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4. Convex sets, convex functions
4.1 Convex sets

Recall the definitions of closed, compact sets P ⊂ Rn.

Def. A set P ⊂ Rn is called convex if

x, y ∈ P, λ ∈ [0, 1]⇒ x + λ(y − x) ∈ P

Ex 4.1 Any intersection of closed convex sets is a closed
convex set.

Def. Let H be a hyperplane H = {x | aT x = α} (with some
0 6= a ∈ Rn) and let P ⊂ Rn, y /∈ P. H is called a separating
hyperplane wrt. P and y if:

aT x ≤ α < aT y ∀x ∈ P

Lem.4.1 S ⊆ Rn is an intersection of closed halfspaces
⇔ for each y /∈ S there is a separating hyperplane w.r.t.
S and y.
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Th.4.1 Let ∅ 6= P ⊆ Rn be closed convex, y /∈ P. Then
there is a separating hyperplane, i.e. there exists
0 6= a ∈ Rn, α ∈ R such that

aT x ≤ α < aT y ∀x ∈ P

Cor.4.1 P ⊆ Rn is closed, convex⇔ P is an intersection
of (closed) halfspaces.

Def. H = {x | cT x = α} (0 6= c) is supporting P at a point
x0 ∈ P if:

cT x ≤ α = cT x0 ∀x ∈ P

Th.4.2 Let P ⊆ Rn be closed, convex and x0 ∈ P a
boundary point of P. Then there exists c 6= 0 such that:

cT x ≤ cT x0 (= max
x∈P

cT x) ∀x ∈ P

i.e. the hyperplane H = {x | cT x = cT x0} supports P at x0.
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The cone of positive semidefinite matrices.

Def. K ⊂ Rn is called a convex cone if:

x, y ∈ K , λ1, λ2 ≥ 0⇒ λ1x + λ2y ∈ K

Recall:
• Sn×n = {X ∈ Rn×n | X T = X} symmetric matr.

• K := {X ∈ Sn×n | aT Xa ≥ 0 ∀a ∈ Rn} p.s.d. matr.

Rem.: K is a closed, convex cone.

Consider the program: with C ⊂ Rn, convex, closed,

P0 : max cT x s.t. x ∈ C

By the Ellipsoid Method, P0 can be solved efficiently if the
check, y /∈ C, and the construction of a separating
hyperplane H wrt. C and y can be done efficiently.
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Semidefinite programs: c ∈ Rn,B,Ai ∈ Sn×n

SDP : max cT x s.t. B −
n∑

i=1

Aixi � 0

Rem.: Given Y ∈ Sn×n. Then the check, Y /∈ K , and the
construction of a separating hyperplane (in Sn×n) wrt. K
and Y can be done efficiently (by “Gauss”).
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4.2 Convex functions

Def. A function f : K → R, K ⊂ Rn a convex set, is called
convex if for all x, y ∈ K and 0 ≤ λ ≤ 1 one has

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y) .

It is called strictly convex if for all x, y ∈ K , 0 < λ < 1:

f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

Def. The epigraph of f : K → R is given by:

epi f = {(x, z) | z ≥ f (x), x ∈ K}

Ex.4.6 f : K → R is convex if and only if epi f is convex.
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Def. Let r ≥ 1, ai ∈ Rn, λi ≥ 0, i = 1, · · · , r ;∑r
i=1 λi = 1. Then

v =
r∑

i=1

λiai

is called a convex combination of the ai ’s.

Given V ⊂ Rn, the set of all convex combinations of
vectors in V is called the convex hull of V ,

conv V = {
r∑

i=1

λiai | r ≥ 1, ai ∈ V , λi ≥ 0,

i = 1, · · · , r ;
∑r

i=1 λi = 1}

Rem. conv V is the smallest convex set containing V .
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Ex.4.9
(a) C ⊆ Rn is convex if and only if for any choice r ≥ 1,

ai ∈ C, λi ≥ 0, i = 1, · · · , r ;
∑r

i=1 λi = 1 we have

x =
r∑

i=1

λiai ∈ C.

(b) Given f : C → R, C ⊆ Rn a convex set. Then, f is
convex if and only if for any choice r ≥ 1, ai ∈ C,
λi ≥ 0, i = 1, · · · , r ,

∑r
i=1 λi = 1 we have

f
( r∑

i=1

λiai

)
≤

r∑
i=1

λi f (ai).
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The following Lemma allows to (often) reduce convexity in
Rn to convexity in R.

Lem.4.2 For f : F → R is convex if and only if for every
x0 ∈ F and h ∈ Rn

ph(t) = f (x0 + th)

is a convex function of t on the interval
I = Fh(x0) = {t ∈ R | x0 + th ∈ F}.

Lem.4.3 Let f : (a,b)→ R be convex and x0 ∈ (a,b). Then

ϕ(t) := f (x0+t)−f (x0)
t t 6= 0

is monotonically increasing in t . Moreover, the following
one-sided limits exist:

f ′−(x0) := lim
t↑0

f (x0 + t)− f (x0)

t
≤ lim

t↓0

f (x0 + t)− f (x0)

t
=: f ′+(x0)
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Def. f : Rn → R is Lipschitz-continuous at x0 if there is a
neighborhood Uε(x0) = {x | ‖x− x0‖ < ε} (ε > 0) and some
L ≥ 0 such that

|f (x)− f (x0)| ≤ L ‖x− x0‖ ∀x ∈ Uε(x0).

Th. 4.5 Let f : (a,b)→ R be convex, x0 ∈ (a,b). Then f is
Lipschitz continuous at x0.

Ex. Convex functions f : K → R need not be continuous at
boundary points of K : The function

f (x) =

{
0 , 0 ≤ x < 1
1 , x = 1

is convex on [0, 1] but not continuous.

Rem. Convex functions on (a, b) need not be
differentiable at x ∈ (a, b), see e.g., f (x) = |x|.
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Fact: Let f : (a, b)→ R be convex and differentiable on
(a, b). Then by L.4.3 for any x ∈ (a, b):

f (y) ≥ f (x) + f ′(x)(y − x) ∀y ∈ (a, b)

Def: [Generalization of the derivative]
Let f : (a, b)→ R be convex on (a, b). d ∈ R is called
subderivative of f at x ∈ (a, b) if

f (y) ≥ f (x) + d(y − x) ∀y ∈ (a, b)

The set of all subderivatives of f at x is the subdifferential
denoted by ∂f (x).

Ex.4.11. (a) Let f : (a,b)→ R be convex. Then for all
x ∈ (a,b) :

∂f (x) = {d ∈ R | f ′−(x) ≤ d ≤ f ′+(x)}.
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Th. 4.6 Let f : (a,b)→ R. Then

f is convex on (a,b)⇔ ∂f (x) 6= ∅ ∀x ∈ (a,b)

For f ∈ C1 this means:

f is convex ⇔ f (y) ≥ f (x) + f ′(x)(y−x) ∀x, y

Th. 4.7 Let f : (a,b)→ R be differentiable. Then

f is convex on (a, b) ⇔ f ′(x) is monot. increas. on (a,b)

Cor. 4.2 Let f : (a,b)→ R be twice differentiable. Then

f is convex on (a, b) ⇔ f ′′(x) ≥ 0 ∀x ∈ (a, b)
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4.2.2 convex functions in n variables

In what follows: Let f : U → R, U ⊂ Rn convex, open.

Def. Let f : U → R be convex on U. We call d ∈ Rn a
subgradient of f at x ∈ U if

f (y) ≥ f (x) + dT (y − x) ∀y ∈ U

The set of all subgradients of f at x is the subdifferential
denoted by ∂f (x).
(The concept of subgradient, subdifferential generalizes the
derivative.)

Prop.4.1 Let f : U → R be such that ∂f (x) 6= ∅ for all x ∈ U.
Then f is convex.

Th. 4.8 Let f : U → R be differentiable. Then f is convex
on U
⇔ f (y) ≥ f (x) +∇f (x)(y−x) ∀x, y ∈ U.
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Cor. 4.3 Let f : U → R be twice differentiable. Then
f is convex on U ⇔ ∇2f (x) positive semidefinite ∀x ∈ U.

Th.4.3 Let V = {v1, . . . , vk} ⊂ Rn and let the function
f : conv V → R be convex. Then

max
x∈conv V

f (x) = max
1≤j≤k

f (vj)

Th. 4.9 Let f : K → R be convex on the convex set
K ⊂ Rn. Then f is continuous on int K . More precisely, f is
Lipschitz continuous in each interior point x of K .

Th. 4.10 Let f : U → R, U ⊂ Rn open. Then

f is convex on U ⇔ ∂fx) 6= ∅ ∀x ∈ U

Ex.4.19 Let f : U → R, (U ⊂ Rn open), be convex, x ∈ U.
Then the subdifferential ∂f (x) is (non-empty) convex and
compact.
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5. Unconstrained optimization
Minimization problem: Given f : F ⊂ Rn → R,

(P) min
x∈F

f (x)

Def. x ∈ F is a global minimizer of f (over F) if

f (x) ≤ f (x) for all x ∈ F .

We call x ∈ F a local minimizer of f if there is an ε > 0
such that

f (x) ≤ f (x) for all x ∈ F , ‖x− x‖ ≤ ε .

and a strict local minimizer if with an ε > 0

f (x) < f (x) for all x ∈ F , x 6= x, ‖x− x‖ ≤ ε .

In Nonlinear (nonconvex) Optimization we usually mean:

• Find a local minimizer. (Global minimization is “more
difficult”).
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CONCEPTUAL ALGORITHM: Choose x0 ∈ Rn. Iterate
I step k : Given xk ∈ Rn, find a new point xk+1 with

f (xk+1) < f (xk ).
We hope that: xk → x with x a local mininimizer.

Definition Let xk → x for k →∞. The sequence (xk ) is:
• linearly convergent if with a constant 0 ≤ C < 1 and
some K ∈ N:

‖xk+1 − x‖ ≤ C‖xk − x‖, ∀k ≥ K .

C is called convergence factor.
• quadratically convergent if with a constant c ≥ 0,

‖xk+1 − x‖ ≤ c‖xk − x‖2, k ∈ N.

• superlinear convergence if

lim
k→∞

‖xk+1 − x‖
‖xk − x‖

= 0 .
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Geometry “of min f (x)”: For f ∈ C1(Rn,R)

Consider the level set Nα = {x | f (x) = α} (for some α ∈ R)
and a point x ∈ Nα with∇f (x) 6= 0. Then:

In a neigborhood of x the solution set Nα is a C1-manifold
of dimension n − 1 and at x we have

∇f (x) ⊥ Nα

i.e.,∇f (x) is perpendicular to Nα and points into the
direction where f (x) has increasing values.

Notation: In this Chapter 5 of the “sheets” the gradient

∇f (x) is always a column vector !!!!

Math. Prog. Ch.4,5 p 17



Example: the ‘humpback function’

min x2
1 (4− 2.1x2

1 +
1
3

x4
1 ) + x1x2 + x2

2 (−4 + 4x2
2 ).

Two global minima: (0.089 -0.717) and (-0.0898 0.717), and
four strict local minima.
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5.1 Optimality conditions

Lem.5.1 [Necessary optimality conditions]
Let f be a C2-function on Rn. Then each local minimizer
x ∈ Rn of (P) satisfies:

(a) (First order condition) ∇f (x) = 0

(b) (Second order condition)

dT∇2f (x)d ≥ 0 for all d ∈ Rn.

(i.e. ∇2f (x) � 0, posit.semi.def.)

Lem.5.2 [Sufficient optimality conditions] Let f be a
C2-function on Rn and x ∈ Rn such that

∇f (x) = 0 and ∇2f (x) � 0

Then x is a strict local minimizer of f .
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Theoretical method: (based on optimality conditions)
I Find a point x satisfying

∇f (x) = 0 (critical point)

I Check whether∇2f (x) � 0.

Minimization of convex functions

Th.4.4. Let f : F → R be convex, x ∈ F . Then

x is loc. minim. ⇒ x is glob. minim.

Moreover x ∈ F is (global) minimizer if and only if
I 0 ∈ ∂f (x) (for general convex functions)
I 0 = ∇f (x) (for C1 convex functions)
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5.2 Descent methods, steepest descent (f ∈ C1)

Def. A vector dk ∈ Rn is called a descent direction in xk if

∇f (xk )T dk < 0 (∗)

Rem. If (∗) holds then for any t > 0 small enough:
f (xk + tdk ) < f (xk )

Abbreviation: g(x) = ∇f (x), h(x) = ∇2f (x),
gk = g(xk ), hk = h(xk )

Conceptual DESCENT METHOD: Choose a starting point
x0 ∈ Rn and ε > 0. Iterate
step k: Given xk ∈ Rn, proceed as follows:

I if ||g(xk )|| < ε, stop with x ≈ xk .
I Choose a descent direction dk in xk : gT

k dk < 0
I Find a solution tk of the (one-dimens.) minimization

problem

min
t≥0

f (xk + tdk ) and put xk+1 = xk + tk dk . (∗∗)
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Rem. Minimization in Rn is reduced to (line) minimization
in R.

Steepest descent: (see Ex.5.7) use as descent direction

dk = −∇f (xk )

Ex.5.7 Assuming∇f (xk ) 6= 0, show that
dk = −[∇f (xk )]/‖∇f (xk )‖ solves the problem:

min
d∈Rn

∇f (xk )T d s.t. ‖d‖ = 1

L.5.3 In the line-minimization step (**) we have

∇f (xk+1)T dk = 0

For the steepest descent method this means:

dT
k+1dk = 0 (ziggzagging)
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Th.5.1 [Convergence result] Let f ∈ C1. Apply the
steepest descent method. If the iterates xk converge, i.e.,
xk → x then

∇f (x) = 0

Steepest descent applied to quadratic functions:

q(x) = 1
2xT Ax, A � 0, with (unique) minimizer x = 0

Ex.5.8 For quadratic functions the minimizer of
mint≥0 f (xk + tdk ) is given by tk = − gT

k dk

dT
k Adk

.

Th. 5.2 Apply the steepest descent method to
q(x) = 1

2xT Ax, A � 0. Then√
q(xk+1) ≤

(
λmax − λmin

λmax + λmin

)√
q(xk ).

Here, λmin > 0 is the smallest and λmax > 0 the largest
eigenvalue of A.

The proof is based on:
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L. 5.4 (Inequality of Kantorovich) Let A be a positive
definite n × n-matrix with eigenvalues 0 < λ1 ≤ . . . ≤ λn.
Then for any x ∈ Rn(x 6= 0) :

1 ≥
(xT x)2

(xT Ax)(xT A−1x)
≥

4λ1λn

(λ1 + λn)2
.

Rem. The next example shows that in general (even for min
of quadratic functions), the steepest descent method cannot
be expected to converge better than linearly.

Ex.5 .9. Apply the steepest descent method to

q(x) = xT
(

1 0
0 r

)
x , r ≥ 1

Then with x0 = (r , 1) it follows

xk =

(
r − 1
r + 1

)k

(r , (−1)k ) .

(Linear convergence with factor C = (r − 1)/(r + 1).)
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5.3 Method of conjugate directions

Case: f (x) = q(x) := 1
2xT Ax + bT x , A � 0 (pd.)

Idea. Try to generate dk ’s such that
(not only ∇q(xk+1)

T dk = 0 but)

∇q(xk+1)T dj = 0 ∀0 ≤ j ≤ k

Then, after n steps we have

∇q(xn)T dj = 0 ∀0 ≤ j ≤ n − 1

and (if the dj ’s are lin. indep.) ∇q(xn) = 0. So xn = −A−1b is
the minimizer of q.

L. 5.5 Apply the descent method to q(x). The following are
equivalent:

(i) gT
j+1di = 0 for all 0 ≤ i ≤ j ≤ k ;

(ii) dT
j Adi = 0 for all 0 ≤ i < j ≤ k .
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Def. Vectors d0, . . . , dn−1 6= 0 are called A-conjugate (or
A-orthogonal) if: dT

j Adi = 0 ∀i 6= j .

Ex. A collection of A-conjugate vectors
d0, . . . , dn−1 6= 0 in Rn are linearly independent.

Rem.: To obtain the conditions in L.5.5, simply try

dk = −gk + αk dk−1

Then dT
k Adk−1 = 0 implies αk =

gT
k Adk−1

dT
k−1Adk−1

.

Th.5.3 Apply the descent method to q(x) with

dk = −gk + αk dk−1 , αk =
gT

k Adk−1

dT
k−1Adk−1

Then the dk ’s are A-conjugate. In particular, the algorithm
stops after (at most) n steps with the unique minimizer
x = −A−1b of q.
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Conjugate Gradient Method

INIT: Choose x0 ∈ Rn, ε > 0, d0 := −g0;
ITER: WHILE ‖gk‖ ≥ ε DO
BEGIN

Determine a solution tk for the problem
(∗) min

t≥0
f (xk + tdk )

Set xk+1 = xk + tk dk .
Set dk+1 = −gk+1 + αk+1dk .

END

Ex.5.10 Under the assumptions of Th.5.3, show that the
iteration point xk+1 is the (global) minimizer of the
quadratic function q on the affine subspace

Sk = {x0 + γ0d0 + .. + γk dk | γ0, .., γk ∈ R}
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Case: non-quadratic functions f (x)

Note that for quadratic function f = q we have:

αk+1 =
gT

k+1Adk

dT
k Adk

=
gT

k+1(gk+1 − gk )

dT
k (gk+1 − gk )

=
gT

k+1(gk+1 − gk )

‖gk‖2
=
‖gk+1‖2

‖gk‖2

So, for non-quadratic f (x), in the CG-method, we can use
the formulas:

Hestenes-Stiefel (1952): αk+1 =
gT

k+1(gk+1 − gk )

dT
k (gk+1 − gk )

Fletcher-Reeves (1964): αk+1 =
‖gk+1‖2

‖gk‖2

Polak-Ribiere (1969): αk+1 =
gT

k+1(gk+1 − gk )

‖gk‖2

Math. Prog. Ch.4,5 p 28



Application to sparse systems Ax = b, A � 0

Def. A = (aij) is sparse if less than

α% of the aij -s are 6= 0 with (say) α ≤ 5

CG-method: apply the CG-method to

min
1
2

xT Ax − bT x with solution x = A−1b
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Conjugate Gradient Meth. for Lin. Systems
INIT: Choose x0 ∈ Rn and ε > 0 and set d0 = −g0;
ITER: WHILE ‖gk‖ ≥ ε DO
BEGIN

Set xk+1 = xk + tk dk with tk = −
gT

k dk

dT
k Adk

Set gk+1 = gk + tk Adk

Set dk+1 = −gk+1 + αk+1dk with αk+1 =
gT

k+1gk+1

gT
k gk

.

END

Rem. Complexity: ≈ α
100n2 flop’s per ITER.
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5.4 Line minimization

In the general descent method (see Ch.5.2) we have to
repeatedly solve:

min
t≥0

h(t) with h(t) = f (xk + tdk )

where h′(0) < 0.

This can be done by:
I ’exact line minimization’ of numerical analysis

e.g., bisection, golden section, Newton-,
secant method

I or better by ’inexact line search’ Goldstein-,
Goldstein-Wolfe test

Math. Prog. Ch.4,5 p 31



5.5 Newton’s method:

Basis method using∇f (x),∇2f (x); is (locally) quadratically
convergent.

Newtons’s Iteration: For solving F (x) = 0

with F : Rn → Rn (a system of n equations in n unknowns)

xk+1 = xk − [∇F (xk )]−1F (xk )

Th.5.4 (local convergence of Newton’s method)

Given F : Rn → Rn, F ∈ C2 such that

F (x) = 0 and ∇F (x) is non-singular.

Then the Newton iteration xk converges quadratically to x
for any x0 sufficiently close to x .
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’Newton’ for solving : min f (x) or F (x) := ∇f (x) = 0.

xk+1 = xk − [∇2f (xk )]−1∇f (xk )

(local) quadratic convergence if: f ∈ C3,∇f (x) = 0
with∇2f (x) non-singular.

Problems: Newton for min f (x)

I xk → x possibly a loc. maximizer.
I xk → xk+1 with increasing “f”

Newton descent method: The ’Newton direction’

dk = −[∇2f (xk )]−1∇f (xk )

is a descent direction (gT
k dk < 0) if (assume ∇f (xk ) 6= 0):

[∇2f (xk )]−1 or equivalently∇2f (xk )

is positive definite.
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Algorithm: (Levenberg-Marquardt variant)

step k: Given xk ∈ Rn with gk 6= 0.
1. determine σk > 0 such that (∇2f (xk ) + σk I) � 0,

compute dk = −
(
∇2f (xk ) + σk I

)−1gk (∗)

2. Find a minimizer tk of min
t≥0

f (xk + tdk )

and put xk+1 = xk + tk dk .

Ex. [connection with the ’trust region method’]
Consider the quadratic Taylor approximation of f near xk :

q(x) := f (xk ) +∇f (xk )T (x − xk )

+
1
2

(x − xk )T∇2f (xk )(x − xk )

Compute the descent step dk according to (∗)
(Levenberg-Marquardt) and put xk+1 = xk + dk , τ := ‖dk‖.
Show that xk+1 is a local minimizer of the trust region
problem: min q(x) s.t. ‖x − xk‖ ≤ τ
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Disadvantage of the Newton methods:
I ∇2f (xk ) needed
I work per step: linear system

Fk x = bk ≈ n3 flop’s
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5.6 The Gauss-Newton Method

min f (x) for the case: (nonlinear least square)

f (x) =
1
2
‖r(x)‖2 =

1
2

m∑
i=1

r2
i (x) .

with • ri ∈ C2(Rn,R) • m ≥ n .

derivatives of f :

∇f (x) = ∇r(x) · r(x)

∇2f (x) = ∇r(x)[∇r(x)]T +
m∑

i=1

ri(x)∇2ri(x).

The method uses the first order approximation
A(x) = ∇r(x)[∇r(x)]T of∇2f (x): (and iterates)

xk+1 = xk − [A(xk )]−1∇f (xk ) .
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5.7 Quasi-Newton method

Algorithm which only uses∇f (xk ); needs O(n2) flop’s per
step; and is “Newton like” superlinear convergent.

Consider the descent method with:

dk = −Hk gk

desired properties for Hk :
i Hk � 0
ii Hk+1 = Hk + Ek simple update rule
iii for quadratic f → conjugate directions dj

iv the Quasi-Newton condition:

(xk+1 − xk ) = Hk+1(gk+1 − gk )

Notation: δk := (xk+1 − xk ) , γk := (gk+1 − gk )
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Quasi-Newton Method
INIT: Choose some x0 ∈ Rn, H0 � 0, ε > 0
ITER: WHILE ‖gk‖ ≥ ε DO
BEGIN

Set dk = −Hk gk ,
Determine a solution tk for the problem

min
t≥0

f (xk + tdk )

Set xk+1 = xk + tk dk and update
Hk+1 = Hk + Ek .

END

For the update Ek try: with α, β, µ ∈ R

Ek = αuuT + βvvT + µ(uvT + vuT ) (∗)

where u := δk , v := Hkγk

Note that Ek is symmetric with rank ≤ 2.
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L.5.6 Apply the Quasi-Newton method to
q(x) = 1

2xT Ax + bT x , A � 0 with

Ek of the form (*) and

Hk+1 satisfying iv: δk = Hk+1γk

Then the directions dj are A-conjugate :

dT
j Adi = 0 0 ≤ i < j ≤ k

Last step: Find α, β, µ in (*) such that (iv) holds. This leads
to the following update.

Broyden family: with Φ ∈ R

Hk+1 = Hk +
δkδ

T
k

δT
k γk
−

Hkγkγ
T
k Hk

γT
k Hkγk

+ Φ wwT (∗∗)

where w :=
(

δk
δT

k γk
− Hkγk

γT
k Hkγk

)
(γT

k Hkγk )
1
2 .
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As special cases we obtain:

Φ = 0, the DFP-method (1963)
(Davidon, Fletcher, Powell)

Φ = 1, the BFGS-method (1970)
(Broyden, Fletcher, Goldfarb, Shanno)

The next lemma finally shows that property i): Hk � 0
is preserved.

L.5.7 In the Quasi-Newton method, if we use (**) with
Φ ≥ 0, then

Hk � 0 ⇒ Hk+1 � 0
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5.8 Minimization of nondifferentiable f

5.8.1 Subgradient method (f convex)

Problem: minx∈Rn f (x), where f is nondifferentiable but
convex.

Idee: In a descent method replace the search direction
dk = −∇f (xk ) by dk = −gk ∈ −∂f (xk ).

Subgradient Steepest Descent
INIT: Choose x0 ∈ Rn

ITER: WHILE 0 /∈ ∂f (xk ) DO
BEGIN

Choose a gk ∈ ∂f (xk ), set dk = −gk/‖gk‖
Determine a solution tk for the problem
(∗) min

t≥0
f (xk + tdk )

Set xk+1 = xk + tkdk .

END
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Problem:

• 0 6= −gk ∈ −∂f (xk ) is possibly not a descent
direction

• possibly converges to a non-optimal x
(where f is not differentiable)

However For convex f with dk = −gk/‖gk‖ 6= 0 and any
minimizer x we have:

dT
k (x − xk ) ≥

f (xk )− f (x)

‖gk‖
> 0

i.e., dk and (x − xk ) form an acute angle.

L.5.8 f : Rn → R convex, x a minimizer, 0 6= gk ∈ ∂f (xk ).
Then for 0 < tk ≤ dT

k (x − xk ), xk+1 = xk + tkdk :

‖xk+1 − x‖2 ≤ ‖xk − x‖2 − tkdT
k (x − xk )
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Subgradient Method
INIT: Choose x0 ∈ Rn and ’steps’ tk > 0
ITER: Choose a gk ∈ ∂f (xk ).
(If gk = 0, STOP)

Set dk = −gk/‖gk‖ and xk+1 = xk + tkdk .

Step-size tk ?: (Without line-minimization). Choose a
sequence tk > 0 a-priori such that

(?) lim
k→∞

tk = 0 and
∞∑

k=0

tk =∞ .

Th.5.6 f : Rn → R convex with (at least one) minimizer x .
Choose tk > 0 such that (?) holds. Then the subgradient
method generates points x0, x1, . . . such that

min{f (x0), . . . , f (xk )} → f (x) (k →∞)
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Convergence: is sub-linear !!!

Better convergence if the minimum value f = f (x) of f is
known and if x is a strict minimizer of order 1: i.e. there
exists some constant L > 0 such that

(?) f (x)− f (x) ≥ L‖x− x‖ ∀x ∈ Rn

Th.5.7 If f : Rn → R is convex and (?) holds for the

minimizer x ∈ Rn, then the subgradient method with step
sizes

tk =
f (xk )− f (x)
‖gk‖

(
≥ L
‖xk − x‖
‖gk‖

)
converges linearly to x .
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5.8.2 “Lipschitz minimization”, global minimizer.

Problem: minx∈F f (x), with F ⊂ Rn, compact, where
f ∈ C0 is non-convex.

Bad news. Even for f : [0, 1]→ R “without some global
information”:
No upper bounds for the “complexity” can be given for the
computation of an ε-approximation x for a global
minimizer x of f , i.e.,

f (x) ≤ f (x) + ε

However a (known) Lipschitz-constant L, i.e.,

|f (x)− f (y)| ≤ L ‖x− y‖ ∀x,y ∈ F

yields such a global information.
Based on the knowledge of L an exhaustive search can be
done to find an ε-approximation.
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