioras usual. The vectdi, y, p, o) is then called &KT solutionof P, (X) and thestrict
complementary slackneissaid to hold if

(SG,(X)): ¥i>0,jedX®, pi>0iel§, o0i>0ielg,
and thesecond order conditioif
(SOG,(3): d"VIL(X,y, p,0)d>0  Vde C (X)\{0}. (12)
We now introduce some notation f& We define
G= |J c,® (13)
loClrs(X)

and callx e 7 a MPEC-KKT pointof P if X is a KKT point of P, (X) for all Iy C I;s(X). A vector(X, y, p, o) is said to be
a MPEC-KKT solutionof P if it is a KKT solution of P, (X) for all I, C I;s(X). Note that for a MPEC-KKT solution oP
from (17) it follows that

(I0 holdswith y;>0, jeJ(X), pi>0,0i>0,i€ls(X. (14)
We say that such a MPEC-KKT solution satisfies stiict complementary slacknefss MPEC if
(MPEC-SC) : yi>0,jedX, p>0,0>0i€els(X). (15)
and thesecond order conditiofor MPEC if
(MPEC-S0CQ): d"V2L(X, y, p,0)d >0  vde Cx\{0}. (16)

Note that (wrt. the conditions fqsi, o; in (I5)) the condition SCif., I;s(X) = #) is stronger than MPEC-SC . By definition,
the condition MPEC-LICQ ax means that the common LICQ condition holdXdbr all problemsP,; (X).
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REMARK 3.1 In the context of MPEC problems there are different concepts of stationarity (or Fritz-John-, KKT-points) (see
e.g.[15]). We emphasize that all these concepts coincide if the MPEC-LICQ assumption tol@san the weaker SMFCQ).

In this caseX is a MPEC-KKT point= X is a B-stationary poine> X is a strong stationary poinef, [15, Th.4]). Therefore

in this paper we will use the term MPEC-KKT point.

If at a MPEC-KKT pointX the condition MPEC-LICQ holds then there is a unique corresponding MPEC-KKT solution
(X, y, p, o) (same unique multiplierg, p, o for P and all P, (X)). Moreover it is not difficult to see that in this case theGgt
simplifies (se€[(9) an (13)) to the cone:

vgid 0 if Vi Z 0 je®
vid  Z 0 i o 0 iels®
Cr= oy = . ~ o (17)
Vs (X)d - 0 if o —_ 0 iels®X®
ved = 0, iel(X)
Vsd = 0, ielgX)

We now sketch some genericity results for probl@mLet in the sequel all functions, g;, s, ri be in the spac€?(R", R)
endowed with theC2-topology (strong topology, cf. Guddat.al. [7, p.23]). Then, for fixed, m, g, the set of all problem®
can be identified with the s&t := {(f, g, s, r)} = C2(R", R)%2™1 We say that a property holds generically fif it holds

for a (in theC2-topology ) dense and open subggtof . From the well-known genericity results for the proble®s(X)
(see Guddatt.al. [[7]) we directly obtain via the@iecewise formulatiom Lemmg 3.1 the following genericity results (see also
Scholtes and $tr [16]).

THEOREM 3.1 There is a dense and open (generic) sul&etf 2 such that for all MPEC problems B %, the following
holds. For any feasible point& F the conditionMPEC-LICQis satisfied and for any local minimiz&rof P the conditions
MPEC-SCand MPEC-SOCare fulfilled.

REMARK 3.2 We shortly comment on the genericity concept. A generic subsef 7 is an open and dense subset. Dense
means that any MPEC problem frofhcan be approximated arbitrarily well by a problem in thecé) generic set?,. The
openness implies stabilitye., if we have given a probler® from the generic se, then all sufficiently smalC2-perturbations

of P remain in the set?. In other words when dealing with a MPEC problem theoretically or numericallgareexpect
(generically) that the problem has the structure of a problem in the (nice) generic set and a general purpose solver for MPEC
should be designed in such a way that it is able to deal (at least) with all situations encountered by problems in the generic set
P. A problem which is not in the generic set can be seen as an exceptional case.

As an example of a typical genericity result, it can be shown that generically the Newton-method can be applied to solve
nonlinear equation& (x) = 0 (seel[7, Chapter 2]) in the following sense: For a generic set of funcBoa?(R", R") the
regularity conditions dé¥ F (X)) s 0 holds at all solutionX of the equatiorF(X) = 0.

We now give some optimality conditions for MPEC problefgsee also [12],[15]). It is well-known (sele [15, Th.2,Lem.2]
that any minimizer of[({L) which satisfies MPEC-LICQ (or the weaker SMFCQ) must necessarily be a MPEC-KKT point.

From thepiecewise descriptionf P we obtain the following characterizations for minimizers of order one. In the context of
MPEC problems these results are new.
THEOREM 3.2 (primal conditions of order 1) For a pointX which is feasible for P:
Cx={0} = Xisa (isolated) local minimizer of ordes = 1 of P.
If MPEC-LICQholds atx, also the converse is true.

PrOOF.  Itis well-known (seee.qg. Still and Streng[[19, Th.3.2, Th.3.6]) th&@,(X) = {0} implies thatx is a (isolated) local
minimizer of order 1 ofP,(X) and under LICQ the converse holds. Recall that MPEC-LICQ coincides with the common
LICQ condition for P, (X). With regard to the definition o€ in @) the result follows from Lem@.l. O

THEOREM 3.3 (dual conditions of order 1)LetMPEC-LICQhold atx € . Thenx is a (isolated) local minimizer of order
o = 1 of P if and only if one of the following equivalent conditions (a) or (b) is satisfied :

(a) VI (X) € int Qx where

Qx= d= > Vg + D [aVnE +aVs®@]+ > pVr)

jed(xX) iels(X) il (X)

+ D 6Vs(® , ¥20, €I, p>0,0>0iclsX) .

iels(X)

(b) The vectox is aMPEC-KKT point with (unique) multipliery, p, o such that| J(X)| + 2|l;s(X)| + |1 X)| + | Is(X)| = n
andy; >0, je J(X), p>0,0i >0, i € I5(X), i.e, MPEC-SCholds.
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ProOF It is well-known €f. e.g. [19]) that the primal conditiorC,,(X) = {0} is equivalent with the conditio¥ f (X)
int Q,(X) where

Q0 = {d= > yVgi®+ D [aVN0+aVs®]+ D pVrnx)

jed®x) iels(X) il (%)

+ D oiVs(X) . 20, jed®, p=0icl, 0>0 iel.
iels(X)
By Lemmg 3] this yields (a).
(b) We now prove under MPEC-LICQ : (& (b). Note that the direction&" is evident. To prove the converse let us assume
thatV f (X) € int Qx but|I(X)| + 2|I,s(X)| + |1 (X)| + |Is(X)| < n. The latter means that there exidte R" such that ¢ S,

S i=span{Vg;(X), je I(X), Vri(X), i€ ls(X) UL (X), Vsi(X), i € Is(X) Uls(X)}.
Note that since in particulax is a MPEC-KKT point it followsS = span{{—V f(X)} U §}. Consequently for any > 0,
ed ¢ span{{—V f(X)} U S} and thusV f (X) + ed ¢ spanS, in contradiction to (a). Let us now assume that MPEC-SC does

not hold, sayy; = 0. Then by MPEC-LICQ for any > 0 the vectoV f (X) — ¢Vg:(X) is not contained irQ x a contradiction
to (a). |

We now give a characterization of minimizers of order two. We refer t0 [15] for similar necessary and sufficient conditions
(under weaker assumptions).

THEOREM 3.4 (dual conditions of order 2) Let MPEC-LICQhold atX € F and assume £~ {0} (i.e., in view of Theo-
rem[3.2,X is not a local minimizer of order 1). Thenis a (isolated) local minimizer of ordes = 2 of P if and only ifX is a
MPEC-KKT point of P such that with (unique) multipliegs p, o the conditionMPEC-SOCholds.

(Under this conditiorx is locally the uniqueMPEC-KKT point of P.)

PROOFR Cx # {0} impliesC,, (X) # {0} for (at least) one sdp C |;s(X) so thaiX is not a local minimizer of order one &, (X)
(see the proof ofTheore‘ 2) and thus noPdef. Lemmg3.1). By[[1B, Th.3.6] (under MPEC-LICQ) (for atyC |s(X))
X is a (isolated) local minimizer of order 2 & (X) iff X is a KKT point for P, (X) satisfying [I2). Under this condition, by
[19, Th.3.23] X is locally the unique KKT point of,(X). Again the result follows from Lem 1. O

Note that in view of the genericity result in Theorfm|3.1 we can state:
generically each local minimizer @ has either orde®» = 1 or orderw = 2. (18)

It is interesting to mention that with the common finite problem (a relaxatid®) of

Pr(X) : mxin f(x) s.t. gix) > 0, jeld®
nx) =0, s(x) = 0, iels(X

rx)y = 0, iel®X (19)
s(xX) = 0, ielX

the following is true €f. also [15]).

COROLLARY 3.1 LetMPEC-LICQhold atXx € F. ThenX is a local minimizer of ordew = 1 or w = 2 of P if and only ifx
is a local minimizer of ordetw = 1 or w = 2 of Pr(X).
(Recall that generically each local minimizer of P is either of order 1 or of order 2.)

PrROOF Under MPEC-LICQ any local minimizét of P must be a MPEC-KKT point oP with unique multipliersy, p, o
Note that by[(TB)XX, y, p, 0) is also a KKT solution oPz(X) with the same Lagrange functidr(x, y, p, o). Moreover the set
of critical directions forPr(X) coincides withCy (see[(I})). So the first order optimality conditiG = {0} (cf. Theorenj 3.p)
and the second order conditiores. (Theorenj 3.4) foiP and Pr(X) coincide. O

4. The convergence behavior of the feasible set. In this section we consider the convergence behavior of the
feasible setf, from a local and global viewpoint. The local convergence relies on a local MPEC-LICQ assumption and the
global results are proven under a global assumption.

We begin with an auxiliary result.

LEMMA 4.1 For x, € F andt — 0t follows d(x,, £) — 0 uniformly: To anys > 0 there existsy > 0 such that for all
0 < t < g and for all x, € % the bound dx,, ¥) < ¢ holds.

PROOF  Assuming that the statement is not true, there must existO and a sequence, € ¥, such that fort — 0,
d(%., F) > y.

Due to the compactness assumpt[gn (4) we can choose a convergent subsgguenge= X. The conditior; (X, )s (X;,) =
7,, 0j(X;,) > O together with the continuity of the functioms s, g; leads forz, — 0 tor;(X)s(X) = 0 andg;(X) > 0, i.e,,
X € F, a contradiction. O



6 Mathematics of Operations Research (), p@)20 INFORMS

To prove our main results on the behavior®fwe make use of a local (local) diffeomorphism. The idea is to transform the
problem into an equivalent problem with simpler structure so that the proofs of the results become technically much simpler.
However this approach relies on the MPEC-LICQ assumption. Such a transformation has been mentiohed in [16] to illustrate
the local behavior off,. Here we present a complete global analysis.

Consider a poink € ¥ satisfying MPEC-LICQ with| J(X)| = 0o, |l1s(X)| = pwherep<m,gp < gandm+ p+ Qo < n.
Wlog. we can assume

JX) ={L,....0} s ={1,....p}, ) ={p+1,....m, Is(X)=0.
By MPEC-LICQ the gradient¥g;(X), j € J(X), Vri(X), i=1,....m Vs(X), i=1,..., p, are linearly independent and we

can complete these vectors to a basiBbby adding vectors;, i = m+ p+qgo+1, ..., n. Now we define the transformation
y=T(x) by
yi = ri(x), i=1...,m,
Yitm = S(X), i=1...,p,
Ymipri = Gi(X), | =1...,0, (20)
Yo = o (X=X, i=m+p+g+1,....n.

By construction, the JacobidfT (X) is regular andr defines locally a diffeomorphism. This means that there exists (X) >
0 and neighborhoodB, (X) of X andU,(y) := T(B.(X)) of y = 0 such thafTl : B.(X) - U.(y) is a bijective mapping with
T,T-'eCl T(X) =yand fory = T(x) it follows:

Ymipej = 0 J=1...,0
ViYmi = T !:1,...,p
xe FNB.(X & Y-85y =t i=p+l...m ., yeUJ(y,
yi > 0 i=1,....,m
Yoii = O i=1...p

where§(y) :==s(T"H(y) =s(® >0, i=p+1,...,mandgj(y) == g(T¥) =¢i(X) >0, j=qp+1,....q

In particular, sinceT is a diffeomorphism, the distance between two points remains equivalent in the sense that with constants
O<k_ <Ky

k-lYr = Yall < 1% =Xl < killyr— Yoll VX1, % € Bo(X), y1=T(X1), Y2=T(X) .
So (after applying a diffeomorphisif) we may assumg = 0,

gi(X) = Xmiptj _J':l,---v%
rx)y = X i=1,...,m (22)
S(X) = Xmyi i=1...,p,
¢:=5(X) >0, i=p+1....m (22)
and that there is some> 0 such that
i) =Xmiprj > O .J'=1,---,QO
h(X) =X Xmi = 1 i=1....p
xe FNBX & hX)=x-s(X) = = i=p+1....,m (23)
i > 0 i=1,....m
Xmii > O i=1,....,p-
By choosings small enough we also can assume
s
s(x)z%‘, i=p+1....m VxeB./(X). (24)

By making use of the previously described transformation we are now able to prove the local convergence rEsult for

LEMMA 4.2 LetMPEC-LICQ hold atx € .
(@) Then there exist, 7o, @, B > 0 such that for all0 < t < 7 the following holds: There exi®t, € ¥, with

% =Xl < av/T (25)
and for anyX, € %, N B,(X) there exists a point, € ¥ N B.(X) satisfying
% =%l < BV . (26)

Moreover, if SC holds at the statements are true wit}ir replaced byr.

(b) If the condition SC isot fulfilled at X then the convergence ra(,/7) in ) is optimal. More precisely, there is some
y > O such that for allx, € ¥, the relation||X, — X|| > y+/z holds for all smallr.

PROOF (a) Let MPEC-LICQ hold ak € . As discussed before (after applying a diffeomorphism) we can assume that
X = 0 and that in a neighborhod8l (X) of X the setB, (X) N ¥, is described b){ES). To construct a suitable elenxért 7, we
fix the componentsy = xt,,; = /7, i=1,..., pandx' =0, i =m+ p+1,..., n. From [23) we then find

0 jzl,...,qO
T i=1,...,p
T i=p+1...,m,

g;(X%)
hi (x)
hi (X7) = X7 - S (X7)
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where the first two relations are already satisfied. So, we only need to consider the remaining equations

hX) :=x -s(x)=1, i=p+1....,m 27)
which (for fixed r) only depend on the remaining variabiés- (Kppas + -+ Xin)- For X = 0 the gradient&/h;(0) = 5(0) =
ec’, i=p+1,...,m(ct. @)), are linearly independent. As usaldenote the unit vectors. So, the functionR™ P —
R™P, h= (hpy1, ..., hn), h(0) = 0 has locally neak =0 aCl-inverse such that (for smat) the vectorX* := h~1(e ) (with

(e=(1,...,1) e R™P) defines a solution of (27). Becauselof(0) = 0 it follows || X*|| = O(x).
Altogether, with the other fixed componengs this vectorx® defines a feasible poinf € 7, which satisfies
X =X|| < 0(W7).

We now prove[(2p). As shown abovef((23)) for somes > 0 the pointx, € B.(X) is in 7, if and only if x := X, satisfies the
relations

gi(¥) =Xmiprj > O i=1...,0
() =X Xmi = 7 i=1...,p
hX)=x-s(x) = i=p+1,...,m.

Obviously, mirX;, Xmi} < /7, i=1,..., p,sothatwlogx < /7,i =1, ..., p. By (24) forx = X, € B.(X) it follows
T

T .

Xi

Given this element = X, € F, we now choose the poiit of the formX, = (0, ..., 0, Xmy1, ..., Xy) Which is contained irfF .
By using [28) andi < /7, i =1,..., p, and by puttingcs = min{c?/2, i = p+1,..., m} we find k= X,)

2
IR =%l < [pr+(m—p) % <0WT) .
S

Let now SC be satisfied ate F (see[(?)). Then locally i, (X) the set¥, is defined by X = 0)

v R e S 2
wheres (x) > ¢/2 for all x € B.(X). As in the first part of the proof we can fix the coefficientsxbby x* =X (=0), i =
m+ 1, ..., n, and find a solutiox = x* € %, by applying the Inverse Function Theorem to the remaimirgguations

hX) =xs(X)=1, i=1,...,m,
only depending on the remaining variables= (xq, ..., Xn). This provides us with a solutiox of (29) satisfying
X" =X = O(r) .

On the other hand for any solution:= X, of (29) in B.(X) the pointk, = (0, ..., 0, Xmi1, ..., X,) is an element inF with
1R = X || = O(7).

(b) Suppose now that SC is not fulfilledti.e., for someig € {1, ..., m} (see (a))
hi (Y) = yio . Xm+i0 =0 with Yio = Xm—}—ig =0.
Then neax any pointx” € #, must satisfyx’ - Xi,,;, = 7 which implies & = 0)
X" =X > maxxt, , X} > V7 -
Recall that (because of the diffeomorphism applied) this inequality only holds up to a constaht |

Lemmg 4.2 yields the local convergence®fnear a poink € F. We now are interested in the global convergence behavior
(on the whole compact s, cf. (@)).

LEMMA 4.3 LetMPEC-LICQ hold at each poink € F. Then there arey, «, 8 > 0 such that for all0 < 7 < 14 the following
holds: For eachx € ¥ there existX, € ¥, with

I%: = XI| < avz (30)
and for anyX, € ¥, there exists a point, € ¥ satisfying

Moreover, if SC holds at alt € F the statements are true witlit replaced byr.

ProOFR  We firstly prove[(3]L). To extend the analysis from the local to a global statement we have to apply a compactness
argument. Recall the local transformation constructed above near anypoifit(seq 2B)). The unioby. s B.(x (X) forms an

open cover of the compact feasible getc X. Consequently, by definition of compactness, we can choose a finite teyer,
pointsx, € F, v=1,..., N, such that witre, = ¢(x,) the setU,_; _nB:, (X,) provides an open cover ¢f and withg, > 0
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the corresponding conditiop (26) holds. By definlag F) = {x € X | d(x, ¥ ) < ¢} we can choose somg > 0 (small) such
that

Bo(F)C | J Ba(x)

By choosinge = g9 andtg in Lemmg 4.1 we find for all & 7 < 7q:

FCBy()c |J B.x).

v=1..N

The second convergence res[ilf|(31) now directly follows by combining the finite cover argument with the local convergence
and by noticing that we can choose as convergence constant the nirstram{g, , v=1, ..., N}.

To prove [[3D) we have to show that the following sharpening of the local bpud (25) hold:eFprthere existro > 0, ¢ > 0
such that for anx € F N B.(X) and for any 0< 1 < 10 there is a poink, € 7, with

% — X|| < an/T . (32)

Then a finite cover argument as above yields the global reldtign (30). We only sketch the pfodf of (3R [Febe fixed.
In the proof of Lemma 4]2(a) we made use of a local diffeomorphig(w) leading to relation[(35). This transformatidi
is constructed depending on the active indexIg&X) := I,s(X) U I,(X) U Is(X) U J(X) (see[(2D)). For anx nearx we have
la(X) C la(X) and there are only finitely many choices =1, ..., R, for I, = [,(x). So if we fix1,, I, C [.(X) any pointX
nearx yields a local diffeomorphisrif; which depends smoothly ot(see the constructiop (R0)). So we find a common bound:
There existy,, ¢, > 0 such that for anx € ¥ N B, (X) with 15(X) = 1,, there is a poink, € #. such that (for alk small)

X — XI| < /T
Then by choosing = min{e,, | © =1, ..., R} ande = min{e,, | 1 = 1, ..., R} we have shown the reIatio@SZ). O

Note that Lemmf 4]3 proves that the convergence in the Hausdorff distance

A, F) = max{m@_x d(X;, F) max d(x, F)}
between¥, and ¥ satisfiesd(%,, F) = 0(J/7).

5. Convergence results for the value function and for the solutions oP, Let in this sectiork € # denote a
global or local minimizer of® andX, a nearby local solution of;. Recall that by our compactness assumptipps (4) a global
minimizer of P, always exists (assuming, # ).

In the present section we are interested in the convergence behavior and the convergence rate
¢:—> ¢ and X, > X if t—>0

for the value functions and the solutions®fand P,. From a viewpoint of parametric optimization to assure convergence the
following assumptions are needed.

Ai. There exists a (global) solutionof P and a continuous functiom: [0, c0) — [0, 00), «(0) = 0 such that for any > 0
(small enough) we can find a poixt € 7, satisfying

X =Xl < (7).

A,. There exists a continuous functighn [0, co) — [0, co), B(0) = 0 such that for any > 0 (small enough) the following
holds: We can find a (global) solutio of P, and a corresponding poift € ¥ such that

||)2, _?T” < ﬂ(t) -

tinuity (see Lemm2). To show this we have to use that by Lemnpa 4.2 the condjtisrsatisfied withe(t) = O(/7) if
MPEC-LICQ holds at a (at least one) solutivi § and (see Lem .2),Aolds with8(7) = O(/7) if MPEC-LICQ is
satisfied at alk € S.

It now appears that Ais connected to the upper semicontinuityt,a)f:and 7:) (see Lemmf 5]1) and Ao the lower semicon-

LEMMA 5.1 LetMPEC-LICQhold at a pointx € § (at least one). Then:
(@) There exist constants+ 0, @ > 0 such that for allr small enough the relation

¢ — ¢ < La(7)

is true witha (t) = a4/7. If moreover SC is satisfied &tthe inequality holds witk(t) = .
(b) To anye; > Othere is some; such that

dX;,S) <&, forall X, €S, andforall0< < 1;.
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PrROOF (a) By Lemma 4R the relationyholds with the given functior(r). So with the solutiorx of P and the pointx,
in A; by using the Lipschitz continuity [5) we find
gr—¢ < ) = fX) < LlIx =X < L ().
(b) Suppose to the contrary that there is same0 and some sequeneg— 0 with corresponding,, € .S, satisfying
dX;,,$) > ¢. (33)

By compactness assumption without restriction we can assyme X. In view of Lemm it followsx € ¥ and from (a)
we find

f(Yt‘y) =@ <@+ La(z,) = ¢
and thusf (%) = ¢ implying X € .S in contradiction to[(3B). O

LEMMA 5.2 LetMPEC-LICQhold at every poink € §. Then the condition Ais satisfied with3(t) = B/t for somes > 0
(and withB(t) = Br in case that SC holds at afl € §) and there exists k= 0 such that for allr small enough:

—LB(t) <. —0.

PROOF.  The sets c X is compact and arguing as in the proof of Lenjma 4.3 it follows that B, (X) forms an open cover
of the setS. So we can choose a finite coverc U,—1 .k Be, (X)), X, € S, and defineB, () := {x ] d(X, S) < ¢}. Now we
chooses; > 0 such that

B.S)c |J B.(X).

v=1....K
By Lemmg5.1(b) there exists somg> 0 such that
X, € B, (8) forallx, € S, andforallO<t<1;.

By construction, for 0< 7 < 13, any pointx, € S, is contained in (at least) one of the baig (x,), v € {1, ..., K} (v =v,;) and
in view of Lemmd 4.P(a) we can choose a poipt F such that

”)’ir _Yr” < ,Bv\/E ( resp- < ﬂvf) 5

(B, corresponding t&,). By defining = min{8, | v = 1, ..., K} we have proven Aand with these pointg,, X, by using [($)
again we find
Pr— @ > f(xr) - f()A(t) > _Lﬂ(f) -
m]

To obtain qualitative results on the rate of convergence for the solutions P, we have to assume some growth condition
at the solutiorx of P. We will assume thax is a minimizer of ordew > 1 (see[(})). Sufficient and necessary conditions for
these assumptions are given in Section 3. Note that in this£as¢x}. For minimizers of ordew = 2 the next result,e., a
convergence (t/4), is also proven in[14]. (However with a different technique.)

COROLLARY 5.1 LetX be a global minimizer of P of ordes > 1 and letMPEC-LICQhold atX. Then|g, — ¢| < O(4/7)
and there is some & 0 such that for any global minimizet, of P, it follows

I% —Xl < ¢ v’ (34)
If SC holds ak /7 can be replaced by.
ProoF By Lemmg5.]l and 5]2 the convergence for the value fungtiaa immediate. Moreover the assumptionsaid A
hold with functionsx(z) = T etc. Then with the pointg, X, € ¥, X,, X, € % in A; and A we obtain
fX) < f(X) < F(X)+LB(T) < F(X)+L () < F(X)+ La(r)+ L ()

and thus
0< fR)— f(X) < La(r)+ L B(2).

Again by taking the poing, € 7 in A, in view of (7) this inequality yields

A ) f Ar — (% 1w
IR =% < ||x,—x,||+||xr—>*<ll£ﬁ<f)+(w)

IA

1
B + 75 (La(z) + LB(x) "
which in view ofw > 1, proves the statement. |

The preceeding corollary presents a result on the global minimizers which always exist. Rec@]l thadre compact (see
(). In the next corollary also the existence of local minimizers foisRestablished.
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COROLLARY 5.2 LetX e F be alocal minimizer of ordes» > 1 of P such thaMPEC-LICQholds atX. Then for anyt > 0
small enough there exist (nearby) local minimizersf P, and (for each of these minimizers) it follows:

%=X < 0(/7") .
If SC holds aik /7 can be replaced by.

PrROOF LetXbe alocal minimizer oP satisfying MPEC-LICQ . Then with sonfe> 0 (small enoughX is a global solution
of the problem restricted t@, N B;(X). Note that we have chosen a closed [B3lX) to assure the existence of a minimizer
By Corollar the statements follow for the problem restricte¢r,to Bs(X). But sinceX, — X for r — 0 the pointsx, are
also elements of the open E#(X), i.e., X, are local minimizers of the problent. O

We emphasize that in general (without SC), for the minimizewe cannot expect a faster convergence rate thayfr). More
precisely from Lemmp 4]2(b) we deduce that at a minimizef P where SC doesot hold the following is true with some
c,>0:

[%: — X|| > Co/T . (35)

If X is a local minimizer of ordew = 1 the optimal convergence ra&, — X|| < O(/t) occurs ¢f. Corollary|5.2) (optimal,
unless SC holds). Recall that generically all local minimizer®afre either of ordew = 1 or w = 2 (see[(1B)). We give a
counterexample for the remaining case- 2.

EXAMPLE 5.1 minxé + X%, St X% =0, X,% >0,

i.e, r(xX) = X1, S(X) = %2. The minimizerx = (0, 0) is of orderw = 2 and it is a MPEC-KKT point satisfying the KKT
condition Vf(X) = 0. Vr(X) + 1- Vs(X). So, the MPEC-SC condition is not fulfilled. Here, the minimizersPpfread:

X, = ((2)3, (21)3).

The preceding example (see alsa [14]) shows that at a local minim&ferder two even under MPEC-LICQ the convergence

rate for||X, — X|| can be slower tha® (/). Note however that this example is not a generic one since the MPEC-SC condition
does not hold. We will now show that in the generic case this bad behavior can be excluded. More precisely under the condition
MPEC-LICQ , MPEC-SC and MPEC-SOCHtve prove that the minimizes. of P, are (locally) unique and the@ptimal
convergence ratgX, — X|| = O(/7) takes place. The proof again makes use of the local transformation of the problem into an
equivalent simpler onecf,, Section 4).

THEOREM5.1 LetX be a local minimizer of P such thMPEC-LICQ, MPEC-SCand MPEC-SOCholds. Then for all
7 > 0 (small enough) the local minimizexs of P, (nearX) are uniquely determined and satigffy, — X|| = O(J/7).
The same statement holds for the global minimizemsdX, of P and R, respectively.

PrOOF.  To prove this statement we again consider the prolfein standard form (see Section f,[23)),

h() =% Xni = T i=1,...,p
h(X) =X -spi(X) = © i=1,....m—p
P. : min f(x) s.t O(X) =Xntp+i = O i=1...,0 (36)
Xis Xmii = 0 |=1,,p
X,s(xX) > O i=p+1,....,m

whereX = 0 is the local solution 0P, with sp4i(0) =¢’ > 0, i=1,...,m— p. Under MPEC-LICQ , the KKT condition for
X reads

P m—p Y%
VIiEX) - Z(Vile + Vi2+me|+m) - z )’igeeri - Z V?em+p+i =0 (37)
i=1 i=1 i=i
with multiplier vector(y*, y2, y*) > 0, by MPEC-SC . So ir] (36) the functiof(x) has the form
p m-p %
fx) = Z(Vilxi + VimXiem) + Z Vo Xpsi + Zyi‘le+P+i +a(x) (38)
i=1 i=1 imi
where |q(x)| = O(||x||?). For convenience we now introduce the abbreviatiér= (X1, e Xp)s X2 = (Xl - » Xmp) s
X3 = (Xpits -+ s Xm)y X* = (Xmppids « -« » Xmipigo) @NAX° = (Xt prgorts - - - » Xn) @nd writex = (X2, ..., x®). In this setting the
tangent space &becomesly = span{e , i =m+ p+ 0o+ 1,...,n) (Tx = Cxcf. {I7)), MPEC-SOC takes the form
VZf(x) is positive definite orfy or VZ; f (x) is positive definite (39)
and [36) reads:
Por min )X+ AT+ )T+ DX +ax) st
o = 1 i=1,....p
Xospi(X) = T i=1...,m-p (40)
Xi4 = 0 = 1,..., o -

Note that by the conditiop* > 0, nearx, all inequalitiesx! > 0 must be active.
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The minimizersx; of P, are solutions of the following KKT system ¢f (40) in the variabigsa, «, v) (we omit the variable

%),

X1

Y1+ Vaq , XCV,aSpi1 . X pVxiSm 0
X

Xt P
Y2+ Veq | - . = X3V 2Spi1 . X3 pVs2Sm p—] 0 ]=0
Y+ Vyaq Xp XV,aSpi1 + Spra€l .. Xy pszsm + Snemn_p 0
]/4 + V,uq 0 0 0 X%V%Sp.;_]_ . m_ V,aSm v

Visa 8 8 8 XiVXSSpJA . x%_pvxssn 0

together with the constraints iﬂ40). In this system the ve@qars ., en_p are unit vectors ifR™P.
Now the trick is to eliminate the unknownand to simplify (regularize) the equatiors- x? = t as follows. We define
f/l = Vl + V)<1q [Xl x1Sp+1 -+ xlsm]ﬂ s
?2 = VZ + Veeq— [Xl x2Sp+1 -+ m—p xzsm]““
and note that due tp*, ¥ > 0 and|q(x)| = O(||x||?), nearx = 0, the vectors satisfy!, 7* > 0. So neak = 0 the functions
VP/y? o and PP/t
areC!-functions ofx. From the system we dedugg = x?;, 77 = x'A; and P2 = t(A)? or ik = 4/ n "' and finally
]A/iz/f’il VT, Xi2 = JA/il/]A/iz VT

So the system above can be subdivided into the two equations:

Xt - VIRV =0

X2 - wvi-Jt =0
(X3V,3Sps1+ Spia€r .. m oVaSm+Sprnp —  ¥¥—Veq = (41)

(Xl x53p+l XSST])/’L - V,sQ =0

x sp+. — T =0

Xt =0

and the system corresponding to the muItipﬁer

— (G V,5Sp1- - oVsSm + Y+ Vaq =v. (42)

The relatlon@]l) represents a systElrx un,t)=0 of n+ m— p equations im+ m— p + 1 variables(x, i, t). The point
(X, 7, T) With X=0,7 = 0 andix = (3/Sp11(X), ..., ¥3_,/Sm(X)) (recalls (X) > 0) solves.) The Jacobian with respect
to (x, w) at this point(x, 7x, ) has the form

xt o x? x3 xt X U
I 0 0 0 0 0
0 | 0 0 0 0

Sp+1
X X X X X
Sm
0 0 X 0 Viq 0
Sp+1
0 0 - 0 0 0
Sm
0 O 0 | 0 0

(X is some matrix of appropriate dimension; recéjlq(X) = 0). SlnceVZSq(x) is positive definite ¢f. )) ands (X) >

0, i=p+1,..., m we see that this matrix is regular. So we can apply the Implicit Function Theorem o the edtiation

which neart = O yields a unique solutiom(z), () differentiable in the parametgyz. This impliesx(t) = X+ 0(J/7)
u(t) =+ O(/7). Substituting this solutiom(t), () into the equatio | (42) determines the variahe). Since the (local)

minimizersx, of P, must solve the systems (41]), [42) cleaxly_ X(t) is unlquely determined. The unique multipliers wrt.

P, arev;(1) correspondlng to¢t = 0, pi(r) corresponding tocsp,i(X) = T and 7%, 2 belonging tox!, x2. This proves the

statement for the local minimizers.

If Xis a global minimizer we can argue as in the second part of the proof of Colfollary 5.2. Firstly by restricting the minimization
to a neighborhoo®; (X) the result follows as above. The compactness assumptidh ford the fact thak is a global minimizer
(of orderw = 2) exclude global minimizerz, of P, outsideB;(X). a

In the next remark we indicate that the result of Thedrer 5.1 is also true for C-stationary points.



12 Mathematics of Operations Research (), p@20 INFORMS

REMARK 5.1 LetX be a feasible point of the complementarity constrained prokifenit is called C-stationary point if the
condition @) holds with some multipligly, p, o), satisfyingy; > 0, j € J(X) andp; - 0; > 0, i € I5(X) (seee.qg. [15]). If
MPEC-LICQ holds ak the multiplier is uniquely determined. In this case we define

(MPEC-SQC): ¥i>0, jedX, pi-0i>0i€elsX).

(MPEC-S0OC): d"VAL(X, y, p,0)d #0  vd e Cr\{0}.
The genericity result in Theorem 3.1 then also holds for C-stationary points:
Generically in G at all C-stationary points of a problem P the conditidd®EC-LICQ, MPEC-SCand MPEC-SOChold.

By modifying the proof of Theorerp 5.1 in an obvious way (yge y? > 0 instead ofy!, 2 > 0 etc.) the statement of
Theorenf 511 is also true for C-stationary points:

LetX be a C-stationary point of P such thetPEC-LICQ, MPEC-SC and MPEC-SOC holds. Then for allt > 0 (small
enough) there exist (locally) unique stationary poirtof P, and ||X, — X|| = O(/7).

Note that C-stationarity is a weaker concept than the concept of local minimizers. As shgwm([15]) under a certain
MFCQ assumption & (which is weaker than MPEC-LICQ ) any local minimizer Bfis necessarily a C-stationary point.
Moreover the limit points of of a sequence of minimiz&rof P, (for r — 0) are typically C-stationary points .

We end up with some further observations.

REMARK 5.2 Let us note that from the results of this paper we also can deduce the convergence réesults of [14] for the relaxation
P= of Section 1 (under the stronger MPEC-LICQ condition).

Suppose we have given a local solutioof P such that MPEC-LICQ holds and with a corresponding KKT-solution MPEC-
SC , MPEC-SOC is satisfied.¢., by Theorenf 3} is a minimizer of ordew = 2). In view of Corollan[3.1L it is also a
solution of the relaxed problemg(X) in ) and by using MPEC-SC it follows that for the solutioh=f PS (nearX) (see
Section 1) the conditiong(x) s(x) < t,i € I5(X), are not active but that for atl > 0 small enough

ri()zr) =S ()2‘[) =0 s Vi e Irsg)’ (43)

holds. So to analyze the behavior of the solutipthe whole analysis can be done under the condifioh {48)we are in the
situation as for the case that the strong SC-condition holds. So instead of the convePgefoecf., e.g. Lemm) we
obtain arate () and in the same way the analysis in Section 5 simplifies resulting in a convergence béRavia = O(r).

REMARK 5.3 We wish to emphasize that the convergence results of this paper can be generalized in a straightforward way to
problemsP,, containing constraints of the product form

rOr2(x)---ry(x) =0, r1(x),r2(x), ..., 1,(x) 2 0.
Here at a solutioix of P, where all constraints are activej.e.,
X =rnX=...=r,(X) =0,

a perturbatiorm (X)r,(x) - - -r,,(X) = = will lead to a convergence rate
% = X|| ~ O(r"/*)

for the solutionsx, of the perturbed problem. Also all other results in the present paper can be extended in a straightforward
way to this generalization.
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