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Chapter 0

Introduction

Nothing takes place in the world whose meaning is not that of some maximum or minimum.

L. Euler (1707 – 1783)

0.1 The general nonlinear optimization problem

The general nonlinear optimization (NLO) problem can be written as follows:

(NLO) inf f(x)

s.t. hi(x) = 0, i ∈ I = {1, · · · , p}
gj(x) ≤ 0, j ∈ J = {1, · · · ,m}
x ∈ C,

(1)

where x ∈ IRn, C ⊆ IRn is a certain set and f, h1, · · · , hp, g1, · · · , gm are functions defined on C (or on
an open set that contains the set C). The set of feasible solutions will be denoted by F , hence

F = {x ∈ C | hi(x) = 0, i = 1, · · · , p and gj(x) ≤ 0, j = 1, · · · ,m}.

We will use the following standard terminology:

• The function f is called the objective function of (NLO) and F is called the feasible set (or feasible
region);

• If F = ∅ then we say that problem (NLO) is infeasible;

• If f is not below bounded on F then we say that problem (NLO) is unbounded;

• If the infimum of f over F is attained at x̄ ∈ F then we call x̄ an optimal solution (or minimum
or minimizer) of (NLO) and f(x̄) the optimal (objective) value of (NLO).

Example 0.1 As an example, consider minimization of the ‘humpback function’(see Figure 1):

min x2
1(4 − 2.1x2

1 +
1

3
x4
1) + x1x2 + x2

2(−4 + 4x2
2),

subject to the constraints −2 ≤ x1 ≤ 2 and −1 ≤ x2 ≤ 1. Note that the feasible set here is simply the rectangle:

F = {(x1, x2) : −2 ≤ x1 ≤ 2, −1 ≤ x2 ≤ 1} .

This NLO problem has two optimal solutions, namely (0.0898, −0.717) and (−0.0898, 0.717), as one can (more or less)
verify by looking at the contours of the objective function in Figure 1. ∗
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Figure 1: Example of a nonlinear optimization problem with the ‘humpback’ function as objective
function. The contours of the objective function are shown.

Notation

Matrices will be denoted by capital letters (A,B, P, . . .), vectors by small Latin letters and components
of vectors and matrices by the indexed letters [e.g. z = (z1, . . . , zn), A = (aij)

m
i=1

n
j=1]. For the purpose

of matrix-vector multiplication, vectors in IRn will always be viewed as n×1 matrices (column vectors).
Index sets will be denoted by I, J and K.

We now define some classes of NLO problems. Recall that f : IRn → IR is called a quadratic function
if there is a square matrix Q ∈ IRn×n, a vector c ∈ IRn and a number γ ∈ IR such that

f(x) =
1

2
xTQx+ cTx+ γ for all x ∈ IRn;

If Q = 0 then f is called affine and if Q = 0 and γ = 0 then f is called linear. We will abuse this
terminology a bit by sometimes referring to affine functions as linear.

Classification of nonlinear optimization problems

We now list a few important classes of optimization problems, with reference to the general problem
(1):

Linear Optimization (LO): The functions f, h1, · · · , hp, g1, · · · , gm are affine and the set C either
equals to IRn or to the nonnegative orthant IRn

+ of IRn. Linear optimization is often called
linear programming. The reader is probably familiar with the simplex algorithm for solving LO
problems.

Unconstrained Optimization: The index sets I and J are empty and C = IRn.

Quadratic Optimization (QO): The objective function f is quadratic, and all the constraint func-
tions h1, · · · , hp, g1, · · · , gm are affine and the set C is IRn or the positive orthant IRn

+ of IRn.

2



Quadratically Constrained Quadratic Optimization: Same as QO, except that the functions
g1, · · · , gm are quadratic.

0.2 A short history of nonlinear optimization

As far as we know, Euclid’s book Elements was the first mathematical textbook in the history of
mankind (4th century B.C.). It contains the following optimization problem.

In a given triangle ABC inscribe a parallelogram ADEF such that EF‖AB and DE‖AC and such
that the area of this parallelogram is maximal.

A C

B

F
x b− x

ED H

?

6

� b -

Figure 2: Illustration of Euclid’s problem.

Let H denote the height of the triangle, and let b indicate the length of the edge AC. Every inscribed
parallelogram of the required form is uniquely determined by choosing a vertex F at a distance x < b
from A on the edge AC (see Figure 2).

Exercise 0.1 Show that Euclid’s problem can be formulated as the quadratic optimization problem (QO):

max
0<x<b

Hx(b − x)

b
. (2)

⊳

Euclid could show that the maximum is obtained when x = 1
2b, by using geometric reasoning. A

unified methodology for solving nonlinear optimization problems would have to wait until the develop-
ment of calculus in the 17th century. Indeed, in any modern text on calculus we learn to solve problems

like (2) by setting the derivative of the objective function f(x) := Hx(b−x)
b

to zero, and solving the
resulting equation to obtain x = 1

2b.

This modern methodology is due to Fermat (1601 – 1665). Because of this work, Lagrange (1736 –
1813) stated clearly that he considered Fermat to be the inventor of calculus (as opposed to Newton
(1643 – 1727) and Liebnitz (1646 – 1716) who were later locked in a bitter struggle for this honour).
Lagrange himself is famous for extending the method of Fermat to solve (equality) constrained opti-
mization problems by forming a function now known as the Lagrangian, and applying Fermat’s method
to the Lagrangian. In the words of Lagrange himself:

One can state the following general principle. If one is looking for the maximum or min-
imum of some function of many variables subject to the condition that these variables are
related by a constraint given by one or more equations, then one should add to the function

3



whose extremum is sought the functions that yield the constraint equations each multiplied
by undetermined multipliers and seek the maximum or minimum of the resulting sum as
if the variables were independent. The resulting equations, combined with the constraint
equations, will serve to determine all unknowns.

To better understand what Lagrange meant, consider the general NLO problem with only equality
constraints (J = ∅ and C = IRn in (1)):

inf f(x)

s.t. hi(x) = 0, i ∈ I = {1, · · · , p}
x ∈ IRn.

Now define the Lagrangian function

L(x, y) := f(x) +

p
∑

i=1

yihi(x).

The new variables yi are called (Lagrange) multipliers, and are the undetermined multipliers Lagrange
referred to. Now apply Fermat’s method to find the minimum of the function L(x, y), ‘as if the variables
x and y were independent’. In other words, solve the system of nonlinear equations defined by setting
the gradient of L to zero, and retaining the feasibility conditions hi(x) = 0 (i ∈ I):

∇L(x, y) = 0, hi(x) = 0 (i ∈ I). (3)

If x∗ is an optimal solution of NLO then there now exists a vector y∗ ∈ IRp such that (x∗, y∗) is a
solution of the nonlinear equations (3). We can therefore solve the nonlinear system (3) and the x-part
of one of the solutions of (3) will yield the optimal solution of (NLO) (provided it exists). Note that
it is difficult to know beforehand whether an optimal solution of (NLO) exists.

This brings us to the problem of solving a system of nonlinear equations. Isaac Newton lent his
name to perhaps the most widely known algorithm for this problem. In conjunction with Fermat and
Lagrange’s methods, this yielded one of the first optimization algorithms. It is interesting to note
that even today, Newton’s optimization algorithm is the most widely used and studied algorithm for
nonlinear optimization. The most recent optimization algorithms, namely interior point algorithms,
use this method as their ‘engine’.

The study of nonlinear optimization in the time of Fermat, Lagrange, Euler and Newton was driven
by the realization that many physical principles in nature can be explained via optimization (extremum)
principles. For example, the well known principle of Fermat for the refraction of light may be stated
as:

in an inhomogeneous medium, light travels from one point to another along the path requiring the
shortest time.

Similarly, it was known that many problems in (celestial) mechanics could be formulated as extremum
problems.

We return to the problem of deciding whether (NLO) has an optimal solution at all. In the 19th
century, Karl Weierstrass (1815 – 1897) proved the famous result — known to any student of analysis
— that a continuous function attains its infimum and supremum on a compact set. This gave a
practical sufficient condition for the existence of optimal solutions.

In modern times, nonlinear optimization is used in optimal engineering design, finance, statistics
and many other fields. It has been said that we live in the age of optimization, where everything has
to be better and faster than before. Think of designing a car with minimal air resistance, a bridge of
minimal weight that still meets essential specifications, a stock portfolio where the risk is minimal and
the expected return high; the list is endless. If you can make a mathematical model of your decision
problem, then you can optimize it!

4



Outline of this course

This short history of nonlinear optimization is of course far from complete and has served only to
introduce some of the most important topics that will be studied in this course. In Chapters 1 and 2
we will study the methods of Fermat and Lagrange. So-called duality theory based on the methodology
of Lagrange will follow in Chapter 3. Then we will turn our attention to optimization algorithms in
the remaining chapters. First we will study classical methods like the (reduced) gradient method and
Newton’s method (Chapter 4), before turning to the modern application of Newton’s method in interior
point algorithms (Chapter 6). Finally, we conclude with a chapter on special classes of structured
nonlinear optimization problems that can be solved very efficiently by interior point algorithms.

In the rest of this chapter we give a few more examples of historical and practical problems to give
some idea of the field of nonlinear optimization.

0.3 Some historical examples

These examples of historical nonlinear optimization problems are taken from the wonderful book Stories
about Maxima and Minima by V.M. Tikhomirov (AMS, 1990). For more background and details the
reader is referred to that book. We only state the problems here — the solutions will be presented
later in this book in the form of exercises, once the reader has studied optimality conditions. Of course,
the mathematical tools we will employ were not available to the originators of the problems. For the
(ingenious) original historical solutions the reader is again referred to the book by Tikhomirov.

0.3.1 Tartaglia’s problem

Niccolo Tartaglia (1500–1557) posed the following problem:

How do you divide the number 8 into two parts such that the result of multiplying the product of the
parts by their difference will be maximal?

If we denote the unknown parts by x1 and x2, we can restate the problem as the nonlinear opti-
mization problem:

max x1x2(x1 − x2) (4)

subject to the constraints

x1 + x2 = 8, x1 ≥ 0, x2 ≥ 0.

Tartaglia knew that the correct answer is x1 = 4 + (4/
√

3), x2 = 4− (4/
√

3). How can one prove that
this is correct? (Solution via Exercise 2.4.)

0.3.2 Kepler’s problem

The famous astronomer Johannes Kepler was so intrigued by the geometry of wine barrels that he
wrote a book about it in 1615: New solid geometry of wine barrels. In this work he considers the
following problem (among others).

Given a sphere, inscribe a cylinder of maximal volume.

Kepler knew the cylinder of maximal volume is such that the ratio of its base diameter to the height
is
√

2. (And of course the diagonal of the cylinder has the same length as the diameter of the sphere.)
How can one show that this is correct? (Solution via Exercises 0.2 and 2.2.)

Exercise 0.2 Formulate Kepler’s problem as a nonlinear optimization problem (NLO). ⊳

5



0.3.3 Steiner’s problem

In the plane of a given triangle, find a point such that the sum of its distances from the vertices of the
triangle is minimal.

This problem was included in the first book on optimization, namely On maximal and minimal
values by Viviani in 1659.

If we denote the vertices of the triangle by the three given vectors a ∈ IR2, b ∈ IR2 and c ∈ IR2, and
let x = [x1 x2]

T denote the vector with the (unknown) coordinates of the point we are looking for,
then we can formulate Steiner’s problem as the following nonlinear optimization problem.

min
x∈IR2

‖x− a‖ + ‖x− b‖ + ‖x− c‖

The solution is known as the Torricelli point. How can one find the Torricelli point for any given
triangle? (Solution via Exercise 2.3.)

0.4 Quadratic optimization examples

In countless applications we wish to solve a linear system of the form Ax = b. If this system is over-
determined (more equations than variables), then we can still obtain the so-called least squares solution
by solving the NLO problem:

min
x

‖Ax− b‖2. (5)

Since
‖Ax− b‖2 = (Ax− b)T (Ax− b) = xTATAx− 2bTAx+ bT b,

it follows that problem (5) is a quadratic optimization (QO) problem.

Below we give examples of the least squares and other quadratic optimization problems.

0.4.1 The concrete mixing problem: least square estimation

In civil engineering, different sorts of concrete are needed for different purposes. One of the important
characteristics of the concrete are its sand-and-gravel composition, i.e. what percentages of the stones
in the sand-and-gravel mixture belong to a certain stone size categories. For each sort concrete the
civil engineers can give an ideal sand-and-gravel composition that ensures the desired strength with
minimal cement content.

Unfortunately, in the sand-and-gravel mines, such ideal composition can not be found in general.
The solution is to mix different sand-and-gravel mixtures in order to approximate the desired quality
as closely as possible.

Mathematical model

Let us assume that we have n different stone size categories. The ideal mixture for our actual purpose
is given by the vector c = (c1, c2, · · · , cn)T , where 0 ≤ ci ≤ 1 for all i = 1, · · · , n and

∑n
i=1 ci = 1.

The components ci indicate what fraction of the sand-and-gravel mixture belongs to the i-th stone size
category. Further, let assume that we can get sand-and-gravel mixtures from m different mines, and
the stone composition at each mine j = 1, · · · ,m is given by the vectors Aj = (a1j , · · · , anj)

T , where
0 ≤ aij ≤ 1 for all i = 1, · · · , n and

∑n
i=1 aij = 1. The goal is to find the best possible approximation

of the ideal mixture by using the material offered by the m mines.

Let x = (x1, · · · , xm) be a the vector of unknown percentages in the mixture, i.e.

m
∑

j=1

xj = 1, xj ≥ 0.

6



The resulting mixture composition

z =

m
∑

i=1

Ajxj

should be as close as possible to the ideal one, i.e. we have to minimize

‖z − c‖2 = (z − c)T (z − c) =
n
∑

j=1

(zi − ci)
2.

This optimization problem is a linearly constrained QO problem. We can further simplify this problem
by eliminating variable z. Then, introducing matrix A = (A1, · · · , Am) composed from the vectors Aj

as its columns, we have the following simple QO problem:

min (Ax− c)T (Ax− c)

eTx = 1

x ≥ 0.

Exercise 0.3 In the above concrete mixing problem the deviation of the mixture from the targeted ideal com-
position is measured by the Euclidean distance of the vectors z = Ax and c. The distance of two vectors can
be measured alternatively by e.g. the ‖ · ‖1 or by the ‖ · ‖∞ norms. Restate the mixing problem by using these
norms and show that this way, in both cases, pure linear optimization problems can be obtained. ⊳

0.4.2 Portfolio analysis (mean–variance models)

An important application of the QO problem is the computation of an efficient frontier for mean–
variance models, introduced by Markowitz [31]. Given assets with expected return ri and covariances
vij , the problem is to find portfolios of the assets that have minimal variance given a level of total
return, and maximal return given a level of total variance. Mathematically, if xi is the proportion
invested in asset i then the basic mean–variance problem is

min
x

{

1

2
xTV x : eTx = 1, rTx = λ, Dx = d, x ≥ 0

}

,

where e is an all–one vector, and Dx = d may represent additional constraints on the portfolios to
be chosen (for instance those related to volatility of the portfolio). This problem can be viewed as a
parametric QO problem, with parameter λ representing the total return of investment. The so-called
efficient frontier is then just the optimal value function.

Example 0.2 Consider the following MV-model,

min
x

{

xTV x : eT x = 1, rT x = λ, x ≥ 0
}

where

V =

















0.82 −0.23 0.155 −0.013 −0.314

−0.23 0.484 0.346 0.197 0.592

0.155 0.346 0.298 0.143 0.419

−0.013 0.197 0.143 0.172 0.362

−0.314 0.592 0.419 0.362 0.916

















,

r =

(

1.78 0.37 0.237 0.315 0.49

)T

.

One can check (e.g. by using MATLAB) that for λ > 1.780 or λ < 0.237 the QO problem is infeasible. For the values
λ ∈ [0.237, 1.780] the QO problem has an optimal solution. ∗

Exercise 0.4 A mathematical description of this and related portfolio problems is given at:

http://www-fp.mcs.anl.gov/otc/Guide/CaseStudies/port/formulations.html

7



Choose your own stock portfolio at the website:

http://www-fp.mcs.anl.gov/otc/Guide/CaseStudies/port/demo.html

and solve this problem remotely via internet to obtain the optimal way of dividing your capital between the
stocks you have chosen. In doing this you are free to set the level of risk you are prepared to take. Give the
mathematical description of the problem you have solved and report on your results. ⊳
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Chapter 1

Convex Analysis

If the nonlinear optimization problem (NLO) has a convex objective function and the feasible set is a
convex set, then the underlying mathematical structure is much richer than in the general case. For
example, one can formulate necessary and sufficient conditions for the existence of optimal solutions
in this case. It is therefore important to study convexity in some detail.

1.1 Convex sets and convex functions

Given two points x1 and x2 in IRn, any point on the line connecting them is called a convex combinations
of x1 and x2. Formally we have the following definition.

Definition 1.1 Let two points x1, x2 ∈ IRn and 0 ≤ λ ≤ 1 be given. Then the point

x = λx1 + (1 − λ)x2

is a convex combination of the two points x1, x2.

The set C ⊂ IRn is called convex, if all convex combinations of any two points x1, x2 ∈ C are again
in C.

In other words, the line segment connecting two arbitrary points of a convex set is contained in the
set.

Figure 1.1 and Figure 1.2 show examples of convex and nonconvex sets in the plane.

Figure 1.1: Convex sets

Exercise 1.1 We can define the convex combination of k points as follows. Let the points x1, · · · , xk ∈ IRn

and 0 ≤ λ1, · · · , λk with
∑k

i=1
λi = 1 be given. Then the vector

x =

k
∑

i=1

λix
i

9



Figure 1.2: Non convex sets

is a convex combination of the given points.

Prove that the set C is convex if and only if for any k ≥ 2 all convex combinations of any k points from C
are also in C. ⊳

The intersection of (possibly infinitely many) convex sets is again a convex set.

Theorem 1.2 Let Ci (i = 1, . . .) be a collection of convex sets. The set

C := ∩∞
i=1Ci

ic convex.

Exercise 1.2 Prove Theorem 1.2. ⊳

Another fundamental property of a convex set is that its closure is again a convex set.

Theorem 1.3 Let C ⊂ IRn be a convex set and let cl(C) denote its closure. Then cl(C) is a convex
set.

We now turn our attention to so-called convex functions. A parabola f(x) = ax2 + bx+ c with a > 0
is a familiar example of a convex function. Intuitively, it is easier to characterize minima of convex
functions than minima of more general functions, and for this reason we will study convex functions
in some detail.

Definition 1.4 A function f : C → R defined on a convex set C is called convex if for all x1, x2 ∈ C
and 0 ≤ λ ≤ 1 one has

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

Exercise 1.3 Let f : IRn 7→ IR be defined by f(x) = ‖x‖ for some norm ‖·‖. Prove that f is a convex function.
⊳

Exercise 1.4 Show that the following univariate functions are not convex:

f(x) = sin x, f(x) = e
−x2

, f(x) = x
3
.

⊳

Definition 1.5 The epigraph of a function f : C → R, where C ⊂ IRn, is the (n+ 1)-dimensional set

{(x, τ) : f(x) ≤ τ, x ∈ C, τ ∈ IR} .

Figure 1.3 illustrates the above definition.

Exercise 1.5 Prove that the function f : C → R defined on the convex set C is convex if and only if the
epigraph of f is a convex set. ⊳

10



6
f

C

Figure 1.3: The epigraph of a convex function f .

We also will need the concept of a strictly convex function. These are convex functions with the nice
property that — if a minimum of the function exists — then this minimum is unique.

Definition 1.6 A (convex) function f : C → IR, defined on a convex set C, is called strictly convex if
for all x1, x2 ∈ C and 0 < λ < 1 one has

f(λx1 + (1 − λ)x2) < λf(x1) + (1 − λ)f(x2).

We have seen in Exercise 1.5 that a function is convex if and only if its epigraph is convex.

Also, the next exercise shows that a quadratic function is convex if and only if the matrix Q in its
definition is positive-semidefinite (PSD).

Exercise 1.6 Let a symmetric matrix Q ∈ IRn×n, a vector c ∈ IRn and a number γ ∈ IR be given. Prove that
the quadratic function

1

2
x

T
Qx + c

T
x + γ

is convex on IRn if and only if the matrix Q is PSD, and strictly convex if and only if Q is positive definite. ⊳

Exercise 1.7 Decide whether the following quadratic functions are convex or not. (Hint: use the result from
the previous exercise.)

f(x) = x
2
1 + 2x1x2 + x

2
2 + 5x1 − x2 +

1

2
, f(x) = x

2
1 + x

2
2 + x

2
3 − 2x1x2 − 2x1x3 − 2x2x3.

⊳

If we multiply a convex function by −1, then we get a so-called concave function.

Definition 1.7 A function f : C → IR, defined on a convex set C, is called (strictly) concave if the
function −f is (strictly) convex.

Note that we can change the problem of maximizing a concave function into the problem of minimizing
a convex function.

Now we review some further properties of convex sets and convex functions that are necessary to
understand and analyze convex optimization problems. First we review some elementary properties of
convex sets.

11



1.2 More on convex sets

1.2.1 Convex hulls and extremal sets

For any set S ⊂ IRn we define the smallest convex set that contains it, the so-called convex hull of S,
as follows.

Definition 1.8 Let S ⊂ IRn be an arbitrary set. The set

conv(S) :=

{

x

∣

∣

∣

∣

∣

x =

k
∑

i=1

λix
i, xi ∈ S, i = 1, · · · , k; λi ∈ [0, 1],

k
∑

i=1

λi = 1, k ≥ 1

}

is called the convex hull of the set S.

Observe that conv(S) is generated by taking all possible convex combinations of points from S.

We now define some important convex subsets of a given convex set C, namely the so-called extremal
sets, that play an important role in convex analysis. Informally, an extremal set E ⊂ C is a convex
subset of C with the following property: if any point on the line segment connecting two points x1 ∈ C
and x2 ∈ C lies in E , then the two points x1 and x2 must also lie in E . The faces of a polytope are
familiar examples of extreme sets of the polytope.

Definition 1.9 The convex set E ⊆ C is an extremal set of the convex set C if, for all x1, x2 ∈ C and
0 < λ < 1, one has λx1 + (1 − λ)x2 ∈ E only if x1, x2 ∈ E.

An extremal set consisting of only one point is called an extremal point. Observe that extremal sets
are convex by definition, and the convex set C itself is always an extremal set of C. It is easy to verify
the following result.

Lemma 1.10 If E1 ⊆ C is an extremal set of the convex set C and E2 ⊆ E1 is an extremal set of E1

then E2 is an extremal set of C.

∗Proof: Let x, y ∈ C, 0 < λ < 1 and zλ = λx+ (1− λ)y ∈ E2. Due to E2 ⊆ E1 we have zλ ∈ E1, moreover x, y ∈ E1

because E1 is an extremal set of C. Finally, because E2 is an extremal set of E1, x, y ∈ E1 and zλ ∈ E2 we conclude that
x, y ∈ E2 and thus E2 is an extremal set of C. 2

Example 1.11 Let C be the cube {x ∈ IR3| 0 ≤ x ≤ 1}, then the vertices are extremal points, the edges are 1-
dimensional extremal sets, the faces are 2-dimensional extremal sets, and the whole cube is a 3-dimensional extremal set
of itself.

∗

Example 1.12 Let C be the cylinder {x ∈ IR3| x2
1 + x2

2 ≤ 1, 0 ≤ x3 ≤ 1}, then

• the points on the circles {x ∈ IR3| x2
1 + x2

2 = 1, x3 = 1} and {x ∈ IR3| x2
1 + x2

2 = 1, x3 = 0} are the extremal
points,

• the lines {x ∈ IR3| x1 = a, x2 = b, 0 ≤ x3 ≤ 1}, with a ∈ [−1, 1] and b =
√

1 − a2 or b = −
√

1 − a2, are the
1-dimensional extremal sets,

• the faces {x ∈ IR3| x2
1 + x2

2 ≤ 1, x3 = 1} and {x ∈ IR3| x2
1 + x2

2 ≤ 1, x3 = 0} are the 2-dimensional extremal sets,
and

12



• the cylinder itself is the only 3-dimensional extremal set.

∗

Example 1.13 Let f(x) = x2 and let C be the epigraph of f , then all points (x1, x2) such that x2 = x2
1 are extremal

points. The epigraph itself is the only two dimensional extremal set.

∗

Lemma 1.14 Let C be a closed convex set. Then all extremal sets of C are closed.

In the above examples we have pointed out extremal sets of different dimension without giving a
formal definition of what the dimension of a convex set is. To this end, recall from linear algebra that if
L is a (linear) subspace of IRn and a ∈ IRn then a+L is called an affine subspace of IRn. By definition,
the dimension of a+ L is the dimension of L.

Definition 1.15 The smallest affine space a+L containing a convex set C ⊆ IRn is the so-called affine
hull of C and denoted by aff(C). The dimension of C is defined as the dimension of aff(C).

Given two points x1 ∈ C and x2 ∈ C, we call any point that lies on the (infinite) line that passes
through x1 and x2 an affine combination of x1 and x2. Formally we have the following definition.

Definition 1.16 Let two points x1, x2 ∈ IRn and λ ∈ IR be given. Then the point

x = λx1 + (1 − λ)x2

is an affine combination of the two points x1, x2.

Observe that in defining the affine combination we do not require that the coefficients λ and 1− λ are
from the interval [0, 1], while this was required in the definition of the convex combination of points.

Exercise 1.8 Let C ⊂ IRn be defined by

C =

{

x

∣

∣

∣

∣

∣

n
∑

i=1

xi = 1, x ≥ 0

}

.

The set C is usually called the standard simplex in IRn.

1. Give the extreme points of C; Motivate your answer.

2. Show that C = conv
{

e1, . . . , en
}

, where ei is the ith standard unit vector.

3. What is aff(C) in this case?

4. What is the dimension of C? Motivate your answer.

13



⊳

Exercise 1.9 Let C ⊆ IRn be a given convex set and k ≥ 2 a given integer. Prove that

aff(C) =

{

z

∣

∣

∣

∣

∣

z =

k
∑

i=1

λix
i
,

k
∑

i=1

λi = 1, λi ∈ IR, x
i ∈ C, ∀ i

}

.

⊳

Exercise 1.10 Let E be an extremal set of the convex set C. Prove that E =aff(E) ∩ C. (Hint: Use Exercise
1.9 with k = 2.) ⊳

Lemma 1.17 Let E2 ⊂ E1 ⊆ C be two extremal sets of the convex set C. Then dim(E2) < dim(E1).

∗Proof: Because E2 ⊂ E1 we have aff(E2) ⊆aff(E1). Further, by Exercise 1.10,

E2 = aff(E2) ∩ E1.

If we assume to the contrary that dim(E2) = dim(E1) then we have aff(E2) =aff(E1) and so

E2 = aff(E2) ∩ E1 = aff(E1) ∩ E1 = E1

contradicting the assumption E2 ⊂ E1. 2

Lemma 1.18 Let C be a nonempty compact (closed and bounded) convex set. Then C has at least one
extremal point.

∗Proof: Let F ⊆ C be the set of points in C which are furthest from the origin. The set of such points is not empty,
because C is bounded and closed and the norm function is continuous. We claim that any point z ∈ F is an extremal
point of C.

Let us assume to the contrary that z ∈ F is not an extremal point. Then there exist points x, y ∈ C, both different
from z, and a λ ∈ (0, 1) such that

z = λx+ (1 − λ)y.

Further, we have ‖x‖ ≤ ‖z‖ and ‖y‖ ≤ ‖z‖ because z maximizes the norm of the points over C. Thus by the triangle
inequality

‖z‖ ≤ λ‖x‖ + (1 − λ)‖y‖ ≤ ‖z‖
which implies that ‖z‖ = ‖x‖ = ‖y‖, i.e. all the three point x, y, z are on the surface of the n-dimensional sphere with
radius ‖z‖ and centered at the origin. This is a contradiction, because these three different points lie on the same line
as well. The lemma is proved. 2

Observe, that the above proof does not require the use of the origin as reference point. We could
choose any point u ∈ IRn and prove that the furthest point z ∈ C from u is an extremal point of C.

The following theorem shows that a compact convex set is completely determined by its extremal
points.

Theorem 1.19 (Krein–Milman Theorem) Let C be a compact convex set. Then C is the convex
hull of its extreme points.

Exercise 1.11 Let f be a continuous, concave function defined on a compact convex set C. Show that the
minimum of f is attained at an extreme point of C. (Hint: Use the Krein-Milman Theorem.) ⊳

1.2.2 Convex cones

In what follows we define and prove some elementary properties of convex cones.

Definition 1.20 The set C ⊂ IRn is a convex cone if it is a convex set and for all x ∈ C and 0 ≤ λ
one has λx ∈ C.

14



Example 1.21

• The set C = {(x1, x2) ∈ IR2| x2 ≥ 2x1, x2 ≥ − 1
2
x1} is a convex cone in IR2.

• The set C′ = {(x1, x2, x3) ∈ IR3| x2
1 + x2

2 ≤ x2
3} is a convex cone in IR3.

C C′

∗

Definition 1.22 A convex cone is called pointed if it does not contain any subspace except the origin.

A pointed convex cone could be defined equivalently as a convex cone that does not contain any line.

Lemma 1.23 A convex cone C is pointed if and only if the origin 0 is an extremal point of C.

∗Proof: If the convex cone C is not pointed, then it contains a nontrivial subspace, in particular, it contains a one
dimensional subspace, i.e. a line L going through the origin. Let 0 6= x ∈ L, and then we have −x ∈ L as well. From
here we have 0 = 1

2
x+ 1

2
(−x) ∈ C, i.e. 0 is not an extremal point.

If the convex cone C is pointed, then it does not contain any subspace, except the origin 0. In that case we show that
0 is an extremal point of C. If we assume to the contrary that there exists 0 6= x1, x2 ∈ C and a λ ∈ (0, 1) such that

0 = λx1 + (1 − λ)x2, then we derive x1 = − 1−λ
λ
x2. This implies that the line through x1, the origin 0 and x2 is in C,

contradicting the assumption that C is pointed. 2

Example 1.24 If a convex cone C ∈ IR2 is not pointed, then it is either

• a line through the origin,

• a halfspace, or

• IR2.

∗

Example 1.25 Let V1, V2 be two planes through the origin in IR3, given by the following equations,

V1 : = {x ∈ IR3 |x3 = a1x1 + a2x2 },
V2 : = {x ∈ IR3 |x3 = b1x1 + b2x2 },

then the convex set

C = {x ∈ IR3| x3 ≥ a1x1 + a2x2, x3 ≤ b1x1 + b2x2}
is a non-pointed cone.

15



V1 : x3 = 2x1 − x2

V2 : x3 = x1 + 3x2

3
2

1
0

-1
-2

-3

x1

0
1

2
3

4
5

x2

-10

-5

0

5

10

15

20

x3

∗

Every convex cone C has an associated dual cone. By definition, every vector in the dual cone has
a nonnegative inner product with every vector in C.

Definition 1.26 Let C ⊆ IRn be a convex cone. The dual cone C∗ is defined by

C∗ := { z ∈ IRn |xT z ≥ 0 for all x ∈ C}.

In the literature the dual cone C∗ is frequently referred to as the polar or positive polar of the cone C.

Exercise 1.12 Prove that (IRn
+)∗ = IRn

+, i.e. the nonnegative orthant is a self-dual cone. ⊳

Exercise 1.13 Let Sn denote the set of n × n, symmetric positive semidefinite matrices.
(i) Prove that Sn is a convex cone.
(ii) Prove that (Sn)∗ = Sn, i.e. Sn is a self-dual cone. ⊳

Exercise 1.14 Prove that the dual cone C∗ is a closed convex cone. ⊳

An important, deep theorem [38, 42] says that the dual of the dual cone (C∗)∗ is the closure C of the
cone C.

An important cone in the study of convex optimization is the so-called recession cone. Given an
(unbounded) convex feasible set F and some x ∈ F , the recession cone of F consists of all the directions
one can travel in without ever leaving F , when starting from x. Surprisingly, the recession cone does
not depend on the choice of x.

Lemma 1.27 Let us assume that the convex set C is closed and not bounded. Then

(i) for each x ∈ C there is a non-zero vector z ∈ IRn such that x+ λz ∈ C for all λ ≥ 0, i.e. the set
R(x) = {z |x+ λz ∈ C, λ ≥ 0} is not empty;

(ii) the set R(x) is a closed convex cone (the so-called recession cone at x);

(iii) the cone R(x) = R is independent of x, thus it is ‘the’ recession cone of the convex set C;1

1In the literature the recession cone is frequently referred to as the characteristic cone of the convex set C.
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(iv) R is a pointed cone if and only if C has at least one extremal point.

∗Proof: (i) Let x ∈ C be given. Because C is unbounded, then there is a sequence of points x1, · · · , xk, · · · such that
‖xk − x‖ → ∞. Then the vectors

yk =
xk − x

‖xk − x‖
are in the unit sphere. The unit sphere is a closed convex, i.e. compact set, hence there exists an accumulation point ȳ
of the sequence yk. We claim that ȳ ∈ R(x). To prove this we take any λ > 0 and prove that x + λȳ ∈ C. This claim
follows from the following three observations: 1. If we omit all the points from the sequence yk for which ‖x− xk‖ < λ
then ȳ is still an accumulation point of the remaining sequence yki . 2. Due to the convexity of C the points

x+ λyki = x+
λ

‖xki − x‖ (xki − x) =

(

1 − λ

‖xki − x‖

)

x+
λ

‖xki − x‖x
ki

are in C. 3. Because C is closed, the accumulation point x+ λȳ of the sequence x+ λyki ∈ C is also in C. The proof of
the first statement is complete.

(ii)The set R(x) is a cone, because z ∈ R(x) imply µz ∈ R(x). The convexity of R(x) easily follows from the convexity
of C. Finally, if zi ∈ R(x)) for all i = 1, 2, · · · and z̄ = limi→∞ zi, then for each λ ≥ 0 the closedness of C and x+λzi ∈ C
imply that

lim
i→∞

(x+ λzi) = x+ λz̄ ∈ C,

hence z̄ ∈ R(x) proving that R(x) is closed.

(iii) Let x1, x2 ∈ C. We have to show that z ∈ R(x1) imply z ∈ R(x2). Let us assume to the contrary that z 6∈ R(x2),
i.e. there is an α > 0 such that x2 + αz /∈ C. Due to z ∈ R(x1) we have x1 + (λ + α)z ∈ C for all α, λ ≥ 0. Using the
convexity of C we have that the point

x2
λ = x2 +

α

λ+ α

(

x1 − x2 + (λ+ α)z
)

= x2
(

1 − α

λ+ α

)

+
α

λ+ α

(

x1 + (λ+ α)z
)

is in C. Further the limit point
lim

λ→∞
x2

λ = x2 + αz,

due to the closedness of C, is also in C.

(iv) We leave the proof of this part as an exercise. 2

Exercise 1.15 Prove part (iv) of Lemma 1.27. ⊳

Corollary 1.28 The nonempty closed convex set C is bounded if and only if its recession cone R
consists of the zero vector alone.

∗Proof: If C is bounded, then it contains no half line, thus for each x ∈ C the set R(x) = {0}, i.e. R = {0}.
The other part of the proof follows form item (i) of Lemma 1.27. 2

Example 1.29 Let C be the epigraph of f(x) = 1
x
. Then every point on the curve x2 = 1

x1
is an extreme point of C.

For an arbitrary point x = (x1, x2) the recession cone is given by

R(x) = {z ∈ IR2 | z1, z2 ≥ 0}.
Hence, R = R(x) is independent of x, and R is a pointed cone of C.

(x1, x2)

C x+R(x)
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∗

Lemma 1.30 If the convex set C is closed and has an extremal point, then each extremal set of C has
at least one extremal point as well.

∗Proof: Let us assume to the contrary that an extremal set E ⊂ C has no extremal point. Then by item (iv) of
Lemma 1.27 the recession cone of E is not pointed, i.e. it contains a line. By statement (iii) of the same lemma, this
line is contained in the recession cone of C as well. Applying (iv) of Lemma 1.27 again we conclude that C cannot have
an extremal point. This is a contradiction, the lemma is proved. 2

Lemma 1.31 Let C be a convex set and R be its recession cone. If E is an extremal set of C the
recession cone RE of E is an extremal set of R.

∗Proof: Clearly RE ⊆ R. Let us assume that RE is not an extremal set of R. Then there are vectors z1, z2 ∈ R,
z1 /∈ RE and a λ ∈ (0, 1) such that z = λz1 + (1 − λ)z2 ∈ RE . Finally, for a certain α > 0 and x ∈ E we have

x1 = x+ αz1 ∈ C \ E, x2 = x+ αz2 ∈ C
and

λx1 + (1 − λ)x2 = x+ αz ∈ E
contradicting the extremality of E. 2

1.2.3 The relative interior of a convex set

The standard simplex in IR3 was defined as the set

{

x ∈ IR3

∣

∣

∣

∣

∣

3
∑

i=1

xi = 1, x ≥ 0

}

.

The interior of this convex set is empty, but intuitively the points that do not lie on the ‘boundary’
of the simplex do form a ‘sort of interior’. This leads us to a generalized concept of the interior of a
convex set, namely the relative interior. If the convex set is full-dimension (i.e. C ∈ IRn has dimension
n), then the concepts of interior and relative interior coincide.

Definition 1.32 Let a convex set C be given. The point x ∈ C is in the relative interior of C if for all
x ∈ C there exists x̃ ∈ C and 0 < λ < 1 such that x = λx+ (1− λ)x̃. The set of relative interior points
of the set C will be denoted by C0.

The relative interior C0 of a convex set C is obviously a subset of the convex set. We will show that
the relative interior C0 is a relatively open (i.e. it coincides with its relative interior) convex set.

Example 1.33 Let C = {x ∈ IR3| x2
1 + x2

2 ≤ 1, x3 = 1} and L = {x ∈ IR3| x3 = 0}, then C ⊂ aff(C) = (0, 0, 1) + L.

Hence, dim C = 2 and C0 = {x ∈ IR3| x2
1 + x2

2 < 1, x3 = 1}.

∗
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Lemma 1.34 Let C ⊂ IRn be a convex set. Then for each x ∈ C0, y ∈ C and 0 < λ ≤ 1 we have

z = λx+ (1 − λ)y ∈ C0 ⊆ C.

∗Proof: Let u ∈ C be an arbitrary point. Then we have to show that for each u ∈ C there is an ū ∈ C and a 0 < ρ < 1
such that z = ρū+ (1 − ρ)u. The proof is constructive.

Because x ∈ C0, by Definition 1.32 there is an 0 < α < 1 such that the point

v :=
1

α
x+ (1 − 1

α
)u

is in C. Let

ū = ϑv + (1 − ϑ)y, where ϑ =
λα

λα+ 1 − λ
.

Due to the convexity of C we have ū ∈ C. Finally, let us define ρ = λα+1−λ. Then one can easily verify that 0 < ρ < 1
and

z = λx+ (1 − λ)y = ρū+ (1 − ρ)u.

Figure 1.4 illustrates the above construction. 2

^

x

y

u

v = 1
α
x+ (1 − 1

α
)u

ū = ϑv + (1 − ϑ)y

z = λx+ (1 − λ)y

Figure 1.4: If x ∈ C0 and y ∈ C, then the point z is in C0.

A direct consequence of the above lemma is the following.

Corollary 1.35 The relative interior C0 of a convex set C ⊂ IRn is convex.

Lemma 1.36 Let C be a convex set. Then (C0)0 = C0. Moreover, if C is nonempty then its relative
interior C0 is nonempty as well.

∗Proof: The proof of this lemma is quite technical. For a proof the reader is referred to the excellent books of
Rockafellar [38] and Stoer and Witzgall [42]. 2

1.3 More on convex functions

Now we turn our attention to convex functions.
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1.3.1 Basic properties of convex functions

In this section we have collected some useful facts about convex functions.

Lemma 1.37 Let f be a convex function defined on the convex set C. Then f is continuous on the
relative interior C0 of C.

∗Proof: Let p ∈ C0 be an arbitrary point. Without loss of generality we may assume that C is full dimensional, p
is the origin and f(p) = 0.

Let us first consider the one dimensional case. Because 0 is in the interior of the domain C of f we have a v > 0 such
that v ∈ C and −v ∈ C as well. Let us consider the two linear functions

ℓ1(x) := x
f(v)

v
and ℓ2(x) := x

f(−v)
−v .

One easily checks that the convexity of f implies the following relations:

• ℓ1(x) ≥ f(x) if x ∈ [0, v];

• ℓ1(x) ≤ f(x) if x ∈ [−v, 0];
• ℓ2(x) ≥ f(x) if x ∈ [−v, 0];
• ℓ2(x) ≤ f(x) if x ∈ [0, v].

Then by defining

h(x) := max{ℓ1(x), ℓ2(x)} and g(x) := min{ℓ1(x), ℓ2(x)}
on the interval [−v, v] we have

g(x) ≤ f(x) ≤ h(x).

The linear functions ℓ1(x) and ℓ2(x) are obviously continuous, thus the functions h(x) and g(x) are continuous as well.
By observing the relations f(0) = h(0) = g(0) = 0 it follows that the function f(x) is continuous at the point 0.

We use an analogous construction for the n-dimensional case. Let us assume again that 0 is an interior point of C and
f(0) = 0. Let v1, · · · , vn, vn+1 be vectors such that the convex set

{

x |x =

n+1
∑

i=1

λiv
i, λi ∈ [0, 1],

n+1
∑

i=1

λi = 1

}

equals the space IRn. For all i = 1, · · · , n + 1 let the linear functions (hyperplanes) Li(x) be defined by n + 1 of their
values: Li(0) = 0 and Li(v

j) = f(vj) for all j 6= i. Let us further define

h(x) := max{L1(x), · · · , Ln+1(x)} and g(x) := min{L1(x), · · · , Ln+1(x)}.

Then one easily proves that the functions g(x) and h(x) are continuous, f(0) = h(0) = g(0) = 0 and

g(x) ≤ f(x) ≤ h(x).

Thus the function f(x) is continuous at the point 0. 2

Exercise 1.16 Prove that the functions g(x) and h(x), defined in the proof above, are continuous, f(0) =
h(0) = g(0) = 0 and

g(x) ≤ f(x) ≤ h(x).

⊳

Note that f can be discontinuous on the relative boundary C \ C0.

Example 1.38 The function

f(x) =

{

x2 for − 1 < x < 1

x2 + 1 otherwise

is not continuous on IR, and it is also not convex. If f is only defined on C = {x ∈ IR | − 1 ≤ x ≤ 1} then f is still not
continuous, but it is continuous on C0 and convex on C.
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The following result, called Jensen’s inequality, is simply a generalization of the inequality f(λx1 +
(1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2).

Lemma 1.39 (Jensen inequality) Let f be a convex function defined on a convex set C ⊆ IRn. Let

the points x1, · · · , xk ∈ C and λ1, · · · , λk ≥ 0 with
∑k

i=1 λi = 1 be given. Then

f

(

k
∑

i=1

λix
i

)

≤
k
∑

i=1

λif(xi).

∗Proof: The proof is by induction on k. If k = 2 then the statement is true by Definition 1.4. Let us assume that
the statement holds for a given k ≥ 2, then we prove that it also holds for k + 1.

Let the points x1, · · · , xk, xk+1 ∈ C and λ1, · · · , λk, λk+1 ≥ 0 with
∑k+1

i=1
λi = 1 be given. If at most k of the λi,

1 ≤ i ≤ k + 1 coefficients are nonzero then, by leaving out the points xi with zero coefficients, the inequality directly
follows from the inductive assumption. Now let us consider the case when all the coefficients λi are nonzero. Then by
convexity of the set C we have that

x̃ =

k
∑

i=1

λi
∑k

j=1
λj

xi ∈ C.

Further

f

(

k+1
∑

i=1

λix
i

)

= f

(

k
∑

j=1

λj

k
∑

i=1

λi
∑k

j=1
λj

xi + λk+1x
k+1

)

= f

([

k
∑

j=1

λj

]

x̃+ λk+1x
k+1

)

≤

[

k
∑

j=1

λj

]

f(x̃) + λk+1f
(

xk+1
)

≤

[

k
∑

j=1

λj

](

k
∑

i=1

λi
∑k

j=1
λj

f(xi)

)

+ λk+1f(xk+1)

=

k+1
∑

i=1

λif(xi),

where the first inequality follows from the convexity of the function f (Definition 1.4) and, at the second inequality, the
inductive assumption was used. The proof is complete. 2

The reader can easily prove the following two lemmas by applying the definitions. We leave the
proofs as exercises.

Lemma 1.40 Let f1, · · · , fk be convex functions defined on a convex set C ⊆ IRn. Then
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• for all λ1, · · · , λk ≥ 0 the function

f(x) =

k
∑

i=1

λif
i(x)

is convex;
• the function

f(x) = max
1≤i≤k

f i(x)

is convex.

Definition 1.41 The function h : IR → IR is called

• monotonically non-decreasing if for all t1 < t2 ∈ IR one has h(t1) ≤ h(t2);

• strictly monotonically increasing if for all t1 < t2 ∈ IR one has h(t1) < h(t2).

Lemma 1.42 Let f be a convex function on the convex set C ⊆ IRn and h : IR → IR be a convex
monotonically non-decreasing function. Then the composite function h(f(x)) : C → IR is convex.

Exercise 1.17 Prove Lemma 1.40 and Lemma 1.42. ⊳

Exercise 1.18 Assume that the function h in Lemma 1.42 is not monotonically non-decreasing. Give a
concrete example that in this case the statement of the lemma fails. ⊳

Definition 1.43 Let a convex function f : C → IR defined on the convex set C be given. Let α ∈ IR be
an arbitrary number. The set Dα = {x ∈ C | f(x) ≤ α} is called a level set of the function f .

Lemma 1.44 If f is a convex function on the convex set C then for all α ∈ IR the level set Dα is a
(possibly empty) convex set.

∗Proof: Let x, y ∈ Dα and 0 ≤ λ ≤ 1. Then we have f(x) ≤ α, f(y) ≤ α and we may write

f(λx+ (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) ≤ λα+ (1 − λ)α = α.

Here the first inequality followed from the convexity of the function f . The lemma is proved. 2

1.3.2 On the derivatives of convex functions

The first and second order derivatives of (sufficiently differentiable) convex functions have some inter-
esting and useful properties which we review in this section. The reader may recall from elementary
calculus that a univariate function f on IR is convex if f ′′(x) ≥ 0 for all x ∈ IR (assuming sufficient
differentiability), and that such a function attains its minimum at some x ∈ IR if and only if f ′(x) = 0.
We will work towards generalizing these results to multivariate convex functions.

Recall that the gradient ∇f of the function f is defined as the vector formed by the partial derivatives
∂f
∂xi

of f . Further we introduce the concept of directional derivative.

Definition 1.45 Let x ∈ IRn and a direction (vector) s ∈ IRn be given. The directional derivative
δf(x, s) of the function f , at point x, in the direction s, is defined as

δf(x, s) = lim
λ→0

f(x+ λs) − f(x)

λ

if the above limit exists.

If the function f is continuously differentiable then ∂f
∂xi

= δf(x, ei) where ei is the i−th unit vector.
This implies the following result.
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Lemma 1.46 If the function f is continuously differentiable then for all s ∈ IRn we have

δf(x, s) = ∇f(x)T s.

The Hesse matrix (or Hessian) ∇2f(x) of the function f at a point x ∈ C is composed of the second
order partial derivatives of f as

(∇2f(x))ij =
∂2f(x)

∂xi∂xj

for all i, j = 1, · · · , n.

Lemma 1.47 Let f be a function defined on a convex set C ⊆ IRn. The function f is convex if and
only if the function φ(λ) = f(x+ λs) is convex on the interval [0, 1] for all x ∈ C and x+ s ∈ C.

∗Proof: Let us assume that f is a convex function. Then we prove that φ(λ) is convex on the interval [0, 1]. Let
λ1, λ2 ∈ [0, 1] and 0 ≤ α ≤ 1. Then one has

φ(αλ1 + (1 − α)λ2) = f(x+ [αλ1 + (1 − α)λ2]s)

= f(α[x+ λ1s] + (1 − α)[x+ λ2s])

≤ αf(x+ λ1s) + (1 − α)f(x+ λ2s)

= αφ(λ1) + (1 − α)φ(λ2),

proving the first part of the lemma.

On the other hand, if φ(λ) is convex on the interval [0, 1] for each x, x + s ∈ C then the convexity of the function f
can be proved as follows. For given y, x ∈ C let us define s := y − x. Then we write

f(αy + (1 − α)x) = f(x+ α(y − x)) = φ(α) = φ(α1 + (1 − α)0)

≤ αφ(1) + (1 − α)φ(0) = αf(y) + (1 − α)f(x).

The proof of the lemma is complete. 2

Example 1.48 Let f(x) = x2
1 + x2

2 and let Ef be the epigraph of f . For every s ∈ IR2, we can define the half-plane

Vs ⊂ IR3 as {(x, y) ∈ IR2 × IR| x = µs, µ > 0}. Now, for x = (0, 0) the epigraph of φ(λ) = f(x + λs) = f(λs) equals
Vs ∩ Ef , which is a convex set. Hence, φ(λ) is convex.

s

Vs

φ(λ)

∗

Lemma 1.49 Let f be a continuously differentiable function on the open convex set C ⊆ IRn. Then
the following statements are equivalent.

1. The function f is convex on C.
2. For any two vectors x, x ∈ C one has

∇f(x)T (x− x) ≤ f(x) − f(x) ≤ ∇f(x)T (x− x).
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3. For any x ∈ C, and any s ∈ IRn such that x+s ∈ C, the function φ(λ) = f(x+λs) is continuously
differentiable on the open interval (0, 1) and φ′(λ) = sT∇f(x + λs), which is a monotonically
non-decreasing function.

∗Proof: First we prove that 1 implies 2. Let 0 ≤ λ ≤ 1 and x, x ∈ C. Then the convexity of f implies

f(λx+ (1 − λ)x) ≤ λf(x) + (1 − λ)f(x).

This can be rewritten as
f(x+ λ(x− x)) − f(x)

λ
≤ f(x) − f(x).

Taking the limit as λ → 0 and applying Lemma 1.46 the left-hand-side inequality of 2 follows. As one interchanges the
role x and x, the right-hand-side inequality is obtained analogously.

Now we prove that 2 implies 3. Let x, x + s ∈ C and 0 ≤ λ1, λ2 ≤ 1. When we apply the inequalities of 2 with the
points x+ λ1s and x+ λ2s the following relations are obtained.

(λ2 − λ1)∇f(x+ λ1s)
T s ≤ f(x+ λ2s) − f(x+ λ1s) ≤ (λ2 − λ1)∇f(x+ λ2s)

T s,

hence
(λ2 − λ1)φ′(λ1) ≤ φ(λ2) − φ(λ1) ≤ (λ2 − λ1)φ′(λ2).

Assuming λ1 < λ2 we have

φ′(λ1) ≤ φ(λ2) − φ(λ1)

λ2 − λ1
≤ φ′(λ2),

proving that the function φ′(λ) is monotonically non-decreasing.

Finally we prove that 3 implies 1. We only have to prove that φ(λ) is convex if φ′(λ) is monotonically non-decreasing.
Let us take 0 < λ1 < λ2 < 1 where φ(λ1) ≤ φ(λ2). Then for 0 ≤ α ≤ 1 we may write

(1 − α)φ(λ1) + αφ(λ2) − φ((1 − α)λ1 + αλ2)

= α[φ(λ2) − φ(λ1)] − [φ((1 − α)λ1 + αλ2) − φ(λ1)]

= α(λ2 − λ1)

(
∫ 1

0

φ′(λ1 + t(λ2 − λ1))dt−
∫ 1

0

φ′(λ1 + tα(λ2 − λ1))dt

)

≥ 0.

The expression for the derivative of φ is left as an exercise in calculus (Exercise 1.19). The proof of the Lemma is
complete. 2

Figure 1.5 illustrates the inequalities at statement 2 of the lemma.

Exercise 1.19 Let f : IRn 7→ IR be twice continuously differentiable and let x ∈ IRn and s ∈ IRn be given.
Define φ : IR 7→ IR via φ(λ) = f(x + λs). Prove that

φ
′(λ) = s

T∇f(x + λs)

and
φ
′′(λ) = s

T∇2
f(x + λs)s.

⊳

Lemma 1.50 Let f be a twice continuously differentiable function on the open convex set C ⊆ IRn.
The function f is convex if and only if its Hesse matrix ∇2f(x) is PSD for all x ∈ C.

Proof: Let us take an arbitrary x ∈ C and s ∈ IRn, and define φ(λ) = f(x + λs). If f is convex,
then φ′(λ) is monotonically non-decreasing. This implies that φ′′(λ) is nonnegative for each x ∈ C and
0 ≤ λ ≤ 1. Thus

sT∇2f(x)s = φ′′(0) ≥ 0

proving the positive semidefiniteness of the Hessian ∇2f(x).

On the other hand, if the Hessian ∇2f(x) is positive semidefinite for each x ∈ C, then

sT∇2f(x+ λs)s = φ′′(λ) ≥ 0,

i.e. φ′(λ) is monotonically non-decreasing proving the convexity of f by Lemma 1.49. The theorem is
proved.
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Figure 1.5: Inequalities derived for the gradient of a convex function f .

Exercise 1.20 Prove the following statement analogously as Lemma 1.50 was proved.

Let f be a twice continuously differentiable function on the open convex set C. Then f is strictly convex if its
Hesse matrix ∇2f(x) is positive definite (PD) for all x ∈ C. ⊳

Exercise 1.21 Give an example of a twice continuously differentiable strictly convex function f where ∇2f(x)
is not positive definite (PD) for all x in the domain of f . ⊳
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Chapter 2

Optimality conditions

We consider two cases separately. First optimality conditions for unconstrained optimization are
considered. Then optimality conditions for some special constrained optimization problems are derived.

2.1 Optimality conditions for unconstrained optimization

Consider the problem

minimize f(x), (2.1)

where x ∈ IRn and f : IRn → IR is a differentiable function. First we define local and global minima of
the above problem.

Definition 2.1 Let a function f : IRn → IR be given.

A point x ∈ IRn is a local minimum of the function f if there is an ǫ > 0 such that f(x) ≤ f(x) for
all x ∈ IRn when ‖x− x‖ ≤ ǫ.

A point x ∈ IRn is a strict local minimum of the function f if there is an ǫ > 0 such that f(x) < f(x)
for all x ∈ IRn when ‖x− x‖ ≤ ǫ.

A point x ∈ IRn is a global minimum of the function f if f(x) ≤ f(x) for all x ∈ IRn.

A point x ∈ IRn is a strict global minimum of the function f if f(x) < f(x) for all x ∈ IRn.

Convex functions possess the appealing property that a local minimum is global.

Example 2.2 Consider the convex function f1 : IR → IR defined as follows.

f1(x) =











−x+ 1 if x < 0,

1 if 0 ≤ x ≤ 1,

x if x > 1.
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0-3 -2 -1 321

The point x̄ = 0 is a global minimum of the function f1 because f1(x̄) ≤ f1(x) for all x ∈ IR. Because x̄ = 0 is a global
minimum, it follows immediately that it is also a local minimum of the function f1. The point x̄ = 0 is neither a strict
local nor a strict global minimum point of f1 because for any ǫ > 0 we can find an x for which f1(x̄) = f1(x) applies
with ||x̄− x|| ≤ ǫ.

Now let us consider the non-convex function f1 : IR → IR defined as

f2(x) =































−x if x < 2,

2 if −2 ≤ x ≤ −1,

−x+ 1 if −1 < x < 0,

1 if 0 ≤ x ≤ 1,

x if x > 1.

0-3 -2 -1 321

The point x̄ = 0 is a global minimum of the function f2 because f2(x̄) ≤ f2(x) for all x ∈ IR. Because it is a global
minimum it is at the same a local minimum as well. The point x̄ = 0 is neither a strict local, nor a strict global minimum
of the function f2 because for any ǫ > 0 we can find an x for which f2(x̄) = f2(x) applies with ||x̄− x|| ≤ ǫ.

The point x∗ = −2 is also a local minimum of the function f2 because f2(x∗) ≤ f2(x) for all x ∈ IR when ||x∗−x|| ≤ ǫ,
with 0 < ǫ < 1. It is not a strict local minimum because f2(x∗) 6≤ f2(x) for all x ∈ IR when ||x∗ − x|| < ǫ, with ǫ > 0.
The point x∗ = −2 is not a global minimum of f2 because f2(−2) > f2(0). ∗

Example 2.3 Consider the convex function f1(x) = x2 where x ∈ IR.
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0-3 -2 -1 321

The point x̄ = 0 is a strict local minimum of the function f1 because f1(x̄) < f1(x) for all x ∈ IR when ||x̄− x|| < ǫ,
with ǫ > 0. The point x̄ = 0 is also a strict global minimum of the function f1 because f1(x̄) < f1(x) for all x ∈ IR.

Consider the non-convex function f2 : IR → IR defined as

f2(x) =

{

(x+ 3)2 + 3 if x < −2,

x2 if x ≥ −2.

0-4 -3 -2 -1 321

The point x̄ = 0 is a strict local minimum as well as an strict global minimum for the function f2, because f2(x̄) < f2(x)
for all x ∈ IR when ||x̄ − x|| < ǫ, with ǫ > 0, and for all x ∈ IR. The point x∗ = −3 is a strict local minimum because
f2(x∗) < f2(x) for all x ∈ IR when ||x∗ − x|| < ǫ, with 0 < ǫ < 1. The point x∗ = −3 is not a strict global minimum,
because f2(−3) > f2(0).

∗

Lemma 2.4 Any (strict) local minimum of a convex function f is a (strict) global minimum of f as
well.

Exercise 2.1 Prove Lemma 2.4. ⊳

Now we arrive at the famous result of Fermat that says that a necessary condition for x to be a
minimum of a continuously differentiable function f is that ∇f(x) = 0.

Theorem 2.5 (Fermat) Let f be continuously differentiable. If the point x ∈ IRn is a minimum of
the function f then ∇f(x) = 0.
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Proof: As x is a minimum, one has

f(x) ≤ f(x+ λs) for all s ∈ IRn and λ ∈ R.

By bringing f(x) to the right hand side and dividing by λ > 0 we have

0 ≤ f(x+ λs) − f(x)

λ
.

Taking the limit as λ→ 0 results in

0 ≤ δf(x, s) = ∇f(x)T s for all s ∈ IRn.

As s ∈ IRn is arbitrary we conclude that ∇f(x) = 0. 2

Remark: In the above theorem it is enough to assume that the partial derivatives of f exist. The
same proof applies if we choose ei, the standard unit vectors instead of the arbitrary direction s.

Exercise 2.2 Consider Kepler’s problem as formulated in Exercise 0.2.

1. Show that Kepler’s problem can be written as the problem of minimizing a nonlinear univariate function
on an open interval.

2. Show that the solution given by Kepler is indeed optimal by using Theorem 2.5.

⊳

Observe that the above theorem contains only a one sided implication. It does not say anything
about a minimum of f if ∇f(x) = 0. Such points are not necessarily minimum points. These points
are called stationary points. Think of the stationary (inflection) point x = 0 of the univariate function
f(x) = x3. In other words, Fermat’s result only gave a necessary condition for a minimum, namely
∇f(x) = 0. We will now see that this is also a sufficient condition if f is convex.

Theorem 2.6 Let f be a continuously differentiable convex function. The point x ∈ IRn is a minimum
of the function f if and only if ∇f(x) = 0.

Proof: As x is a minimum of f then by Theorem 2.5 we have ∇f(x) = 0. On the other hand, if f
is a convex function and ∇f(x) = 0 then

f(x) − f(x) ≥ ∇f(x)T (x− x) = 0 for all x ∈ IRn,

hence the theorem is proved. 2

Exercise 2.3 We return to Steiner’s problem (see Section 0.3.3) of finding the Torricelli point of a given
triangle, that was defined as the solution of the optimization problem

min
x∈IR2

‖x − a‖ + ‖x − b‖ + ‖x − c‖, (2.2)

where a, b, and c are given vectors in IR2 that form the vertices of the given triangle.

1. Show that the objective function is convex.

2. Give necessary and sufficient conditions for a minimum of (2.2). (In other words, give the equations that
determine the Torricelli point. You may assume that all three angles of the triangle are smaller than π

2
.)

3. Find the Torricelli point of the triangle with vertices (0, 0), (3, 0) and (1, 2).

⊳
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If f is a twice continuously differentiable (not necessarily convex) function then second order sufficient
conditions for local minima are derived as follows. Let ∇2f(x) denote the Hesse matrix of f at the
point x.

Theorem 2.7 Let f be a twice continuously differentiable function. If at a point x ∈ IRn it holds that
∇f(x) = 0 and ∇2f(x) is positive semidefinite in an ǫ−neighborhood (ǫ > 0) of x then the point x
is a local minimum of the function f . (If we assume positive definiteness then we get a strict local
minimum.)

Proof: Taking the Taylor series expansion of f at x we have

f(x) = f(x+ (x− x)) = f(x) + ∇f(x)T (x− x) +
1

2
(x− x)T∇2f(x+ α(x− x))(x− x)

for some 0 ≤ α ≤ 1. Using the assumptions we have the result f(x) ≥ f(x) as x is in the neighborhood
of x where the Hesse matrix is positive semidefinite. 2

Corollary 2.8 Let f be a twice continuously differentiable function. If at x ∈ IRn the gradient
∇f(x) = 0 and the Hessian ∇2f(x) is positive definite then the point x is a strict local minimum
of the function f .

Proof: Since f is twice continuously differentiable, it follows from the positive definiteness of the
Hesse matrix at x that it is positive definite in a neighborhood of x. Hence the claim follows from
theorem 2.7. 2

2.2 Optimality conditions for constrained optimization

The following theorem generalizes the optimality conditions for a convex function on IRn (Theorem
2.6), by replacing IRn by any relatively open convex set C ⊆ IRn.

Theorem 2.9 Let us consider the optimization problem min{ f(x) : x ∈ C} where C is a relatively
open convex set and f is a convex differentiable function. The point x is an optimal solution of this
problem if and only if ∇f(x)T s = 0 for all s ∈ L, where L denotes the linear subspace with aff(C) = x+L
for any x ∈ C. Here aff(C) denotes the affine hull of C.

Proof: Let s ∈ L and λ ∈ IR. If x is a minimum, one has

f(x) ≤ f(x+ λs) if x+ λs ∈ C.

Note that x+ λs ∈ aff(C) since s ∈ L, and x+ λs ∈ C if λ is sufficiently small, since C is a relatively
open set.

By bringing f(x) to the right hand side and dividing by λ > 0 we have

0 ≤ f(x+ λs) − f(x)

λ
for all s ∈ L,

if λ > 0 is sufficiently small. Taking the limit as λ ↓ 0 results in

0 ≤ δf(x, s) = ∇f(x)T s for all s ∈ L.

We conclude that ∇f(x)T s = 0 for all s ∈ L.
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Conversely, if f is a convex function and ∇f(x)T s = 0 for all s ∈ L then, for any x ∈ C,

f(x) − f(x) ≥ ∇f(x)T (x− x) = 0,

since s = (x− x) ∈ L, hence the theorem is proved. 2

A crucial assumption of the above lemma is that the set C is a relatively open set. In general this is
not the case because the level sets of convex optimization problems are closed. However as we will see
later the barrier function approach will result in such relatively open feasible sets. This is an important
feature of interior point methods that will be discussed later on. If the set of feasible solutions is not
relatively open, similar results by using similar techniques can be derived (see Theorem 2.14).

Exercise 2.4 We return to Tartaglia’s problem (4) in Section 0.3.1.

1. Eliminate one of the variables and show that the resulting problem can be written as the problem of
minimizing a univariate convex function on an open interval.

2. Show that the answer given by Tartaglia is indeed the optimal solution, by applying Theorem 2.9.

⊳

Now let us consider the general convex optimization problem, as given earlier in (1), but without
equality constraints.

(CO) min f(x)

s.t. gj(x) ≤ 0, j = 1, · · · ,m
x ∈ C,

(2.3)

where C ⊆ IRn is a convex set and f, g1, · · · , gm are convex functions on C (or on an open set that
contains the set C). Almost always we will assume that the functions are differentiable. The set of
feasible solutions will be denoted by F , hence

F = {x ∈ C | gj(x) ≤ 0, j = 1, · · · ,m}.

Definition 2.10 The vector s ∈ IRn is called a feasible direction at a point x ∈ F if there is a λ0 > 0
such that x + λs ∈ F for all 0 ≤ λ ≤ λ0. The set of feasible directions at the feasible point x ∈ F is
denoted by FD(x).

Example 2.11 Assume that the feasible set F ⊂ IR2 is defined by the three constraints

−x1 − x2 + 1 ≤ 0, 1 − x2 ≤ 0, x1 − x2 ≤ 0.

If x̄ = (1, 1), then the set of feasible directions at x̄ is FD(x̄) = {s ∈ IR2| s2 ≥ s1, s2 ≥ 0}. Note that in this case FD(x̄)
is a closed convex set.

0-3 -2 -1 321

x̄+ FD(x̄)

x̄
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Example 2.12 Assume that the feasible set F ⊂ IR2 is defined by the single constraint x2
1 − x2 ≤ 0.

If x̄ = (1, 1), then the set of feasible directions at x̄ is FD(x̄) = {s ∈ IR2| s2 > 2s1}. Observe that now FD(x̄) is an
open set.

0-3 -2 -1 321

x̄+ FD(x̄)

x̄

∗

Lemma 2.13 For any x ∈ F the set of feasible directions FD(x) is a convex cone.

Proof: Let ϑ > 0. Obviously, s ∈ FD(x) implies (ϑs) ∈ FD(x) since x+ λ
ϑ
(ϑs) = x+λs ∈ F , hence

FD(x) is a cone. To prove the convexity of FD(x) let us take s, s ∈ FD(x). Then by definition we
have x + λs ∈ F and x + λs ∈ F for some λ > 0 (observe that a common λ can be taken). Further,
for 0 ≤ α ≤ 1 we write

x+ λ(αs+ (1 − α)s) = α(x+ λs) + (1 − α)(x+ λs).

Due to the convexity of F the right hand side of the above equation is in F , hence the convexity of
FD(x) follows. 2

In view of the above lemma we may speak about the cone of feasible directions FD(x) for any x ∈ F .
Note that the cone of feasible directions is not necessarily closed even if the set of feasible solutions F
is closed. Figure 2.1 illustrates the cone FD(x) for three different choices of F and x.

We will now formulate an optimality condition in terms of the cone of feasible directions. It states
that a feasible solution is optimal if and only if the gradient of the objective in that point has an acute
angle with all feasible directions at that point (no feasible descent direction exists).

Theorem 2.14 The feasible point x ∈ F is an optimal solution of the convex optimization problem
(CO) if and only if for all s ∈ FD(x) one has δf(x, s) ≥ 0.

Proof: Observing that s ∈ FD(x) if and only if s = λ(x − x) for some x ∈ F and some λ > 0, the
result follows in the same way as in the proof of Theorem 2.9. 2

2.2.1 A geometric interpretation

The purpose of this section is to give a geometric interpretation of the result of Theorem 2.14. In
doing so, we will look at where we are going in the rest of this chapter, and what we would like to
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Figure 2.1: Convex feasible sets and cones of feasible directions.

prove. The results in this section are not essential or even necessary in developing the theory further,
but should provide some geometric insight and a taste of things to come.

Theorem 2.14 gives us necessary and sufficient optimality conditions, but is not a practical test
because we do not have a description of the cone FD(x) and therefore cannot perform the test:

‘is δf(x, s) ≡ ∇f(x)T s ≥ 0 for all s ∈ FD(x)?’ (2.4)

It is easy to give a sufficient condition for (2.4) to hold, which we will now do. This condition will
depend only on the constraint functions that are zero (active) at x.

Definition 2.15 A constraint gi(x) ≤ 0 is called active at x ∈ F if gi(x) = 0.

Now let Ix denote the index set of the active constraints at x, and assume that C = IRn.

We now give a sufficient condition for (2.4) to hold (i.e. for x to be an optimal solution).

Theorem 2.16 A point x ∈ F is an optimal solution of problem (CO) (if C = IRn) if

∇f(x) = −
∑

i∈Ix

yi∇gi(x), (2.5)

for some nonnegative vector y, where Ix denotes the index set of the active constraints at x, as before.
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The condition (2.5) is called the Karush-Kuhn-Tucker (KKT) optimality condition,. One can check
whether it holds for a given x ∈ F by using techniques from linear optimization.

The proof that (2.5) is indeed a sufficient condition for optimality follows from the next two exercises.

Exercise 2.5 Let s ∈ FD(x) be a given feasible direction at x ∈ F for (CO) and let C = IRn. One has

∇gi(x)T
s ≤ 0 for all i ∈ Ix.

(Hint: Use Lemma 1.49.) ⊳

Exercise 2.6 Let x ∈ F be a feasible solution of (CO) where C = IRn. Use the previous exercise and Theorem
2.14 to show that, if there exists a y ≥ 0 such that

∇f(x) = −
∑

i∈Ix

yi∇gi(x),

then x is an optimal solution of (CO). ⊳

Exercise 2.7 We wish to design a cylindrical can with height h and radius r such that the volume is at least
V units and the total surface area is minimal.

We can formulate this as the following optimization problem:

p
∗ := min 2πr

2 + 2πrh

subject to

πr
2
h ≥ V, r > 0, h > 0.

1. Show that we can rewrite the above problem as the following optimization problem:

p
∗ = min 2π

(

e2x1 + ex1+x2
)

,

subject to

ln
(

V

π

)

− 2x1 − x2 ≤ 0, x1 ∈ IR, x2 ∈ IR.

2. Prove that the new problem is a convex optimization problem (CO).

3. Prove that the optimal design is where r = 1
2
h =

(

V
2π

) 1
3 by using the result of Exercise 2.6.

⊳

The KKT condition (2.5) is sufficient for optimality, but is not a necessary condition for optimality
in general, as the next example shows.

Example 2.17 Consider the problem of the form (CO):

minx subject to x2 ≤ 0, x ∈ IR.

Obviously, the unique optimal solution is x̄ = 0, and the constraint g(x) := x2 ≤ 0 is active at x̄.

If we write out condition (2.5), we get

1 ≡ ∇f(x) = −y∇g(x) ≡ −y(2(0)) = 0,

which is obviously not satisfied for any choice of y ≥ 0. In other words, we cannot prove that x̄ = 0 is an optimal solution
by using the KKT condition. ∗

In the rest of the chapter we will show that the KKT conditions are also necessary optimality
conditions for (CO), if the feasible set F satisfies an additional assumption called the Slater condition.
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2.2.2 The Slater condition

We still consider the convex optimization (CO) problem in the form:

(CO) min f(x)

s.t. gj(x) ≤ 0, j = 1, · · · ,m
x ∈ C,

where C ⊆ IRn is a convex set and f, g1, · · · , gm are convex functions on C (or on an open set that
contains the set C). Almost always we will assume that the functions f and gj are differentiable. The
set of indices {1, · · · ,m} is denoted by J , and the set of feasible solutions by F , hence

F = {x ∈ C | gj(x) ≤ 0, j ∈ J}.

We now introduce the assumption on F that we referred to in the previous section, namely the Slater
condition.

Definition 2.18 A vector (point) x0 ∈ C0 is called a Slater point of (CO) if

gj(x
0) < 0, for all j where gj is nonlinear,

gj(x
0) ≤ 0, for all j where gj is linear.

If a Slater point exists we say that (CO) is Slater regular or (CO) satisfies the Slater condition, or
(CO) satisfies the Slater constraint qualification.

Example 2.19

1. Let us consider the optimization problem

min f(x)

s.t. x2
1 + x2

2 ≤ 4

x1 − x2 ≥ 2

x2 ≥ 0

C = IR2.

The feasible region F contains only one point, (2, 0), for which the non-linear constraint becomes an equality.
Hence, the problem is not Slater regular.

x2

x1

2. Let us consider the optimization problem

min f(x)

s.t. x2
1 + x2

2 ≤ 4

x1 − x2 ≥ 2

x2 ≥ −1

C = {x| x1 ≤ 1}.

Again the feasible region contains only one point, (1,−1). For this point the non-linear constraint holds with
strict inequality. However, this point does not lie in the relative interior of C. Hence, the problem is not Slater
regular.
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x2

x1

C
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Exercise 2.8 Assume that (CO) satisfies the Slater condition. Prove that any x ∈ F0 is a Slater point of
(CO). ⊳

Exercise 2.9 By solving a so-called first-phase problem one can check whether a given problem of the form
(CO) satisfies the Slater condition. Let us assume that C = IRn and consider the first-phase problem

min τ

s.t. gj(x) − τ ≤ 0, j = 1, · · · , m

x ∈ IRn, τ ∈ IR,

where τ is an auxiliary variable.

(a) Show that the first-phase problem is Slater regular.

(b) What information can you gain about problem (CO) by looking at the optimal objective value τ∗ of the
first–phase problem? (Consider the cases: τ∗ > 0, τ∗ = 0 and τ∗ < 0.) ⊳

We can further refine our definition. Some constraint functions gj(x) might take the value zero for
all feasible points. Such constraints are called singular while the others are called regular. Hence the
index set of singular constraints is defined as

Js = {j ∈ J | gj(x) = 0 for all x ∈ F},

while the index set of regular (qualified) constraints is defined as the complement of the singular set

Jr = J \ Js = {j ∈ J | gj(x) < 0 for some x ∈ F}.

Remark: Note, that if (CO) is Slater regular, then all singular functions must be linear.

Definition 2.20 A Slater point x∗ ∈ C0 is called an Ideal Slater point of the convex optimization
problem (CO) if

gj(x
∗) < 0 for all j ∈ Jr,

gj(x
∗) = 0 for all j ∈ Js.

First we show an elementary property.

Lemma 2.21 If the convex optimization problem (CO) is Slater regular then there exists an ideal
Slater point x∗ ∈ F .

Proof: According to the assumption, there exists a Slater point x0 ∈ C0 and there exist points xk ∈ F
for all k ∈ Jr such that gk(xk) < 0. Let λ0 > 0, λk > 0 for all k ∈ Jr such that λ0 +

∑

k∈Jr
λk = 1,

then x∗ = λ0x
0 +

∑

j∈Jr
λkx

k is an ideal Slater point. This last statement follows from the convexity
of the functions gj . 2
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Example 2.22
1. Let us consider the optimization problem

min f(x)

s.t. x2
1 + x2

2 ≤ 4

x1 − x2 ≥ 2

x2 ≥ −1

C = {x| x1 = 1}.

The feasible region contains only one point, (1,−1), but now this point does lie in the relative interior of the
convex set C. Hence, this point is an ideal Slater point.

Cx2

x1

2. Let us consider the optimization problem

min f(x)

s.t. x2
1 + x2

2 ≤ 4

x1 − x2 ≥ 2

x2 ≥ −1

C = IR2.

Now, the point (1,−1) is again a Slater point, but not an ideal Slater point. The point ( 3
2
,− 3

4
) is an ideal Slater

point.

F

x2

x1

∗

Exercise 2.10 Prove that any ideal Slater point of (CO) is in the relative interior of F . ⊳

2.2.3 Convex Farkas lemma

The convex Farkas lemma is an example of a theorem of alternatives, which means that it is a statement
of the type: for two specific systems of inequalities (I) and (II), (I) has a solution if and only if (II)
has no solution. It will play an essential role in developing the KKT theory.

Before stating the convex Farkas lemma, we present a simple separation theorem. It essentially
states that disjoint convex sets can be separated by a (hyper)plane (geometrically, in IR2 or IR3, the
convex sets lie on different sides of the separating plane). Its proof can be found in most textbooks
(see e.g. [2]).

Theorem 2.23 Let U ⊆ IRn be a convex set and a point w ∈ IRn with w /∈ U be given. Then there is
a separating hyperplane {x | aTx = α}, with a ∈ IRn, α ∈ IR such that

1. aTw ≤ α;

2. aTu ≥ α for all u ∈ U but U is not a subset of the hyperplane.
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Note that the last property says that there is a u ∈ U such that aTu > α.

Now we are ready to prove the convex Farkas Lemma. The proof here is a simplified version of the
proofs in the books [38, 42].

Lemma 2.24 (Farkas) The convex optimization problem (CO) is given and we assume that the Slater
regularity condition is satisfied. The inequality system

f(x) < 0

gj(x) ≤ 0, j = 1, · · · ,m
x ∈ C,

(2.6)

has no solution if and only if there exists a vector y = (y1, · · · , ym) ≥ 0 such that

f(x) +

m
∑

j=1

yjgj(x) ≥ 0 for all x ∈ C. (2.7)

Before proving this important result we make remark. The systems (2.6) and (2.7) are called alternative
systems, i.e. exactly one of them has a solution.

Proof: If the system (2.6) has a solution then clearly (2.7) cannot be true for that solution. This is
the trivial part of the lemma. Note that this part is true without any regularity condition.

To prove the other side let us assume that (2.6) has no solution. With u = (u0, · · · , um), we define
the set U ∈ IRm+1 as follows.

U = {u | ∃x ∈ C with u0 > f(x), uj ≥ gj(x) if j ∈ Jr, uj = gj(x) if j ∈ Js}.

Clearly the set U is convex (note that due to the Slater condition singular functions are linear) and
due to the infeasibility of (2.6) it does not contain the origin. Hence according to Theorem 2.23 there
exists a separating hyperplane defined by an appropriate vector (y0, y1, · · · , ym) and α = 0 such that

m
∑

j=0

yjuj ≥ 0 for all u ∈ U (2.8)

and for some u ∈ U one has
m
∑

j=0

yjuj > 0. (2.9)

The rest of the proof is divided into four parts.

I. First we prove that y0 ≥ 0 and yj ≥ 0 for all j ∈ Jr.

II. Secondly we establish that (2.8) holds for u = (f(x), g1(x), · · · , gm(x)) if x ∈ C.

III. Then we prove that y0 must be positive.

IV. Finally, it is shown by using induction that we can assume yj > 0 for all j ∈ Js.

I. First we show that y0 ≥ 0 and yj ≥ 0 for all j ∈ Jr. Let us assume that y0 < 0. Let us take an
arbitrary (u0, u1, · · · , um) ∈ U . By definition (u0 + λ, u1, · · · , um) ∈ U for all λ ≥ 0. Hence by (2.8)
one has

λy0 +

m
∑

j=0

yjuj ≥ 0 for all λ ≥ 0.

For sufficiently large λ the left hand side is negative, which is a contradiction, i.e. y0 must be nonneg-
ative. The proof of the nonnegativity of all yj as j ∈ Jr goes analogously.
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II. Secondly we establish that

y0f(x) +

m
∑

j=1

yjgj(x) ≥ 0 for all x ∈ C. (2.10)

This follows from the observation that for all x ∈ C and for all λ > 0 one has u = (f(x) +
λ, g1(x), · · · , gm(x)) ∈ U , thus

y0(f(x) + λ) +

m
∑

j=1

yjgj(x) ≥ 0 for all x ∈ C.

Taking the limit as λ −→ 0 the claim follows.

III. Thirdly we show that y0 > 0. The proof is by contradiction. We already know that y0 ≥ 0. Let
us assume to the contrary that y0 = 0. Hence from (2.10) we have

∑

j∈Jr

yjgj(x) +
∑

j∈Js

yjgj(x) =

m
∑

j=1

yjgj(x) ≥ 0 for all x ∈ C.

Taking an ideal Slater point x∗ ∈ C0 one has

gj(x
∗) = 0 if j ∈ Js,

whence
∑

j∈Jr

yjgj(x
∗) ≥ 0.

Since yj ≥ 0 and gj(x
∗) < 0 for all j ∈ Jr, this implies yj = 0 for all j ∈ Jr. This results in

∑

j∈Js

yjgj(x) ≥ 0 for all x ∈ C. (2.11)

Now, from (2.9), with x ∈ C such that uj = gj(x) if i ∈ Js we have

∑

j∈Js

yjgj(x) > 0. (2.12)

Because the ideal Slater point x∗ is in the relative interior of C there exist a vector x̃ ∈ C and 0 < λ < 1
such that x∗ = λx + (1 − λ)x̃. Using that gj(x

∗) = 0 for j ∈ Js and that the singular functions are
linear one gets

0 =
∑

j∈Js
yjgj(x

∗)

=
∑

j∈Js
yjgj(λx+ (1 − λ)x̃)

= λ
∑

j∈Js
yjgj(x) + (1 − λ)

∑

j∈Js
yjgj(x̃)

> (1 − λ)
∑

j∈Js
yjgj(x̃).

Here the last inequality follows from (2.12). The inequality

(1 − λ)
∑

j∈Js

yjgj(x̃) < 0

contradicts (2.11). Hence we have proved that y0 > 0.

At this point we have (2.10) with y0 > 0 and yj ≥ 0 for all j ∈ Jr. Dividing by y0 > 0 in (2.10) and
by defining yj :=

yj

y0
for all j ∈ J we obtain

f(x) +

m
∑

j=1

yjgj(x) ≥ 0 for all x ∈ C. (2.13)
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We finally show that y may be taken such that yj > 0 for all j ∈ Js.

IV. To complete the proof we show by induction on the cardinality of Js that one can make yj

positive for all j ∈ Js. Observe that if Js = ∅ then we are done. If |Js| = 1 then we apply the results
proved till this point to the inequality system

gs(x) < 0,

gj(x) ≤ 0, j ∈ Jr,

x ∈ C
(2.14)

where {s} = Js. The system (2.14) has no solution, it satisfies the Slater condition, and therefore
there exists a ŷ ∈ IRm−1 such that

gs(x) +
∑

j∈Jr

ŷjgj(x) ≥ 0 for all x ∈ C, (2.15)

where ŷj ≥ 0 for all j ∈ Jr. Adding a sufficiently large positive multiple of (2.15) to (2.13) one obtains
a positive coefficient ŷs > 0 for gs(x).

The general inductive step goes analogously. Assuming that the result is proved if |Js| = k then
the result is proved for the case |Js| = k + 1. Let s ∈ Js then |Js \ {s}| = k, and hence the inductive
assumption applies to the system

gs(x) < 0

gj(x) ≤ 0, j ∈ Js \ {s},
gj(x) ≤ 0, j ∈ Jr,

x ∈ C.

(2.16)

By construction the system (2.16) has no solution, it satisfies the Slater condition, and by the inductive
assumption we have a ŷ ∈ IRm−1 such that

gs(x) +
∑

j∈Jr∪Js\{s}

ŷjgj(x) ≥ 0 for all x ∈ C. (2.17)

where ŷj > 0 for all j ∈ Js \ {s} and ŷj ≥ 0 for all j ∈ Jr. Adding a sufficiently large multiple of
(2.17) to (2.13), one obtains the desired nonnegative multipliers. 2

Remark: Note, that finally we proved slightly more than was stated. We have proved that the
multipliers of all the singular constraints can be made strictly positive.

Example 2.25 [Farkas Lemma]

1. Let us consider the convex optimization problem

(CO) min x

s.t. x2 ≤ 0

x ∈ IR.

Then (CO) is not Slater regular.

The system

x < 0

x2 ≤ 0

has no solution, but for every y > 0 the quadratic function f(x) = x+ yx2 has two zeroes.
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− 1
2y

− 1
y

− 1
4y

So, there is no y ≥ 0 such that

x+ yx2 ≥ 0 for all x ∈ IR.

Hence, the Farkas Lemma does not hold for (CO).

2. Let us consider the convex optimization problem

(CO) min 1 + x

s.t. x2 − 1 ≤ 0

x ∈ IR.

Then (CO) is Slater regular (0 is an ideal Slater point). The system

1 + x < 0

x2 − 1 ≤ 0

has no solution. If we let y = 1
2

the quadratic function

g(x) = x+ 1 + y(x2 − 1) =
1

2
x2 + x+

1

2

−3 −1 1

has only one zero, thus one has

1

2
x2 + x+

1

2
≥ 0 for all x ∈ IR.

∗

Exercise 2.11 Let the matrices A : m × n and the vector b ∈ IRm be given. Apply the convex Farkas Lemma
2.24 to prove that exactly one of the following alternative systems (I) or (II) is solvable:

(I) Ax ≤ b, x ≥ 0,

or
(II) A

T
y ≥ 0, y ≥ 0, b

T
y < 0.

⊳

Exercise 2.12 Let the matrices A : m×n, B : k×n and the vectors a ∈ IRm, b ∈ IRk be given. With a proper
reformulation, apply the convex Farkas Lemma 2.24 to the inequality system

Ax ≤ a, Bx < b, x ≥ 0

to derive its alternative system. ⊳
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Exercise 2.13 Let the matrix A : m × n and the vectors c ∈ IRn and b ∈ Rm be given. Apply the convex
Farkas Lemma 2.24 to prove the so-called Goldman–Tucker theorem for the LO problem:

min {cT
x : Ax = b, x ≥ 0}

when it admits an optimal solution. In other words, prove that there exists an optimal solution x∗ and an
optimal solution (y∗, s∗) of the dual LO problem

max {bT
y : A

T
y + s = c, s ≥ 0}

such that
x
∗ + s

∗
> 0.

⊳

2.2.4 Karush–Kuhn–Tucker theory

For the convex optimization problem (CO) one defines the Lagrange function (or Lagrangian)

L(x, y) := f(x) +
m
∑

j=1

yjgj(x) (2.18)

where x ∈ C and y ≥ 0. Note that for fixed y the Lagrange function is convex in x.

Definition 2.26 A vector pair (x, y) ∈ IRn+m, x ∈ C and y ≥ 0 is called a saddle point of the Lagrange
function L if

L(x, y) ≤ L(x, y) ≤ L(x, y) (2.19)

for all x ∈ C and y ≥ 0.

One easily sees that (2.19) is equivalent with

L(x, y) ≤ L(x, y) for all x ∈ C, y ≥ 0.

We will see (in the proof of Theorem 2.30) that the x part of a saddle point is always an optimal
solution of (CO).

Example 2.27 [Saddle point] Let us consider the convex optimization problem

(CO) min −x+ 2

s.t. ex − 4 ≤ 0

x ∈ IR

Then the Lagrange function of (CO) is given by

L(x, y) = −x+ 2 + y(ex − 4),

where the Lagrange multiplier y is non-negative. For fixed y > 0 we have

∂

∂x
L(x, y) = −1 + yex = 0

for x = − log y, thus L(− log y, y) = log y − 4y + 3 is a minimum.
On the other hand, for feasible x, i.e. if x ≤ log 4, we have

sup
y≥0

y(ex − 4) = 0.

Hence, defining ψ(y) = infx∈IR L(x, y) and φ(x) = supy≥0 L(x, y) we have

ψ(y) =

{

log y − 4y + 3 for y > 0,

−∞ for y = 0;

φ(x) =

{

−x+ 2 for x ≤ log 4,

∞ for x > log 4.

Now, we have
d

dy
ψ(y) =

1

y
− 4 = 0

for y = 1
4
, i.e. this value gives the maximum of ψ(y). Hence, supy≥0 ψ(y) = − log 4 + 2. The function φ(x) is minimal

for x = log 4, thus infx∈IR φ(x) = − log 4 + 2 and we conclude that (log 4, 1
4
) is a saddle point of the Lagrange function

L(x, y). Note that x = log 4 is the optimal solution of (CO). ∗
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Lemma 2.28 A saddle point (x, y) ∈ IRn+m, x ∈ C and y ≥ 0 of L(x, y) satisfies the relation

inf
x∈C

sup
y≥0

L(x, y) = L(x, y) = sup
y≥0

inf
x∈C

L(x, y). (2.20)

Proof: For any (x̂, ŷ) one has

inf
x∈C

L(x, ŷ) ≤ L(x̂, ŷ) ≤ sup
y≥0

L(x̂, y),

hence one can take the supremum of the left hand side and the infimum of the right hand side resulting
in

sup
y≥0

inf
x∈C

L(x, y) ≤ inf
x∈C

sup
y≥0

L(x, y). (2.21)

Further using the saddle point inequality (2.19) one obtains

inf
x∈C

sup
y≥0

L(x, y) ≤ sup
y≥0

L(x, y) ≤ L(x, y) ≤ inf
x∈C

L(x, y) ≤ sup
y≥0

inf
x∈C

L(x, y). (2.22)

Combining (2.22) and (2.21) the equality (2.20) follows. 2

Condition (2.20) is a property of saddle points. If some x ∈ C and y ≥ 0 satisfy (2.20), it does not
imply that (x, y) is a saddle point though, as the following example shows.

Example 2.29 Let (CO) be given by
min ex subject to x ≤ 0.

Here
L(x, y) = ex + yx.

It is easy to verify that x = −1 and y = e−1 satisfy (2.20). Indeed, L(x, y) = 0 and

inf
x∈C

sup
y≥0

L(x, y) = 0,

by letting x tend to −∞. Likewise
sup
y≥0

inf
x∈C

L(x, y) = 0.

However, (x, y) is not a saddle point of L. (This example does not have an optimal solution, and, as we have mentioned,
the x part of a saddle point is always an optimal solution of (CO).) ∗

We still do not know if a saddle point exists or not. Assuming Slater regularity, the next result
states that L(x, y) has a saddle point if and only if (CO) has an optimal solution.

Theorem 2.30 (Karush–Kuhn–Tucker) The convex optimization problem (CO) is given. Assume
that the Slater regularity condition is satisfied. The vector x is an optimal solution of (CO) if and only
if there is a vector y such that (x, y) is a saddle point of the Lagrange function L.

Proof: The easy part of the theorem is to prove that if (x, y) is a saddle point of L(x, y) then x
is optimal for (CO). The proof of this part does not need any regularity condition. From the saddle
point inequality (2.19) one has

f(x) +
m
∑

j=1

yjgj(x) ≤ f(x) +
m
∑

j=1

yjgj(x) ≤ f(x) +
m
∑

j=1

yjgj(x)

for all y ≥ 0 and for all x ∈ C. From the first inequality one easily derives gj(x) ≤ 0 for all j = 1, · · · ,m
hence x ∈ F is a feasible solution of (CO). Taking the two extreme sides of the above inequality and
substituting y = 0 we have

f(x) ≤ f(x) +

m
∑

j=1

yjgj(x) ≤ f(x)
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for all x ∈ F , i.e. x is optimal.

To prove the other direction we need Slater regularity and the Convex Farkas Lemma 2.24. Let us
take an optimal solution x of the convex optimization problem (CO). Then the inequality system

f(x) − f(x) < 0

gj(x) ≤ 0, j = 1, · · · ,m
x ∈ C

is infeasible. By the Convex Farkas Lemma 2.24 there exists a y ≥ 0 such that

f(x) − f(x) +

m
∑

j=1

yjgj(x) ≥ 0

for all x ∈ C. Using that x is feasible one easily derive the saddle point inequality

f(x) +
m
∑

j=1

yjgj(x) ≤ f(x) ≤ f(x) +
m
∑

j=1

yjgj(x)

for all y ≥ 0 and x ∈ C, which completes the proof. 2

The following corollaries lead us to the Karush–Kuhn-Tucker (KKT) optimality conditions.

Corollary 2.31 Under the assumptions of Theorem 2.30 the vector x ∈ C is an optimal solution of
(CO) if and only if there exists a y ≥ 0 such that

(i) f(x) = min
x∈C

{f(x) +

m
∑

j=1

yjgj(x)} and

(ii)
m
∑

j=1

yjgj(x) = max
y≥0

{
m
∑

j=1

yjgj(x)}.

Proof: Easily follows from the theorem. 2

Corollary 2.32 Under the assumptions of Theorem 2.30 the vector x ∈ F is an optimal solution of
(CO) if and only if there exists a y ≥ 0 such that

(i) f(x) = min
x∈C

{f(x) +

m
∑

j=1

yjgj(x)} and

(ii)

m
∑

j=1

yjgj(x) = 0.

Proof: Easily follows from the Corollary 2.31. 2

Corollary 2.33 Let us assume that C = IRn and the functions f, g1, · · · , gm are continuously differ-
entiable functions. Under the assumptions of Theorem 2.30 the vector x ∈ F is an optimal solution of
(CO) if and only if there exists a y ≥ 0 such that

(i) 0 = ∇f(x) +

m
∑

j=1

yj∇gj(x) and

(ii)
m
∑

j=1

yjgj(x) = 0.
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Proof: Follows directly from Corollary 2.32 and the convexity of the function f(x)+
∑m

j=1 yjgj(x), x ∈
C. 2

Exercise 2.14 Prove the above three Corollaries. ⊳

Note that the last corollary stays valid if C is a full dimensional open subset of IRn. If the set C is
not full dimensional, then the right hand side vector, the x−gradient of the Lagrange function has to
be orthogonal to any direction in the affine hull of C (cf. Theorem 2.9). To check the validity of these
statements is left to the reader.

Now the notion of Karush–Kuhn–Tucker (KKT) point is defined.

Definition 2.34 (KKT point) Let us assume that C = IRn and the functions f, g1, · · · , gm are con-
tinuously differentiable functions. The vector (x, y) ∈ IRn+m is called a Karush–Kuhn–Tucker (KKT)
point of (CO) if

(i) gj(x) ≤ 0, for all j ∈ J,

(ii) 0 = ∇f(x) +

m
∑

j=1

yj∇gj(x)

(iii)

m
∑

j=1

yjgj(x) = 0,

(iv) y ≥ 0.

It is important to understand that — under the assumptions of Corollary 2.33 — (x, y) is a saddle
point of the Lagrangian of (CO) if and only if it is a KKT point of (CO). The proof is left as an
exercise.

Exercise 2.15 Let us assume that C = IRn and the functions f, g1, · · · , gm are continuously differentiable
convex functions and the assumptions of Theorem 2.30 hold. Show that (x, y) is a saddle point of the Lagrangian
of (CO) if and only if it is a KKT point of (CO). ⊳

The so-called Karush–Kuhn–Tucker sufficient optimality conditions now follow from Corollary 2.33.

Corollary 2.35 Let us assume that C = IRn and the functions f, g1, · · · , gm are continuously differ-
entiable convex functions and the assumptions of Theorem 2.30 hold. Let the vector (x, y) be a KKT
point, then x is an optimal solution of (CO).

Thus we have derived necessary and sufficient optimality conditions for the convex optimization prob-
lem (CO) under the Slater regularity assumption. Note that if an optimization problem is not convex,
or does not satisfy any regularity condition, then only weaker results can be proven.
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Chapter 3

Duality in convex optimization

Every optimization problem has an associated dual optimization problem. Under some assumptions,
a convex optimization problem (CO) and its dual have the same optimal objective values. We can
therefore use the dual problem to show that a certain solution of (CO) is in fact optimal. Moreover,
some optimization algorithms solve (CO) and its dual problem at the same time, and when the objective
values are the same then optimality has been proved. One can easily derive dual problems and duality
results from the KKT theory or from the Convex Farkas Lemma. First we define the more general
Lagrange dual and then we specialize it to get the so-called Wolfe dual for convex problems.

3.1 Lagrange dual

Definition 3.1 Denote ψ(y) = infx∈C{f(x) +
∑m

j=1 yjgj(x)}. The problem

(LD) supψ(y)

y ≥ 0

is called the Lagrange dual of the convex optimization problem (CO).

Lemma 3.2 The Lagrange Dual (LD) of (CO) is a convex optimization problem, even if the functions
f, g1, · · · , gm are not convex.

Proof: Because the maximization of ψ(y) is equivalent to the minimization of −ψ(y), we have only
to prove that the function −ψ(y) is convex, i.e. ψ(y) is concave. Let y, ŷ ≥ 0 and 0 ≤ λ ≤ 1. Using
that the infimum of the sum of two functions is larger than the sum of the two separate infimums one
has:

ψ(λy + (1 − λ)ŷ) = inf
x∈C







f(x) +

m
∑

j=1

(λyj + (1 − λ)ŷj)gj(x)







= inf
x∈C







λ



f(x) +

m
∑

j=1

yjgj(x)



+ (1 − λ)



f(x) +

m
∑

j=1

ŷjgj(x)











≥ inf
x∈C







λ



f(x) +

m
∑

j=1

yjgj(x)











+ inf
x∈C







(1 − λ)



f(x) +

m
∑

j=1

ŷjgj(x)











= λψ(y) + (1 − λ)ψ(ŷ).

2
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Definition 3.3 If x is a feasible solution of (CO) and y ≥ 0 then we call the quantity

f(x) − ψ(y)

the duality gap at x and y.

It is easy to prove the so-called weak duality theorem, which states that the duality gap is always
nonnegative.

Theorem 3.4 If x is a feasible solution of (CO) and y ≥ 0 then

ψ(y) ≤ f(x)

and equality holds if and only if inf
x∈C

{f(x) +

m
∑

j=1

yjgj(x)} = f(x).

Proof: By straightforward calculations one has

ψ(y) = inf
x∈C

{f(x) +
m
∑

j=1

yjgj(x)} ≤ f(x) +
m
∑

j=1

yjgj(x) ≤ f(x).

Equality holds if and only if infx∈C{f(x) +
∑m

j=1 yjgj(x)} = f(x) and hence yjgj(x) = 0 for all j ∈ J.
2

One easily derives the following corollary.

Corollary 3.5 If x is a feasible solution of (CO), y ≥ 0 and ψ(y) = f(x) then the vector x is
an optimal solution of (CO) and y is optimal for (LD). Further if the functions f, g1, · · · , gm are
continuously differentiable then (x, y) is a KKT-point.

To prove the so-called strong duality theorem one needs a regularity condition.

Theorem 3.6 Let us assume that (CO) satisfies the Slater regularity condition. Let x be a feasible
solution of (CO). The vector x is an optimal solution of (CO) if and only if there exists a y ≥ 0 such
that y is an optimal solution of (LD) and

ψ(y) = f(x).

Proof: Directly follows from Corollary 2.31. 2

Exercise 3.1 Prove Theorem 3.6. ⊳

Remark: If the convex optimization problem does not satisfy a regularity condition, then it is not
true in general that the duality gap is zero. It is also not always true (even not under regularity con-
dition) that the convex optimization problem has an optimal solution. Frequently only the supremum
or the infimum of the objective function exists.

Example 3.7 [Lagrange dual] Let us consider again the problem (see Example 2.25)

(CO) min x

s.t. x2 ≤ 0

x ∈ IR.

48



As we have seen this (CO) problem is not Slater regular and the Convex Farkas Lemma 2.24 does not apply to the
system

x < 0

x2 ≤ 0.

On the other hand, we have

ψ(y) = inf
x∈IR

(x+ yx2) =

{

− 1
4y

for y > 0

−∞ for y = 0.

The Lagrange dual reads
sup
y≥0

ψ(y).

The optimal value of the Lagrange dual is zero, i.e. in spite of the lack of Slater regularity there is no duality gap. ∗

3.2 Wolfe dual

Observing the similarity of the formulation of the Lagrange dual (LD) and the conditions occurring in
the corollaries of the KKT-Theorem 2.30 the so-called Wolfe dual is obtained.

Definition 3.8 Assume that C = IRn and the functions f, g1, · · · , gm are continuously differentiable
and convex. The problem

(WD) sup
x,y







f(x) +
m
∑

j=1

yjgj(x)







∇f(x) +
m
∑

j=1

yj∇gj(x) = 0,

y ≥ 0, x ∈ IRn,

is called the Wolfe Dual of the convex optimization problem (CO).

Note that the variables in (WD) are both y ≥ 0 and x ∈ IRn, and that the Lagrangian L(x, y) is the
objective function of (WD). For this reason, the Wolfe dual does not have a concave objective function
in general, but it is still very useful tool, as we will see. In particular, if the Lagrange function has a
saddle point, C = IRn and the functions f, g1, · · · , gm are continuously differentiable and convex, then
the two dual problems are equivalent. Using the results of the previous section one easily proves weak
and strong duality results, as we will now show. A more detailed discussion of duality theory can be
found in [2, 28].

Theorem 3.9 (Weak duality for the Wolfe dual) Assume that C = IRn and the functions f, g1, · · · , gm

are continuously differentiable and convex. If x̂ is a feasible solution of (CO) and (x, y) is a feasible
solution for (WD) then

L(x, y) ≤ f(x̂).

In other words, weak duality holds for (CO) and (WD).

Proof: Let (x, y) be a feasible solution for (WD). Since the functions f and g1, . . . , gm are convex
and continuously differentiable, and ȳ ≥ 0, the function

h(x) := f(x) +

m
∑

j=1

yjgj(x)

must also be convex and continuously differentiable (see Lemma 1.40). Since (x, y) is feasible for
(WD), one has

∇h(x) = ∇f(x) +

m
∑

j=1

yj∇gj(x) = 0.
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This means that x is a minimizer of the function h, by Lemma 2.6. In other words

f(x) +

m
∑

j=1

yjgj(x) ≤ f(x) +

m
∑

j=1

yjgj(x) ∀x ∈ IRn. (3.1)

Let x̂ be an arbitrary feasible solution of (CO). Setting x = x̂ in (3.1) one gets

f(x) +

m
∑

j=1

yjgj(x) ≤ f(x̂) +

m
∑

j=1

yjgj(x̂) ≤ f(x̂),

where the last inequality follows from y ≥ 0 and gj(x̂) ≤ 0 (j = 1, . . . ,m). This completes the proof.
2

Theorem 3.10 (Strong duality for the Wolfe dual) Assume that C = IRn and the functions f, g1, · · · , gm

are continuously differentiable and convex. Also assume that (CO) satisfies the Slater regularity con-
dition. Let x be a feasible solution of (CO). Then x is an optimal solution of (CO) if and only if there
exists a y ≥ 0 such that (x, y) is an optimal solution of (WD).

Proof: Follows directly from Corollary 2.33. 2

Warning! Remember, we are only allowed to form the Wolfe dual of a nonlinear optimization
problem if it is a convex optimization problem. We may replace the infimum in the definition of ψ(y)
by the condition that the x-gradient is zero only if all the functions f and gj , ∀j are convex and if we
know that the infimum is attained. Else, the condition

∇f(x) +

m
∑

j=1

yj∇gj(x) = 0

allows solutions which are possibly maxima, saddle points or inflection points, or it may not have any
solution. In such cases no duality relation holds in general. For nonconvex problems one has to work
with the Lagrange dual.

Example 3.11 [Wolfe dual] Let us consider the convex optimization problem

(CO) min x1 + ex2

s.t. 3x1 − 2ex2 ≥ 10

x2 ≥ 0

x ∈ IR2.

Then the optimal value is 5 with x = (4, 0). Note that the Slater condition holds for this example.

Wolfe dual The Wolfe dual of (CO) is given by

(WD) sup x1 + ex2 + y1(10 − 3x1 + 2ex2) − y2x2

s.t. 1 − 3y1 = 0

ex2 + 2ex2y1 − y2 = 0

x ∈ IR2, y ≥ 0,

which is a non-convex problem. The first constraint gives y1 = 1
3
, and thus the second constraint becomes

5

3
ex2 − y2 = 0.

Now we can eliminate y1 and y2 from the object function. We get the function

f(x2) =
5

3
ex2 − 5

3
x2e

x2 +
10

3
.

This function has a maximum when

f ′(x2) = −5

3
x2e

x2 = 0,

which is only true when x2 = 0 and f(0) = 5. Hence the optimal value of (WD) is 5 and then (x, y) = (4, 0, 1
3
, 5
3
).

50



Lagrange dual We can double check this answer by using the Lagrange dual. Let

ψ(y) = inf
x∈IR2

{x1 + ex2 + y1(10 − 3x1 + 2ex2) − y2x2}

= inf
x1∈IR

{x1 − 3y1x1} + inf
x2∈IR

{(1 + 2y1)ex2 − y2x2} + 10y1.

We have

inf
x1∈IR

{x1 − 3y1x1} =

{

0 for y1 = 1
3

−∞ otherwise.

Now, for fixed y1, y2, with y2 > 0 let
g(x2) = (1 + 2y1)ex2 − y2x2.

Then g has a minimum when
g′(x2) = (1 + 2y1)ex2 − y2 = 0,

i.e., when x2 = log
(

y2
1+2y1

)

. Further, g(log
(

y2
1+2y1

)

) = y2 − y2 log
(

y2
1+2y1

)

. Hence, we have

inf
x2∈IR

{(1 + 2y1)ex2 − y2x2} =

{

y2 − y2 log
(

y2
1+2y1

)

for y2 > 0

0 for y2 = 0.

Thus the Lagrange dual becomes

(LD) supψ(y) = 10y1 + y2 − y2 log

(

y2

1 + 2y1

)

s.t. y1 =
1

3
y2 ≥ 0.

Now we have
d

dy2
ψ(

1

3
, y2) = log(

3y2

5
) = 0

when y2 = 5
3
, and ψ( 1

3
, 5
3
) = 5.

∗

Exercise 3.2 Prove that — under the assumptions of Theorem 3.10 — the Lagrange and Wolfe duals of the
optimization problem (CO) are equivalent. ⊳

Exercise 3.3 We wish to design a rectangular prism (box) with length l, width b, and height h such that the
volume of the box is at least V units, and the total surface area is minimal. This problem has the following
(nonconvex) formulation:

min
l,b,h

2(lb + bh + lh), lbh ≥ V, l, b, h > 0. (3.2)

i) Transform the problem (3.2) by introducing new variables to obtain:

min
x1,x2,x3

2(ex1+x2 + e
x2+x3 + e

x1+x3), x1 + x2 + x3 ≥ ln(V ), x1, x2, x3 ∈ IR. (3.3)

ii) Show that the transformed problem is convex and satisfies Slater’s regularity condition.

iii) Show that the Lagrange dual of problem (3.3) is:

max
λ≥0

(

3

2
+ ln(V )

)

λ −
3

2
λ ln

(

λ

4

)

. (3.4)

iv) Show that the Wolfe dual of problem (3.3) is the same as the Lagrange dual.

v) Use the KKT conditions of problem (3.3) to show that the cube (l = b = h = V 1/3) is the optimal solution
of problem (3.2).

vi) Use the dual problem (3.4) to derive the same result as in part v).

⊳

3.3 Examples for dual problems

In this section we derive the Lagrange and/or the Wolfe dual of some specific convex optimization
problems.
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Linear optimization

Let A : m× n be a matrix, b ∈ IRm and c, x ∈ IRn. The primal Linear Optimization (LO) problem is
given as

(LO) min{cTx | Ax = b, x ≥ 0}.

Here we can say that C = IRn. Obviously all the constraints are continuously differentiable. The
inequality constraints can be given as gj(x) = (aj)Tx−bj if j = 1, · · · ,m and gj(x) = (−aj−m)Tx+bj−m

if j = m+ 1, · · · , 2m and finally gj(x) = −xj−2m if j = 2m+ 1, · · · , 2m+ n. Here aj denotes the jth
row of matrix A. Denoting the Lagrange multipliers by y−, y+ and s respectively the Wolfe dual (WD)
of (LO) has the following form:

max cTx+ (y−)T (Ax− b) + (y+)T (−Ax+ b) + sT (−x)
c+AT y− −AT y+ − s = 0,

y− ≥ 0, y+ ≥ 0, s ≥ 0.

As we substitute c = −AT y− +AT y+ + s in the objective and introduce the notation y = y+ − y− the
standard dual linear optimization problem follows.

max bT y

AT y + s = c,

s ≥ 0.

Quadratic optimization

The quadratic optimization problem is considered in the symmetric form. Let A : m× n be a matrix,
Q : n× n be a positive semi-definite symmetric matrix, b ∈ IRm and c, x ∈ IRn. The primal Quadratic
Optimization (QO) problem is given as

(QO) min{cTx+
1

2
xTQx | Ax ≥ b, x ≥ 0}.

Here we can say that C = IRn. Obviously all the constraints are continuously differentiable. The
inequality constraints can be given as gj(x) = (−aj)Tx + bj if j = 1, · · · ,m and gj(x) = −xj−m if
j = m+1, · · · ,m+n. Denoting the Lagrange multipliers by y and s respectively the Wolfe dual (WD)
of (QO) has the following form:

max cTx+ 1
2x

TQx+ yT (−Ax+ b) + sT (−x)
c+Qx−AT y − s = 0,

y ≥ 0, s ≥ 0.

As we substitute c = −Qx+AT y+ s in the objective the dual quadratic optimization problem follows.

max bT y − 1
2x

TQx

−Qx+AT y + s = c,

y ≥ 0, s ≥ 0.

Observe that the vector x occurring in this dual is not necessarily feasible for (QO)! To eliminate the
x variables another form of the dual can be presented.
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Since Q is a positive semidefinite symmetric matrix, it can be represented as the product of two
matrices Q = DTD (use e.g. Cholesky factorization), one can introduce the vector z = Dx. Hence the
following (QD) dual problem is obtained:

max bT y − 1
2z

T z

−DT z +AT y + s = c,

y ≥ 0, s ≥ 0.

Note that the optimality conditions are xT s = 0, yT (Ax− b) = 0 and z = Dx.

Constrained maximum likelihood estimation

Maximum Likelihood Estimation frequently occurs in statistics. This problem can also be used to
illustrate duality in convex optimization. In this problem we are given a finite set of sample points
xi, (1 ≤ i ≤ n). The most probable density values at the sample points are to be determined
that satisfy some linear (e.g. convexity) constraints. Formally, the problem is defined as one has to
determine the maximum of the Likelihood function Πn

i=1xi under the conditions

Ax ≥ 0, dTx = 1, x ≥ 0.

Here Ax ≥ 0 represents the linear constraints, the density values xi are nonnegative and the condition
dTx = 1 ensures that the (approximate) integral of the density function is one. Since the logarithm
function is monotone the objective can equivalently replaced by

min −
n
∑

i=1

lnxi.

It is easy to check that the so defined problem is a convex optimization problem. Again we can take
C = IRn and all the constraints are linear, hence continuously differentiable. Denoting the Lagrange
multipliers by y ∈ IRm, t ∈ IR and s ∈ IRn respectively the Wolfe dual (WD) of this problem has the
following form:

max −
n
∑

i=1

lnxi + yT (−Ax) + t(dTx− 1) + sT (−x)

−X−1e−AT y + td− s = 0,

y ≥ 0, s ≥ 0.

Here the notation e = (1, · · · , 1) ∈ IRn and X =diag(x) is used. Also note that for simplicity we did
not split the equality constraint into two inequalities but we used immediately that its multiplier is a
free variable. Multiplying the first constraint by xT one has

−xTX−1e− xTAT y + txT d− xT s = 0.

Using dTx = 1, xTX−1e = n and the optimality conditions yTAx = 0, xT s = 0 we have

t = n.

Observe further that due to the logarithm in the primal objective, the primal optimal solution is
necessarily strictly positive, hence the dual variable s must be zero at the optimum. Combining these
results the dual problem is

max −
n
∑

i=1

lnxi

X−1e+AT y = nd,

y ≥ 0.
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Eliminating the variables xi > 0 from the constraints one has xi = 1
ndi−aT

i
y

and − lnxi = ln(ndi−aT
i y)

for all i = 1, · · · , n. Now we have the final form of our dual problem:

max

n
∑

i=1

ln(ndi − aT
i y)

AT y ≤ nd,

y ≥ 0.

3.4 Some examples with positive duality gap

Example 3.12 This example is due to Duffin. It shows that positive duality gap might occur for convex problems
when the problem does not satisfy the Slater regularity condition. Moreover, it makes clear that the Wolfe dual might
be significantly weaker than the Lagrange dual.

Let us consider the convex optimization problem

(CO) min e−x2

s.t.
√

x2
1 + x2

2 − x1 ≤ 0

x ∈ IR2.

The feasible region is F = {x ∈ IR2| x1 ≥ 0, x2 = 0}. The only constraint is non-linear and singular, thus (CO) is not
Slater regular. The optimal value of the object function is 1.

The Lagrange function is given by

L(x, y) = e−x2 + y(
√

x2
1 + x2

2 − x1).

Let us first consider the Wolfe dual (WD):

sup e−x2 + y(
√

x2
1 + x2

2 − x1)

−y + y x1
√

x2
1
+x2

2

= 0

−e−x2 + y x2
√

x2
1
+x2

2

= 0

y ≥ 0.

The first constraint imply that x2 = 0 and x1 ≥ 0, but these values do not satisfy the second constraint. Thus the Wolfe
dual is infeasible, yielding an infinitely large duality gap.

Let us see if we can do better by using the Lagrange dual. Now, let ǫ =
√

x2
1 + x2

2 − x1, then

x2
2 − 2ǫx1 − ǫ2 = 0.

Hence, for any ǫ > 0 we can find x1 > 0 such that ǫ =
√

x2
1 + x2

2 −x1 even if x2 goes to infinity. However, when x2 goes

to infinity e−x2 goes to 0. So,

ψ(y) = inf
x∈IR2

e−x2 + y

(

√

x2
1 + x2

2 − x1

)

= 0,

thus the optimal value of the Lagrange dual

(LD) max ψ(y)

s.t. y ≥ 0

is 0. This gives a nonzero duality gap that equals to 1.

Observe that the Wolfe dual becomes infeasible because the infimum in the definition of ψ(y) exists, but it is not
attained. ∗

Example 3.13 [Basic model with zero duality gap] Let us first consider the following simple convex optimization
problem.

min x1

s.t. x2
1 ≤ 0 (3.5)

−x2 ≤ 0

−1 − x1 ≤ 0.
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Here the convex set C where the above functions are defined is IR2. It is clear that the set of feasible solutions is given
by

F = {(x1, x2) |x1 = 0, x2 ≥ 0},
thus any feasible vector (x1, x2) ∈ F is optimal and the optimal value of this problem is 0. Because x1 = 0 for all feasible
solutions the Slater regularity condition does not hold for (3.5).

Let us make the Lagrange dual of (3.5). The Lagrange multipliers (y1, y2, y3) are nonnegative and the Lagrange
function

L(x, y) = x1 + y1x
2
1 − y2x2 − y3(1 + x1)

is defined on x ∈ IR2 and y ∈ IR3, y ≥ 0.

The Lagrange dual is defined as

max ψ(y) (3.6)

s.t. y ≥ 0.

where

ψ(y) = inf
x∈IR2

{x1 + y1x
2
1 − y2x2 − y3(1 + x1)}

= inf
x∈IR2

{x1(1 − y3) + y1x
2
1 − y2x2 − y3}

=















−∞ if y2 6= 0 or y1 = 0 but y3 6= 1;

0 if y2 = 0, y1 = 0 and y3 = 1;

−y3 − (1 − y3)2

4y1
y2 = 0 and y1 6= 0.

The last expression in the formula above is obtained by minimizing the convex quadratic function x1(1−y3)+ y1x2
1 −y3

where y1 and y3 are fixed. Because this last expression is nonpositive, the maximum of ψ(y) is zero. Thus for this
problem both the primal and the dual problems have optimal solutions with equal (zero) optimal objective values. ∗

Example 3.14 [A variant with positive duality gap] Let us consider the same problem as in the previous example
(see problem (3.5)) with a different representation of the feasible set. As we will see the new formulation results in a
quite different dual. The new dual has also an optimal solution but now the duality gap is positive.

min x1

s.t. x0 − s0 = 0

x1 − s1 = 0

x2 − s2 = 0 (3.7)

1 + x1 − s3 = 0

x0 = 0

x ∈ IR3, s ∈ C.
Note that (3.7) has the correct form: the constraints are linear, hence convex, and the vector (x, s) of the variables
belong to the convex set IR3 × C. Here the convex set C is defined as follows:

C = {s = (s0, s1, s2, s3) | s0 ≥ 0, s2 ≥ 0, s3 ≥ 0, s0s2 ≥ s21}.
It is clear that the set of feasible solutions is

F = {(x, s) |x0 = 0, x1 = 0, x2 ≥ 0, s0 = 0, s1 = 0, s2 ≥ 0, s3 = 1},

thus any feasible vector (x, s) ∈ F is optimal and the optimal value of this problem is 0.

Exercise 3.4 1. Prove that the function s2
1 − s0s2 is not convex.

2. Prove that the set C is convex.

3. Prove that problem (3.7) does not satisfy the Slater regularity condition.

⊳

Due to the equality constraints the Lagrange multipliers (y0, y1, y2, y3, y4) are free and the Lagrange function

L(x, s, y) = x1 + y0(x0 − s0) + y1(x1 − s1) + y2(x2 − s2) + y3(1 + x1 − s3) + +y4x0)

is defined for x ∈ IR3, s ∈ C and y ∈ IR5.

The Lagrange dual is defined as

max ψ(y) (3.8)

s.t. y ∈ IR5
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where

ψ(y) = inf
x∈IR3, s∈C

L(x, s, y)

= inf
x∈IR3, s∈C

{x1(1 + y1 + y3) + x0(y4 + y0) + x2y2 − s0y0 − s1y1 − s2y2 − s3y3 + y3}

=

{

y3 if 1 + y1 + y3 = 0, y4 + y0 = 0, y2 = 0, y3 ≤ 0, y0 ≤ 0, y1 = 0;

−∞ otherwise.

The last equality requires some explanation.

• If 1 + y1 + y3 6= 0 then L(x, s, y) = x1(1 + y1 + y3) + y3 for x0 = x2 = 0, s = 0. So inf L(x, s, y) = −∞ in this
case.

• If y4 + y0 6= 0 then L(x, s, y) = x0(y4 + y0) + y3 for x1 = x2 = 0, s = 0. So inf L(x, s, y) = −∞ in this case.

• If y2 6= 0 then L(x, s, y) = x2y2 + y3 for x0 = x1 = 0, s = 0. So inf L(x, s, y) = −∞ in this case.

• If y0 > 0 then L(x, s, y) = −s0y0 + y3 for x = 0, s0 ≥ 0, s1 = 0, s2 = 0, s3 = 0. So inf L(x, s, y) = −∞ in this
case.

• If y3 > 0 then L(x, s, y) = −s3y3 + y3 for x = 0, s0 = 0, s1 = 0, s2 = 0, s3 ≥ 0. So inf L(x, s, y) = −∞ in this
case.

• If y2 = 0 but y1 6= 0 then L(x, s, y) = − 1
τ
y0− y1

|y1|
τy1+y3 for x = 0, s3 = 0 and (s0, s1, s2, s3) = ( 1

τ
, y1
|y1|

τ, τ2, 0) ∈
C. So inf L(x, s, y) = −∞ (one obtains this a let τ → ∞) in this case.

Summarizing the above results we conclude that the Lagrange dual reduces to

max y3
y0 ≤ 0, y1 = 0, y2 = 0, y3 = −1, y4 = −y0.

Here for any feasible solution y3 = −1, thus the optimal value of the Lagrange dual is −1, i.e. both the primal problem
(3.7) and its dual (3.8) have optimal solutions, but their optimal values are not equal. ∗

Exercise 3.5 Modify the above problem so that for a given γ > 0 the nonzero duality gap at optimum will be
equal to γ. ⊳

Example 3.15 [Duality for non convex problems 1] Let us consider the non-convex optimization problem

(NCO) min x2
1 − 2x2

s.t. x2
1 + x2

2 = 4

x ∈ IR2.

Then the optimal value is −4, with x = (0, 2).

Lagrange dual The Lagrange function of (NCO) is given by

L(x, y) = x2
1 − 2x2 + y(x2

1 + x2
2 − 4), where y ∈ IR,

and then

ψ(y) = inf
x∈IR2

L(x, y)

= inf
x1

{(1 + y)x2
1} + inf

x2

{yx2
2 − 2x2} − 4y.

We have

inf
x1

{(1 + y)x2
1} =

{

0 for y ≥ −1

−∞ for y < −1

inf
x2

{yx2
2 − 2x2} =

{

− 1
y

for y > 0

−∞ for y ≤ 0.

Hence, the Lagrange dual is

(LD) sup − 1

y
− 4y

y > 0,

which is a convex problem, and the optimal value is −4, with y = 1
2
. Note that although the problem is not

convex, and does not satisfy the Slater regularity condition, the duality gap is zero.
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Example 3.16 [Duality for non convex problems 2] Let us consider the non-convex optimization problem

(CLO) min x2
1 − x2

2

s.t. x1 + x2 ≤ 2

x ∈ C = {x ∈ IR2| − 2 ≤ x1, x2 ≤ 4}.
Then we have the optimal value −12 with x = (−2, 4). The Lagrange function of (CLO) is given by

L(x, y) = x2
1 − x2

2 + y(x1 + x2 − 2), where y ≥ 0.

Thus for y ≥ 0 we have

ψ(y) = inf
x∈C

L(x, y)

= inf
−2≤x1≤4

{x2
1 + yx1} + inf

−2≤x2≤4
{−x2

2 + yx2} − 2y,

Now, x2
1 + yx1 is a parabola which has its minimum at x1 = − y

2
. So, this minimum lies within C when y ≤ 4. When

y ≥ 4 the minimum is reached at the boundary of C. The minimum of the parabola −x2
2 + yx2 is always reached at the

boundaries of C, at x2 = −2 when y ≥ 2, and at x2 = 4 when y ≤ 2. Hence, we have

ψ(y) =











− y2

4
+ 2y − 16 for y ≤ 2

− y2

4
− 4y − 4 for 2 ≤ y ≤ 4

−6y for y ≥ 4.

Maximizing ψ(y) for y ≥ 0 gives

sup
0≤y≤2

ψ(y) = −13,

sup
2≤y≤4

ψ(y) = −13,

sup
y≥4

ψ(y) = −24.

Hence, the optimal value of the Lagrange dual is −13, and we have a nonzero duality gap that equals to 1. ∗

3.5 Semidefinite optimization

The Primal and the Dual Problem

Let A0, A1, · · · , An ∈ IRm×m be symmetric matrices. Further let c ∈ IRn be a given vector and
x ∈ IRn be the vector of unknowns in which the optimization is done. The primal semidefinite
optimization problem is defined as

(PSO) min cTx (3.9)

s.t. −A0 +
n
∑

k=1

Akxk � 0,

where � 0 indicates that the left hand side matrix has to be positive semidefinite. It is clear that
the primal problem (PSO) is a convex optimization problem since the convex combination of positive
semidefinite matrices is also positive semidefinite. For convenience the notation

F (x) = −A0 +

n
∑

k=1

Akxk

will be used.

The dual problem of the semidefinite optimization problem, as given e.g. in [44], is as follows:

(DSP ) max Tr(A0Z) (3.10)

s.t. Tr(AkZ) = ck, for all k = 1, · · · , n,
Z � 0,
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where Z ∈ IRm×m is the matrix of variables. Again, the dual of the semidefinite optimization problem
is convex. The trace of a matrix is a linear function of the matrix and the convex combination of
positive semidefinite matrices is also positive semidefinite.

Theorem 3.17 (Weak duality) If x ∈ IRn is primal feasible and Z ∈ IRm×m is dual feasible, then

cTx ≥ Tr(A0Z)

with equality if and only if
F (x)Z = 0.

Proof: Using the dual constraints and some elementary properties of the trace of matrices one may
write

cTx− Tr(A0Z) =

n
∑

k=1

Tr(AkZ)xk − Tr(A0Z) = Tr((

n
∑

k=1

Akxk −A0)Z) = Tr(F (x)Z) ≥ 0.

Here the last inequality holds because both matrices F (x) and Z are positive semidefinite. Equality
holds if and only if F (x)Z = 0, which completes the proof. 2

The Dual as Lagrange–Wolfe Dual

First we give another equivalent form of the (PSO) problem in order to be able to derive the dual
problem more easily. Clearly problem (PSO) can equivalently be given as

(PSO′) min cTx (3.11)

s.t. −F (x) + S = 0

S � 0,

where S ∈ IRm×m is a symmetric matrix. It plays the role of the usual “slack variables”. The Lagrange
function L(x, S, Z) of problem (PSO′) is defined on the set { (x, S, Z) |x ∈ IRn, S ∈ IRm×m, S �
0, Z ∈ IRm×m, } and is given by

L(x, S, Z) = cTx− eT (F (x) ◦ Z)e+ eT (S ◦ Z)e,

where eT = (1, · · · , 1) ∈ IRn and X ◦ Z denotes the Minkowski (coordinatewise) product of matrices.
Before going on we observe that eT (S◦Z)e = Tr(SZ), hence the Lagrange function can be reformulated
as

L(x, S, Z) = cTx−
n
∑

k=1

xkTr(AkZ) + Tr(A0Z) + Tr(SZ). (3.12)

Before formulating the Lagrange dual of (PSO′) note that we can assume that the matrix Z is
symmetric, since F (x) is symmetric. The Lagrange dual of problem (PSO′) is

(DSDL) max {ψ(Z) | Z ∈ IRm×m} (3.13)

where
ψ(Z) = min{L(x, S, Z) |x ∈ IRn, S ∈ IRm×m, S � 0}. (3.14)

As we did in deriving the Wolfe dual, one easily derives optimality conditions to calculate ψ(Z). Since
the minimization in (3.14) is done in the free variable x, the positive semidefinite matrix of variables S
and, further the function L(x, S, Z) is separable w.r.t. x and S we can take these minimums separately.

If we minimize in S all the terms in (3.12) but Tr(SZ) are constant. The matrix S is positive
semidefinite, hence

min
S

Tr(SZ) =







0 if Z � 0,

−∞ otherwise.
(3.15)
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If we minimize (3.14) in x, we need to equate the x−gradient of L(x, S, Z) to zero (remember to the
Wolfe dual). This requirement leads to

ck − Tr(AkZ) = 0 for all k = 1, · · · , n. (3.16)

Multiplying the equations of (3.16) by xk and summing up one obtains

cTx−
n
∑

k=1

xkTr(AkZ) = 0.

By combining the last formula and the results presented in (3.15) and in (3.16) the simplified form
of the Lagrange dual (3.13), the Lagrange–Wolfe dual

(DSO) max Tr(A0Z)

s.t. Tr(AkZ) = ck, for all k = 1, · · · , n,
Z � 0,

follows. The reader readily verifies that this is identical to (3.10).

Exercise 3.6 Consider the problem given in Example 3.13.

1. Prove that problem (3.7) is a semidefinite optimization problem.

2. Give the dual semidefinite problem.

3. Prove that there is a positive duality gap for this primal–dual semidefinite optimization pair.

⊳

3.6 Duality in cone-linear optimization

In this section we deal with cone-linear optimization problems. A cone-linear optimization problem is
a natural generalization of the well known standard linear optimization problem

min { cTx |Ax ≥ b, x ≥ 0 },

where A ∈ IRm×n, b ∈ IRm and c ∈ IRn. The inequality conditions can be reformulated by observing
that the conditions Ax ≥ b and x ≥ 0 mean that the vector Ax − b and x should be in the positive
orthant

IRm
+ := {x ∈ IRm |x ≥ 0 }

and IRn
+, respectively. One observes, that the positive orthants IRm

+ and IRn
+ are convex cones, i.e. the

linear optimization problem can be restated as the following cone-linear optimization problem

min cTx

Ax− b ∈ IRm
+

x ∈ IRn
+.

The dual problem
max { bT y |AT y ≤ c, y ≥ 0 },

can similarly be reformulated in the conic form:

max bT y

c−AT y ∈ IRn
+

y ∈ IRm
+ .
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The natural question arises: how one can derive dual problems for general cone-linear optimization
problems where, in the above given formulation the simple polyhedral convex cones IRm

+ and IRn
+ are

replaced by arbitrary convex cones C1 ⊆ IRm and C2 ⊆ IRn. The cone-linear optimization problem is
defined as follows:

min cTx

Ax− b ∈ C1 (3.17)

x ∈ C2.

The Dual of a Cone-linear Problem

First, by introducing slack variables s, we give another equivalent form of the cone-linear problem
(3.17)

min cTx

s−Ax+ b = 0

s ∈ C1

x ∈ C2.

In this optimization problem we have linear equality constraints s− Ax+ b = 0 and the vector (s, x)
must be in the convex cone

C1 × C2 := { (s, x) | s ∈ C1, x ∈ C2 }.
The Lagrange function L(s, x, y) of the above problem is defined on the set

{ (s, x, y) | s ∈ C1, x ∈ C2, y ∈ IRm }

and is given by

L(s, x, y) = cTx+ yT (s−Ax+ b) = bT y + sT y + xT (c−AT y). (3.18)

Hence, the Lagrange dual of the cone-linear problem is given by

max
y∈IRm

ψ(y)

where
ψ(y) = min{L(s, x, y) | s ∈ C1, x ∈ C2}. (3.19)

As we did in deriving the Wolfe dual, one easily derives optimality conditions to calculate ψ(y).
Since the minimization in (3.19) is done in the variables s ∈ C1 and x ∈ C2, and the function L(s, x, y)
is separable w.r.t. x and s, we can take these minimums separately.

If we minimize in s all the terms in (3.18) but sT y are constant. The vector s is in the cone C1,
hence

min
s∈C1

sT y =







0 if y ∈ C∗
1 ,

−∞ otherwise.
(3.20)

If we minimize (3.19) in x then all the terms in (3.18) but xT (c−AT y) are constant. The vector x is
in the cone C2, hence

min
x∈C2

xT (c−AT y) =







0 if c−AT y ∈ C∗
2 ,

−∞ otherwise.
(3.21)

By combining (3.20) and (3.21) we have

ψ(y) =







bT y if y ∈ C∗
1 and c−AT y ∈ C∗

2 ,

−∞ otherwise.
(3.22)
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Thus the dual of the cone-linear optimization problem (3.17) is the following cone-linear problem:

max bT y

c−AT y ∈ C∗
2 (3.23)

y ∈ C∗
1 .

Exercise 3.7 Derive the dual semidefinite optimization problem (DSO) by using the general cone-dual problem
(3.23). ⊳

To illustrate the duality relation between (3.17) and (3.23) we prove the following weak duality
theorem.

Theorem 3.18 (Weak duality) If x ∈ IRn is a feasible solution of the primal problem (3.17) and
y ∈ IRm is a feasible solution of the dual problem (3.23) then

cTx ≥ bT y

with equality if and only if

xT (c−AT y) = 0 and yT (Ax− b) = 0.

Proof: Using the definition of the dual cone one may write

cTx− bT y = xT (c−AT y) + yT (Ax− b) ≥ 0.

Due to the nonnegativity of the vectors x, c − AT y, y and Ax − b, equality holds if and only if
xT (c−AT y) = 0 and yT (Ax− b) = 0, which completes the proof. 2
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Chapter 4

Algorithms for unconstrained
optimization

4.1 A generic algorithm

The problem considered in this section is

min f(x)

s.t. x ∈ C,
(4.1)

where C is a relatively open convex set. For typical unconstrained optimization problems one has
C = IRn, the trivial full dimensional open set, but for other applications (like in interior point methods)
one frequently has lower dimensional relatively open convex sets. A generic algorithm for minimizing
the function f(x) can be presented as follows.

Generic Algorithm

Input:

x0 is a given (relative interior) feasible point;

For k = 0, 1, . . . do

Step 1: Find a search direction sk with δf(xk, sk) < 0;
(This should be a descending feasible direction in the constrained case.)

Step 1a: If no such direction exists STOP, optimum found.

Step 2: Line search : find λk = arg min
λ
f(xk + λsk);

Step 3: xk+1 = xk + λks
k, k = k + 1;

Step 4: If stopping criteria are satisfied STOP.

The crucial elements of all algorithms, besides the selection of a starting point are printed boldface
in the scheme, given above.

To generate a search direction is the crucial element of all minimization algorithms. Once a search
direction is obtained, then one performs the line search procedure. Before we discuss these aspects in
detail we turn to the question of the convergence rate of an algorithm.
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4.2 Rate of convergence

Assume that an algorithm generates an n dimensional convergent sequence of iterates x1, x2, . . . , xk,
. . .→ x, as a minimizing sequence of the continuous function f(x) : IRn → IR.

One can define a scalar sequence αk = ||xk − x|| with limit α = 0, or a sequence αk = f(xk) with
limit α = f(x). The rate of convergence of these sequences gives an indication of ‘how fast’ the iterates
converge. In order to quantify the concept of rate (or order) of convergence, we need the following
definition.

Definition 4.1 Let α1, α2, . . . , αk, . . . → α be a convergent sequence with αk 6= α for all k. We say
that the order of convergence of this sequence is p∗ if

p∗ = sup

{

p : lim sup
k→∞

|αk+1 − α|
|αk − α|p <∞

}

.

The larger p∗ is, the faster the convergence. Let β = lim sup
k→∞

|αk+1 − α|
|αk − α|p∗

. If p∗ = 1 and 0 < β < 1 we

are speaking about linear (or geometric rate of) convergence. If p∗ = 1 and β = 0 the convergence
rate is super-linear, while if β = 1 the convergence rate is sub-linear. If p∗ = 2 then the convergence is
quadratic.

Exercise 4.1 Show that the sequence αk = ak, where 0 < a < 1 converges linearly to zero while β = a. ⊳

Exercise 4.2 Show that the sequence αk = a(2k), where 0 < a < 1, converges quadratically to zero. ⊳

Exercise 4.3 Show that the sequence αk = 1
k

converges sub-linearly to zero. ⊳

Exercise 4.4 Show that the sequence αk = ( 1
k
)k converges super-linearly to zero. ⊳

Exercise 4.5 Construct a sequence that converges to zero with the order of four. ⊳

4.3 Line search

Line search in fact means one dimensional optimization, since the function f(xk +λsk) is the function
of the single variable λ. Hence our problem in this part is to find the minimum of a one dimensional
function φ(λ) := f(xk + λsk), or if it is differentiable one has to find a zero of its derivative φ′(λ).

Exercise 4.6 Assume that f is continuously differentiable, xk and sk are given, and λk is obtained via exact
line search:

λk = arg min
λ

f(xk + λs
k).

Show that ∇f(xk + λksk)T sk = 0. ⊳

Below we present four line search methods, that require different levels of information about φ(λ):

• The Dichotomous search and Golden section methods, that use only function evaluations of φ;

• bisection, that evaluates φ′(λ) (φ has to be continuously differentiable);

• Newton’s method, that evaluates both φ′(λ) and φ′′(λ).
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4.3.1 Dichotomous and Golden section search

Assume that φ is convex and has a minimizer, and that we know an interval [a, b] that contains this
minimizer. We wish to reduce the size of this ’interval of uncertainty’ by evaluating φ at points in
[a, b].

Say we evaluate φ(λ) at two points ā ∈ (a, b) and b̄ ∈ (a, b), where ā < b̄.

Lemma 4.2 If φ(ā) < φ(b̄) then the minimum of φ is contained in the interval [a, b̄]. If φ(ā) ≥ φ(b̄)
then the minimum of φ is contained in the interval [ā, b].

Exercise 4.7 Prove Lemma 4.2. ⊳

The lemma suggest a simple algorithm to reduce the interval of uncertainty.

Input:

ǫ > 0 is the accuracy parameter;

a0, b0 are given such that [a0, b0] contains the minimizer of φ(λ);

For k = 0, 1, . . ., do:

Step 1: If |ak − bk| < ǫ STOP.

Step 2: Choose āk ∈ (ak, bk) and b̄k ∈ (ak, bk), such that āk < b̄k;

Step 3a: If φ(āk) < φ(b̄k) then the minimum of φ is contained in the interval [ak, b̄k]; set bk+1 = b̄k
and ak+1 = ak;

Step 3b: If φ(āk) ≥ φ(b̄k) then the minimum of φ is contained in the interval [āk, bk]; set ak+1 = āk

and bk+1 = bk;

We have not specified yet how we should choose the values āk and b̄k in iteration k (Step 2 of the
algorithm). There are many ways to do this. One is to choose āk = 1

2 (ak+bk)−δ and b̄k = 1
2 (ak+bk)+δ

where δ > 0 is a (very) small fixed constant. This is called Dichotomous Search.

Exercise 4.8 Prove that — when using Dichotomous Search — the interval of uncertainty is reduced by a
factor ( 1

2
+ δ)t/2 after t function evaluations. ⊳

There is a more clever way to choose āk and b̄k, which reduces the number of function evaluations
per iteration from two to one, while still shrinking the interval of uncertainty by a constant factor. It
is based on a geometric concept called the Golden section.

The golden section of a line segment is its division into two unequal segments, such that the ratio
of the longer of the two segments to the whole segment is equal to the ratio of the shorter segment to
the longer segment.

α� - 1 − α� -
•

� 1 -

Figure 4.1: The golden section: α ≈ 0.618.

With reference to Figure 4.1, we require that the value α is chosen such that the following ratios are
equal:

1 − α

α
=
α

1
.
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This is the same as α2 + α− 1 = 0 which has only one root in the interval [0, 1], namely α ≈ 0.618.

Returning to the line search procedure, we simply choose āk and b̄k as the points that correspond
to the golden section (see Figure 4.2).

ak bk

āk

(1 − α)(bk − ak)� - (1 − α)(bk − ak)� -

b̄k••
� bk − ak

-

• •

Figure 4.2: Choosing āk and b̄k via the Golden section rule.

The reasoning behind this is as follows. Assume that we know the values φ(āk) and φ(b̄k) during
iteration k. Assume that φ(āk) < φ(b̄k), so that we set bk+1 = b̄k and ak+1 = ak. Now, by the
definition of the golden section, b̄k+1 is equal to āk (see Figure 4.3).

ak

Iteration k

Iteration k + 1

bk

āk• •b̄k••

••• •
āk+1 b̄k+1 bk+1ak

Figure 4.3: Illustration of consecutive iterations of the Golden section rule when φ(āk) < φ(b̄k).

In other words, we do not have to evaluate φ at b̄k+1, because we already know this value. In
iteration k+1 we therefore only have to evaluate φ(āk+1) in this case. The analysis for the case where
φ(āk) ≥ φ(b̄k) is perfectly analogous.

Exercise 4.9 Prove that — when using Golden section search — the interval of uncertainty is reduced by a
factor 0.618t−1 after t function evaluations. ⊳

The Golden section search requires fewer function evaluations than the Dichotomous search method
to reduce the length interval of uncertainty to a given ǫ > 0; see Exercise 4.10. If one assumes that
the time it takes to evaluate φ dominates the work per iteration, then it is more important to count
the total number of function evaluations than the number of iterations.

Exercise 4.10 Show that the Dichotomous search algorithm terminates after at most

2

(

log
(

b0−a0
ǫ

)

log
(

2
1+2δ

)

)

function evaluations, and that the Golden section search terminates after at most

1 +

(

log
(

b0−a0
ǫ

)

log
(

1
0.618

)

)

function evaluations. Which of the two bounds is better? ⊳

4.3.2 Bisection

The Bisection method (also called Bolzano’s method) is used to find a root of φ′(λ) (here we assume
φ to be continuously differentiable). Recall that such a root corresponds to a minimum of φ if φ is
convex.
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The algorithm is similar to the Dichotomous and Golden section search ones, in the sense that it too
uses an interval of uncertainty that is reduced at each iteration. In the case of the bisection method
the interval of uncertainty contains a root of φ′(λ).

The algorithm proceeds as follows.

Input:

ǫ > 0 is the accuracy parameter;

a0, b0 are given such that φ′(a0) < 0 and φ′(b0) > 0;

For k = 0, 1, . . ., do:

Step 1: If |bk − ak| < ǫ STOP.

Step 2: Let λ = 1
2 (ak + bk);

Step 3: If φ′(λ) < 0 then ak+1 := λ and bk+1 = bk;

Step 4: If φ′(λ) > 0 then bk+1 := λ and ak+1 = ak.

Exercise 4.11 Prove that that the bisection algorithm uses at most log2
|b0−a0|

ǫ
function evaluations before

terminating. ⊳

Nota that the function φ′(λ) does not have to be differentiable in order to perform the bisection
procedure.

4.3.3 Newton’s method

Newton’s method is another algorithm for finding a root of φ′. Once again, such a root corresponds to
a minimum of φ if φ is convex. Newton’s method requires that φ be twice continuously differentiable
and strictly convex, and works as follows: we construct the linear Taylor approximation to φ′ at the
current iterate λk, namely

l(λ) := φ′(λk) + φ′′(λk)(λ− λk).

Next we find the root of l(λ) and set λk+1 to be equal to this root. This means that λk+1 is given by

λk+1 = λk − φ′(λk)

φ′′(λk)
.

Now we repeat the process with λk+1 as the current iterate.

There is an equivalent interpretation of this procedure: take the quadratic Taylor approximation of
φ at the current iterate λk, namely

q(λ) = φ(λk) + φ′(λk)(λ− λk) +
1

2
φ′′(λk)(λ− λk)2,

and set λk+1 to be the minimum of q. The minimum of q is attained at

λk+1 = λk − φ′(λk)

φ′′(λk)
,

and λk+1 becomes the new iterate (new approximation to the minimum). Note that the two interpre-
tations are indeed equivalent.

Newton’s algorithm can be summarized as follows.

Input:

ǫ > 0 is the accuracy parameter;

λ0 is the given initial point; k = 0;

For k = 0, 1, . . ., do:
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Step 1: Let λk+1 = λk − φ′(λk)
φ′′(λk) ;

Step 2: If |λk+1 − λk| < ǫ STOP.

Newton’s method as presented above may not converge to the global minimum of φ. On the other
hand, Newton’s method has some spectacular properties. It converges quadratically if the following
conditions are met:

1. the starting point is sufficiently close to the minimum point;

2. in addition to being convex, the function φ has a property called self-concordance, which we will
discuss later.

The next two examples illustrate the possible scenarios.

Example 4.3 Let us apply Newton’s method to φ(λ) = λ− log(1+λ). Note that the domain of φ is (−1,∞). The first
and second derivatives of φ are given by

φ′(λ) =
λ

1 + λ
, φ′′(λ) =

1

(1 + λ)2
,

and it is therefore clear that φ is strictly convex on its domain, and that λ = 0 is the minimizer of φ.

The iterates from Newton’s method satisfy the recursive relation

λk+1 = λk − [φ′′(λk)]−1φ′(λk) = λk − λk(1 + λk) = −λ2
k.

This implies quadratic convergence if |λ0| < 1 (see Exercise 4.12).

On the other hand, note that Newton’s method fails if λ0 ≥ 1. For example, if λ0 = 1 then λ1 = −1, which is not in
the domain of φ!

We mention that the convex function φ has the self-concordance property mentioned above. This will be shown in
Exercise 6.16. ∗

Exercise 4.12 This exercise refers to Example 4.3. Prove that, if the sequence {λk} satisfies

λk+1 = − (λk)2 ,

then λk → 0 with a quadratic rate of convergence if |λ0| < 1. ⊳

In the following example, Newton’s method converges to the minimum, but the rate of convergence
is only linear.

Example 4.4 Let m ≥ 2 be even and define
φ(λ) = λm.

Clearly, φ has a unique minimizer, namely λ = 0. Suppose we start Newton’s method at some nonzero λ0 ∈ IR.

The derivatives of φ are

φ′(λ) = mλm−1

φ′′(λ) = m(m− 1)λm−2.

Hence, the iterates from Newton’s method satisfy the recursive relation

λk+1 = λk −
(

φ′′(λk)
)−1

φ′(λk) = λk +
−1

m− 1
λk =

m− 2

m− 1
λk.

This shows that Newton’s method is exact if φ is quadratic (if m = 2), whereas for m > 2 the Newton process converges
to 0 with a linear convergence rate (see Exercise 4.13). ∗

Exercise 4.13 This exercise refers to Example 4.4. Prove that, if the sequence {λk} satisfies

λk+1 =
m − 2

m − 1
λk,

where m > 2 is even, then λk → 0 with a linear rate of convergence, if λ0 6= 0. ⊳
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4.4 Gradient method

We now return to the generic algorithm on page 63, and look at some different choices for the search
direction. The gradient method uses the negative gradient (−∇f(xk)) of the function f as the search
direction.1 This direction is frequently referred to as the steepest descent direction. This name is
justified by observing that the normalized directional derivative is minimized by the negative gradient

δf(x,−∇f(x)) = −∇f(x)T∇f(x) = min
||s||=||∇f(x)||

{∇f(x)T s}.

Exercise 4.14 Let f : IRn 7→ IR be continuously differentiable and let x̄ ∈ IRn be given. Assume that the level
set {x ∈ IRn | f(x) = f(x̄)} , is in fact a curve (contour). Show that ∇f(x̄) is orthogonal to the tangent line to
the curve at x̄. ⊳

To calculate the gradient is relatively cheap which indicates that the gradient method can be quite
efficient. Although it works fine in many applications, several theoretical and practical disadvantages
can be mentioned. First, the minimization of a convex quadratic function by the gradient method is
not a finite process in general. Slow convergence, due to a sort of “zigg–zagging” sometimes takes
place. Secondly, the order of convergence is no better than linear in general.

Figure 4.4 illustrates the zig-zag behavior that may occur when using the gradient method.
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Figure 4.4: Iterates of the gradient method for the function f(x) = 9x2
1 + 2x1x2 + x2

2.

Exercise 4.15 Calculate the steepest descent direction for the quadratic function

f(x) =
1

2
x

T
Qx + q

T
x − β,

where the matrix Q is positive definite. Calculate the exact step length in the line search as well. ⊳

1Here, for the sake of simplicity, it is assumed that C = IRn. In other cases the negative gradient might point out of
the feasible set C.
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Exercise 4.16 Prove that subsequent search directions of the gradient method are always orthogonal (i.e.
sk ⊥ sk+1; k = 0, 1, 2, . . .) if exact line search is used. ⊳

The following theorem gives a convergence result for the gradient method.

Theorem 4.5 Let f be continuously differentiable. Starting from the initial point x0 using exact line
search the gradient method produces a decreasing sequence x0, x1, x2, · · · such that f(xk) > f(xk+1) for
k = 0, 1, 2, · · ·. Assume that the level set D = {x : f(x) ≤ f(x0)} is compact, then any accumulation
point x of the generated sequence x0, x1, x2, · · · , xk, · · · is a stationary point (i.e. ∇f(x) = 0) of f .
Further if the function f is a convex function, then x is a global minimizer of f .

Proof: Since D is compact and f is continuous we have that f is bounded on D, hence we have a
convergent subsequence xkj → x with f(xkj ) → f∗ as kj → ∞. By continuity of f we have f(x) = f∗.
Since the search direction is the gradient of f we have

s = lim
kj→∞

skj = − lim
kj→∞

∇f(xkj ) = −∇f(x).

Multiplying by ∇f(x) we have

sT∇f(x) = −∇f(x)T∇f(x) ≤ 0. (4.2)

On the other hand using the construction of the iteration sequence and the convergent subsequence
we write

f(xkj+1) ≤ f(xkj+1) ≤ f(xkj + λskj ).

Taking the limit in the last inequality we have

f(x) ≤ f(x+ λs)

which leads to δf(x, s) = sT∇f(x) ≥ 0. Combining this result with (4.2) we have ∇f(x) = 0, and the
theorem is proved. 2

4.5 Newton’s method

We now extend Newton’s method to the multivariate case. To apply Newton’s method we have
to assume that the function f is a twice continuously differentiable function with positive definite
Hessian on its domain. Newton’s search direction in multidimensional optimization is again based on
minimizing the second order approximation of the function f . The quadratic Taylor approximation at
the current iterate xk is given by:

q(x) := f(xk) + ∇f(xk)T (x− xk) +
1

2
(x− xk)T∇2f(xk)(x− xk).

Since the Hessian ∇2f(xk) is positive definite, the function q(x) is strictly convex (see Exercise 1.20).
Hence the minimum of q(x) is attained when its gradient

∇q(x) = ∇f(xk) + ∇2f(xk)(x− xk)

equals to the zero vector, i.e. at the point

xk+1 = xk − (∇2f(xk))−1∇f(xk).

The classical Newton method does not apply line search, one takes the full Newton step. If line
search is applied then typically we are far from the solution, the step length is usually less than one.
We refer to this as the damped Newton method.
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In addition we have to mention that to compute and invert the Hesse matrix is more expensive than
to compute only the gradient. Several methods are developed to reduce this cost while preserving the
advantages of Newton’s method. These are the so-called quasi-Newton methods of which the most
popular are the methods which use conjugate directions, to be discussed later.

Anyway, the compensation for the extra cost in Newton’s method is a better search direction. Just
note that the minimization of a convex quadratic function happens in one step.

Exercise 4.17 Let f(x) = 1
2
xT Ax − bT x where A is positive definite and b ∈ IRn. Assume that we apply

Newton’s method to minimize f . Show that x1 = A−1b, i.e. x1 is the minimum of f , regardless of the starting
point x0. ⊳

If the Hessian ∇2f(x) is not positive definite, or is ill-conditioned (the ratio of the largest and
smallest eigenvalue is large) then it is not (or hardly) invertible. In this case additional techniques are
needed to circumvent these difficulties. In the trust region method, ∇2f(x) is replaced by (∇2f(x)+αI)
where I is the identity matrix and α is changed dynamically. Observe that if α = 0 then we have the
Hessian, hence we have the Newton step, while as α → ∞ this matrix approaches a multiple of the
identity matrix and so the search direction is asymptotically getting parallel to the negative gradient.

The interested reader can consult the following books for more details on trust region methods
[2, 3, 16, 9].

Exercise 4.18 Let x ∈ IRn and f be twice continuously differentiable. Show that s = −H∇f(x) is a descent
direction of f at x for any positive definite matrix H, if ∇f(x) 6= 0. Which choice of H gives:

• the steepest descent direction?

• Newton’s direction (for convex f)?

⊳

Exercise 4.19 Consider the unconstrained optimization problem:

min (x1 − 2)4 + (x1 − 2x2)
2
.
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Figure 4.5: Contours of the function. Note that the minimum is at [2, 1]T .

1. Perform two iterations of the gradient method, starting from x0 = [0, 3]T .

2. Perform four iterations of Newton’s method (without line search), with the same starting point x0.

⊳
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Relation with Newton’s method for solving nonlinear equations

The reader may be familiar with Newton’s method to solve nonlinear systems of equations. Here we
show that Newton’s optimization method is obtained by setting the gradient of f to zero and using
Newton’s method for nonlinear equations to solve the resulting equations.

Assume we have a nonlinear system of equations

F (x) = 0

to solve, where F (x) is a differentiable mapping from IRn → IRm. Given any point xk ∈ IRn, Newton’s
method proceeds as follows. Let us first linearize the nonlinear equation at xk by approximating F (x)
by F (xk) + JF (xk)(x− xk) where JF (x) denotes the Jacobian of F , an m× n matrix defined as

JF (x)ij =
∂Fi(x)

∂xj

where i = 1, · · · ,m; j = 1, · · · , n.

Now we take a step so that the iterate after the step satisfies the linearized equation

JF (xk)(xk+1 − xk) = −F (xk). (4.3)

This is a linear system of equations, hence a solution (if it exists) can be found by standard linear
algebra.

Observe, that if we want to minimize a strictly convex function f(x) one can interpret this problem
as solving the nonlinear system of equations ∇f(x) = 0. The solution of this system by Newton’s
method, as we have a point xk, leads to (apply (4.3))

∇2f(xk)(xk+1 − xk) = −∇f(xk).

The Jacobian of the gradient is exactly the Hessian of the function f(x) hence it is positive definite
and we have

xk+1 = xk − (∇2f(xk))−1∇f(xk)

as we have seen above.

4.6 Methods of Conjugate directions

Let A be an n × n symmetric positive definite matrix and b ∈ IRn. We consider the problem of
minimizing the strictly convex quadratic function

q(x) =
1

2
xTAx− bTx.

We will study a class of algorithms that use so-called conjugate search directions to minimize q.

Definition 4.6 The directions (vectors) s1, · · · , sk ∈ IRn are called conjugate (or A−conjugate) direc-
tions if (si)TAsj = 0 for all 1 ≤ i 6= j ≤ k.

Note that conjugate directions are mutually orthogonal if A = I.

Exercise 4.20 Let A be n × n symmetric positive definite and s1, . . . , sk (k ≤ n) be A-conjugate. Prove that
s1, . . . , sk are linearly independent. ⊳

If one uses A-conjugate directions in the generic algorithm to minimize q, then the minimum is found
in at most n iterations. The next theorem establishes this important fact.
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Theorem 4.7 Let s0, · · · , sk ∈ IRn be conjugate directions with respect to A. Let x0 be given and let

xi+1 := argmin q(xi + λsi) i = 0, · · · , k.

Then xk+1 minimizes q(x) on the affine space H = x0 + span(s0, · · · , sk).

Proof: One has to show (see Theorem 2.9) that ∇q(xk+1) ⊥ s1, · · · , sk. Recall that

xi+1 := xi + λisi i = 0, · · · , k

where λi indicates the line-search minimum, thus

xk+1 := x1 + λ0s0 + · · · + λksk = xi + λisi + · · · + λksk,

for any fixed i ≤ k. Due to exact line-search we have ∇q(xi+1)T si = 0 (see Exercise 4.6). Using
∇q(x) = Ax− b, we get

∇q(xk+1) := ∇q(xi + λisi) +

k
∑

j=i+1

λjAsj .

Taking the inner product on both sides with si yields

(si)T∇q(xk+1) := (si)T∇q(xi+1) +

k
∑

j=i+1

λj(si)TAsj .

Hence (si)T∇q(xk+1) = 0. 2

Corollary 4.8 Let xk be defined as in Theorem 4.7. Then xn = A−1b, i.e. xn is the minimizer of
q(x) = 1

2x
TAx− bTx.

Exercise 4.21 Show that the result in Corollary 4.8 follows from Theorem 4.7. ⊳

4.6.1 The method of Powell

To formulate algorithms that use conjugate directions, we need tools to construct conjugate directions.
The next theorem may seem a bit technical, but it gives us such a tool.

Theorem 4.9 Let L be a linear subspace, H1 := x1 +L and H2 := x2 +L be two parallel affine spaces
where x1 and x2 are the minimizers of q(x) over H1 and H2, respectively.

Then for every s ∈ L, (x2 − x1) and s are conjugate with respect to A.

Proof: Assume x1 minimizes q(x) over H1 = x1 + L and x2 minimizes q(x) over H2 = x2 + L. Let
s ∈ L. Now

q(x1 + λs) ≥ q(x1) ⇒ sT∇q(x1) = 0

q(x2 + λs) ≥ q(x2) ⇒ sT∇q(x2) = 0

This implies that
sT
(

∇q(x2) −∇q(x1)
)

= sTA(x2 − x1) = 0.

In other words, for any s ∈ L, s and x2 − x1 are A-conjugate directions. 2

The basic ingredients of the method of Powell are as follows:
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• The algorithm constructs conjugate directions t1, ..., tn by using the result of Theorem 4.9. The
method requires one cycle of n + 1 line searches to construct each conjugate direction ti. Thus
the first conjugate direction t1 is constructed at the end of cycle 1, etc.

• It starts with a fixed set of linearly independent directions s1, ..., sn to achieve this. (Usually
the standard unit vectors.)

• In the first cycle, the method performs successive exact line searches using the directions s1, ...,
sn (in that order). In the second cycle the directions s2, ..., sn, t1 are used (in that order). In
the third cycle the directions s3, ..., sn, t1, t2 are used, etc.

• The method terminates after n cycles due to the result in Theorem 4.7.

We will now state the algorithm, but first a word about notation. As mentioned before, the second
cycle uses the directions s2, ..., sn, t1. In order to state the algorithm in a compact way, the search
directions used during cycle k are called s(k,1), ..., s(k, n).

The iterates generated during cycle k via successive line searches will be called z(k,1), . . . , z(k,n), and
xk will denote the iterate at the end of cycle k.

Powell’s algorithm

Input A starting point x0, a set of linearly independent vectors s1, ..., sn.
Initialization Set s(1,i) = si, i = 1, · · · , n.

For k = 1, 2, . . . , n do:
(Cycle k:)

Let z(k,1) = xk−1 and z(k,i+1) := arg min q
(

z(k,i) + λs(k,i)
)

i = 1, · · · , n.
Let xk := argmin q(z(k,n+1) + λtk) where tk := z(k,n+1) − xk−1.
Let s(k+1,i) = s(k,i+1), i = 1, · · · , n− 1 and s(k+1,n) := tk.

It may not be clear to the reader why the directions t1, t2, . . . are indeed conjugate directions. As
mentioned before, we will invoke Theorem 4.9 to prove this.

Lemma 4.10 The vectors t1, . . . , tn generated by Powell’s algorithm are A-conjugate.

Proof: The proof is by induction. Assume that t1, . . . , tk are conjugate at the end of cycle k of
the algorithm. By the definition of xk in the statement of the algorithm, and by Theorem 4.7, xk

minimizes q over the affine space xk + span{t1, . . . , tk}.
In cycle k+1, z(k+1,n+1) is obtained after successive line searches along the directions {s1, . . . , sn−k, t1, . . . , tk}.

By Theorem 4.7, z(k+1,n+1) minimizes q over the affine space z(k+1,n) + span{t1, . . . , tk}.
Now define tk+1 = z(k,n+1) − xk−1. By Theorem 4.9, tk+1 is A-conjugate to every vector in

span{t1, . . . , tk}, and in particular to {t1, . . . , tk}. 2

Example 4.11 We consider the problem

min f(x) = 5x2
1 + 2x1x2 + x2

2 + 7.

The minimum is attained at x1 = x2 = 0.

We choose s1 and s2 as the standard unit vectors in IR2, and the starting point is: x0 = [1, 2]T . The progress
of Powell’s method for this example is illustrated in Figure 4.6. We will describe the progress with giving the actual
numerical values, in order to keep things simple.

Note that, at the start of cycle 1, successive line searches are done using s1 = [0 1]T and s2 = [1 0]T . Then the first
conjugate direction t1 is generated by connecting x0 with the last point obtained, and a line search is performed along
t1 to obtain the point x1.

In cycle 2, successive line searches are done using s2 and t1. Then the second conjugate direction t2 is generated by
connecting x1 with the last point obtained, and a line search is performed along t2 to obtain the point x2.

Note that x2 is optimal, as it should be. ∗
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Figure 4.6: Iterates generated by Powell’s algorithm for the function f(x) = 5x2
1 + 2x1x2 + x2

2 + 7,
starting from x0 = [1, 2]T .

Discussion of Powell’s method

• We may apply Powell’s algorithm to any function (not necessarily quadratic); The only change
to the Algorithm on page 74 is that the quadratic function q(x) is replaced by a general f(x).
Of course, in this case it does not make sense to speak of conjugate directions, and there is no
guarantee that xn will be the optimal solution. For this reason it is customary to restart the
algorithm from xn.

• Powell’s algorithm uses only line searches, and finds the exact minimum of a strictly convex
quadratic function after at most n(n + 1) line-searches. For a general (convex) function f ,
Powell’s method can be combined with the Golden section line search procedure to obtain an
algorithm for minimizing f that does not require gradient information.

• Storage requirements: The algorithm stores n n-vectors (the current set of search directions) at
any given time.

Let us compare Powell’s method to Newton’s method and the gradient method. Newton’s method
requires only one step to minimize a strictly convex quadratic function, but requires both gradient and
Hessian information for general functions. The gradient method requires only gradient information, but
does not always converge in a finite number of steps (not even for strictly convex quadratic functions).
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In conclusion, Powell method is an attractive algorithm for minimizing ‘black box’ functions where
gradient and Hessian information is not available (or too expensive to compute).

4.6.2 The Fletcher-Reeves method

The method of Fletcher and Reeves is also a conjugate gradient method to

minimize q(x) =
1

2
xTAx− bTx,

but is simpler to state than the method of Powell.

Before giving a formal statement of the algorithm, we list the key ingredients:

• The first search direction is the steepest descent direction: s0 = −∇q(x0).

• The search direction at iteration k, namely sk, is constructed so that it is conjugate with respect to
the preceding directions s0, . . . , sk−1, as well as a linear combination of −∇q(xk) and s0, . . . , sk−1.

• We will show that these requirements imply that

sk = −∇q(xk) +

( ‖∇q(xk)‖2

‖∇q(xk−1)‖2

)

sk−1.

• Note that, unlike Powell’s method, this method requires gradient information. The advantage
over Powell’s method is that we only have to store two n-vectors and do n+ 1 line searches.

• We may again use the method to minimize non-quadratic functions, but then convergence is not
assured.

Let us consider the situation during iteration k, i.e. assume that xk, ∇q(xk) and s1, · · · , sk−1 con-
jugate directions be given.

We want to find values βk,0 .... βk,k−1 such that

sk := −∇q(xk) + βk,0s
0 + · · · + βk,k−1s

k−1,

and sk is conjugate with respect to s0, · · · , sk−1.

We require A-conjugacy, i.e. sT
i Ask = 0, which implies:

βk,i =
∇q(xk)TAsi

(si)TAsi
(i = 0, . . . , k − 1).

We will now show that βk,i = 0 if i < k − 1. To this end, note that

∇q(xi+1) −∇q(xi) = A(xi+1 − xi) = λiAs
i.

Therefore

βk,i =
∇q(xk)T (∇q(xi+1) −∇q(xi))

(si)T (∇q(xi+1) −∇q(xi))
(i < k).

For any i < k we have
si = −∇q(xi) + βi,1s

1 + · · · + βi,i−1s
i−1.

By Theorem 4.7 we have
∇q(xk) ⊥ si (i = 0, . . . , k − 1).

Therefore
∇q(xi)T∇q(xk) = 0 (i < k),

and
∇q(xi)T si = −‖∇q(xi)‖2 (i < k).

Therefore βk,i = 0 if i < k − 1. Also, due to exact line-search, we have (si)T (∇q(xi+1)) = 0 (see
Exercise 4.6). Therefore

βk,k−1 =
‖∇q(xk)‖2

‖∇q(xk−1)‖2
.
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Fletcher-Reeves algorithm

Let x0 be an initial point.

Step 0. Let s0 = −∇q(x0) and
x1 := arg min q(x0 + λs0).

Step k. Let xk, ∇q(xk) and s0, · · · , sk−1 conjugate directions be given. Set

sk = −∇q(xk) +

( ‖∇q(xk)‖2

‖∇q(xk−1)‖2

)

sk−1.

Set xk+1 := argminq(xk + λsk).

Exercise 4.22

min x
2
1 + 2x

2
2 + 2x

2
3 + 2x1x2 + 2x2x3.

1. Solve this problem using the conjugate gradient method of Powell. Use exact line search and the starting
point [2, 4, 10]T . Use the standard unit vectors as s1, s2 and s3.

2. Solve this problem using the Fletcher-Reeves conjugate gradient method. Use exact line search and the
starting point [2, 4, 10]T .

⊳

4.7 Quasi-Newton methods

Recall that the Newton direction at iteration k is given by:

sk = −
[

∇2f(xk)
]−1 ∇f(xk).

Quasi-Newton methods use a positive definite approximation Hk to
[

∇2f(xk)
]−1

. The approximation
Hk is updated at each iteration, say

Hk+1 = Hk +Dk,

where Dk denotes the update.

Let A be an n × n symmetric PD matrix, and consider once more the strictly convex quadratic
function

q(x) =
1

2
xTAx− bTx.

The Newton direction for q at xk is:

sk = −
[

∇2q(xk)
]−1 ∇q(xk) = −A−1∇q(xk).

Note that

∇q(xk+1) −∇q(xk) = A
(

xk+1 − xk
)

.

We introduce the notation

yk := ∇q(xk+1) −∇q(xk), σk = xk+1 − xk.

Notice that yk = Aσk i.e. σk = A−1yk.
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The secant condition

We will use a search direction of the form

sk = −Hk∇q(xk)

where Hk is an approximation of [∇2q(xk)]−1 = A−1, and subsequently perform the usual line search:

xk+1 = arg min q(xk + λsk).

Since
yk := ∇q(xk+1) −∇q(xk), σk = xk+1 − xk,

and σk = A−1yk, we require that σk = Hk+1y
k. This is called the secant condition (quasi-Newton

property).

The hereditary property

Since
yk := ∇q(xk+1) −∇q(xk), σk = xk+1 − xk,

and ∇q(x) = Ax− b, it holds that

σi = A−1yi (i = 0, . . . , k − 1).

We therefore require that our approximation Hk also satisfies

σi = Hky
i (i = 0, . . . , k − 1).

This is called the hereditary property.

Since
σi = A−1yi and σi = Hny

i (i = 0, . . . , n− 1),

it follows that HnAσ
i = σi (i = 0, . . . , n− 1). If the σi (i = 0, . . . , n− 1) are linearly independent, this

implies Hn = A−1.

Discussion

We showed that — if the σi (i = 0, . . . , n − 1) are linearly independent — we have Hn = A−1 =
[

∇2q(xn)
]−1

(the approximation has become exact!) In iteration n, we therefore use the search direc-
tion

sn = −Hn∇q(xn) = −A−1∇q(xn).

But this is simply the Newton direction at xn! In other words, we find the minimum of q no later than
in iteration n.

Generic Quasi-Newton algorithm

Step 0: Let x0 be given and set H0 = I.

Step k: Calculate the search direction sk = −Hk∇q(xk) and perform the usual line search
xk+1 = arg min q(xk + λsk).

We choose Dk in such a way that:

i Hk+1 = Hk +Dk is symmetric positive definite;

ii σk = Hk+1y
k (secant condition);

iii σi = Hk+1y
i (i = 0, . . . , k − 1) (hereditary property).
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4.7.1 The DFP update

The Davidon-Fletcher-Powell (DFP) rank-2 update is defined by

Dk =
σkσkT

σkT
yk

− Hky
kykT

Hk

ykT
Hkyk

.

We will show that:

i If yT
k σk > 0, then Hk+1 is positive definite.

ii Hk+1 = Hk +Dk satisfies the secant condition: σk = Hk+1y
k.

iii The hereditary property holds: σi = Hk+1y
i (i = 0, . . . , k − 1).

Exercise 4.23 Show that, if Hk is positive definite, then

Hk+1 = Hk + Dk = Hk +
σkσkT

σkT
yk

−
HkykykT

Hk

ykT
Hkyk

,

is also positive definite if (σk)T yk > 0.

Hint 1: For ease of notation, show that

H +
σσT

σT y
−

HyyT H

yT Hy
,

is positive definite if the matrix H is P.D. and the vectors y, σ satisfy yT σ > 0.

Hint 2: Set H = LLT and show that

v
T

(

H +
σσT

σT y
−

HyyT H

yT Hy

)

v > 0 ∀v ∈ IRn \ {0}.

Hint 3: Use the Cauchy-Schwartz inequality

(aT
a)(bT

b) − (aT
b)2 > 0 if a 6= kb for all k ∈ IR,

to obtain the required inequality. ⊳

Exercise 4.24 Prove that Hk+1 = Hk + Dk satisfies the secant condition: σk = Hk+1y
k. ⊳

We now prove that the DFP update satisfies the hereditary property. At the same time, we will
show that the search directions of the DFP method are conjugate.

Lemma 4.12 Let H0 = I. One has

σi = Hk+1y
i (i = 0, . . . , k), k ≥ 0, (4.4)

and σ0, ..., σk are mutually conjugate.

Proof: We will use induction on k. The reader may verify that (4.4) holds for k = 0. Induction
assumption:

σi = Hky
i (i = 0, . . . , k − 1),

and σ0, ..., σk−1 are mutually conjugate.

We now use

σk = λks
k = −λkHk∇q(xk),
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to get

(σk)TAσi = −λk(Hk∇q(xk))TAσi

= −λk∇q(xk)THkAσ
i.

Now use the induction assumption σi = Hky
i ≡ HkAσ

i (i = 0, . . . , k − 1), to get:

(σk)TAσi = ∇q(xk)Tσi (i = 0, . . . , k − 1).

Since σ0, ..., σk−1 mutually conjugate, Theorem 4.7 implies that:

∇q(xk)Tσi = 0 (i = 0, . . . , k − 1).

Substituting we get

(σk)TAσi = 0 (i = 0, . . . , k − 1),

i.e. σ0, ..., σk are mutually conjugate. We use this to prove the hereditary property. Note that

Hk+1y
i = Hky

i +
σkσkT

yi

σkT
yk

− Hky
kykT

Hky
i

ykT
Hkyk

.

We can simplify this, using:

σkT
yi = σkT

Aσi = 0 (i = 0, . . . , k − 1).

We get

Hk+1y
i = Hky

i − Hky
kykT

Hky
i

ykT
Hkyk

. (4.5)

By the induction assumption σi = Hky
i (i = 0, . . . , k − 1), and therefore

ykT
Hky

i = ykT
σi = σkT

Aσi = 0 (i = 0, . . . , k − 1).

Substituting in (4.5) we get the required

Hk+1y
i = Hky

i = σi (i = 0, . . . , k − 1).

2

DFP updates: discussion

• We have shown that the DFP updates preserve the required properties: positive definiteness, the
secant condition, and the hereditary property.

• We have also shown that the DFP directions are mutually conjugate for quadratic functions.

• The DFP method can be applied to non-quadratic functions, but then the convergence of the
DFP method is an open problem, even if the function is convex.

• In practice DFP performs quite well, but the method of choice today is the so-called BFGS
update.
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4.7.2 The BFGS update

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) update is defined via

Dk =
τkσ

kσkT − σkykT
Hk −Hky

kσkT

σkT
yk

,

where

τk = 1 +
ykT

Hky
k

σkT
yk

.

i If yT
k σk > 0, then Hk+1 = Hk +Dk is positive definite.

ii Hk+1 satisfies the secant and hereditary conditions.

Exercise 4.25 Consider the BFGS update:

Dk =
τkσkσkT

− σkykT
Hk − HkykσkT

σkT
yk

,

where yk := ∇q(xk+1) −∇q(xk), σk := xk+1 − xk, and

τk = 1 +
ykT

Hkyk

σkT
yk

.

(a) Show that if yT
k σk > 0, and Hk is positive definite, then Hk+1 = Hk + Dk is positive definite.

(b) Show that the BFGS update satisfies the secant condition: σk = Hk+1y
k.

⊳

How do we guarantee σkT
yk > 0? Note that σk = λks

k and yk = ∇f(xk+1) − ∇f(xk). Thus we
need to maintain

∇f(xk+1)T sk > ∇f(xk)T sk.

This can be guaranteed by using a special line-search.

The convergence of the BFGS method for convex functions was proved in 1976 by Powell. In practice,
BFGS outperforms DFP and is currently the Quasi-Newton method of choice.

Exercise 4.26 Consider the unconstrained optimization problem:

min 5x
2
1 + 2x1x2 + x

2
2 + 7.

See Figure 4.7 for a contour plot.

1. Perform two iterations using the DFP Quasi-Newton method. Use exact line search and the starting
point [1, 2]T . Plot the iterates.

2. Perform two iterations using the BFGS Quasi-Newton method. Use exact line search and the starting
point [1, 2]T . Plot the iterates.

⊳

4.8 Stopping criteria

The stopping criteria is a relatively simple but essential part of the algorithms. If the algorithm
generates both primal and dual solutions then the algorithm stops to iterate as the (relative) duality
gap is less than a predefined threshold value ǫ > 0. The duality gap is defined as

primal obj. value – dual obj. value

81



−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

Figure 4.7: Contours of the objective function. Note that the minimum is at [0, 0]T .

while the relative duality gap is usually defined as

primal obj. value – dual obj. value

1 + |primal obj. value| .

In unconstrained optimization it happens often that one uses a primal algorithm and then there is no
such absolute measure to show how close we are to the optimum. Usually the algorithm is then stopped
as there is no sufficient improvement in the objective, or if the iterates are too close to each other or
if the length of the gradient or the length of the Newton step in an appropriate norm is small. All
these criteria can be scaled (relative to) some characteristic number describing the dimensions of the
problem. We give just two examples here. The relative improvement of the objective is not sufficient
and the algorithm is stopped if at two subsequent iterate xk, xk+1

|f(xk) − f(xk+1)|
1 + |f(xk)| ≤ ǫ.

In Newton’s method we conclude that we are close to the minimum of the function if the length of the
full Newton step in the norm induced by the Hessian is small, i.e.

||(∇2f(xk))−1∇f(xk)||∇2f(xk) = (∇f(xk))T (∇2f(xk))−1∇2f(xk)(∇2f(xk))−1∇f(xk)

= (∇f(xk))T (∇2f(xk))−1∇f(xk)

≤ ǫ.

This criteria can also be interpreted as the length of the gradient measured in the norm induced by
the inverse Hessian. This last measure is used in interior point methods to control the Newton process
efficiently.
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Chapter 5

Algorithms for constrained
optimization

5.1 The reduced gradient method

The reduced gradient method can be viewed as the logical extension of the gradient method to con-
strained optimization problems. We start with linearly constrained optimization problems.

To this end, consider the following linearly constrained convex problem

(LC) min f(x)

s.t. Ax = b,

x ≥ 0.

(5.1)

Assumptions:

• f is continuously differentiable;

• Every subset of m columns of the m× n matrix A is linearly independent;

• each extreme point of the feasible set has at least m positive components (non-degeneracy as-
sumption).

Exercise 5.1 Prove that under the non-degeneracy assumption, every x ∈ F has at least m positive compo-
nents. ⊳

If x ∈ F , we call a set of m columns B of A a basis if xi > 0 when column i is a column of B. We
partition x into basic xB and non-basic variables xN such that the basic variables xB > 0 correspond
to the columns of B. Note that xN does not have to be zero.

For simplicity of notation we assume that we can partition the matrix A as A = [B,N ]. We partition
x accordingly: xT = [xB , xN ]T . Thus we can rewrite Ax = b as

BxB +NxN = b,

such that
xB = B−1b−B−1NxN .

(Recall that B−1 exists by assumption.)

Given x ∈ F , we will choose B as the columns corresponding to the m largest components of x.
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The basic variables xB can now be eliminated from problem (5.1) to obtain the reduced problem

min fN (xN )

s.t. B−1b−B−1NxN ≥ 0,

xN ≥ 0,

where fN (xN ) = f(x) = f(B−1b−B−1NxN , xN ).

Note that any feasible direction s for problem (LC) in (5.1) must satisfy As = 0. If we write
sT = [sT

B , s
T
N ] for a given basis B, the condition As = 0 can be rewritten as

BsB +NsN = 0.

We can solve this equation to obtain:

sB = −(B)−1NsN . (5.2)

The choice of search direction

Recall that s is a descent direction of f at x ∈ F if and only if ∇f(x)T s < 0, which translates to

∇Bf(x)T sB + ∇Nf(x)T sN < 0.

Here ∇Bf(x) is the gradient with respect to the basic variables, etc.

Substitute sB from (5.4) to get:

∇f(x)T s =
(

−∇Bf(x)T (B)−1N + ∇Nf(x)T
)

sN .

Definition 5.1 We call
r :=

(

−∇Bf(x)T (B)−1N + ∇Nf(x)T
)T

(5.3)

the reduced gradient of f at x for the given basis B.

Note that
∇f(x)T s = rT sN .

In other words, the reduced gradient r plays the same role in the reduced problem as the gradient ∇f
did in the original problem (LC). In fact, the reduced gradient is exactly the gradient of the function
fN with respect to xN in the reduced problem.

Exercise 5.2 Prove that r = ∇NfN (xN ), where fN (xN ) = f(x) = f(B−1b − B−1NxN , xN ). ⊳

Recall that the gradient method uses the search direction s = −∇f(x). Analogously, the basic idea
for the reduced gradient method is to use the negative reduced gradient sN = −r as search direction
for the variables xN , and then calculating the search direction for the variables xB from

sB = −(B)−1NsN . (5.4)

At iteration k of the algorithm we then perform a line search: find 0 ≤ λ ≤ λmax such that

xk+1 = xk + λsk ≥ 0,

where λmax is an upper bound on the maximal feasible step length and is given by

λmax =







minj:(sk)j<0
−(xk)j

(sk)j
if sk 6≥ 0

∞ if sk ≥ 0
(5.5)

This choice for λmax guarantees that xk+1 ≥ 0 and Axk+1 = b.
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Necessary modifications to the search direction

If we choose sN = −r, then it may happen that

(sN )i < 0 and (xN )i = 0

for some index i.

In this case λmax = 0 and we cannot make a step. One possible solution is as follows: for the
nonbasic components set

(sN )i =







−(xN )iri if ri > 0

−ri if ri ≤ 0
(5.6)

Note that this prevents zero and ‘very small’ steps.

Convergence results

Since the reduced gradient method may be viewed as an extension of the gradient method, it may
come as no surprise that analogous converge results hold for the reduced gradient method as for the
gradient method. In this section we state some convergence results and emphasize the analogy with
the results we have already derived for the gradient method (see Theorem 4.5).

Assume that the reduced gradient method generates iterates {xk}, k = 0, 1, 2, . . .

Theorem 5.2 The search direction sk at xk is always a feasible descent direction unless sk = 0. If
sk = 0, then xk is a KKT point of problem (LC).

Compare this to the gradient method where, by definition, sk = 0 if and only if xk is a stationary
point (∇f(xk) = 0).

Exercise 5.3 Prove Theorem 5.2. ⊳

Theorem 5.3 Any accumulation point of {xk} is a KKT point.

Compare this to the gradient method where any accumulation point of {xk} is a stationary point under
some assumptions (see Theorem 4.5).

The proof of Theorem 5.3 is beyond the scope of this course. A detailed proof is given in [2], Theorem
10.6.3.

The reduced gradient algorithm: a summary

To summarize, we give a statement of the complete algorithm.

1. Initialization

Choose a starting point x0 ≥ 0 such that Ax = b. Let k = 0.

2. Main step

[1.1] Form B from those columns of A that correspond to the m largest components of xk.
Define N as the remaining columns of A. Define xB as the elements of xk that correspond to B,
and define xN similarly.

[1.2] Compute the reduced gradient r from (5.3).

[1.3] Compute sN from (5.6) and sB from (5.4). Form sk from sB and sN .

[1.4] If sk = 0, STOP (xk is a KKT point).
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3. Line search

[2.1] Compute λmax from (5.5).

[2.2] Perform the line search

λk := arg min
0≤λ≤λmax

f
(

xk + λsk
)

.

[2.3] Set xk+1 = xk + λks
k and replace k by k + 1.

[2.4] Repeat the main step.

Remarks:

• During the algorithm the solution xk is not necessarily a basic solution, hence positive coordinates
in xk

N may appear. These variables are usually referred to as superbasic variables.

• Recall that we have made a non-degeneracy assumption that is difficult to check in practice. If
degeneracy occurs in practice, similar techniques as in the linear optimization case are applied
to resolve degeneracy and prevent cycling.

• The convex simplex method is obtained as the specialization of the above reduced gradient scheme
if the definition of the search direction sN is modified. We allow only one coordinate j of sN to

be nonzero and defined as sj = −∂fN (xk
N )

∂xj
> 0. The rest of the sN coordinates is defined to be

zero and sB = −B−1NsN = −B−1ajsj , where aj is the j-th column of the matrix A.

• The simplex method of LO is obtained as a further specialization of the convex simplex method.
One assumes that the objective function is linear and the initial solution is a basic solution.

Example 5.4 [Reduced gradient method 1] Consider the following problem:

min x2

s.t. x ≥ 2

x ≥ 0.

We solve this problem by using the Reduced Gradient Method starting from the starting point x0 = 5 with objective
value 25. We start with converting the constraint in an equality-constraint:

min x2

s.t. x− y = 2

x, y ≥ 0.

The value of the slack variable y0 is 3. We therefore choose variable x as the basic variable. This results in B = 1 and
N = −1. We eliminate the basic variable:

fN (xN ) = f(B−1b−B−1NxN , xN ) = f(2 + y, y).

This gives us the following problem:

min (2 + y)2

s.t. 2 + y ≥ 0

y ≥ 0.

Iteration 1

The search directions are:

s0N = s0y = − δfN (y0)

δy
= −(2(2 + y0)) = −10,

s0B = s0x = −B−1Ns0N = (−1) · (−1) · (−10) = −10.
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The new values of the variables are, depending on the step-length λ:

x1 = x0 + λs0x = 5 − 10λ

y1 = y0 + λs0y = 3 − 10λ

which stay non-negative if λ ≤ λ̄ = 3
10

.
We now have to solve the one-dimensional problem:

min (5 − 10λ)2.

The minimum is attained when
−20(5 − 10λ) = 0,

i.e. when λ = 1
2
. Since the λ = 1

2
is larger than λ̄ = 3

10
that preserves the non-negativity of the variables, we have to

take λ = 3
10

as the step-length. This results in x1 = 2 and y1 = 0 with 4 as the objective value.

Iteration 2

Since x > y, we use the variable x as basic variable again. First we compute the search direction of y. Because y0 = 0
the search direction has to be non-negative else it will get the value 0:

s3N = s3y = −2(2 + y3) = −4.

This means:

s3N = s3y = 0,

s3B = s3x = 0.

Thus the optimum point is xopt = 2. ∗

Example 5.5 [Reduced gradient method 2] Consider the following problem:

min x2
1 + x2

2 + x2
3 + x2

4 − 2x1 − 3x4

s.t. 2x1 + x2 + x3 + 4x4 = 7

x1 + x2 + 2x3 + x4 = 6

x1, x2, x3, x4 ≥ 0.

We perform one iteration of the Reduced Gradient Method starting from the point x0 = (x0
1, x

0
2, x

0
3, x

0
4)T = (2, 2, 1, 0)T

with an objective value 5. At this point x0 we consider x1 and x2 as basic variables. This results in

B =

(

2 1

1 1

)

and N =

(

1 4

2 1

)

.

We eliminate the basic variables to obtain the reduced problem:

fN (xN ) = f(B−1b−B−1NxN , xN )

= f(

(

1 −1

−1 2

)(

7

6

)

−

(

1 −1

−1 2

)(

1 4

2 1

)(

x3

x4

)

, x3, x4)

= f(1 + x3 − 3x4, 5 − 3x3 + 2x4, x3, x4).

This results in the following problem:

min (1 + x3 − 3x4)2 + (5 − 3x3 + 2x4)2 + x2
3 + x2

4 − 2(1 + x3 − 3x4) − 3x4

1 + x3 − 3x4 ≥ 0

5 − 3x3 + 2x4 ≥ 0

x3, x4 ≥ 0.

Iteration 1

The search directions are:

s0N =

(

s03

s04

)

=

(

− δfN (x0
3)

δx3

− δfN (x0
4)

δx4

)

=

(

−(2(1 + x0
3 − 3x0

4) − 6(5 − 3x0
3 + 2x0

4) + 2x0
3 − 2)

−(−6(1 + x0
3 − 3x0

4) + 4(5 − 3x0
3 + 2x0

4) + 2x0
4 + 3)

)

=

(

8

1

)

.

87



Because x0
4 = 0 the search direction s04 has to be non-negative. We see that this is true.

s0B =

(

s01

s02

)

= −B−1Ns0N = −

(

1 −1

−1 2

)(

1 4

2 1

)(

8

1

)

=

(

5

−22

)

.

We now have to make a line search to obtain the new variables. These new variables as a function of the step length λ
are:

x1
1 = x0

1 + λs01 = 2 + 5λ

x1
2 = x0

2 + λs02 = 2 − 22λ

x1
3 = x0

3 + λs03 = 1 + 8λ

x1
4 = x0

4 + λs04 = λ

which stay non-negative if λ ≤ λ̄ = 2
22

≈ 0.09.
We proceed by solving

min (2 + 5λ)2 + (2 − 22λ)2 + (1 + 8λ)2 + λ2 − 2(2 + 5λ) − 3λ.

This means

10(2 + 5λ) − 44(2 − 22λ) + 16(1 + 8λ) + 2λ− 13 = 0

λ =
65

1148
≈ 0.06 (λ < λ̄ =

2

22
).

The minimizer λ = 65
1148

is smaller than λ̄ = 2
22

, so non-negativity of the variables is preserved. Thus the new iterate is

x1 = (x1
1, x

1
2, x

1
3, x

1
4)T = (2.28, 0.75, 1.45, 0.06)T with an objective value of 3.13.

∗

Exercise 5.4 Perform two iterations of the reduced gradient method for the following linearly constrained
convex optimization problem:

min x
2
1 + x

4
2 + (x3 − x4)

2

s.t. x1 + 2x2 + 3x3 + 4x4 = 10

x ≥ 0.

Let the initial point be given as x0 = (1, 1, 1, 1) and use x1 as the initial basic variable. ⊳

5.2 Generalized reduced gradient (GRG) method

The reduced gradient method can be generalized to nonlinearly constrained optimization problems.
Similarly to the linearly constrained case we consider the problem with equality constraints and non-
negative variables as follows.

(NC) min f(x)

s.t. hj(x) = 0, j = 1, · · · ,m
x ≥ 0,

(5.7)

where the functions f, h1, · · · , hm supposed to be continuously differentiable. 1

The basis idea is to replace the nonlinear equations by their linear Taylor approximation at the
current value of x, and then apply the reduced gradient algorithm to the resulting problem.

We assume that the gradients of the constraint functions hj are linearly independent at every point
x ≥ 0, and that each feasible x has at least m positive components. These assumptions ensure that
we can always apply the reduced gradient algorithm to the linearized problem. The extra difficulty
here is that — since the feasible region F is not convex — this procedure may produce iterates that
lie outside F , and then some extra effort is needed to restore feasibility.

1The problem (NC) is in general not convex. It is a (CO) problem if and only if the functions hj are affine.
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Let a feasible solution xk ≥ 0 with hj(x
k) = 0 for all j be given. By assumption the Jacobian matrix

of the constraints H(x) = (h1(x), · · · , hm(x))T at each x ≥ 0 has full rank and, for simplicity at the
point xk will be denoted by

A = JH(xk).

Let us assume that a basis B, where xk
B > 0 is given. Then a similar construction as in the linear case

apply. We generate a reduced gradient search direction by virtually keeping the linearized constraints
valid. This direction by construction will be in the null space of A. More specifically for the linearized
constraints we have

H(xk) + JH(xk)(x− xk) = 0 +A(x− xk) = 0.

From this one has
BxB +NxN = Axk

and by introducing the notation b = Axk we have

xB = B−1b−B−1NxN

hence the basic variables xB can be eliminated from the linearization of the problem (5.7) to result

min fN (xN )

s.t. B−1b−B−1NxN ≥ 0,

xN ≥ 0.

where fN (xN ) = f(x) = f(B−1b−B−1NxN , xN ). Using the notation

∇f(x)T = ((∇Bf(x))T , (∇Nf(x))T ),

the gradient of fN , namely the reduced gradient can be expressed as

∇Nf(x)T = −(∇Bf(x))TB−1N + (∇Nf(x))T .

From this point on the generation of the search direction s proceeds in exactly the same way as in the
linearly constrained case. Due to the nonlinearity of the constraints H(xk+1) = H(xk + λs) = 0 will
not hold in general. Hence something more has to be done to restore feasibility.

Special care has to be taken to control the step size. A larger step size might allow larger improvement
of the objective but, on the other hand results in larger infeasibility of the constraints. A good
compromise must be made.

In old versions of the GRG method Newton’s method is applied to the nonlinear equality system
H(x) = 0 from the initial point xk+1 to produce a next feasible iterate. In more recent implementations
the reduced gradient direction is combined by a direction from the orthogonal subspace (the range space
of AT ) and then a modified (nonlinear, discrete) line search is performed. These schemes are quite
complicated and not discussed here in more detail.

Example 5.6 [Generalized reduced gradient method 1] We consider the following problem:

min x2
1 + x2

2 + 12x1 − 4x2

s.t. x2
1 − 2x2 = 0

x1, x2 ≥ 0.

We perform two steps of the Generalized Reduced Gradient Method starting from the point x0 = (x0
1, x

0
2)T = (4, 8)T

with an objective value of 96. We will plot the progress of the algorithm in Figure 5.1. At the point x0 we consider x2

as the basic variable. First we have to linearize the nonlinearly constraint:

A = (N,B) = JH(x0) = (2x0
1 − 2) = (−8 − 2). b = Ax0 = (−8 − 2)

(

4

8

)

= 16.

Now we eliminate the basic variable:

fN (xN ) = f(B−1b−B−1NxN , xN ) = f(x1,−
1

2
· 16 +

1

2
x1).
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This leads us to the following problem:

min x2
1 + (4x1 − 8)2 + 12x1 − 4(4x1 − 8)

s.t. 4x1 − 8 ≥ 0

x1 ≥ 0.

Iteration 1

The search direction is:

s0N = s01 = −
δfN (x0

1)

δx1
= −(2x0

1 + 8(4x1 − 8) + 12 − 16)) = −68

s0B = s01 = −B−1Ns0N =
1

2
· 8 · −68 = −272.

The new variables as a function of the step length λ are:

x1
1 = x0

1 + λs01 = 4 − 68λ

x1
2 = x0

2 + λs02 = 8 − 272λ

which stay non-negative if λ ≤ λ̄ = 1
34

.

We do this by solving
min (4 − 68λ)2 + (8 − 272)2 + 12(4 − 68λ) − 4(8 − 272λ)

This means

−136(4 − 68λ) − 544(8 − 272λ) − 816 + 1088 = 0

λ =
1

34
(λ = λ̄).

This results in x1 = (x1
1, x

1
2)

T = (2, 0)T . But due to the nonlinearity of the constraint, the constraint will not hold with
these values. To find a solution for which the constraint will hold, we consider the xN as a fixed variable. The xB will
change in a value for which the constraint holds, this means xB = 2. The objective value is 24.

Iteration 2

Because x1
2 stayed positive we now use x1

1 as basic variable again. But first we have to linearize the nonlinearly
constraint with the values of iteration 1:

A = JH(x1) = (2x1
1 − 2) = (4 − 2). b = Ax1 = (4 − 2)

(

2

2

)

= 4.

We eliminate the basic variable:

fN (xN ) = f(B−1b−B−1NxN , xN ) = f(x1,−
1

2
· 4 +

1

2
· 4 · x1) = f(x1, 2x1 − 2).

This gives us the following problem:

min x2
1 + (2x1 − 2)2 + 12x1 − 4(2x1 − 2)

s.t. 2x1 − 2 ≥ 0

x1 ≥ 0.

The search direction is:

s1N = s11 = −
δfN (x1

1

δx1
= −(2x1

1 + 4(2x1
1 − 2) + 12 − 8) = −16

s1B = s12 = −B−1Ns1N = −32.

The new variables as a function of the step length λ are:

x2
1 = x1

1 + λs11 = 2 − 16λ

x2
2 = x1

2 + λs12 = 2 − 32λ

which stay non-negative if λ ≤ λ̄ = 2
32

.

Now we have to solve
min 2(2 − 16λ)2 + (2 − 32λ)2 + 12(2 − 16λ) − 4(2 − 32λ).
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This means:

−32(2 − 16λ) − 64(2 − 32λ) − 192 + 128 = 0

λ =
1

10
(λ > λ̄ =

1

16
).

As we can see has λ = 1
10

a larger value than λ̄ = 1
16

. In order to get non-negative values for the variables we have to

use the value 1
16

as step length. This gives us x2 = (x2
1, x

2
2)T = (1, 0)T . To get variables for which the constraint holds,

we take the xN as fixed variable. This leads to x2 = (1, 1
2
)T with an objective value of 11 1

4
.

0 1 2 3 4

x1

2

4

6

8

x2

f = 96

f = 24f = 11 1
4

x0

x1

x2

(x1)2 − 2x2 = 0

Figure 5.1: Illustration of Example 5.6.

∗

Example 5.7 [Generalized reduced gradient method 2] We consider the following problem:

min 2x2
1 + 3x2

2

s.t. 3x2
1 + 2x2

2 = 20

x1, x2 ≥ 0.

We solve this problem by using three steps of the Generalized Reduced Gradient Method starting from the point
x0 = (x0

1, x
0
2)T = (2, 2)T with an objective value of 20. At this point x0 we consider x1 as basic variable. First we have

to linearize the nonlinearly constraint:

A = (B,N) = JH(x0) = (6x0
1 4x0

2) = (12 8). b = Ax0 = (12 8)

(

2

2

)

.
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Now we eliminate the basic variables:

fN (xN ) = f(B−1b−B−1NxN , xN ) = f(
40

12
− 8

12
x2, x2).

This leads us to the following problem:

min 2(
40

12
− 8

12
x2)2 + 3x2

2

s.t.
40

12
− 8

12
x2 ≥ 0

x2 ≥ 0.

Iteration 1 The search direction is:

s0N = s02 = −
δfN (x0

2)

δx2
= −(−32

12
(
40

12
− 8

12
x0
2) + 6x0

2) = −20

3

s0B = s01 = −B−1Ns0N = − 1

12
· 8 · −20

3
=

40

9
.

The new variables as a function of λ are:

x1
1 = x0

1 + λs01 = 2 +
40

9
λ

x1
2 = x0

2 + λs02 = 2 − 20

3
λ

which are non-negative as long as λ ≤ λ̄ = 2
20
3

= 3
10

.

We do this by solving

min 2(2 +
40

9
λ)2 + 3(2 − 20

3
λ)2.

This means

160

9
(2 +

40

9
λ) − 120

3
(2 − 20

3
λ) = 0

λ =
9

70
(λ < λ̄ =

3

10
).

This results in x1 = (x1
1, x

1
2)T = ( 18

7
, 8
7
)T . But due to the nonlinearity of the constraint, the constraint will not hold

with these values. To find a solution for which the constraint will hold, we consider the xN as a fixed variable. The xB

will change in a value for which the constraint holds, this means xB = 2.41. The objective value is 15.52.

Iteration 2

Because x1
1 stayed positive we use x1 as basic variable again. First with the values of iteration 1 we linearize the

nonlinearly constraint again:

A = JH(x1) = (6x1
1 4x1

2) = (14.45 4.57). b = Ax1 = (14.45 4.57)

(

2.41

1.14

)

= 40.

We eliminate the basic variable:

fN (xN ) = f(B−1b−B−1NxN , xN ) = f(2.77 − 0.32x2, x2).

This gives us the following problem:

min 2(2.77 − 0.32x2)2 + 3x2
2

s.t. 2.77 − 0.32x2 ≥ 0

x2 ≥ 0.

The search direction is:

s1N = s12 = −
δfN (x1

2

δx2
= −(−4 · 0.32(2.77 − 0.32x1

2) + 6x1
2) = −3.78

s1B = s11 = −B−1Ns1N = 1.2.

The new variables, depending on the step length λ, are:

x2
1 = x1

1 + λs11 = 2.41 + 1.20λ

x2
2 = x1

2 + λs12 = 1.14 − 3.78λ
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which stay non-negative if λ ≤ λ̄ = 1.14
3.78

≈ 0.30.

Now we have to solve
min 2(2.41 + 1.20λ)2 + 3(1.14 − 3.78λ)2.

This means:

4.80(2.41 + 1.20λ) − 22.68(1.14 − 3.78λ) = 0

λ = 0.156 (λ < λ̄ ≈ 0.3).

This gives us x2 = (x2
1, x

2
2)T = (2.6, 0.55)T . To get variables for which the constraint holds, we take the xN as fixed

variable. This leads to x2 = (2.52, 0.55)T with an objective value of 13.81.

Iteration 3

Again we can use x1 as basic variable. We start this iteration with linearization of the constraint:

A = JH(x2) = (6x2
1 4x2

2) = (15.24 2.2). b = Ax2 = (15.24 2.2)

(

2.54

0.55

)

= 39.9.

Eliminating the basic variable:

fN (xN ) = f(2.62 − 0.14x2, x2).

This gives us the following problem:

min 2(2.62 − 0.14x2)2 + 3x2
2

s.t. 2.62 − 0.14x2 ≥ 0

x2 ≥ 0.

Search directions:

s2N = s22 = −
δfN (x2

2

δx2
= −(−0.56(2.62 − 0.14x2

2) + 6x2
2) = −1.88

s2B = s21 = −B−1Ns2N = 0.27.

New variables as a function of λ:

x3
1 = x2

1 + λs21 = 2.52 + 0.27λ

x3
2 = x2

2 + λs22 = 0.55 − 1.88λ

which stay non-negative if λ ≤ λ̄ = 0.55
1.88

≈ 0.293.

Now we solve
min 2(2.54 + 0.27λ)2 + 3(0.55 − 1.88λ)2.

This means:

1.08(2.52 + 0.27λ) − 5.64(0.55 − 1.88λ) = 0

λ = 0.161.

This gives us the variables x3
1 = 2.58 and x3

2 = 0.25. Correcting the xB results in x3 = (2.57, 0.25)T with objective value
13.39. ∗

Exercise 5.5 Perform one iteration of the generalized reduced gradient method to solve the following nonlin-
early constrained convex optimization problem:

min x
2
1 + x

4
2 + (x3 − x4)

2

s.t. x
2
1 + x

2
2 + x

2
3 + x

2
4 ≤ 4

x ≥ 0.

Let the initial point be given as x0 = (1, 1, 1, 1). ⊳

(You might need MAPLE or MATLAB to make the necessary calculations.)
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Index

lp-norm optimization, 172

affine combination, 16
affine hull, 16
affine space, 16

bad ray, 119
basic variables, 101
bisection, 77

Cauchy-Schwarz inequality (generalized), 181
central path, 120
closed function, 143
compact, 17
complementarity condition, 118
composite function, convexity of, 27
concave function, 14, 18
cone of feasible directions, 38
cone-linear optimization, 71
constrained maximum likelihood estimation, 63
convex combination, 11
convex cone, 18
convex function, 12
convex hull, 14
convex quadratic function, 14
convex set, 11

damped Newton method, 84
descent direction, 85
dichotomous search, 77
dimension of a convex set, 16
directional derivative δf(x, s), 27
dual cone, 19
duality gap, 56

entropy function, 129
entropy optimization, 164
epigraph, 13, 143
Euclid’s Elements, 3
extremal point, 15
extremal set, 15

Farkas lemma, 45
feasible direction, 37
feasible set, 1

generalized entropy optimization, 166

generalized reduced gradient method, 108
geometric optimization, 168
global minimum, 31
Goldman–Tucker theorem, 50
gradient, 27
gradient method, 82, 101

hereditary property, 94
Hesse matrix, 28, 35
Hessian, 28, 35
humpback function, 2

ideal Slater point, 43
infeasibility, 1

Jacobian, 86
Jensen’s inequality, 25

Karush–Kuhn–Tucker (KKT) point, 54
Karush-Kuhn-Tucker (KKT) conditions, 40
Kepler’s problem, 7, 34
KKT optimality conditions, 54
KKT point, 54, 104
Krein–Milman Theorem, 18

Lagrange dual, 55
Lagrange function, 50
Lagrangian, 50
least squares, 7
level set, 27
line search, 76
linear convergence, 76, 82
linear optimization, 3, 61
local minimum, 31
logarithmic barrier algorithm with damped New-

ton steps, 138
logarithmic barrier algorithm with full Newton steps,

132
logarithmic barrier approach, 117

monotonic function, 26

Newton’s method, 84, 130
non-degeneracy, 101
nonnegative orthant, 20

objective function, 1
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optimal solution, 1
optimality conditions, 31

pointed cone, 18
portfolio optimization, 9
proximity measure, 124

quadratic convergence, 76, 81, 130
quadratic function, 2
quadratic optimization, 3, 62

recession cone, 20
reduced gradient, 102, 109
reduced gradient method, 101
relative boundary, 25
relative interior, 22

saddle point, 50
secant condition, 93
self-concordance, 81, 126
semidefinite optimization, 68, 177
separation theorem, 44
simplex method, 105
Slater condition, 41
spectral radius, 182
standard simplex, 16, 22
stationary point, 34
Steiner’s problem, 7, 35
stopping criteria, 98
strict convexity, 13
strict global minimum, 31
strict local minimum, 31
strong duality theorem, 56
super-linear convergence, 76
superbasic variables, 105

Tartaglia’s problem, 6, 36
Taylor approximation, 84
Taylor expansion, 35, 126
theorem of alternatives, 44
Torricelli point, 35
trilinear form, 182
trust region method, 85

unboundedness, 1
unconstrained optimization, 3

weak duality theorem, 56
Wolfe dual, 57
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