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We make use of
Script: de Klerk/Roos/Terlaky, Optimization

on: http://wwwhome.math.utwente.nl/ ∼stillgj/conopt/

We refer to this script e.g. by [KRT, Th.4.3]

Book: Faigle/Kern/Still, Algorithmic principles of
Mathematical Programming.

on: http://wwwhome.math.utwente.nl/∼stillgj/priv/

We refer to this book e.g. by [FKS, Th.4.3]

Lecture sheets (on the home-page above)

Material for the lectures:

For Chapter 1-4 of the course: Chapter 0-3 of [KRT]

For Chapter 5 of the course: Chapter 12 of [FKS]
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Chapter 1. Introduction

General optimization problem

P :
inf

min

}
f (x) s.t. x ∈ F

Notation:
• F ⊂ Rn, feasible set • f : F → R, objective function

A point x ∈ F is called:
global minimizer of f on F if:

f (x) ≥ f (x) ∀x ∈ F

local minimizer of f on F if with some ε > 0:

f (x) ≥ f (x) ∀x ∈ F , ‖x − x‖ < ε

strict local minimizer if:

f (x) > f (x) ∀x 6= x ∈ F , ‖x − x‖ < ε
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Unconstrained/Constrained Optimization

P : min f (x) s.t. x ∈ F

P is an unconstrained problem if F is open (in
particular if F = Rn)

P is a constrained problem if F 6= Rn is closed.
Often, F is given by equality- and inequality
constraints:
F = {x ∈ Rn | hi(x) = 0, i ∈ I, gj(x) ≤ 0, j ∈ J}

with hi , gj(x) ∈ C(Rn,R)
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rough Classification: P is called
linear if f , hi , gj are (affine) linear
convex if f is a convex function and F is a convex set.
nonlinear if the problem functions are (nonconvex)
nonlinear.

As a rule: Special subclasses, e.g., linear or (some) convex
problems allow efficient solution methods.

In general: To compute a global minimizer in nonlinear
optimization is “very difficult”

min←→ max: x is max of f on F iff x is min of −f on F
and

max
x∈F

f (x) = −min
x∈F
{−f (x)}
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Examples from History

Ex.1.1 [KRT, Ex0.1] (from Euclid’s book ≈300 BC)
In a given triangle ABC find an inscribed parallelogram
ADEF of max area.
Show that Euclid’s problem is: P : max0<x<b

H
b (b − x)x

See [KRT] for a sketch and the definition of H,b.

Tartaglia’s problem (Niccolo Tartaglia, 1500-1557)
How to divide the number 8 into two parts such that the
result of multiplying the product of the parts by their
difference is maximal?

This leads to (check):

P : max x1x2(x1 − x2) s.t. x1 + x2 = 8, 0 ≤ x2 < x1

Answer: x1,2 = 4± 4√
3

(see also [KRT, Ex2.4]).
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Keplers problem
(in “New solid geometry of wine barrals” (1615))
Given a sphere (of radius R), inscribe a cilinder of maximal
volume.
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Chapter 2. Convex Analysis

2.1 Convex sets, convex functions

Def.2.1 Given x1, x2 ∈ Rn and 0 ≤ λ ≤ 1. Then the point

x = λx1 + (1− λ)x2

is a convex combination of x1, x2.
The set C ⊂ Rn is called convex, if all convex combinations
of any two points x1, x2 ∈ C are in C.

Def.2.2 f : C → R, defined on a convex set C ⊂ Rn is called
convex if for all x1, x2 ∈ C and 0 ≤ λ ≤ 1 one has

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ)f (x2)

and called strictly convex if for all x1 6= x2 ∈ C and
0 < λ < 1:

f (λx1 + (1− λ)x2) < λf (x1) + (1− λ)f (x2)
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Examples: The following functions are convex:

f (x) = x2, x4, ex ,− ln x
any norm f (x) = ‖x‖ on Rn

linear functions: f (x) = aT x + b, x = (x1, . . . , xn)

Ex.2.1 Show the convexity of the functions

f (x) = ‖x‖, and f (x) = aT x + b for x ∈ Rn.
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Recall A matrix Q ∈ Rn×n is called positive semidefinite
(psd) (notation Q � 0) if Q is symmetric (i.e., Q = QT ) and

xT Qx ≥ 0 ∀x ∈ Rn

and positive definite (pd) (not. Q � 0) if Q = QT and

xT Qx > 0 ∀x ∈ Rn, x 6= 0 .

Quadratic functions
Ex.2.2 Let be given the quadratic function on Rn,

f (x) = xT Qx + cT x + d,

with symmetric matrix Q, c ∈ Rn, d ∈ R. Show that f is
convex iff Q is psd.
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Def.2.3 Given x i ∈ Rn, i = 1, . . . , k , a combination
x =

∑k
i=1 λix i with λi ∈ R,

∑k
i=1 λi = 1

is called an affine combination and
x =

∑k
i=1 λix i with λi ≥ 0,

∑k
i=1 λi = 1

is called a convex combination of the elements x i .
Let S ⊂ Rn be an arbitrary set. The set aff (S) defined by

aff (S) := {x =
k∑

i=1

λix i | x i ∈ S,

λi ∈ R,
k∑

i=1

λi = 1, k ≥ 1}

is called the affine hull of the set S (set of affine
combinations of S).
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The set conv (S),

conv (S) := {x =
k∑

i=1

λix i | x i ∈ S,

λi ≥ 0,
k∑

i=1

λi = 1, k ≥ 1}

is called the convex hull of the set S (set of convex
combinations of S).

Def.2.4 A set of the form x0 + V with x0 ∈ Rn and V a
linear subspace of Rn is called an affine space with
dimension given by dim(V ).

Ex. 2.3 Show that for S ⊂ Rn the set aff (S) is the smallest
affine space containing S.
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Lemma 2.5 (Jensen’s inequality, [KRT,L.1.39])
Let C ⊆ Rn be a convex set and let f : C → R be a convex
function. Let the points x1, · · · , xk ∈ C be given and let
λ1, · · · , λk ≥ 0 be such that

∑k
i=1 λ

i = 1, k ≥ 2. Then

k∑
i=1

λix i ∈ C and f
( k∑

i=1

λix i
)
≤

k∑
i=1

λi f (x i).

Proof by induction wrt. k as an exercise

Ex. 2.4 Show that for S ⊂ Rn the set conv (S) is the
smallest convex set containing S.
Ex. 2.5 Prove [KRT, L1.40].
Ex. 2.6 Prove [KRT, L1.42].

Def. 2.6 The point x ∈ C is an extreme point of the convex
set C if there cannot exist x1 6= x2, x1, x2 ∈ C and
0 < λ < 1 such that

x = λx1 + (1− λ)x2
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Th.2.7 [Krein–Milman Theorem], [KRT,Th.1.19]
Let C ⊂ Rn be a compact convex set. Then C is the convex
hull of its extreme points.

Proof. See file Extraproofs on CO-site

Ex.2.7 (Max-value of a convex function is attained at an
extreme point)
Consider with compact, convex F ⊂ Rn and convex
continuous function f the max problem:
(P) max f (x) s.t. x ∈ F .
Show that the maximum value of (P) is attained (also) at an
extreme point of F .
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Def. 2.8 Let C ⊂ Rn be a convex set. The point x ∈ C is in
the relative interior of C if for any x ∈ C there exists x̃ ∈ C
and 0 < λ < 1 such that x = λx + (1− λ)x̃ .
The set of points in the relative interior of the set C will be
denoted by C0.

By definition: C0 ⊆ C.

L.2.9 [KRT,L.1.34,1.36]

Let C ⊂ Rn be convex and nonempty. Then C0 is nonempty,
convex and (C0)0 = C0.
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Properties of convex functions

Th.2.10, [KRT,L.1.37]
Let f be a convex function defined on the convex set C.
Then f is continuous on the relative interior C0 of C.

Ex.2.8 (A convex function may have “jumps” at boundary
points)
Find a function f which is convex on [−1, 1] but not
continuous on [−1, 1]

(It must however be continuous on C0 = (−1, 1)).
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Recall: Gradient and Hessian of f : Rn → R, f ∈ C1 or C2

The gradient of f is: ∇f (x) :=
(
∂f (x)
∂x1

, . . . , ∂f (x)
∂xn

)T

The Hessian matrix (or shortly Hessian)∇2f (x) of
f ∈ C2 at a point x:

∇2f (x) =

(
∂2f (x)
∂xi∂xj

)
i,j=1,··· ,n

Taylor expansion around x of order 2

Let f : Rn 7→ R be C2 near x . Then for h ∈ Rn (‖h‖ small):

f (x + h) = f (x) +∇f (x)T h +
1
2

hT∇2f (x + αh)h

for some α = α(h) ∈ [0, 1]. Alternative form:

f (x + h) = f (x) +∇f (x)T h +
1
2

hT∇2f (x)h + o(‖h‖2)
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Ex.2.9 For f (x) = 1
2xT Qx + cT x with symmetric Q and

c ∈ Rn show: ∇f (x) = Qx + c and ∇2f (x) = Q

Characterizations of convex C1,C2-functions

L.2.11 [KRT,L. 1.49]

Let f be a C1 function on the open convex set C ⊆ Rn.
Equivalent statements:

1 The function f is convex on C.
2 For any x, x ∈ C one has

f (x) ≥ f (x) +∇f (x)T (x − x).

L.2.12, [KRT,L.1.50]

Let f be a C2 function on the open convex set C ⊆ Rn. The
function f is convex iff its Hessian∇2f (x) is psd for all
x ∈ C.
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Ex. 2.10 Let f be a C2 function on the open convex set C.
Then f is strictly convex if its Hessian∇2f (x) is positive
definite for all x ∈ C.

Remark The converse is not true: f (x) = x4 is strictly
convex on R, but f ′′(0) = 0.

Ex.2.11 The function f (x) = ex is convex on R and

ex ≥ 1 + x ∀x ∈ R

Ex.2.12 Show that the function f (x) = − log x is convex for
x > 0. Moreover for ai ≥ 0, i = 1, . . . , n we have

(a1 · · · an)
1/n ≤

a1 + . . .+ an

n
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The following is easy to prove (Exercise!): If g : Rn → R is
convex then for any α ∈ R the lower level set

Cα := {x ∈ Rn | g(x) ≤ α} is (closed) convex (possibly empty)

The next exercise shows the converse: Any convex (bounded)
set is given as a lower level set of a convex function.
Ex. 2.13 [gauge-function g]
Let C ⊂ Rn be a bounded convex set with 0 ∈ int(C). We
define the gauge function g for C by:

g(x) := inf {λ ≥ 0 | x ∈ λC} = inf {λ > 0 | x
λ
∈ C} for x ∈ Rn

1 Show g(x) ≥ 0, ∀x ∈ Rn and g(x) = 0 iff x = 0.
2 For all σ ≥ 0, 0 ≤ ρ ≤ 1 and x , y ∈ Rn we have

g(σx) = σg(x) , g(ρx + (1− ρ)y) ≤ ρg(x) + (1− ρ)g(y) .
3 We have: x ∈ cl(C) iff g(x) ≤ 1 and x ∈ bd(C) iff g(x) = 1

Note that g(x) defines a norm. So each compact convex set is
defined as the unit ball of some norm g.

CO, Chapter1/2 p 20/20


