Mathematical Programming I, Sheets for the course, version: 04-04-2012 Georg Still

Material:

- Script Nr. 527
- <u>Sheets of the course</u> (on internet)

Use it as a rough guide; for motivation, geometric illustration, and proofs join the courses.

Chapter 1: Real vector spaces *linear spaces, inner products, differentiable functions.* **By "Self-instruction"**

Chapter 2: Linear equations, - inequalities

Gaussian elimination, least square approximation, Fourier-Motzkin algorithm, Farkas lemma

Chapter 3: Linear programs

primal-dual linear programs, optimality conditions, matrix games

Chapter 4: Convex analysis

separating hyperplanes, convex sets, convex functions, differential theory

Chapter 5: Unconstrained optimization

optimality conditions, minimizing convex functions, descent methods, conjugate direction method, line search, Newton's method, Gauss-Newton method, Quasi-Newton methods, minimization of nondifferentiable functions We start with some definitions:

Definitions in matrix theory

• $M = (m_{ij})$ is said to be lower triangluar: if $m_{ij} = 0$ for i < j, upper triangular: if $m_{ij} = 0$ for i > j.

• $P = (p_{ij}) \in \mathbb{R}^{m \times m}$ is a permutation matrix

if $p_{ij} \in \{0, 1\}$ and each row and each column of *P* contains exactly one coefficient 1.

Note that $P^T P = I$, implying $P^{-1} = P^T$ for the inverse P^{-1} of P.

Q ∈ ℝ^{n×n}, Q symmetric, is called positive semi-definite (not. Q ≥ 0) if:
 x^TQx ≥ 0 for all x ∈ ℝⁿ,

positive definite (not. Q > 0) if:

 $\mathbf{x}^T Q \mathbf{x} > \mathbf{0}$ for all $\mathbf{x} \in \mathbb{R}^n, \ \mathbf{x} \neq \mathbf{0}$.

2.1 Gauss-elimination (for solving Ax = b)

<u>Motivation:</u> We show by a simple example that "successive elimination" is equivalent with Gauss-algorithm.

<u>General Idea:</u> To eliminate $x_1, x_2...$ is equivalent with transforming $A\mathbf{x} = \mathbf{b}$ or $(A \mid \mathbf{b})$ to "triangular" normal form $(\tilde{A} \mid \tilde{b})$ (with same solution set). Then solve $\tilde{A}\mathbf{x} = \tilde{b}$, recursively: $a_{11} \quad a_{12} \quad ... \quad a_{1n} \quad | \quad b_1$

 $a_{21} \ a_{22} \ \dots \ a_{2n} \ | \ b_2$

bm

 $a_{m1} \ a_{m2} \ \dots \ a_{mn}$

Transformation into form $(\tilde{A} | \tilde{b})$:

<u>This "Gauss elimination" uses</u> 2 types of row operations: (G1) (i, j)-pivot: for k > i,

add $\lambda \times$ row *i* to row *k*; with $\lambda = -\frac{a_{kj}}{a_{ii}}$

(G2) interchange row *i* with row *k*

The "matrix form" of these operations are:

<u>Ex.2.3</u> The matrix form of (G1): $(A | b) \rightarrow (\tilde{A} | \tilde{b})$

is given by
$$(\tilde{A} \mid \tilde{b}) = M (A \mid b)$$

with a nonsingular lower triangular $\mathbf{M} \in \mathbb{R}^{m \times m}$

<u>Ex.2.4</u> The matrix form of (G2): $(\mathbf{A} \mid \mathbf{b}) \rightarrow (\tilde{\mathbf{A}} \mid \tilde{\mathbf{b}})$ is given by $(\tilde{\mathbf{A}} \mid \tilde{\mathbf{b}}) = \mathbf{P} (\mathbf{A} \mid \mathbf{b})$ with a permutation matrix $\mathbf{P} \in \mathbb{R}^{m \times m}$

Implications of the Gauss algorithm:

<u>Th. 2.1</u> For every $\mathbf{A} \in \mathbb{R}^{m \times n}$, there exists an $(m \times m)$ -permutation matrix P and an invertible lower triangular matrix $\mathbf{M} \in \mathbb{R}^{m \times m}$ such that

 $\mathbf{U} = \mathbf{MPA}$ is upper triangular.

<u>Cor. 2.1</u> [*LU*-factorization] For $A \in \mathbb{R}^{m \times n}$, there exists an $(m \times m)$ -permutation matrix P, an invertible, lower triang. $L \in \mathbb{R}^{m \times m}$ and an upper triang. $U \in \mathbb{R}^{m \times n}$ such that LU = PA.

<u>**Rem.:**</u> Solve Ax = b by using the decomposition PA = LU! (How?)

<u>Cor. 2.2</u> [Gale's Theorem] **Exactly one of the following statements is true:** (a) The system $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{x} . (b) There exists $\mathbf{y} \in \mathbb{R}^m$ such that: $\mathbf{y}^T A = \mathbf{0}^T$ and $\mathbf{y}^T \mathbf{b} \neq \mathbf{0}$.

<u>Remark:</u> In "normal form" $A \rightarrow A$, the number *r* gives dimension of the space spanned by the rows of *A*. This equals the dimension of the space spanned by the columns of *A*.

2.1.3 "Gauss-Algoritm" for symmetric A

<u>Note:</u> "Gauss row operations" destroy symmetry. So we modify "Gauss" in order to maintain symmetry.

Perform row and "same" column-operations:

- use (G1'): $A \rightarrow MAM^T$
- instead of (G2) use (G2'):

if $a_{ii} = 0$, $a_{kk} \neq 0$, k > i:

interchange row *i* and row *k* interchange col. *i* and col. *k*

if $a_{ii} = 0$, $a_{kk} = 0 \forall k > i$, $a_{ki} \neq 0$, k > i: add row k to row i and add col. k to col. i G2' transforms: $A \rightarrow BAB^T$ (B nonssingular) <u>Note:</u> By "symmetric Gauss" the solution set of Ax = b is destroyed!!! But it is useful to get the followig results.

Implications of the symmetric Gauss algorithm

<u>Th. 2.2.</u> $A \in \mathbb{R}^{n \times n}$ symmetric. Then with some nonsingular $Q \in \mathbb{R}^{n \times n}$

$$\mathbf{Q}\mathbf{A}\mathbf{Q}^T = \mathbf{D} = diag(d_1, \ldots, d_n)$$

<u>**Recall:**</u> A symmetric $\mathbf{Q} \in \mathbb{R}^{n \times n}$ is called *positive semi-definite* (not. $\mathbf{Q} \ge 0$) if:

 $\mathbf{x}^T \mathbf{Q} \mathbf{x} \ge 0$ for all $\mathbf{x} \in \mathbb{R}^n$.

<u>Cor. 2.3.</u> Let A be symmetric, Q nonsingular such that $QAQ^T = diag(d_1, ..., d_n)$. Then (a) $A \ge 0 \quad \Leftrightarrow \quad d_i \ge 0, \ i = 1, ..., n$ (b) $A > 0 \quad \Leftrightarrow \quad d_i > 0, \ i = 1, ..., n$

Implication: The check $A \ge 0$ (positive semidefinite) can be done by the Gauss-algorithm (polynomial).

Complexity of Gauss algorithm

For *a*, the number of " \pm , ·, / flop's" (floating point operations) needed to solve Ax = b with $A \in \mathbb{R}^{n \times n}$:

 $\pmb{a} \leq \pmb{n^3}$

2.2. Orthogonal projection, Least Square

Assumption: *V* is a linear vectorspace over \mathbb{R} with inner product $\langle x | y \rangle$ and *(induced)* norm $||x|| = \sqrt{\langle x | x \rangle}$.

<u>Minimization Problem</u>: Given $\mathbf{x} \in V$, subspace $W \subset V$ find $\hat{\mathbf{x}} \in W$ such that:

$$\|\mathbf{x} - \hat{\mathbf{x}}\| = \min_{\mathbf{y} \in W} \|\mathbf{x} - \mathbf{y}\|$$
(2.13)

The vector $\hat{\mathbf{x}}$ is called the *projection of* \mathbf{x} *onto* W.

L 2.1. (sufficient condition) Assume $\hat{\mathbf{x}} \in W$ is such that

$$\langle \mathbf{x} - \hat{\mathbf{x}} | \mathbf{w}
angle = \mathbf{0} \;\; orall \mathbf{w} \in oldsymbol{W}$$
 .

Then $\hat{\mathbf{x}}$ is unique solution of (2.13).

To solve (2.13) we "construct" a solution via L.2.1:

<u>We construct a solution</u> $\hat{\mathbf{x}} \in W$ satisfying $\langle \mathbf{x} - \hat{\mathbf{x}} | \mathbf{w} \rangle = 0 \quad \forall \mathbf{w} \in W$ as follows (assuming that W has a basis $\mathbf{a}_1, \ldots, \mathbf{a}_m$, *i.e.*, $\mathbf{W} = \text{span} \{\mathbf{a}_1, \ldots, \mathbf{a}_m\}$): Write

$$\hat{\mathbf{x}} := \sum_{i=1}^m z_i \mathbf{a}_i$$

Then $\langle \boldsymbol{x} - \hat{\boldsymbol{x}} | \boldsymbol{w} \rangle = \boldsymbol{0} \;, \;\; \forall \boldsymbol{w} \in \boldsymbol{\mathcal{W}} \;\; \text{is equivalent with}$

$$\langle \mathbf{x} - \sum_{i=1}^m z_i \mathbf{a}_i \mid \mathbf{a}_j \rangle = 0, \quad j = 1, \dots, m$$

or
$$\sum_{i=1}^{m} \langle \mathbf{a}_i | \mathbf{a}_j \rangle z_i = \langle \mathbf{x} | \mathbf{a}_j \rangle$$
, $j = 1, \dots, m$

Defining the *Gram-matrix* $G := (\langle \mathbf{a}_i | \mathbf{a}_j \rangle)$, $\mathbf{b} \in \mathbb{R}^m$, $b_j = \langle \mathbf{x} | \mathbf{a}_j \rangle$ this leads to the linear equation (for *z*)

$$(2.16) \qquad Gz = b \quad \text{with solution } \hat{z} = G^{-1}b$$

<u>Ex.</u> The Gram-matrix is positive definite, thus non-singular (under our assumption) *Proof!*

Special case 1: $V = \mathbb{R}^n$, $\langle x | y \rangle = x^T y$ and $W = \text{span} \{a_1, \dots, a_m\}$. Then with $A := [a_1, \dots, a_m]$ the projection of x onto W is given by

$$\hat{\mathbf{x}} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{x}$$

Special case 2: $V = \mathbb{R}^n$, $\langle x | y \rangle = x^T y$, $a_1, \ldots, a_m \in \mathbb{R}^n$ lin. independent and $W' = \{ w \in \mathbb{R}^n \mid a_i^T w = 0, i = 1, \ldots, m \}$. Then the projection of x onto W' is given by

$$\hat{\mathbf{x}}' = \mathbf{x} - \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{x}$$

Special case 3: $W = \text{span} \{a_1, \dots, a_m\}$ with $\{a_i\}$, an orthonormal basis, i.e., $\langle a_i | a_j \rangle = 0, i \neq j; = 1, i = j$). Then the projection of x onto W is given by

$$\hat{\mathbf{x}} = \sum_{j=1}^{m} z_j \mathbf{a}_j$$
 with $z_j = \langle \mathbf{a}_j | \mathbf{x} \rangle \ \forall j$ "Fouriercoefficients".

Problem: Given $W = \text{span} \{a_1, \ldots, a_m\}$, find an orthogonal basis $W = \text{span} \{b_1, \ldots, b_m\}$ (*i.e.*, $\langle b_i | b_j \rangle = 0, i \neq j (> 0, i = j)$).

<u>Recall</u> the Gram-Schmidt algorithm for solving this Problem: start with $b_1 := a_1$ and iterate

$$\underline{\text{step } k-1 \rightarrow k:} \qquad \boldsymbol{b_k} = \boldsymbol{a_k} - \sum_{i=1}^{k-1} \frac{\langle \boldsymbol{b_i}, \boldsymbol{a_k} \rangle}{\langle \boldsymbol{b_i}, \boldsymbol{b_i} \rangle} \boldsymbol{b_i}$$

<u>Gram-Schmidt in matrix form</u>: With $W \subset V := \mathbb{R}^n$. Put

$$\mathbf{A} = \left(\begin{array}{c} \dots \\ \mathbf{a}_m^T \end{array}\right) \ , \quad \mathbf{B} = \left(\begin{array}{c} \dots \\ \mathbf{b}_m^T \end{array}\right)$$

Then the Gram-Schmidt-steps are equivalent with:

- add multiple of row j < k to row k
- multiply row k by scalar (in case of normalisation)

<u>Matrix form of "Gram-Schmidt"</u>: Given $A \in \mathbb{R}^{m \times n}$, there is a decomposition

 $\mathbf{B} = \mathbf{L}\mathbf{A}$

with lower triangular nonsingular matrix L ($l_{ii} = 1$) and the rows b_j of B are orthogonal, i.e. $\langle \mathbf{b}_i | \mathbf{b}_j \rangle = 0, i \neq j$.

A corollary of this fact:

Prop. 2.1 (Hadamard's inequality) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ with rows \mathbf{a}_i^T . Then

$$0 \leq \det \left(\mathbf{A} \mathbf{A}^T
ight) \leq \prod_{i=1}^m \mathbf{a}_i^T \mathbf{a}_i$$

<u>Definition</u>. $\lambda \in \mathbb{C}$ is an eigenvalue of $A \in \mathbb{R}^{n \times n}$ if there is an (eigenvector) $0 \neq x \in \mathbb{C}^n$ with $Ax = \lambda x$.

The results above (together with the Theorem of Weierstrass) allow a proof of:

<u>**Th. 2.3**</u> (Spectral theorem for symmetric matrices) Let $\mathbf{A} \in \mathbb{R}^{n \times n}$ be symmetric. Then there exists an orthogonal matrix \mathbf{Q} ($\mathbf{Q}^T \mathbf{Q} = \mathbf{I}$) and eigenvalues $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$\mathbf{Q}^{T}\mathbf{A}\mathbf{Q} = \mathbf{D} = \mathbf{diag} (\lambda_{1}, \ldots, \lambda_{n})$$

2.3 Integer Solutions of Linear Equations $(x_i \in \mathbb{Z})$

Example The equation $3x_1 - 2x_2 = 1$ has a solution $\overline{x} = (1, 1) \in \mathbb{Z}^2$. But the equation $6x_1 - 2x_2 = 1$ does not allow an entire solution x.

Key remark: Let $a_1, a_2 \in \mathbb{Z}$ and let $a_1x_1 + a_2x_2 = b$ have a solution $x_1, x_2 \in \mathbb{Z}$. Then $b = \lambda c$ with $\lambda \in \mathbb{Z}$, $c = \text{gcd}(a_1, a_2)$

<u>Here:</u> gcd (a_1, a_2) denotes the greatest common divisor of a_1, a_2 .

Lem.2.2 [Euclid's Algorithm] Let $c = gcd(a_1, a_2)$. Then

 $L(a_1,a_2):=\{a_1\lambda_1+a_2\lambda_2\,|\,\lambda_1,\lambda_2\in\mathbb{Z}\}\ =\ \{c\lambda\,|\,\lambda\in\mathbb{Z}\}=:L(c)\ .$

(The proof of) this result allows to

"solve $a_1x_1 + a_2x_2 = b$ (in \mathbb{Z})".

Algorithm to solve, $a_1x_1 + a_2x_2 = b$ (in \mathbb{Z})

- Compute c = gcd (a₁, a₂). If λ := b/c ∉ ℤ, no entire solution exists.
- If $\lambda := b/c \in \mathbb{Z}$, compute solutions $\lambda_1, \lambda_2 \in \mathbb{Z}$ of $\lambda_1 a_1 + \lambda_2 a_2 = c$. Then

$$(\lambda_1\lambda) a_1 + (\lambda_2\lambda) a_2 = b$$
 .

General problem: Given $a_1, \ldots, a_n, b \in \mathbb{Z}^m$, find $\mathbf{x} = (x_1, \cdots, x_n) \in \mathbb{Z}^n$ such that

(*)
$$a_1x_1 + a_2x_2 + \ldots + a_nx_n = b$$
 or $Ax = b$

where $A := [a_1, ..., a_n]$.

<u>Def.</u> We introduce the *lattice* generated by a_1, \ldots, a_n ,

$$L = L(\mathbf{a}_1, \ldots, \mathbf{a}_n) = \left\{ \sum_{j=1}^n \mathbf{a}_j \lambda_j \, | \, \lambda_j \in \mathbb{Z} \right\} \subseteq \mathbb{R}^m$$

Assumption 1: rank A = m ($m \le n$); wlog., a_1, \ldots, a_m are linearly independent.

To solve the problem: Find $\mathbf{C} = [\mathbf{c}_1 \dots \mathbf{c}_m] \in \mathbb{Z}^{m \times m}$ such that

$$(\star\star) \qquad L(\mathbf{c}_1,\ldots,\mathbf{c}_m) = L(\mathbf{a}_1,\ldots,\mathbf{a}_n) \ .$$

Then (*) has a solution $\mathbf{x} \in \mathbb{Z}^n$ iff $\boldsymbol{\lambda} := \mathbf{C}^{-1} \mathbf{b} \in \mathbb{Z}^n$

Bad news: As in the case of one equation: in general

$$L(\mathbf{a}_1,\ldots,\mathbf{a}_m) \neq L(\mathbf{a}_1,\ldots,\mathbf{a}_n)$$
.

<u>Lem.2.3</u> Let $c_1, \ldots, c_m \in L(a_1, \ldots, a_n)$. Then $L(c_1, \ldots, c_m) = L(a_1, \ldots, a_n)$ iff for all $j = 1, \ldots, n$, the system $C\lambda = a_j$ has an integral solution.

Last step: Find such c_i's

Main Result: The algorithm

Lattice Basis

INIT: $C = [c_1, ..., c_m] = [a_1, ..., a_m]$; ITER: Compute C^{-1} ; If $C^{-1}a_j \in \mathbb{Z}^m$ for j = 1, ..., n, then STOP; If $\lambda = C^{-1}a_j \notin \mathbb{Z}^m$ for some j, then Let $a_j = C\lambda = \sum_{i=1}^m \lambda_i c_i$ and compute $c = \sum_{i=1}^m (\lambda_i - [\lambda_i])c_i = a_j - \sum_{i=1}^m [\lambda_i]c_i$; Let k be the largest index i such that $\lambda_i \notin \mathbb{Z}$; Update C by replacing c_k with c in column k; NEXT ITERATION

stops after at most $K = \log_2(\det[a_1, ..., a_m])$ steps with a matrix C satisfying (**).

<u>Th. 2.4</u> Let $A \in \mathbb{Z}^{m \times n}$ and $b \in \mathbb{Z}^m$ be given. Then exactly one of the following statements is true:

(a) There exists some $\mathbf{x} \in \mathbb{Z}^n$ such that $A\mathbf{x} = \mathbf{b}$.

(b) There exists some $\mathbf{y} \in \mathbb{R}^m$ such that $\mathbf{y}^T \mathbf{A} \in \mathbb{Z}^n$ and $\mathbf{y}^T \mathbf{b} \notin \mathbb{Z}$.

2.4 Linear Inequalities $Ax \leq b$

Fourier-Motzkin algorithm for solving $Ax \leq b$. Eliminate x_1 :

$$\begin{array}{ll} \underline{a_{r1}}x_1+&\sum_{j=2}^n a_{rj}x_j\leq b_r & r=1,\ldots,k\\ \underline{a_{s1}}x_1+&\sum_{j=2}^n a_{sj}x_j\leq b_s & s=k+1,\ldots,\ell\\ &\sum_{j=2}^n a_{tj}x_j\leq b_t & t=\ell+1,\ldots,m \end{array}$$

with $\underline{a_{r1}} > 0$, $\underline{a_{s1}} < 0$. Divide by a_{r1} , $|a_{s1}|$, giving (for r and s)

$$egin{array}{ll} x_1+&\sum_{j=2}^n a'_{rj}x_j\leq b'_r&r=1,\ldots,k\ -x_1+&\sum_{j=2}^n a'_{sj}x_j\leq b'_s&s=k+1,\ldots,\ell \end{array}$$

So $Ax \le b$ has a solution $\mathbf{x} = (x_1, ..., x_n)$ if and only if there is a solution $\mathbf{x}' = (x_2, ..., x_n)$ of

$$\sum_{j=2}^{n} (a'_{sj} + a'_{rj}) x_{j} \leq b'_{r} + b'_{s} \qquad r = 1, \dots, k; \ s = k + 1 \dots, \ell$$
$$\sum_{j=2}^{n} a_{tj} x_{j} \leq b_{t} \qquad t = \ell + 1, \dots, m.$$

In matrixform: $Ax \le b$ has a solution $x = (x_1, ..., x_n)$ if and only if there is a solution of the transformed system:

$$\mathbf{A}'\mathbf{x}' \leq \mathbf{b}' \qquad \text{or} \qquad (\ \mathbf{0} \ \mathbf{A}' \)\mathbf{x} \leq \mathbf{b}'$$

<u>Remark:</u> Any row of (0 A'|b') is a positive combination of rows of (A|b):

any row is of the form $y^T(A|b), y \ge 0$

By eliminating $x_1, x_2, ..., x_n$ in this way we finally obtain an "equivalent" system

$$ilde{m{A}}^{(n)}m{x} \leq ilde{m{b}}$$
 where $ilde{m{A}}^{(n)} = m{0}$

which is (recursively) solvable iff $0 \leq \tilde{b}_i, \forall i$.

<u>**Th.2.5</u>** [*Projection Theorem*] Let $P = \{ \mathbf{x} \in \mathbb{R}^n \mid A\mathbf{x} \le \mathbf{b} \}$. Then all for k = 1, ..., n, the projection</u>

$$P^{(k)} = \{ (x_{k+1}, ..., x_n) \mid (x_1, ..., x_k, x_{k+1}, ..., x_n) \in P$$

for suitable $x_1, ..., x_k \in \mathbb{R} \}$

is the solution set of a linear system in n - k variables $\mathbf{x}^{(k)} = (x_{k+1}, \dots, x_n)$.

 $\mathbf{A}^{(k)}\mathbf{x}^{(k)} \le \mathbf{b}^{(k)}$

In principle: Linear inequalities can be solved by FM. However this might be inefficient! (*Why?*)

2.4.1. Solvability of linear systems

<u>We consider so-called Farkas lemmata.</u> They are the basis of optimality and duality results in LP.

<u>Th. 2.6</u> [Lemma of Farkas] Exactly one of the following statements is true:

(I) $Ax \leq b$ has a solution $x \in \mathbb{R}^n$.

(II) There exists $\mathbf{y} \in \mathbb{R}^m$ such that

$$\mathbf{y}^T \mathbf{A} = \mathbf{0}^T$$
, $\mathbf{y}^T \mathbf{b} < 0$ and $\mathbf{y} \ge \mathbf{0}$.

<u>Ex. 2.24</u> (more general) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{C} \in \mathbb{R}^{k \times n}$, $\mathbf{b} \in \mathbb{R}^{m}$, $\mathbf{c} \in \mathbb{R}^{k}$. Then precisely one of the alternatives is valid. (I) There is a solution \mathbf{x} of: $\mathbf{Ax} \leq \mathbf{b}$, $\mathbf{Cx} = \mathbf{c}$ (II) There is a solution $\mu \in \mathbb{R}^{m}$, $\mu \geq \mathbf{0}$, $\lambda \in \mathbb{R}^{k}$ of : $\begin{pmatrix} \mathbf{A}^{T} \\ \mathbf{b}^{T} \end{pmatrix} \mu + \begin{pmatrix} \mathbf{C}^{T} \\ \mathbf{c}^{T} \end{pmatrix} \lambda = \begin{pmatrix} \mathbf{0} \\ -1 \end{pmatrix}$ **<u>Cor.2.5</u>** [*Gordan*] Given $A \in \mathbb{R}^{m \times n}$, exactly one of the following alternatives is true:

(I)
$$Ax = 0, x \ge 0$$
 has a solution $x \ne 0$.

(II)
$$\mathbf{y}^T \mathbf{A} < \mathbf{0}^T$$
 has a solution y.

<u>Remark</u>: As we shall see in Chapter 3, the Farkas Lemma in the following form is the strong duality of LP in disguise.

<u>Cor.2.6</u> [*Farkas, implied inequalities*] Let $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^{m}$, $\mathbf{c} \in \mathbb{R}^{n}$, $z \in \mathbb{R}$. Assume that $\mathbf{Ax} \leq \mathbf{b}$ is feasible. Then the following are equivalent: (a) $\mathbf{Ax} \leq \mathbf{b} \Rightarrow \mathbf{c}^{T}\mathbf{x} \leq z$

(b)
$$\mathbf{y}^T \mathbf{A} = \mathbf{c}^T$$
, $\mathbf{y}^T \mathbf{b} \le z$, $\mathbf{y} \ge \mathbf{0}$ has a solution y.

Application: Markov chains (Existence of a steady state)

<u>Def.</u> A vector $\pi = (\pi_1, ..., \pi_n)$ with $\pi_i \ge 0, \sum_i \pi_i = 1$ is called a *probability distribution* on $\{1, ..., n\}$.

A matrix $P = (p_{ij})$ where each row P_i . is a probability distribution is called a *stochastic matrix*.

In a stochastic proces:

- π_i% of population is in state i
- *p_{ij}* is probability of transition from state *i* → *j*
- So the transition step $k \rightarrow k+1$ is: $\pi^{(k+1)} = P^T \pi^{(k)}$

Probability distribution π is called *steady state* if $\pi = P^T \pi$

As a corollary of Gordan's result:

Each stochastic matrix *P* has a steady state π .

3. Linear Programs

Given $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^{m}$, $\mathbf{c} \in \mathbb{R}^{n}$.

$$\begin{split} \mathbf{LP}_{\boldsymbol{\rho}} : & \max_{\mathbf{x} \in \mathbb{R}^n} \ \mathbf{c}^T \mathbf{x} \quad \mathbf{s.t.} \quad \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ \mathbf{LP}_{\boldsymbol{d}} : & \min_{\mathbf{y} \in \mathbb{R}^m} \ \mathbf{b}^T \mathbf{y} \quad \mathbf{s.t.} \quad \mathbf{A}^T \mathbf{y} = \mathbf{c} \ , \ \mathbf{y} \geq \mathbf{0} \ , \end{split}$$

is the pair of primal and dual programs.

Notation.

•
$$F_{\rho} = \{x \mid Ax \leq b\}$$
 feasible set of LP_{ρ}

•
$$F_d = \{ \mathbf{y} | \mathbf{A}^T \mathbf{y} = c, \mathbf{y} \ge \mathbf{0} \}$$
 feas.set of \mathbf{LP}_d

•
$$z_{\rho}^* := \max_{\mathbf{x} \in F_{\rho}} \mathbf{c}^T \mathbf{x}$$
 max. value of \mathbf{LP}_{ρ}

• $z_d^* := \min_{\mathbf{y} \in F_d} \mathbf{b}^T \mathbf{y}$ min. value of \mathbf{LP}_d

• $\overline{x} \in F_{\rho}$ is optimal (maximizer of LP_{ρ}) if $c^T \overline{x} = z_{\rho}^*$.

Weak duality is easy to prove:

<u>L.3.1</u> (Weak Duality) Let $Ax \le b$, $A^Ty = c$, $y \ge 0$. Then,

$$\mathbf{c}^T \mathbf{x} \leq \mathbf{b}^T \mathbf{y}$$
 and thus $\mathbf{z}_{\mathbf{p}}^* \leq \mathbf{z}_{\mathbf{d}}^*$

If we have $c^T x = b^T y$, then x, y are optimal solutions of LP_{ρ} , LP_{d} resp.

Strong duality is a direct consequence of Farkas' lemma:

Th.3.1 (Strong Duality)

If either LP_p or LP_d is feasible then:

$$z_p^* = z_d^*$$

If both are feasible, then optimal solutions x and y of LP_{ρ} and LP_{d} exists (satisfying $c^{T}x = b^{T}y$).

Th.3.1 implies: x and y are optimal solutions of LP_{ρ} and LP_d, resp., if and only if they solve the system (*of lin.*=, \leq)

$$\begin{array}{rcl} & \mathsf{A} \mathbf{x} & \leq \mathbf{b} \\ & & \mathsf{A}^T \mathbf{y} \ = \ \mathbf{c} \\ \mathbf{c}^T \mathbf{x} \ - \ \mathbf{b}^T \mathbf{y} \ = \ \mathbf{0} \\ & & \mathbf{y} \ \geq \ \mathbf{0}. \end{array}$$

<u>Note that:</u> for x, y satisfying (\star) we have

$$\mathbf{b}^T \mathbf{y} - \mathbf{c}^T \mathbf{x} = \mathbf{y}^T (\mathbf{b} - \mathbf{A}\mathbf{x}) = \mathbf{0}$$

The relation

$$\mathbf{y}^{\mathcal{T}}(\mathbf{b} - A\mathbf{x}) = 0$$

is called complementarity condition.

<u>Cor.</u>: (Optimality conditions) • Let $\mathbf{x} \in F_p$: then \mathbf{x} solves LP_p ↔ there ex. $\mathbf{y} \in F_d$ such that $\mathbf{y}^T (\mathbf{b} - A\mathbf{x}) = 0$

• Let $\mathbf{y} \in F_d$: Then \mathbf{y} solves $\mathsf{LP}_d \iff$

there ex. $\mathbf{x} \in F_{\rho}$ such that $\mathbf{y}^{T}(\mathbf{b} - A\mathbf{x}) = 0$

3.1.2 Equivalent LP's

LP's in other forms can be transformed into the given "standard forms" **For example: The program:**

$$\max_{\mathbf{x}\in\mathbb{R}^n} \mathbf{c}^T \mathbf{x} \quad \mathbf{s.t.} \quad \mathbf{A}\mathbf{x} \leq \mathbf{b} \ , \quad \mathbf{x} \geq \mathbf{0}$$

has the dual:

$$\min_{\mathbf{y}\in\mathbb{R}^n} \mathbf{b}^T \mathbf{y} \quad \text{s.t.} \quad \mathbf{A}^T \mathbf{y} \geq \mathbf{c}, \quad \mathbf{y} \geq \mathbf{0}$$

Rules for primal dual pairs:

Primal Problem	Dual Problem
max	min
free variable	equality constraint
non-negative variable	\geq constraint
equality constraint	free variable
≤ constraint	non-negative variable

3.1.3. Shadow prices

Production model: (n products, m resources)

- c_j prices per unit for product $j \rightarrow c$
- b_i bounds for resource $R_i \rightarrow b$
- a_{ij} units of resource R_i needed $\rightarrow A$ for unit of product *j*
- x_j production of product $j \rightarrow x$

primal program: (max profit $c^T x$)

$$\max_{\mathbf{x}\in\mathbb{R}^n} \ \mathbf{c}^T \mathbf{x} \quad \mathbf{s.t.} \quad \mathbf{A}\mathbf{x}\leq \mathbf{b} \ , \quad \mathbf{x}\geq \mathbf{0}$$

optimal solution: $\overline{\mathbf{x}} \rightarrow \text{profit } \overline{\mathbf{z}} = \mathbf{c}^T \overline{\mathbf{x}}$

 $\underline{dual:} \qquad \text{min}_{\textbf{y} \in \mathbb{R}^n} \ \textbf{b}^T \textbf{y} \ \textbf{s.t.} \ \textbf{A}^T \textbf{y} \geq \textbf{c}, \ \textbf{y} \geq \textbf{0}$

optimal solution: $\overline{\mathbf{y}} \rightarrow value \ \overline{\mathbf{z}} = \mathbf{b}^T \overline{\mathbf{y}}$

<u>Question</u>: Can we obtain a higher profit if we buy additional amount of resource b_{i_0} ?

If we change: $b_{i_0} \to \tilde{b}_{i_0} := b_{i_0} + t$, (t > 0) then $\tilde{z} \to \overline{z} + ??$

We find:
$$\tilde{z} \leq \overline{z} + t \cdot \overline{y}_{i_0}$$
 (\overline{y}_{i_0} is shadow price)

<u>Answer:</u> Yes, if the price per unit for R_{i_0} is smaller than \overline{y}_{i_0} (*shadow price*).

MG is an example of a non-cooperative game with 2 players (using a pure or a mixed strategy).

<u>Given</u> $A \in \mathbb{R}^{m \times n}$ and *row*-players R and (*column*)-player C

Game with pure strategy

- R chooses row *i*: if $a_{ii} > 0$ R wins a_{ii}
- C chooses col. *j*: if $a_{ij} < 0$ C wins $|a_{ij}|$

For this pure strategy game a so-called Nash equilibrium <u>need not</u> exist.

<u>Game</u> with mixed strategies: $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$

- R chooses row *i* with probability x_i ; $x_i \ge 0, \sum_i x_i = 1$
- C chooses col. *j* with probability y_j ; $y_j \ge 0, \sum_i y_j = 1$.

The expected gain for R (loss for C):

$$\mathbf{x}^{\mathsf{T}} \mathbf{A} \mathbf{y} = \sum_{i} \mathbf{x}_{i} \left(\sum_{j} \mathbf{a}_{ij} \mathbf{y}_{j} \right) = \sum_{j} \mathbf{y}_{j} \left(\sum_{i} \mathbf{a}_{ij} \mathbf{x}_{i} \right)$$

Strategies:

• given \overline{y} : R plays \overline{x} as solution of:

$$\max_{x} x^{T} A \overline{y} = \max_{i} \sum_{j} a_{ij} \overline{y}_{j}$$

• given \overline{x} : C plays \overline{y} as solution of:

$$\min_{y} \overline{x}^{T} A y = \min_{j} \sum_{i} a_{ij} \overline{x}_{i}$$

Best strategy against best of opponent:

for R:
$$\max_{x} \min_{y} x^{T} A y = \max_{x} \min_{j} \sum_{i} a_{ij} x_{i}$$

for C:
$$\min_{y} \max_{x} x^{T} A y = \min_{y} \max_{i} \sum_{j} a_{ij} y_{j}$$

<u>Th.3.2</u> [*minmax-theorem*] **There exist feasible** \overline{x} , \overline{y} such that

$$\min_{y} \overline{x}^{T} A y = \max_{x} x^{T} A \overline{y}$$

This implies: $\max_{x} \min_{y} x^{T} A y = \min_{y} \max_{x} x^{T} A y = \overline{x}^{T} A \overline{y}$ $\overline{x}, \overline{y}$ represent a Nash equilibrium of the mixed strategy matrix game.

Def. A game is fair if
$$\overline{z} = \overline{w} = \overline{x}^T A \overline{y} = 0$$
 holds.

Methods for linear programs

1. Simplex method

$$\mathbf{LP}_{\boldsymbol{\rho}}: \max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{c}^T \mathbf{x} \quad \mathbf{s.t.} \quad \mathbf{a}_i^T \mathbf{x} \leq b_i, \ i = 1, .., m.$$

proceeds 'from vertex to vertex' of the feasible set F_p until we have found a vertex x such that (with suitable y) the sufficient optimality condition holds:

$$A^T \mathbf{y} = \boldsymbol{c}, \ \mathbf{y} \ge \mathbf{0}, \ \ \mathbf{y}^T (\mathbf{b} - A\mathbf{x}) = \mathbf{0}$$

2. Interior point method: Consider the system of equations

$$P(t): \begin{array}{rcl} Ax + s &= b \\ A^Ty &= c \\ y_i(b - Ax)_i &= t > 0 \end{array} \quad \forall i$$

with y, (b - Ax) > 0. Here t > 0 is a parameter.

Idea: Compute (by 'Newton') solutions $\mathbf{x}(t), \mathbf{y}(t), \mathbf{s}(t), t > 0$ of P(t). Then for $t \downarrow 0$ (hopefully)

$$\mathbf{x}(t), \mathbf{y}(t), \mathbf{s}(t) \longrightarrow \mathbf{x}, \mathbf{y}, \mathbf{s}$$

With solutions x, y of the primal-dual pair of LP's

<u>Remark:</u> The "worst case behavior" of the Simplex algorithm is not "polynomial". The interior point method can be implemented as a

"polynomial" algorithm for solving LP.