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Chapter 1: Real vector spaces linear spaces, inner
products, differentiable functions. By “Self-instruction”

Chapter 2: Linear equations, - inequalities

Gaussian elimination, least square approximation,
Fourier-Motzkin algorithm, Farkas lemma

Chapter 3: Linear programs

primal-dual linear programs, optimality conditions, matrix
games

Chapter 4: Convex analysis

separating hyperplanes, convex sets, convex functions,
differential theory

Chapter 5: Unconstrained optimization

optimality conditions, minimizing convex functions, descent
methods, conjugate direction method, line search, Newton’s
method, Gauss-Newton method, Quasi-Newton methods,
minimization of nondifferentiable functions
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Ch.2 Linear equations, inequalities

We start with some definitions:

Definitions in matrix theory
@ M = (mj) is said to be
lower triangluar: if m; = 0 for j < j,
upper triangular: if m; = 0 for j > j.
@ P = (p;) € R™ ™ is a permutation matrix

if p; € {0, 1} and each row and each column of P
contains exactly one coefficient 1.

Note that PP = /, implying
P~ = PT for the inverse P~ of P.
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@ Q € R™ Q symmetric, is called
positive semi-definite (not. Q > 0) if:

x'Qx >0 for all x € R”,
positive definite (not. Q > 0) if:

x'Qx >0  forall xcR", x+#0.

2.1 Gauss-elimination (for solving Ax = b)

Motivation: We show by a simple example that “successive
elimination” is equivalent with Gauss-algorithm.



General Idea: To eliminate x1, x> ... is equivalent with
transforming Ax = b or (A | b) to “triangular” normal form
(A | b) (with same solution set). Then solve Ax = b,

recursively: ay @ ... an | by
ay ap ... ap | b

Transformation into form (A | b):

ayy - Ay - @ X, - a, - | by
a, - aj_, - aj, - ’ bo

ér_1jr_1 .. ér_‘]jr . | br_‘]




This “Gauss elimination” uses 2 types of row operations:

(G1) (i,j)-pivot: for k > |,

K

add \x row jtorow k; with \ = —3

(G2) interchange row / with row k

The “matrix form” of these operations are:

Ex.2.3 The matrix form of (G1): (A |b) — (A|b)

is givenby (A|b)=M(A|b)
with a nonsingular lower triangular M € R"7*™

Ex.2.4 The matrix form of (G2): (A |b) — (A |b)
is givenby (A|b)=P(A|b)
with a permutation matrix P € R™*"™
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Implications of the Gauss algorithm:

Th. 2.1 For every A € R™*" there exists an
(m x m)-permutation matrix P and an invertible lower
triangular matrix M € R™*™ such that

U = MPA is upper triangular.

Cor. 2.1 [LU-factorization]

For A € R™*", there exists an (m x m)-permutation matrix
P, an invertible, lower triang. L € R*™ and an upper
triang. U € R™" such that LU = PA .

Rem.: Solve Ax = b by using the decomposition PA = LU!
(How?)
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Cor. 2.2 [Gale’s Theorem]
Exactly one of the following statements is true:

(a) The system Ax = b has a solution x.
(b) There exists y € R” such that: y’A=0" and y’b +# 0.

Remark: In “normal form” A — 74, the number r gives
dimension of the space spanned by the rows of A.

This equals the dimension of the space spanned by the
columns of A.

Math. Prog., Chapter2,3



2.1.8 “Gauss-Algoritm” for symmmetric A

Note: “Gauss row operations” destroy symmetry. So we modify
“Gauss” in order to maintain symmetry.

Perform row and “same” column-operations:
o use (G1)): A — MAMT
@ instead of (G2) use (G2’):
if a; =0, akk;«éo, k> i:
interchange row / and row k
interchange col. / and col. k
if ajj = O,akk = 0Vk > i, agi 75 0, k > i:
add row k to row / and
add col. k to col. |

G2’ transforms: A — BAB' (B nonssingular)
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Note: By “symmetric Gauss” the solution set of Ax = b is
destroyed!!!  But it is useful to get the followig results.

Implications of the symmetric Gauss algorithm

Th. 2.2. A € R™" symmetric. Then with some
nonsingular Q € R"*"

QAQ’ =D = diag(d}, ..., dp)

Recall: A symmetric Q € R™" is called positive
semi-definite (not. Q > 0) if:

x'Qx >0 forall x ¢ R".
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Cor. 2.3. Let A be symmetric, Q nonsingular such that
QAQ' = diag(d, ..., d,). Then

@ A>0 < d>0,i=1,...,n

b)) A>0 & d>0,i=1,...,n

Implication: The check A > 0 (positive semidefinite)
can be done by the Gauss-algorithm (polynomial).

Cor. 2.4. LetS € R"™" be symmetric. Then
(a) S>0 <« S=AAT withsome A c R™""
(b) S>0 <« S =AAT with some nonsingular A

Complexity of Gauss algorithm

For a, the number of “+, -, / flop’s” (floating point
operations) needed to solve Ax = b with A € R™<":

a<n
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2.2. Orthogonal projection, Least Square

Assumption: V is a linear vectorspace over R with inner
product (x|y) and (induced) norm || x| = /(x|x).

Minimization Problem: Given x € V, subspace W c V find
x € W such that:

X = X|| = min [|x —y|| (2.13)
yeW

The vector x is called the projection of x onto W.

L 2.1. (sufficient condition) Assume X € W is such that
(X—X|w)=0 vwe W.
Then X is unique solution of (2.13).

To solve (2.13) we “construct” a solution via L.2.1:
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We construct a solution x € W satisfying
(x—X|w) =0 vYw € W as follows (assuming that W has a
basis a1, ...,am, i.e., W =span{ay,...,an}): Write

X = 2:11 Zja;

Then (x — xjw) =0, Vw € W is equivalent with

m ,
<X—Zi:1z,-a,-|aj>:07 j:1,...7m

m

or Z<ai|aj>zi = <x‘aj> ’ j: 1,.. -, m

i=1
Defining the Gram-matrix G := ((a;|a;)), b € R™, b; = (x|a))
this leads to the linear equation (for 2)

(2.16) Gz =b with solution2 =G~ 'b
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Ex. The Gram-matrix is positive definite, thus non-singular
(under our assumption) Proof!

Special case 1: V =R", (x|y) = x"y and
W = span {ay,...,am}. Then with A := [a4,...,an] the
projection of x onto W is given by

A(ATA)"1ATx

X
Special case 2: V =R", (x|y) = x"y, ay,...,am € R"lin.
independentand W = {w ¢ R" |a]w =0, i=1,...,m}.
Then the projection of x onto W' is given by
X =x— AATA)~1ATx
Special case 3: W = span {ay,...,am} with {a;}, an

orthonormal basis, i.e., (a;|a)) =0,/ # j;=1,i = j)). Then
the projection of x onto W is given by

S m - - " . . .
X = Z,-=1Z/ai with z = (aj|x) Vj “Fouriercoefficients”.
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Problem: Given W = span {a4,...,am}, find an orthogonal
basis W = span {by, .., bm} (i.e., (bilbj) = 0,i # j(> 0, = j)). ’

Recall the Gram-Schmidt algorithm for solving this
Problem: start with b; := a; and iterate

k—1 (bj, ax)
i=1 (b, b;)

stepk—1—k: bk=ak—z b;

Gram-Schmidt in matrix form: With W c V :=R". Put

al b]
A=| ... |, B=1| ... .
ap, by,

Then the Gram-Schmidt-steps are equivalent with:
@ add multiple of row j < k to row k

@ multiply row k by scalar (in case of normalisation)
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Matrix form of “Gram-Schmidt”: Given A ¢ R™*", there is a
decomposition

B=LA

with lower triangular nonsingular matrix L (/; = 1) and the
rows b; of B are orthogonal, i.e. (b;|b;) =0, i # /.

A corollary of this fact:

Prop. 2.1 (Hadamard’s inequality) Let A € R™<" with rows
a/. Then

m
0 < det(AAT) < []a/a

i=1
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Definition. )\ € C is an eigenvalue of A € R™" if there is
an (eigenvector) 0 # x € C" with Ax = Ax.

The results above (together with the Theorem of
Weierstrass) allow a proof of:

Th. 2.3 (Spectral theorem for symmetric matrices)
Let A € R™" be symmetric. Then there exists an
orthogonal matrix Q (Q"Q = 1) and eigenvalues
A, ..., An € R such that

Q"AQ =D =diag (\1,...,\n)
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2.3 Integer Solutions of Linear Equations (x; € Z)

Example The equation 3x; — 2x, = 1 has a solution
x =(1,1) € Z°. But the equation 6x; — 2x, = 1 does not
allow an entire solution x.

Key remark: Let a;,a> € Z and let a; x; + a>xo = b have a
solution x1,x2 € Z. Then b= \c with A € Z, c = gcd (ay, a2)

Here: gcd (a4, a») denotes the greatest common divisor of
a4, as.

Lem.2.2 [Euclid’s Algorithm] Let ¢ = gcd (ay, a). Then

L(a1,a2) = {31/\1 + as Ao ’ A, Ao € Z} = {C/\ ’ AE Z} = L(C) .

(The proof of) this result allows to
“solve a;x; + axxo = b (in Z)”.
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Algorithm to solve, a{xq + axo = b (in Z)
@ Compute c = gcd (a1, a). If A := b/c ¢ Z, no entire
solution exists.

@ If A := b/c € Z, compute solutions \{, \» € Z of
A8 + Aoa> = ¢. Then

(MA)ar + (MeN)a =b.

General problem: Givena;,...,a, b c 2z, find
X=(xq, -+ ,Xp) € Z" such that

(*) aixy+axxx+...+apxp=b or Ax=Db

where A := [ay,...,ap].

Def. We introduce the /attice generated by a;, ... ap,
n m
L=L(ay,...,an) = {Zj:1aj)\j‘)\j€Z} CR™.
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IS
Assumption 1: rank A= m(m < n); wlog., a4, ...,an are
linearly independent.

To solve the problem: Find C =[cy...cy] € Z™* such
that

(x%) L(eq,...,cm) = L(a1,...,an).
Then (x) has a solution x ¢ Z" iff A\ .= C'b € 2"

Bad news: As in the case of one equation: in general

L(ay,...,am) # L(ai,...,an).

Lem.2.3 Letcq,...,cp € L(ay,...,a,)- Then
L(eq,...,em) = L(ay,...,ap) iffforall j=1,... n, the system

CX =a; has an integral solution.

Last step: Find such c¢;’s
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Main Result: The algorithm

Lattice Basis

INIT:C=[cq,....Cmn] =[a1,...,am] ;
ITER: Compute C';
If C-'a; € Z"forj=1,...,n, then STOP;

If X\ = C'a; ¢ Z™ for some j, then
Leta; = CX =", \ic; and compute
c=Y12 i —[ADei =a — X [Aei
Let k be the largest index / such that \; ¢ Z ;
Update C by replacing c, with ¢ in column k;
NEXT ITERATION

stops after at most K = log,(det[a;, ..., an]) steps with a
matrix C satisfying (xx).
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Th. 2.4 Let A< Z™"andb € Z™ be given. Then exactly
one of the following statements is true:

(a) There exists some x € Z" such that Ax = b.

(b) There exists some y € R™ such that y’A € Z” and
y’b ¢ 7.




2.4 Linear Inequalities Ax < b

Fourier-Motzkin algorithm for solving Ax < b . Eliminate xi:

n
anxi+ Y ax<b r=1..k

j=2
n

agxi+ > ag<bs s=k+1,...(
j=2

n
ZaU‘Xijt t=¢41,....m
j=2

with a,; > 0, a5y < 0. Divide by a,q, |as1|, giving (for r and s)

n

X+ Y ax<b r=1..k
=2
n

—xi+ > agx<bs s=k+1,...¢

j=2
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So Ax < b has a solution x = (x1, .., X,) if and only if
there is a solution X' = (xz, .., X;) of
n
Y (ag+ay)x < by+bs r=1,... ks=k+1...¢
j=2

n
> agx < by t=0+1,...,m.
=2

In matrixform: Ax < b has a solution x = (xq, .., x,) if and
only if there is a solution of the transformed system:

AX <b’" or (0A )x<Db

Remark: Any row of (0 A’|b’) is a positive combination of
rows of (A|b):

any row is of the form y’(Ab), y >0
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By eliminating xq, Xo, . . . , X, in this way we finally obtain an
“equivalent” system

AMx <b where AM =0

which is (recursively) solvable iff 0 < B,-, Vi.
Th.2.5 [Projection Theorem] Let P ={x cR"| Ax < b}.
Then all for k = 1,..., n, the projection

P(k) = {(Xk+17"’xn) | (X1,..,Xk,Xk+1,..,Xn) P
for suitable xq, ..., xx € R}

is the solution set of a linear system | A(K)x(¥) < p(kK)
in n — k variables x(*) = (x,1,..., Xn)-

In principle: Linear inequalities can be solved by FM.
However this might be inefficient! (Why?)
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2.4.1. Solvability of linear systems

We consider so-called Farkas lemmata. They are the basis
of optimality and duality results in LP.

Th. 2.6 [Lemma of Farkas] Exactly one of the following
statements is true:

(I) Ax < b has a solution x € R".
(Il) There exists y € R" such that

yTA=0", y’b<0 and y>0.

Ex. 2.24 (more general) Let A ¢ R™", C ¢ R, b e R™,

¢ € RX. Then precisely one of the alternatives is valid.
(I) There is a solution x of: Ax < b,Cx=c¢

(I) There is a solution ;x € R™, 1 >0, A € R¥ of :

(o) (&)= (%)
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Cor.2.5 [Gordan] Given A € R™*" exactly one of the
following alternatives is true:

() Ax=0,x >0 has a solution x # 0.
(1) y"A <07 has a solution y.

Remark: As we shall see in Chapter 3, the Farkas Lemma in
the following form is the strong duality of LP in disguise.

Cor.2.6 [Farkas, implied inequalities] Let
AcR™"pbcR™cecR” zcR. Assume that Ax <b is
feasible. Then the following are equivalent:

(a) Ax<b = c'x<z

(b) yTA=c",y’b<z, y>0 hasasolutiony.
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Application: Markov chains (Existence of a steady state)

Def. A vector 7 = (7y,...,mp) withm; >0, " ;m =1
is called a probability distributionon {1, .., n}.

A matrix P = (pjj) where each row P; . is a probability
distribution is called a stochastic matrix.
In a stochastic proces:

@ ;% of population is in state /

@ pj is probability of transition from state / — |

@ So the transition step k — k + 1is: w(kt1) = pTx(K)
Probability distribution = is called steady stateif = = PTx

As a corollary of Gordan’s result:

Each stochastic matrix P has a steady state .
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3. Linear Programs

Given A ¢ R™ b € R™, ¢ € R".

LP,: max ¢’x st Ax<b
XER"

LP,: min b’y st. Aly=c,y>0,
yeRm

is the pair of primal and dual programs.

Notation.
e Fp={x|Ax<b} feasible setofLP,

Fy,={y|ATy = ¢,y > 0} feas.set of LP,

o Z*

% = Maxycr, € X max. value of LP,

e z;:=minyr, b’y min. value of LP,

X € Fp is optimal (maximizer of LP,) if ¢"X = z;.
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Weak duality /s easy to prove:
L.3.1 (Weak Duality) LetAx <b, ATy =c, y > 0. Then,

¢c’x<b’y andthus z; <z

If we have c"x = by, then x, y are optimal solutions of
LP,, LP, resp.

Strong duality is a direct consequence of Farkas’ lemma:

Th.3.1 (Strong Duality)

If either LP, or LPy is feasible then: |z; =z

If both are feasible, then optimal solutions x and y of LP,
and LP, exists (satisfying c’x = b'y).
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Th.3.1 implies: x and y are optimal solutions of LP, and
LPg, resp., if and only if they solve the system (of lin.=, <)

Ax < b

Aly = ¢

(*) ch _ bTy =0
y >0

Note that: for x, y satisfying (x) we have
by —c¢’x=y"(b—Ax) =0

The relation
y'(b—Ax) =0

is called complementarity condition.




Cor. : (Optimality conditions)
@ Let x € Fp: then x solves LP, <

there ex. y € F, such thaty’ (b — Ax) =0

@ Lety € F4: Theny solves LP,; <—

there ex. x € F, such thaty’ (b — Ax) =0




3.1.2 Equivalent LP’s

LP’s in other forms can be transformed into the given “standard
forms” For example: The program:

max ¢’'x st Ax<b, x>0
XeR"

has the dual:

min b’y st Aly>¢c, y>0
YER"

Rules for primal dual pairs:

| Primal Problem | Dual Problem
max min
free variable equality constraint
non-negative variable > constraint
equality constraint free variable
< constraint non-negative variable
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3.1.3. Shadow prices

Production model: (n products, m resources)

¢; prices per unit for product; — ¢

b; bounds for resource R; — b

a; units of resource A needed — A
for unit of product j

x;  production of product j — X

primal program: (max profit c” x)

max ¢’'x st Ax<b, x>0
XeR"

optimal solution: X  — profitZ=c’x
dual: minycgr b’y st ATy >c, y>0

optimal solution: 'y  — value Z=b'Ty
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Question: Can we obtain a higher profit if we buy
additional amount of resource b; ?

If we change: b, — b;, := b, +t, (t>0 ) thenz — Zz4+7??

Wefind: |Z<Z+t -y, | (¥, isshadow price) J

Answer: Yes, if the price per unit for R; is smaller than
Yi, (shadow price).




3.1.4 Matrix games:

MG is an example of a non-cooperative game with 2 players
(using a pure or a mixed strategy).

Given A € R™" and row-players R and (column)-player C

Game with pure strategy
@ Rchoosesrow i: if g; >0 Rwins g;
@ Cchooses col. j: ifa; <0 C wins |g|

For this pure strategy game a so-called Nash equilibrium
need not exist.
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Game with mixed strategies: x € R™, yeR"

@ R chooses row i with probability x; ; x; >0, .x; =1
@ C chooses col. j with probability y;; y; > 0,3 ;y; = 1.

The expected gain for R (loss for C):
xTAy =3 x; (Z aiiyi) =D Y (Z aiixi>
i j j i

Strategies:
@ given y: R plays X as solution of:

Tav -
max x" Ay = m?xz a;;y;
j

@ given x: C plays y as solution of:
m}jn xTAy = min ) " ayx;

i =

I
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Best strategy against best of opponent:

for R: maxmin XTA = max min E a;iXj
X y y X j iyt
for C: minmax XTA = min max E aiiVi
v v y v ; i ijj

Th.3.2 [minmax-theorem] There exist feasible X,y such
that
m}jn xTAy = max xT Ay

This implies: |max myin xTAy = myin max xT Ay = X' Ay
X X

X,y represent a Nash equilibrium of the mixed strategy
matrix game.

Def. A game is fair if Z = W = X' Ay = 0 holds.
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Methods for linear programs

1. Simplex method

LP,: max ¢'x st a/x<b, i=1,..m.
XER"
proceeds ’from vertex to vertex’ of the feasible set f, until
we have found a vertex x such that (with suitable y) the
sufficient optimality condition holds:

Aly=c,y=>0, y'(b—Ax)=0




2. Interior point method: Consider the system of
equations

Ax +s =b
P(t) : ATy =c
yi(b — Ax); =t>0 Vi

with y,(b — Ax) > 0. Here t > 0 is a parameter.
Idea: Compute (by 'Newton’) solutions x(t),y(t),s(f), t >0
of P(t). Then for ¢ | 0 (hopefully)
x(8),y(t),s(t) — x,y,s
With solutions x, y of the primal-dual pair of LP’s

Remark: The “worst case behavior” of the Simplex algorithm is
not ‘polynomial’.

The interior point method can be implemented as a
“polynomial” algorithm for solving LP.
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