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Use it as a rough guide; for motivation, geometric
illustration, and proofs join the courses.
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Chapter 1: Real vector spaces linear spaces, inner
products, differentiable functions. By “Self-instruction”
Chapter 2: Linear equations, - inequalities
Gaussian elimination, least square approximation,
Fourier-Motzkin algorithm, Farkas lemma
Chapter 3: Linear programs
primal-dual linear programs, optimality conditions, matrix
games
Chapter 4: Convex analysis
separating hyperplanes, convex sets, convex functions,
differential theory
Chapter 5: Unconstrained optimization
optimality conditions, minimizing convex functions, descent
methods, conjugate direction method, line search, Newton’s
method, Gauss-Newton method, Quasi-Newton methods,
minimization of nondifferentiable functions
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Ch.2 Linear equations, inequalities

We start with some definitions:

Definitions in matrix theory
M = (mij) is said to be
lower triangluar: if mij = 0 for i < j ,
upper triangular: if mij = 0 for i > j .
P = (pij) ∈ Rm×m is a permutation matrix

if pij ∈ {0,1} and each row and each column of P
contains exactly one coefficient 1.

Note that PT P = I, implying
P−1 = PT for the inverse P−1 of P.
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Q ∈ Rn×n, Q symmetric, is called
positive semi-definite (not. Q ≥ 0) if:

xT Qx ≥ 0 for all x ∈ Rn,

positive definite (not. Q > 0) if:

xT Qx > 0 for all x ∈ Rn, x 6= 0 .

2.1 Gauss-elimination (for solving Ax = b)

Motivation: We show by a simple example that “successive
elimination” is equivalent with Gauss-algorithm.
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General Idea: To eliminate x1, x2 . . . is equivalent with
transforming Ax = b or (A | b) to “triangular” normal form
(Ã | b̃) (with same solution set). Then solve Ãx = b̃,
recursively: a11 a12 . . . a1n | b1

a21 a22 . . . a2n | b2
...

...
am1 am2 . . . amn | bm

Transformation into form (Ã | b̃):

ã1j1 .. ã1j2 .. ã1jr−1xjr−1 .. ã1jr .. | b̃1

ã2j2 .. ã2jr−1 .. ã2jr .. | b̃2

. . .
...

ãr−1jr−1 .. ãr−1jr .. | b̃r−1

ãrjr .. | b̃r

: b̃m
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This “Gauss elimination” uses 2 types of row operations:

(G1) (i , j)-pivot: for k > i ,

add λ× row i to row k ; with λ = −akj
aij

(G2) interchange row i with row k

The “matrix form” of these operations are:

Ex.2.3 The matrix form of (G1): (A | b)→ (Ã | b̃)

is given by (Ã | b̃) = M (A | b)

with a nonsingular lower triangular M ∈ Rm×m

Ex.2.4 The matrix form of (G2): (A | b)→ (Ã | b̃)
is given by (Ã | b̃) = P (A | b)

with a permutation matrix P ∈ Rm×m
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Implications of the Gauss algorithm:

Th. 2.1 For every A ∈ Rm×n, there exists an
(m ×m)-permutation matrix P and an invertible lower
triangular matrix M ∈ Rm×m such that

U = MPA is upper triangular.

Cor. 2.1 [LU-factorization]
For A ∈ Rm×n, there exists an (m ×m)-permutation matrix
P, an invertible, lower triang. L ∈ Rm×m and an upper
triang. U ∈ Rm×n such that LU = PA .

Rem.: Solve Ax = b by using the decomposition PA = LU!
(How?)
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Cor. 2.2 [Gale’s Theorem]
Exactly one of the following statements is true:
(a) The system Ax = b has a solution x.
(b) There exists y ∈ Rm such that: yT A = 0T and yT b 6= 0.

Remark: In “normal form” A→ Ã, the number r gives
dimension of the space spanned by the rows of A.
This equals the dimension of the space spanned by the
columns of A.
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2.1.3 “Gauss-Algoritm” for symmmetric A

Note: “Gauss row operations” destroy symmetry. So we modify
“Gauss” in order to maintain symmetry.

Perform row and “same” column-operations:
use (G1’): A→ MAMT

instead of (G2) use (G2’):
if aii = 0, akk 6= 0, k > i:

interchange row i and row k
interchange col. i and col. k

if aii = 0,akk = 0∀k > i , aki 6= 0, k > i:
add row k to row i and
add col. k to col. i

G2’ transforms: A→ BABT (B nonssingular)
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Note: By “symmetric Gauss” the solution set of Ax = b is
destroyed!!! But it is useful to get the followig results.

Implications of the symmetric Gauss algorithm

Th. 2.2. A ∈ Rn×n symmetric. Then with some
nonsingular Q ∈ Rn×n

QAQT = D = diag(d1, . . . ,dn)

Recall: A symmetric Q ∈ Rn×n is called positive
semi-definite (not. Q ≥ 0) if:

xT Qx ≥ 0 for all x ∈ Rn.
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Cor. 2.3. Let A be symmetric, Q nonsingular such that
QAQT = diag(d1, . . . ,dn). Then
(a) A ≥ 0 ⇔ di ≥ 0, i = 1, . . . ,n
(b) A > 0 ⇔ di > 0, i = 1, . . . ,n

Implication: The check A ≥ 0 (positive semidefinite)
can be done by the Gauss-algorithm (polynomial).

Cor. 2.4. Let S ∈ Rn×n be symmetric. Then
(a) S ≥ 0 ⇔ S = AAT with some A ∈ Rn×m

(b) S > 0 ⇔ S = AAT with some nonsingular A

Complexity of Gauss algorithm

For a, the number of “±, ·, / flop’s” (floating point
operations) needed to solve Ax = b with A ∈ Rn×n:
a ≤ n3
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2.2. Orthogonal projection, Least Square

Assumption: V is a linear vectorspace over R with inner
product 〈x|y〉 and (induced) norm ‖x‖ =

√
〈x|x〉.

Minimization Problem: Given x ∈ V , subspace W ⊂ V find
x̂ ∈W such that:

‖x− x̂‖ = min
y∈W
‖x− y‖ (2.13)

The vector x̂ is called the projection of x onto W .

L 2.1. (sufficient condition) Assume x̂ ∈W is such that

〈x− x̂|w〉 = 0 ∀w ∈W .

Then x̂ is unique solution of (2.13).

To solve (2.13) we “construct” a solution via L.2.1:
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We construct a solution x̂ ∈W satisfying
〈x− x̂|w〉 = 0 ∀w ∈W as follows (assuming that W has a
basis a1, . . . , am, i.e., W = span {a1, . . . ,am}): Write

x̂ :=
∑m

i=1
ziai

Then 〈x− x̂|w〉 = 0 , ∀w ∈W is equivalent with

〈x−
∑m

i=1
ziai | aj〉 = 0 , j = 1, . . . ,m

or
m∑

i=1

〈ai |aj〉zi = 〈x|aj〉 , j = 1, . . . ,m

Defining the Gram-matrix G := (〈ai |aj〉), b ∈ Rm, bj = 〈x|aj〉
this leads to the linear equation (for z)

(2.16) Gz = b with solution ẑ = G−1b
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Ex. The Gram-matrix is positive definite, thus non-singular
(under our assumption) Proof!

Special case 1: V = Rn, 〈x|y〉 = xT y and
W = span {a1, . . . , am}. Then with A := [a1, . . . , am] the
projection of x onto W is given by

x̂ = A(AT A)−1AT x

Special case 2: V = Rn, 〈x|y〉 = xT y , a1, . . . , am ∈ Rn lin.
independent and W ′ = {w ∈ Rn | aT

i w = 0, i = 1, . . . ,m}.
Then the projection of x onto W ′ is given by

x̂′ = x − A(AT A)−1AT x

Special case 3: W = span {a1, . . . , am} with {ai}, an
orthonormal basis, i.e., 〈ai |aj〉 = 0, i 6= j ; = 1, i = j)). Then
the projection of x onto W is given by

x̂ =
∑m

j=1
zjaj with zj = 〈aj |x〉 ∀j “Fouriercoefficients′′.
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2.2.2 Gram-Schmidt

Problem: Given W = span {a1, . . . , am}, find an orthogonal
basis W = span {b1, .., bm} (i.e., 〈bi |bj〉 = 0, i 6= j(> 0, i = j)).

Recall the Gram-Schmidt algorithm for solving this
Problem: start with b1 := a1 and iterate

step k − 1→ k : bk = ak −
∑k−1

i=1

〈bi , ak〉
〈bi , bi〉

bi

Gram-Schmidt in matrix form: With W ⊂ V := Rn. Put

A =

 aT
1
. . .

aT
m

 , B =

 bT
1
. . .

bT
m

 .

Then the Gram-Schmidt-steps are equivalent with:
add multiple of row j < k to row k
multiply row k by scalar (in case of normalisation)
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Matrix form of “Gram-Schmidt”: Given A ∈ Rm×n, there is a
decomposition

B = LA

with lower triangular nonsingular matrix L (lii = 1) and the
rows bj of B are orthogonal, i.e. 〈bi |bj〉 = 0, i 6= j .

A corollary of this fact:

Prop. 2.1 (Hadamard’s inequality) Let A ∈ Rm×n with rows
aT

i . Then

0 ≤ det (AAT ) ≤
m∏

i=1

aT
i ai
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Definition. λ ∈ C is an eigenvalue of A ∈ Rn×n if there is
an (eigenvector) 0 6= x ∈ Cn with Ax = λx .

The results above (together with the Theorem of
Weierstrass) allow a proof of:

Th. 2.3 (Spectral theorem for symmetric matrices)
Let A ∈ Rn×n be symmetric. Then there exists an
orthogonal matrix Q (QT Q = I) and eigenvalues
λ1, . . . , λn ∈ R such that

QT AQ = D = diag (λ1, . . . , λn)
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2.3 Integer Solutions of Linear Equations (xj ∈ Z)

Example The equation 3x1 − 2x2 = 1 has a solution
x = (1,1) ∈ Z2. But the equation 6x1 − 2x2 = 1 does not
allow an entire solution x .

Key remark: Let a1,a2 ∈ Z and let a1x1 + a2x2 = b have a
solution x1, x2 ∈ Z. Then b = λc with λ ∈ Z, c = gcd (a1,a2)

Here: gcd (a1,a2) denotes the greatest common divisor of
a1,a2.

Lem.2.2 [Euclid’s Algorithm] Let c = gcd (a1,a2). Then

L(a1,a2) := {a1λ1 + a2λ2 |λ1, λ2 ∈ Z} = {cλ |λ ∈ Z} =: L(c) .

(The proof of) this result allows to
“solve a1x1 + a2x2 = b (in Z)”.
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Algorithm to solve, a1x1 + a2x2 = b (in Z)

Compute c = gcd (a1,a2). If λ := b/c /∈ Z, no entire
solution exists.
If λ := b/c ∈ Z, compute solutions λ1, λ2 ∈ Z of
λ1a1 + λ2a2 = c. Then

(λ1λ)a1 + (λ2λ)a2 = b .

General problem: Given a1, . . . ,an,b ∈ Zm, find
x = (x1, · · · , xn) ∈ Zn such that

(?) a1x1 + a2x2 + . . .+ anxn = b or Ax = b

where A := [a1, . . . ,an].

Def. We introduce the lattice generated by a1, . . . ,an,

L = L(a1, . . . ,an) =
{∑n

j=1
ajλj |λj ∈ Z

}
⊆ Rm .
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Assumption 1: rank A = m (m ≤ n); wlog., a1, . . . ,am are
linearly independent.

To solve the problem: Find C = [c1 . . . cm] ∈ Zm×m such
that

(??) L(c1, . . . ,cm) = L(a1, . . . ,an) .

Then (?) has a solution x ∈ Zn iff λ := C−1b ∈ Zn

Bad news: As in the case of one equation: in general

L(a1, . . . ,am) 6= L(a1, . . . ,an) .

Lem.2.3 Let c1, . . . ,cm ∈ L(a1, . . . ,an). Then
L(c1, . . . ,cm) = L(a1, . . . ,an) iff for all j = 1, . . . ,n, the system

Cλ = aj has an integral solution.

Last step: Find such ci ’s
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Main Result: The algorithm

Lattice Basis

INIT: C = [c1, . . . ,cm] = [a1, . . . ,am] ;
ITER: Compute C−1;

If C−1aj ∈ Zm for j = 1, . . . ,n, then STOP;
If λ = C−1aj /∈ Zm for some j , then

Let aj = Cλ =
∑m

i=1 λici and compute
c =

∑m
i=1(λi − [λi ])ci = aj −

∑m
i=1[λi ]ci ;

Let k be the largest index i such that λi /∈ Z ;
Update C by replacing ck with c in column k ;

NEXT ITERATION

stops after at most K = log2(det[a1, . . . ,am]) steps with a
matrix C satisfying (??).
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Th. 2.4 Let A ∈ Zm×n and b ∈ Zm be given. Then exactly
one of the following statements is true:
(a) There exists some x ∈ Zn such that Ax = b.
(b) There exists some y ∈ Rm such that yT A ∈ Zn and

yT b 6∈ Z.
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2.4 Linear Inequalities Ax ≤ b

Fourier-Motzkin algorithm for solving Ax ≤ b . Eliminate x1:

ar1x1+
n∑

j=2

arjxj ≤ br r = 1, . . . , k

as1x1+
n∑

j=2

asjxj ≤ bs s = k + 1, . . . , `

n∑
j=2

atjxj ≤ bt t = `+ 1, . . . ,m

with ar1 > 0, as1 < 0. Divide by ar1, |as1|, giving (for r and s)

x1+
n∑

j=2

a
′

rjxj ≤ b
′
r r = 1, . . . , k

−x1+
n∑

j=2

a
′

sjxj ≤ b
′
s s = k + 1, . . . , `
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So Ax ≤ b has a solution x = (x1, .., xn) if and only if
there is a solution x′ = (x2, .., xn) of

n∑
j=2

(a
′

sj + a
′

rj)xj ≤ b
′
r + b

′
s r = 1, . . . , k ; s = k + 1 . . . , `

n∑
j=2

atjxj ≤ bt t = `+ 1, . . . ,m.

In matrixform: Ax ≤ b has a solution x = (x1, .., xn) if and
only if there is a solution of the transformed system:

A′x′ ≤ b′ or ( 0 A′ )x ≤ b′

Remark: Any row of (0 A′|b′) is a positive combination of
rows of (A|b):

any row is of the form yT (A|b), y ≥ 0
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By eliminating x1, x2, . . . , xn in this way we finally obtain an
“equivalent” system

Ã(n)x ≤ b̃ where Ã(n) = 0

which is (recursively) solvable iff 0 ≤ b̃i , ∀i .

Th.2.5 [Projection Theorem] Let P = {x ∈ Rn | Ax ≤ b}.
Then all for k = 1, . . . ,n, the projection

P(k) = {(xk+1, .., xn) | (x1, .., xk , xk+1, .., xn) ∈ P
for suitable x1, ..., xk ∈ R}

is the solution set of a linear system A(k)x(k) ≤ b(k)

in n − k variables x(k) = (xk+1, . . . , xn).

In principle: Linear inequalities can be solved by FM.
However this might be inefficient! (Why?)
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2.4.1. Solvability of linear systems

We consider so-called Farkas lemmata. They are the basis
of optimality and duality results in LP.

Th. 2.6 [Lemma of Farkas] Exactly one of the following
statements is true:

(I) Ax ≤ b has a solution x ∈ Rn.
(II) There exists y ∈ Rm such that

yT A = 0T , yT b < 0 and y ≥ 0.

Ex. 2.24 (more general ) Let A ∈ Rm×n, C ∈ Rk×n, b ∈ Rm,
c ∈ Rk . Then precisely one of the alternatives is valid.

(I) There is a solution x of: Ax ≤ b, Cx = c
(II) There is a solution µ ∈ Rm, µ ≥ 0, λ ∈ Rk of :(

AT

bT

)
µ+

(
CT

cT

)
λ =

(
0
−1

)
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Cor.2.5 [Gordan] Given A ∈ Rm×n, exactly one of the
following alternatives is true:

(I) Ax = 0,x ≥ 0 has a solution x 6= 0.
(II) yT A < 0T has a solution y.

Remark: As we shall see in Chapter 3, the Farkas Lemma in
the following form is the strong duality of LP in disguise.

Cor.2.6 [Farkas, implied inequalities] Let
A ∈ Rm×n,b ∈ Rm,c ∈ Rn, z ∈ R. Assume that Ax ≤ b is
feasible. Then the following are equivalent:
(a) Ax ≤ b ⇒ cT x ≤ z

(b) yT A = cT , yT b ≤ z , y ≥ 0 has a solution y.
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Application: Markov chains (Existence of a steady state)

Def. A vector π = (π1, . . . , πn) with πi ≥ 0,
∑

iπi = 1
is called a probability distribution on {1, ..,n}.

A matrix P = (pij) where each row Pi · is a probability
distribution is called a stochastic matrix.

In a stochastic proces:
πi% of population is in state i
pij is probability of transition from state i → j

So the transition step k → k + 1 is: π(k+1) = PTπ(k)

Probability distribution π is called steady state if π = PTπ

As a corollary of Gordan’s result:

Each stochastic matrix P has a steady state π.
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3. Linear Programs
Given A ∈ Rm×n, b ∈ Rm, c ∈ Rn.

LPp : max
x∈Rn

cT x s.t. Ax ≤ b

LPd : min
y∈Rm

bT y s.t. AT y = c , y ≥ 0 ,

is the pair of primal and dual programs.

Notation.
• Fp = {x | Ax ≤ b} feasible set of LPp

• Fd = {y |AT y = c,y ≥ 0} feas.set of LPd

• z∗p := maxx∈Fp cT x max. value of LPp

• z∗d := miny∈Fd bT y min. value of LPd

• x ∈ Fp is optimal (maximizer of LPp) if cT x = z∗p .
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Weak duality is easy to prove:
L.3.1 (Weak Duality) Let Ax ≤ b, AT y = c, y ≥ 0. Then,

cT x ≤ bT y and thus z∗p ≤ z∗d

If we have cT x = bT y, then x, y are optimal solutions of
LPp , LPd resp.

Strong duality is a direct consequence of Farkas’ lemma:

Th.3.1 (Strong Duality)

If either LPp or LPd is feasible then: z∗p = z∗d

If both are feasible, then optimal solutions x and y of LPp
and LPd exists (satisfying cT x = bT y).
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Th.3.1 implies: x and y are optimal solutions of LPp and
LPd , resp., if and only if they solve the system (of lin.=,≤)

(?)

Ax ≤ b
AT y = c

cT x − bT y = 0
y ≥ 0.

Note that: for x, y satisfying (?) we have

bT y− cT x = yT (b− Ax) = 0

The relation
yT (b− Ax) = 0

is called complementarity condition.
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Cor. : (Optimality conditions)
Let x ∈ Fp: then x solves LPp ⇐⇒

there ex. y ∈ Fd such that yT (b− Ax) = 0

Let y ∈ Fd : Then y solves LPd ⇐⇒

there ex. x ∈ Fp such that yT (b− Ax) = 0
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3.1.2 Equivalent LP’s

LP’s in other forms can be transformed into the given “standard
forms” For example: The program:

max
x∈Rn

cT x s.t. Ax ≤ b , x ≥ 0

has the dual:

min
y∈Rn

bT y s.t. AT y ≥ c, y ≥ 0

Rules for primal dual pairs:

Primal Problem Dual Problem
max min

free variable equality constraint
non-negative variable ≥ constraint

equality constraint free variable
≤ constraint non-negative variable
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3.1.3. Shadow prices

Production model: (n products, m resources)

cj prices per unit for product j → c
bi bounds for resource Ri → b
aij units of resource Ri needed → A

for unit of product j
xj production of product j → x

primal program: (max profit cT x)

max
x∈Rn

cT x s.t. Ax ≤ b , x ≥ 0

optimal solution: x → profit z = cT x

dual: miny∈Rn bT y s.t. AT y ≥ c, y ≥ 0

optimal solution: y → value z = bT y
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Question: Can we obtain a higher profit if we buy
additional amount of resource bi0?

If we change: bi0 → b̃i0 := bi0 + t , (t > 0 ) then z̃ → z+??

We find: z̃ ≤ z + t · y i0 (y i0 is shadow price)

Answer: Yes, if the price per unit for Ri0 is smaller than
y i0 (shadow price).
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3.1.4 Matrix games:

MG is an example of a non-cooperative game with 2 players
(using a pure or a mixed strategy).

Given A ∈ Rm×n and row-players R and (column)-player C

Game with pure strategy
R chooses row i: if aij > 0 R wins aij

C chooses col. j: if aij < 0 C wins |aij |

For this pure strategy game a so-called Nash equilibrium
need not exist.
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Game with mixed strategies: x ∈ Rm, y ∈ Rn

R chooses row i with probability xi ; xi ≥ 0,
∑

ixi = 1
C chooses col. j with probability yj ; yj ≥ 0,

∑
jyj = 1.

The expected gain for R (loss for C):

xT Ay =
∑

i

xi

(∑
j

aijyj

)
=
∑

j

yj

(∑
i

aijxi

)
Strategies:

given y: R plays x as solution of:

max
x

xT Ay = max
i

∑
j

aijy j

given x: C plays y as solution of:

min
y

xT Ay = min
j

∑
i

aijx i
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Best strategy against best of opponent:

for R: max
x

min
y

xT Ay = max
x

min
j

∑
i
aijxi

for C: min
y

max
x

xT Ay = min
y

max
i

∑
j
aijyj

Th.3.2 [minmax-theorem] There exist feasible x ,y such
that

min
y

xT Ay = max
x

xT Ay

This implies: max
x

min
y

xT Ay = min
y

max
x

xT Ay = xT Ay

x, y represent a Nash equilibrium of the mixed strategy
matrix game.

Def. A game is fair if z = w = xT Ay = 0 holds.
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Methods for linear programs

1. Simplex method

LPp: max
x∈Rn

cT x s.t. aT
i x ≤ bi , i = 1, ..,m.

proceeds ’from vertex to vertex’ of the feasible set Fp until
we have found a vertex x such that (with suitable y ) the
sufficient optimality condition holds:

AT y = c, y ≥ 0, yT (b− Ax) = 0
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2. Interior point method: Consider the system of
equations

P(t) :
Ax + s = b

AT y = c
yi(b − Ax)i = t > 0 ∀i

with y , (b − Ax) > 0. Here t > 0 is a parameter.

Idea: Compute (by ’Newton’) solutions x(t),y(t),s(t), t > 0
of P(t). Then for t ↓ 0 (hopefully)

x(t),y(t),s(t) −→ x,y,s

With solutions x,y of the primal-dual pair of LP’s

Remark: The “worst case behavior” of the Simplex algorithm is
not “polynomial”.
The interior point method can be implemented as a
“polynomial” algorithm for solving LP.
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