Mathematical Programming I, Sheets for the course, version: 04-04-2012 Georg Still

Material:

- **Script Nr. 527**
- **Sheets of the course (on internet)**

Use it as a rough guide; for motivation, geometric illustration, and proofs join the courses.

Chapter 1: Real vector spaces *linear spaces, inner products, differentiable functions. By "Self-instruction"*

Chapter 2: Linear equations, - inequalities

Gaussian elimination, least square approximation, Fourier-Motzkin algorithm, Farkas lemma

Chapter 3: Linear programs

primal-dual linear programs, optimality conditions, matrix games

Chapter 4: Convex analysis

separating hyperplanes, convex sets, convex functions, differential theory

Chapter 5: Unconstrained optimization

optimality conditions, minimizing convex functions, descent methods, conjugate direction method, line search, Newton's method, Gauss-Newton method, Quasi-Newton methods, minimization of nondifferentiable functions

We start with some definitions:

Definitions in matrix theory

 \bullet *M* = (m_{ij}) is said to be *lower triangluar:* **if** $m_{ij} = 0$ for $i < j$, *upper triangular:* **if** $m_{ii} = 0$ for $i > j$.

 $P = (p_{ij}) \in \mathbb{R}^{m \times m}$ is a *permutation matrix*

if $p_{ii} \in \{0, 1\}$ and each row and each column of P **contains exactly one coefficient** 1**.**

Note that $P^{T}P = I$, implying $P^{-1} = P^T$ for the inverse P^{-1} of P **.**

Q ∈ R *n*×*n* **,** *Q* **symmetric, is called** *positive semi-definite* (not. $Q \geq 0$) if: $\mathbf{x}^T Q \mathbf{x} \geq 0$ **for all** $\mathbf{x} \in \mathbb{R}^n$, *positive definite* **(not.** *Q* > 0**) if:** $\mathbf{x}^T Q \mathbf{x} > 0$ **for all** $\mathbf{x} \in \mathbb{R}^n$ **,** $\mathbf{x} \neq \mathbf{0}$ **.**

2.1 Gauss-elimination (for solving $Ax = b$)

Motivation: We show by a simple example that "successive elimination" is equivalent with Gauss-algorithm.

General Idea: To eliminate *x*1, *x*² . . . **is equivalent with transforming** $Ax = b$ or $(A | b)$ to "triangular" normal form $(\tilde{A} | \tilde{b})$ (with same solution set). Then solve $\tilde{A}x = \tilde{b}$, *recursively:* a_{11} a_{12} ... a_{1n} | b_1

 a_{21} a_{22} ... a_{2n} | b_2

 a_{m1} a_{m2} ... a_{mn} | b_{m}

. . .

Transformation into form $(\tilde{A} | \tilde{b})$ **:**

. . .

 \tilde{a}_{1j_1} ... \tilde{a}_{1j_2} ... $\tilde{a}_{1j_{r-1}}x_{j_{r-1}}$... \tilde{a}_{1j_r} ... | \tilde{b}_1 \tilde{a}_{2j_2} ... $\tilde{a}_{2j_{r-1}}$... \tilde{a}_{2j_r} ... | \tilde{b}_2 **.** $\tilde{a}_{r-1j_{r-1}}$.. \tilde{a}_{r-1j_r} .. | \tilde{b}_{r-1} $\tilde{\mathsf{a}}_{\mathsf{r} \mathsf{j}_{\mathsf{r}}}$... $|\tilde{\mathsf{b}}_{\mathsf{r}}$: \tilde{b}_m

This "Gauss elimination" uses 2 types of row operations: (G1) (i, j) -pivot: for $k > i$,

add $\lambda \times$ **row** *i* **to row** k ; with $\lambda = -\frac{a_{kj}}{a_{kj}}$ *aij*

(G2) interchange row *i* **with row** *k*

The "matrix form" of these operations are:

Ex.2.3 The matrix form of (G1): $(A | b) \rightarrow (\tilde{A} | \tilde{b})$

$$
\text{is given by} \quad (\tilde{A} \mid \tilde{b}) = M (A \mid b)
$$

with a nonsingular lower triangular M $\in \mathbb{R}^{m \times m}$

Ex.2.4 The matrix form of (G2): $(A | b) \rightarrow (\tilde{A} | \tilde{b})$ \mathbf{i} **s** given by $(\mathbf{A} | \mathbf{b}) = \mathbf{P} (\mathbf{A} | \mathbf{b})$ with a permutation matrix $\mathbf{P} \in \mathbb{R}^{m \times m}$

Implications of the Gauss algorithm:

 $\mathbf{Th. 2.1}$ For every A $\in \mathbb{R}^{m \times n}$, there exists an (*m* × *m*)**-permutation matrix P and an invertible lower triangular matrix M** ∈ R *^m*×*^m* **such that**

U = **MPA is upper triangular.**

Cor. 2.1 [*LU*-factorization**]** For A $\in \mathbb{R}^{m \times n}$, there exists an $(m \times m)$ -permutation matrix **P, an invertible, lower triang. L** ∈ $\mathbb{R}^{m \times m}$ and an upper triang. $\mathbf{U} \in \mathbb{R}^{m \times n}$ such that $\mathsf{LU} = \mathsf{PA}$.

Rem.: Solve $Ax = b$ by using the decomposition $PA = LU$! **(How?)**

Cor. 2.2 [Gale's Theorem**] Exactly one of the following statements is true:** (a) **The system** $Ax = b$ has a solution x. (b) There exists y ∈ ℝ^{*m*} such that: y^{*T*}*A* = 0^{*T*} and y^{*T*}**b** \neq 0.

Remark: In "normal form" $A \rightarrow A$, the number *r* gives **dimension of the space spanned by the rows of** *A***. This equals the dimension of the space spanned by the columns of** *A***.**

2.1.3 "Gauss-Algoritm" for symmmetric **A**

Note: *"Gauss row operations" destroy symmetry. So we modify "Gauss" in order to maintain symmetry.*

Perform row and "same" column-operations:

- \bullet use (G1'): $A \rightarrow MAM^T$
- **instead of (G2) use (G2'):**

if $a_{ii} = 0$, $a_{kk} \neq 0$, $k > i$: **interchange row** *i* **and row** *k* **interchange col.** *i* **and col.** *k*

\n if
$$
a_{ii} = 0
$$
, $a_{kk} = 0 \forall k > i$, $a_{ki} \neq 0$, $k > i$:\n

\n\n add row k to row i and\n

\n\n add col. k to col. i \n

\n\n G2' transforms: $A \rightarrow BAB^T$ (B nonsingular)\n

Note: *By "symmetric Gauss" the solution set of Ax* = *b is destroyed!!! But it is useful to get the followig results.*

Implications of the symmetric Gauss algorithm

Th. 2.2. A ∈ R *ⁿ*×*ⁿ* **symmetric. Then with some nonsingular Q** ∈ R *n*×*n*

$$
\mathbf{Q}\mathbf{A}\mathbf{Q}^T = \mathbf{D} = \text{diag}(d_1,\ldots,d_n)
$$

Recall: A symmetric Q ∈ R *n*×*n* **is called** *positive semi-definite* **(not. Q** ≥ 0**) if:**

 $\mathbf{x}^T \mathbf{Q} \mathbf{x} \geq 0$ **for all** $\mathbf{x} \in \mathbb{R}^n$.

Cor. 2.3. Let A be symmetric, Q nonsingular such that $\mathbf{Q}\mathbf{A}\mathbf{Q}^T = \text{diag}(d_1, \ldots, d_n)$. Then (a) $A \ge 0 \Leftrightarrow d_i \ge 0, i = 1, ..., n$ (b) $\mathbf{A} > 0 \Leftrightarrow d_i > 0, i = 1, \ldots, n$

Implication: The check *A* ≥ **0 (positive semidefinite) can be done by the Gauss-algorithm (polynomial).**

 $Cor. 2.4.$ Let $S \in \mathbb{R}^{n \times n}$ be symmetric. Then (a) **S** \geq 0 \iff **S** = **AA**^{*T*} with some A $\in \mathbb{R}^{n \times m}$ (b) **S** > 0 ⇔ **S** = **AA***^T* **with some nonsingular A**

Complexity of Gauss algorithm

For *a***, the number of "**±, ·, / **flop's" (***floating point operations*) needed to solve $Ax = b$ with $A \in \mathbb{R}^{n \times n}$:

 $a \leq n^3$

2.2. Orthogonal projection, Least Square

Assumption: *V* **is a linear vectorspace over** R **with inner product** $\langle x | y \rangle$ and *(induced)* **norm** $||x|| = \sqrt{\langle x | x \rangle}$.

Minimization Problem: Given x ∈ *V***, subspace** *W* ⊂ *V* **find** $\hat{\mathbf{x}} \in W$ such that:

$$
\|\mathbf{x} - \hat{\mathbf{x}}\| = \min_{\mathbf{y} \in W} \|\mathbf{x} - \mathbf{y}\|
$$
 (2.13)

The vector \hat{x} is called the *projection of* x *onto* W .

L 2.1. (*sufficient condition*) Assume $\hat{\mathbf{x}} \in W$ is such that

$$
\langle \bm{x}-\hat{\bm{x}}|\bm{w}\rangle=0 \;\; \forall \bm{w}\in \bm{W} \; .
$$

Then \hat{x} is unique solution of (2.13) .

To solve (2.13) we "construct" a solution via L.2.1:

We construct a solution $\hat{\mathbf{x}} \in W$ satisfying $\langle x - \hat{x} | w \rangle = 0$ ∀w ∈ *W* as follows *(assuming that W has a basis* a_1, \ldots, a_m , *i.e.*, $W = \text{span} \{a_1, \ldots, a_m\}$: Write

$$
\hat{\mathbf{x}} := \sum\nolimits_{i=1}^m z_i \mathbf{a}_i
$$

Then $\langle x - \hat{x} | w \rangle = 0$, $\forall w \in W$ is equivalent with

$$
\langle \mathbf{x} - \sum_{i=1}^m z_i \mathbf{a}_i \mid \mathbf{a}_j \rangle = 0 \; , \quad j = 1, \ldots, m
$$

$$
\text{or} \quad \sum_{i=1}^m \langle \mathbf{a}_i | \mathbf{a}_j \rangle z_i = \langle \mathbf{x} | \mathbf{a}_j \rangle \ , \quad j=1,\ldots,m
$$

 $\mathsf{Defining the}$ *Gram-matrix* $G := (\langle a_i | a_j \rangle), \mathsf{b} \in \mathbb{R}^m, \, b_j = \langle \mathsf{x} | a_j \rangle$ **this leads to the linear equation (for** *z***)**

$$
(2.16) \qquad Gz = b \quad \text{with solution } \hat{z} = G^{-1}b
$$

Ex. The Gram-matrix is positive definite, thus non-singular (under our assumption) *Proof!*

Special case 1: $V = \mathbb{R}^n$, $\langle x | y \rangle = x^T y$ and $W = \text{span} \{a_1, \ldots, a_m\}$. Then with $A := [a_1, \ldots, a_m]$ the **projection of x onto** *W* **is given by**

$$
\hat{\mathbf{x}} = \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{x}
$$

Special case 2: $V = \mathbb{R}^n$, $\langle x | y \rangle = x^T y$, $a_1, \ldots, a_m \in \mathbb{R}^n$ lin. **independent and** $W' = \{w \in \mathbb{R}^n \mid a_i^Tw = 0, i = 1, \ldots, m\}.$ **Then the projection of x onto** *W*⁰ **is given by**

$$
\hat{\mathbf{x}}' = \mathbf{x} - \mathbf{A}(\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T \mathbf{x}
$$

Special case 3: $W = \text{span} \{a_1, \ldots, a_m\}$ with $\{a_i\}$, an ${\bf ord}$ basis, i.e., $\langle a_i|a_j\rangle = 0, i\neq j; = 1, i = j)$). Then **the projection of x onto** *W* **is given by**

$$
\hat{\mathbf{x}} = \sum_{j=1}^{m} z_j \mathbf{a}_j \quad \text{with} \quad z_j = \langle \mathbf{a}_j | \mathbf{x} \rangle \ \forall j \quad \text{``Fouriercoefficients''}.
$$

Problem: Given $W = \text{span} \{a_1, \ldots, a_m\}$, find an orthogonal **basis** $W = \text{span} \{b_1, ..., b_m\}$ (i.e., $\langle b_i | b_j \rangle = 0, i \neq j(>0, i = j)\}$.

Recall the Gram-Schmidt algorithm for solving this Problem: start with $b_1 := a_1$ and iterate

$$
\underline{\text{step } k-1 \rightarrow k :}\n\qquad\n\mathbf{b}_k = \mathbf{a}_k - \sum_{i=1}^{k-1} \frac{\langle \mathbf{b}_i, \mathbf{a}_k \rangle}{\langle \mathbf{b}_i, \mathbf{b}_i \rangle} \mathbf{b}_i
$$

Gram-Schmidt in matrix form: With $W \subset V := \mathbb{R}^n$. Put $\begin{pmatrix} \mathbf{a}_1^T \\ \vdots \end{pmatrix}$ \setminus $\left(\begin{array}{c} \mathbf{b}_1^T \\ \ldots \end{array} \right)$ \setminus

$$
\mathbf{A} = \left(\begin{array}{c} \ldots \\ \mathbf{a}_{m}^{\mathsf{T}} \end{array} \right) , \quad \mathbf{B} = \left(\begin{array}{c} \ldots \\ \mathbf{b}_{m}^{\mathsf{T}} \end{array} \right) .
$$

Then the Gram-Schmidt-steps are equivalent with:

- **add multiple of row** *j* < *k* **to row** *k*
- **multiply row** *k* **by scalar (in case of normalisation)**

Matrix form of "Gram-Schmidt": Given A ∈ R *m*×*n* **, there is a decomposition**

 $B = LA$

with lower triangular nonsingular matrix L (/ $_{\it ii} =$ 1) and the ${\bf r}$ ows ${\bf b}_j$ of ${\bf B}$ are orthogonal, i.e. $\langle {\bf b}_i|{\bf b}_j\rangle = 0, \,\, i\neq j$.

A corollary of this fact:

Prop. 2.1 (*Hadamard's inequality***) Let A** ∈ R *^m*×*ⁿ* **with rows a** 7 . Then

$$
0 \leq \det(\mathbf{A}\mathbf{A}^T) \leq \prod_{i=1}^m \mathbf{a}_i^T \mathbf{a}_i
$$

Definition. $\lambda \in \mathbb{C}$ is an eigenvalue of $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ if there is **an (eigenvector) 0** \neq *x* \in \mathbb{C}^n with $Ax = \lambda x$.

The results above (together with the Theorem of Weierstrass) allow a proof of:

Th. 2.3 (*Spectral theorem for symmetric matrices***)** Let A ∈ $\mathbb{R}^{n \times n}$ be symmetric. Then there exists an **orthogonal matrix Q (Q***T***Q** = **I) and eigenvalues** $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ such that

$$
\mathbf{Q}^T \mathbf{A} \mathbf{Q} = \mathbf{D} = \mathbf{diag} (\lambda_1, \dots, \lambda_n)
$$

2.3 Integer Solutions of Linear Equations ($x_i \in \mathbb{Z}$)

Example The equation $3x_1 - 2x_2 = 1$ has a solution $\boldsymbol{x} = (1, 1) \in \mathbb{Z}^2$. But the equation $6x_1 - 2x_2 = 1$ does not **allow an entire solution** *x***.**

Key remark: Let $a_1, a_2 \in \mathbb{Z}$ and let $a_1x_1 + a_2x_2 = b$ have a **solution** $x_1, x_2 \in \mathbb{Z}$. Then $b = \lambda c$ with $\lambda \in \mathbb{Z}$, $c = \text{gcd}(a_1, a_2)$

Here: $gcd(a_1, a_2)$ denotes the greatest common divisor of a_1 , a_2 .

Lem.2.2 *[Euclid's Algorithm]* **Let** $c = \text{gcd}(a_1, a_2)$ **. Then**

 $L(a_1, a_2) := \{a_1\lambda_1 + a_2\lambda_2 \mid \lambda_1, \lambda_2 \in \mathbb{Z}\} = \{c\lambda \mid \lambda \in \mathbb{Z}\} =: L(c)$.

(The proof of) this result allows to

"**solve** $a_1x_1 + a_2x_2 = b$ **(in** \mathbb{Z})".

Algorithm to solve, $a_1x_1 + a_2x_2 = b$ (in \mathbb{Z})

- **Compute** $c = \text{gcd}(a_1, a_2)$. If $\lambda := b/c \notin \mathbb{Z}$, no entire **solution exists.**
- **0** If $\lambda := b/c \in \mathbb{Z}$, compute solutions $\lambda_1, \lambda_2 \in \mathbb{Z}$ of $\lambda_1 a_1 + \lambda_2 a_2 = c$. Then

$$
(\lambda_1\lambda)a_1+(\lambda_2\lambda)a_2=b.
$$

 $\textbf{General problem:}\quad \textbf{Given } \textbf{a}_1, \ldots, \textbf{a}_n, \textbf{b} \in \mathbb{Z}^m, \textbf{find}$ $\overline{\textbf{x}} = (x_1, \cdots, x_n) \in \mathbb{Z}^n$ such that

$$
(*)
$$
 $a_1x_1 + a_2x_2 + ... + a_nx_n = b$ or $Ax = b$

where A := $[a_1, ..., a_n]$ **.**

Def. We introduce the *lattice* generated by a_1, \ldots, a_n ,

$$
L = L(\mathbf{a}_1,\ldots,\mathbf{a}_n) = \left\{ \sum\nolimits_{j=1}^n \mathbf{a}_j \lambda_j \, | \, \lambda_j \in \mathbb{Z} \right\} \subseteq \mathbb{R}^m \, .
$$

Assumption 1: rank A = m ($m \le n$); $wlog_{1}$, a_1, \ldots, a_m are **linearly independent.**

 \mathbf{T} o solve the problem: $\mathbf{Find C} = [\mathbf{c}_1 \dots \mathbf{c}_m] \in \mathbb{Z}^{m \times m}$ such **that**

$$
(\star \star) \qquad L(\mathbf{c}_1,\ldots,\mathbf{c}_m) \;=\; L(\mathbf{a}_1,\ldots,\mathbf{a}_n) \; .
$$

Then (\star) has a solution $\mathbf{x} \in \mathbb{Z}^n$ iff $\lambda := \mathbf{C}^{-1} \mathbf{b} \in \mathbb{Z}^n$

Bad news: As in the case of one equation: in general

$$
L(\mathbf{a}_1,\ldots,\mathbf{a}_m) \ \neq \ L(\mathbf{a}_1,\ldots,\mathbf{a}_n) \ .
$$

Lem.2.3 Let $c_1, ..., c_m \in L(a_1, ..., a_n)$. Then $L(c_1, \ldots, c_m) = L(a_1, \ldots, a_n)$ iff for all $j = 1, \ldots, n$, the system $C\lambda = a_i$ has an integral solution.

Last step: Find such *cⁱ* **'s**

Main Result: The algorithm

Lattice Basis

INIT: $C = [c_1, \ldots, c_m] = [a_1, \ldots, a_m]$; **ITER: Compute C**−¹ **; If C**−1**a***^j* ∈ Z *^m* **for** *j* = 1, . . . , *n***, then STOP;** If $\boldsymbol{\lambda} = \mathbf{C}^{-1} \mathbf{a}_j \notin \mathbb{Z}^m$ for some j , then Let $\mathbf{a}_j = \mathbf{C}\lambda = \sum_{i=1}^m \lambda_i \mathbf{c}_i$ and compute $\mathbf{c} = \sum_{i=1}^{m} (\lambda_i - [\lambda_i]) \mathbf{c}_i = \mathbf{a}_j - \sum_{i=1}^{m} [\lambda_i] \mathbf{c}_i$; Let *k* be the largest index *i* such that $\lambda_i \notin \mathbb{Z}$; Update C by replacing c_k with c in column k ; **NEXT ITERATION**

 \textsf{stops} after at most $\mathcal{K} = \text{log}_2(\text{det}[\mathbf{a}_1, \dots, \mathbf{a}_m])$ steps with a matrix C satisfying $(\star \star)$.

 \mathbf{T} h. 2.4 $\mathsf{Let}\ \mathsf{A}\in\mathbb{Z}^{m\times n}$ and $\mathsf{b}\in\mathbb{Z}^m$ be given. Then exactly **one of the following statements is true:**

(a) There exists some $x \in \mathbb{Z}^n$ such that $Ax = b$.

(b) There exists some $y \in \mathbb{R}^m$ such that $y^T A \in \mathbb{Z}^n$ and $y^T b \notin \mathbb{Z}$.

2.4 Linear Inequalities *Ax* ≤ *b*

Fourier-Motzkin algorithm for solving $Ax < b$. Eliminate x_1 :

$$
\underbrace{a_{r1}x_1}_{j=2} + \sum_{\substack{j=2 \ j=2}}^n a_{rj}x_j \leq b_r \qquad r = 1, \ldots, k
$$
\n
$$
\underbrace{a_{s1}x_1}_{j=2} + \sum_{\substack{n=2 \ j=2}}^n a_{rj}x_j \leq b_s \qquad s = k+1, \ldots, \ell
$$
\n
$$
\sum_{j=2}^n a_{rj}x_j \leq b_t \qquad t = \ell+1, \ldots, m
$$

with $a_{r1} > 0$, $a_{s1} < 0$. Divide by a_{r1} , $|a_{s1}|$, giving (*for r and s*)

$$
x_1 + \sum_{j=2}^n a'_{rj} x_j \le b'_r \qquad r = 1, \ldots, k
$$

$$
-x_1 + \sum_{j=2}^n a'_{sj} x_j \le b'_s \qquad s = k+1, \ldots, \ell
$$

So $\mathbf{Ax} \leq \mathbf{b}$ has a solution $\mathbf{x} = (x_1, ..., x_n)$ if and only if **there is a solution** $x' = (x_2, ..., x_n)$ **of**

$$
\sum_{j=2}^n (a'_{sj} + a'_{rj})x_j \leq b'_r + b'_s \qquad r = 1, \ldots, k; \ s = k+1 \ldots, \ell
$$
\n
$$
\sum_{j=2}^n a_{tj}x_j \leq b_t \qquad t = \ell+1, \ldots, m.
$$

In matrixform: $Ax \leq b$ has a solution $x = (x_1, ..., x_n)$ if and **only if there is a solution of the transformed system:**

$$
\bm{A}'\bm{x}' \leq \bm{b}' \qquad \text{or} \qquad (\bm{0} \ \bm{A}' \)\bm{x} \leq \bm{b}'
$$

Remark: Any row of $(0 \text{ A}^{\prime} | b^{\prime})$ is a positive combination of **rows of** (**A**|**b**)**:**

any row is of the form $\mathbf{y}^{\mathsf{T}}(\mathsf{A}|\mathsf{b}), \quad \mathsf{y} \geq \mathsf{0}$

By eliminating x_1, x_2, \ldots, x_n in this way we finally obtain an **"equivalent" system**

$$
\tilde{\mathbf{A}}^{(n)}\mathbf{x}\leq \tilde{\mathbf{b}}\qquad\text{where}\quad \tilde{\mathbf{A}}^{(n)}=\mathbf{0}
$$

which is (recursively) solvable iff $\underline{0}\leq \tilde{b}_i,\ \forall i.$

Th.2.5 [*Projection Theorem*] Let $P = \{x \in \mathbb{R}^n | Ax \leq b\}$. **Then all for** $k = 1, \ldots, n$, the projection

$$
P^{(k)} = \{ (x_{k+1},...,x_n) \mid (x_1,..,x_k, x_{k+1},..,x_n) \in P
$$

for suitable $x_1,...,x_k \in \mathbb{R} \}$

 \mathbf{a} is the solution set of a linear system \mathbf{b} **in** *n* − *k* **variables** $\mathbf{x}^{(k)} = (x_{k+1}, \ldots, x_n)$ **.**

$$
\mathbf{A}^{(k)}\mathbf{x}^{(k)} \leq \mathbf{b}^{(k)}
$$

In principle: Linear inequalities can be solved by FM. However this might be inefficient! (*Why?***)**

2.4.1. Solvability of linear systems

We consider so-called Farkas lemmata. *They are the basis of optimality and duality results in LP.*

Th. 2.6 [Lemma of Farkas**] Exactly one of the following statements is true:**

- (I) $Ax \leq b$ has a solution $x \in \mathbb{R}^n$.
- (H) There exists $y \in \mathbb{R}^m$ such that

$$
\textbf{y}^T A = \textbf{0}^T \text{ , } \quad \textbf{y}^T \textbf{b} < 0 \quad \text{and} \quad \textbf{y} \geq \textbf{0}.
$$

Ex. 2.24 (more general) Let $A \in \mathbb{R}^{m \times n}$, $C \in \mathbb{R}^{k \times n}$, $b \in \mathbb{R}^{m}$, **c** ∈ R *k* **. Then precisely one of the alternatives is valid.** (I) **There is a solution x of: Ax** \lt **b**, $Cx = c$ (II) There is a solution $\mu \in \mathbb{R}^m$, $\mu \geq 0$, $\lambda \in \mathbb{R}^k$ of : $\sqrt{ }$ *r* = T *T*

$$
\begin{pmatrix} \mathbf{A}^T \\ \mathbf{b}^T \end{pmatrix} \boldsymbol{\mu} + \begin{pmatrix} \mathbf{C}^T \\ \mathbf{c}^T \end{pmatrix} \boldsymbol{\lambda} = \begin{pmatrix} \mathbf{0} \\ -1 \end{pmatrix}
$$

Cor.2.5 [*Gordan***] Given A** ∈ R *m*×*n* **, exactly one of the following alternatives is true:**

- (**I**) $Ax = 0, x > 0$ has a solution $x \ne 0$.
- (H) $y^T A < 0^T$ has a solution y.

Remark: *As we shall see in Chapter 3, the Farkas Lemma in the following form is the strong duality of LP in disguise.*

Cor.2.6 [*Farkas, implied inequalities***] Let** $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{b} \in \mathbb{R}^m, \mathbf{c} \in \mathbb{R}^n, z \in \mathbb{R}.$ Assume that $\mathbf{A}\mathbf{x} \leq \mathbf{b}$ is **feasible. Then the following are equivalent:** (a) $Ax \le b$ \Rightarrow $c^T x \le z$ (b) $y^T A = c^T$, $y^T b \le z$, $y \ge 0$ has a solution y.

Application: Markov chains *(Existence of a steady state)*

<u>Def.</u> A vector $\pi = (\pi_1, \ldots, \pi_n)$ **with** $\pi_i \geq 0, \sum_i \pi_i = 1$ is called a *probability distribution* on $\{1, ..., n\}$.

A matrix *P* = (*pij*) **where each row** *Pⁱ* · **is a probability distribution is called a** *stochastic matrix***.**

In a stochastic proces:

- π*i*% **of population is in state** *i*
- p_{ij} is probability of transition from state $i \rightarrow j$
- So the transition step $k \to k+1$ is: $\pi^{(k+1)} = \boldsymbol{P}^{\boldsymbol{T}} \pi^{(k)}$

Probability distribution π **is called** *steady state* **if** $\pi = \boldsymbol{P}^T\pi$

As a corollary of Gordan's result:

Each stochastic matrix *P* **has a steady state** π**.**

3. Linear Programs

Given
$$
A \in \mathbb{R}^{m \times n}
$$
, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$.
\n LP_ρ : $\max_{x \in \mathbb{R}^n} c^T x$ s.t. $Ax \leq b$
\n LP_d : $\min_{y \in \mathbb{R}^m} b^T y$ s.t. $A^T y = c$, $y \geq 0$,

is the pair of primal and dual programs.

Notation.

•
$$
F_p = \{x \mid Ax \leq b\}
$$
 feasible set of LP_p

$$
\bullet \ \ F_{d}=\{\boldsymbol{y}\ |\ \boldsymbol{\mathsf{A}}^{T}\boldsymbol{y}=c,\boldsymbol{y}\ge\boldsymbol{0}\} \ \text{feas.set of}\ \boldsymbol{\mathsf{LP}}_{d}
$$

- *z* ∗ *p* := max**x**∈*F^p* **c** *^T* **x max. value of LP***^p*
- *z* ∗ *d* := min**y**∈*F^d* **b** *^T* **y min. value of LP***^d*

 \bullet $\overline{\mathsf{x}}\in\mathsf{F}_p$ is optimal (maximizer of LP $_p$) if $c^{\mathsf{T}}\overline{\mathsf{x}}=z^*_p$.

Weak duality *is easy to prove:*

L.3.1 *(Weak Duality)* Let $Ax \le b$, $A^T y = c$, $y \ge 0$. Then, $\mathbf{c}^{\mathcal{T}}\mathbf{x} \le \mathbf{b}^{\mathcal{T}}\mathbf{y}$ and thus $\mathbf{z}_\mathbf{p}^* \le \mathbf{z}_\mathbf{d}^*$ *d*

If we have c*^T* **x** = **b** *^T* **y, then x**, **y are optimal solutions of** LP_p , LP_d resp.

Strong duality *is a direct consequence of Farkas' lemma:*

Th.3.1 *(Strong Duality)*

If either LP_{α} or LP_{α} is feasible then:

$$
z_p^*=z_d^*
$$

If both are feasible, then optimal solutions x and y of LP*^p* and LP $_d$ exists (satisfying c $^{\mathsf{T}}\mathbf{x}=\mathbf{b}^{\mathsf{T}}\mathbf{y}$).

Th.3.1 implies: x and y are optimal solutions of LP*^p* **and** $\overline{LP_d}$, resp., if and only if they solve the system (*of lin.*=, \leq)

$$
\begin{array}{rcl}\n & & \text{Ax} & \leq & \text{b} \\
& & & \text{A}^T y = & \text{c} \\
& & & \text{c}^T x - & \text{b}^T y = & 0 \\
& & y \geq & 0.\n\end{array}
$$

Note that: for x , y satisfying $(*)$ we have

$$
b^T y - c^T x = y^T (b - Ax) = 0
$$

The relation

$$
\bm{y}^{\mathcal{T}}(\bm{b}-A\bm{x})=0
$$

is called *complementarity condition***.**

Cor. : *(Optimality conditions)* \bullet Let $\mathbf{x} \in F_p$: then \mathbf{x} solves LP_{*p*} \Longleftrightarrow $\mathbf{there}\ \mathbf{ex.}\ \mathbf{y} \in \mathcal{F}_{d} \ \mathbf{such}\ \mathbf{that}\ \mathbf{y}^{T}(\mathbf{b} - A\mathbf{x}) = 0$ **•** Let $y \in F_d$: Then y solves LP_{*d*} \Longleftrightarrow $\mathbf{there}\ \mathbf{ex.}\ \mathbf{x} \in \mathcal{F}_\rho\ \mathbf{such}\ \mathbf{that}\ \mathbf{y}^{\mathcal{T}}(\mathbf{b}-A\mathbf{x})=0$

3.1.2 Equivalent LP's

LP's in other forms can be transformed into the given "standard forms" **For example: The program:**

$$
\max_{x\in\mathbb{R}^n} \mathbf{c}^T x \quad \text{s.t.} \quad Ax \leq b \,, \quad x \geq 0
$$

has the dual:

$$
\min_{y\in\mathbb{R}^n} b^Ty \quad \text{s.t.} \quad A^Ty \geq c, \quad y \geq 0
$$

Rules for primal dual pairs:

3.1.3. Shadow prices

Production model: (n products, m resources)

- c_j **prices per unit for product** $j \rightarrow c$
- b_i **bounds for resource** B_i \longrightarrow *b*
- a_{ij} **units of resource** B_i **needed** \rightarrow **A for unit of product** *j*
- x_i **production of product** *j* $\rightarrow x$

primal program: *(max profit* $c^T x$ *)*

$$
\max_{\mathbf{x}\in\mathbb{R}^n} \mathbf{c}^T\mathbf{x} \quad \text{s.t.} \quad \mathbf{A}\mathbf{x}\leq \mathbf{b}, \quad \mathbf{x}\geq \mathbf{0}
$$

optimal solution: \bar{x} \rightarrow *profit* $\bar{z} = \mathbf{c}^T \bar{x}$

 $\frac{\mathsf{dual:}}{\mathsf{dual:}}$ min_{y∈ℝ} n b⁷y s.t. A⁷y \geq c, y \geq 0

optimal solution: $\bar{y} \rightarrow$ *value* $\bar{z} = \mathbf{b}^T \bar{y}$

Question: Can we obtain a higher profit if we buy additional amount of resource *bi*⁰ **?**

If we change: $b_{i_0} \rightarrow \tilde{b}_{i_0} := b_{i_0} + t,~ (t > 0 ~\text{) }$ then $\tilde{z} \rightarrow \overline{\bm{z}}{+} ? ?$

$$
\textbf{We find:}\quad \left[\widetilde{\mathsf{Z}}\leq \overline{\mathsf{Z}}+t\cdot \overline{\mathsf{y}}_{i_0}\right]\quad (\overline{\mathsf{y}}_{i_0}\text{ is shadow price})
$$

Answer: Yes, if the price per unit for *Ri***⁰ is smaller than** *yi***0 (***shadow price***).**

MG is an example *of a non-cooperative game with 2 players* **(***using a pure or a mixed strategy***).**

Given A ∈ R *^m*×*ⁿ* **and** *row-***players R and (***column)***-player C**

Game with *pure strategy*

- R chooses row *i*: if $a_{ii} > 0$ R wins a_{ii}
- **C chooses col.** *j*: if $a_{ii} < 0$ **C wins** $|a_{ii}|$

For this pure strategy game a so-called Nash equilibrium need not exist.

Game with mixed strategies: $\mathbf{x} \in \mathbb{R}^m$, $\mathbf{y} \in \mathbb{R}^n$

- **R** chooses row *i* with probability x_i ; $x_i \geq 0, \sum_i x_i = 1$
- **C** chooses col. j with probability y_j ; $y_j \geq 0, \sum_j y_j = 1$.

The expected gain for R (loss for C):

$$
\mathbf{x}^T A \mathbf{y} = \sum_i x_i \left(\sum_j a_{ij} y_j \right) = \sum_j y_j \left(\sum_i a_{ij} x_i \right)
$$

Strategies:

e given \overline{y} : R plays \overline{x} as solution of:

$$
\max_{x} x^T A \overline{y} = \max_{i} \sum_{j} a_{ij} \overline{y}_j
$$

e given \overline{x} : C plays \overline{y} as solution of:

$$
\min_{y} \overline{x}^T A y = \min_{j} \sum_{i} a_{ij} \overline{x}_i
$$

Best strategy against best of opponent:

for R:
$$
\max_{x} \min_{y} x^T A y = \max_{x} \min_{j} \sum_{i} a_{ij} x_i
$$

for C:
$$
\min_{y} \max_{x} x^T A y = \min_{y} \max_{i} \sum_{j} a_{ij} y_j
$$

Th.3.2 [*minmax-theorem***] There exist feasible** *x*, *y* **such that**

$$
\min_{y} \overline{x}^T A y = \max_{x} x^T A \overline{y}
$$

 $\textbf{This implies: } \quad \left| \max_{X} \min_{Y} x^{T} A y = \min_{Y} \max_{X} x^{T} A y = \overline{X}^{T} A \overline{y} \right|$ *x*, *y* **represent a Nash equilibrium of the mixed strategy matrix game.**

<u>**Def.** A game is fair if $\overline{z} = \overline{w} = \overline{x}^T A \overline{y} = 0$ holds.</u>

Methods for linear programs

1. Simplex method

$$
\mathsf{LP}_p: \quad \max_{\mathbf{x}\in\mathbb{R}^n} \quad \mathbf{c}^T\mathbf{x} \quad \text{s.t.} \quad \mathbf{a}_i^T\mathbf{x} \leq b_i, \ \ i=1,..,m.
$$

proceeds 'from vertex to vertex' of the feasible set *F^p* **until we have found a vertex** *x* **such that (with suitable** *y***) the sufficient optimality condition holds:**

$$
A^T \mathbf{y} = \mathbf{c}, \ \mathbf{y} \geq \mathbf{0}, \ \ \mathbf{y}^T (\mathbf{b} - A\mathbf{x}) = 0
$$

2. Interior point method: Consider the system of equations

$$
Ax + s = b
$$

\n
$$
P(t): \qquad A^T y = c
$$

\n
$$
y_i(b - Ax)_i = t > 0 \quad \forall i
$$

with y, $(b - Ax) > 0$. Here $t > 0$ is a parameter.

Idea: Compute (by 'Newton') solutions $x(t)$, $y(t)$, $s(t)$, $t > 0$ **of P(t). Then for** *t* ↓ 0 **(hopefully)**

$$
\mathbf{x}(t),\mathbf{y}(t),\mathbf{s}(t)\longrightarrow \mathbf{x},\mathbf{y},\mathbf{s}
$$

With solutions x, **y of the primal-dual pair of LP's**

Remark: *The "worst case behavior" of the Simplex algorithm is not "polynomial". The interior point method can be implemented as a "polynomial" algorithm for solving LP.*