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We make use of
@ Script: de Klerk/Roos/Terlaky, Optimization

on: http://wwwhome.math.utwente.nl/ ~stillgj/conopt/ ]

We refer to this script e.g. by [KRT, Th.4.3]

@ Book: Faigle/Kern/Still, Algorithmic principles of
Mathematical Programming.

on: http://wwwhome.math.utwente.nl/~ stillgj/priv/ J

We refer to this book e.g. by [FKS, Th.4.3]

@ Lecture sheets (on the home-page above)

Material for the lectures:
For Chapter 1-4 of the course: Chapter 0-3 of [KRT]
For Chapter 5 of the course: Chapter 12 of [FKS]
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Chapter 1. Introduction

General optimization problem

inf

min} f(x) st. xeF

Notation:
e F C RN feasibleset e f:F — R, objective function

A point X € F is called:
@ global minimizer of f on F if:

f(x) > f(x) VxeF
@ local minimizer of f on F if with some £ > 0:
f(x) > fx) VxeF, |x—X|| <e
@ strict local minimizer if:
f(x) >f(x) VX#£xeF,|x—X||<e
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Unconstrained/Constrained Optimization

P: min f(x) st xcF

@ P is an unconstrained problem if F is open (in
particular if 7 = R")

@ P is a constrained problem if F # R" is closed.
Often, F is given by equality- and inequality
constraints:

F={xeR"| h(x)=0,iecl, gjx)<0,jecdJ}

with h;, gi(X) € C(Rn, R)
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rough Classification: P is called
@ linearif f, h;, g; are (affine) linear
@ convex if f is a convex function and F is a convex set.

@ nonlinear if the problem functions are (nonconvex)
nonlinear.

As a rule: Special subclasses, e.g., linear or (some) convex
problems allow efficient solution methods.

In general: To compute a global minimizer in nonlinear
optimization is “very difficult”

min «—— max: x is max of f on F iff X is min of —f on F
and

Tea])__( f(x) =— )r{réijrg_{—f(x)}
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Examples from History

Ex.1.1 [KRT, Ex0.1] (from Euclid’s book ~300 BC)

In a given triangle ABC find an inscribed parallelogram
ADEF of max area.

Show that Euclid’s problem is:  P:  maxocx<p #(b— x)x
See [KRT] for a sketch and the definition of H,b.

Tartaglia’s problem (Niccolo Tartaglia, 1500-1557)

How to divide the number 8 into two parts such that the
result of multiplying the product of the parts by their
difference is maximal?

This leads to (check):

P: max xiXa2(Xx; — X2) st X1+ x =28, 0< x < X
Answer: X1 =4 & 4 (see also [KRT, Ex2.4]).
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Keplers problem
(in “New solid geometry of wine barrals” (1615))

Given a sphere (of radius R), inscribe a cilinder of maximal
volume.
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Chapter 2. Convex Analysis
2.1 Convex sets, convex functions

Def.2.1 Given x', x> ¢ R" and 0 < X < 1. Then the point
x=xx"+ (1 - A)x?

is a convex combination of x', x2.
The set C C R" is called conveyx, if all convex combinations
of any two points x',x2 € C are in C.

Def.2.2 f: C — R, defined on a convex set C C R" is called
convex if for all x',x2 € Cand 0 < X < 1 one has
fOX + (1 — A)x?) < AF(x") + (1 — A)F(x?)

and called strictly convex if for all x! # x? € C and
0O<AK:

fOXT + (1 — A)x?) < Mf(x") + (1 — A)f(x?)
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Examples: The following functions are convex:
o f(x) =x2, x4 e, —Inx
@ any norm f(x) = ||x|| on R”
o linear functions: f(x) = a’x+ b, X =(x1,...,Xn)

Ex.2.1 Show the convexity of the functions

f(x) = ||x||, and f(x)=a’x+b for x € R".
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Recall A matrix Q € R"<" is called positive semidefinite
(psd) (notation Q > 0) if Q is symmetric (i.e., @ = Q7) and

xTQx >0 vxeR"
and positive definite (pd) (not. Q > 0) if @ = QT and

xTQx >0 VxeR"x#0.

Quadratic functions
Ex.2.2 Let be given the quadratic function on R”,

| \

f(x) =x"Qx +c'x+d,

with symmetric matrix Q, ¢ € R", d € R. Show that f is
convex iff Q is psd.
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Def.2.3 Given x/ € R, i =1,..., k, a combination
o x =YK Nx'with) e R,SK N =1
is called an affine combination and
o x =YK XixIwith; >0, K X =1
is called a convex combination of the elements x'.
Let S C R" be an arbitrary set. The set aff (S) defined by

k
aff (S) = {x=> xx'| x' €8,
i=1
k
XNER, DY Ni=1,k>1}
i=1
is called the affine hull of the set S (set of affine
combinations of S).
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The set conv (S),
k - -
conv (8) = {x= ZA,-X' | x' € S,
i=1

k
Xi>0, ) Ai=1, k>1}
i=1
is called the convex hull of the set S (set of convex
combinations of S).

Def.2.4 A set of the form xy + V with x; € R"and V a
linear subspace of R” is called an affine space with
dimension given by dim(V).

Ex. 2.3 Show that for S C R” the set aff (S) is the smallest
affine space containing S.
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Lemma 2.5 (Jensen’s inequality, [KRT,L.1.39])

Let C C R" be a convex set and let f : C — R be a convex
function. Let the points x',--. , xX € C be given and let
Al,... Ak > 0besuch that % , A/ =1, k > 2. Then

k k k
Y Mx'ec and f<z Aixi> <> M.
i=1 i=1 i=1

Proof by induction wrt. k as an exercise

Ex. 2.4 Show that for S C R" the set conv (S) is the
smallest convex set containing S.

Ex. 2.5 Prove [KRT, L1.40].

Ex. 2.6 Prove [KRT, L1.42].

Def. 2.6 The point X € C is an extreme point of the convex
set C if there cannot exist x' # x2, x',x2 € C and
0 < X < 1 such that

X =Xx"4+(1 - 2)x?
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Th.2.7 [Krein—-Milman Theorem], [KRT,Th.1.19]
Let C C R"” be a compact convex set. Then C is the convex
hull of its extreme points.

Proof. See file Extraproofs on CO-site

Ex.2.7 (Max-value of a convex function is attained at an
extreme point)

Consider with compact, convex F C R"” and convex
continuous function f the max problem:

(P) maxf(x) st xc F.

Show that the maximum value of (P) is attained (also) at an
extreme point of F.
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Def. 2.8 Let C C R" be a convex set. The point x € Cis in
the relative interior of C if for any x € C there exists X € C
and 0 < A < 1such that x = Xx + (1 — M\)X.

The set of points in the relative interior of the set C will be
denoted by C°.

By definition: ¢° C C.

L.2.9 [KRTL.1.34,1.36]

Let C C R" be convex and nonempty. Then C° is nonempty,
convex and (C°)° = ¢°.
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Properties of convex functions

Let f be a convex function defined on the convex set C.
Then f is continuous on the relative interior C° of C.

Ex.2.8 (A convex function may have ‘jumps” at boundary
points)

Find a function f which is convex on [—1, 1] but not
continuous on [—1,1]

(It must however be continuous on C° = (—1,1)).
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Recall: Gradient and Hessian of f : R" — R, f € C" or C?
u
o The gradientof fis: Vf(x) := (6f("), e, ‘9’(")>

X4 OXn
@ The Hessian matrix (or shortly Hessian) V2f(x) of
f € C? at a point x:

V2f(x) = <62f(x)>
i,j=1,---,n

ax,-ax,-

Taylor expansion around x of order 2

Let f : R” — R be C? near X. Then for h € R” (||h|| small):
1
f(X+ h) =f(x) + VIX)"h+ 5th2f(7 + ah)h

for some a = a(h) € [0,1].  Alternative form:
1
f(x+ h) = f(x)+ VFIxX)"Th+ EhTVZf(Y)h + o(||h]|?)
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Ex.2.9 For f(x) = 3x7Qx + ¢ x with symmetric Q and
c € R"show: Vf(x)=Qx+c and V?f(x)=Q

Characterizations of convex C', C2-functions

L.2.11 [KRTL. 1.49]

Let f be a C' function on the open convex set C C R”.
Equivalent statements:

@ The function f is convex on C.
© For any x,x € C one has

f(x) > f(x) + VI(x)T(x — x).

| A\

L.2.12, [KRTL.1.50]

Let f be a C? function on the open convex set C C R". The
function f is convex iff its Hessian V2f(x) is psd for all
x ecC.

‘ \
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Ex. 2.10 Let f be a C? function on the open convex set C.
Then f is strictly convex if its Hessian V2f(x) is positive
definite for all x € C.

Remark The converse is not true: f(x) = x* is strictly
convex on R, but f/(0) = 0.

Ex.2.11 The function f(x) = e* is convex on R and

e >14+x VXeER

Ex.2.12 Show that the function f(x) = — log x is convex for
x > 0. Moreover fora; > 0,i = 1,...,nwe have
a1 + oo + an

1/n
a---a <
(a n) "< n
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The following is easy to prove (Exercise!): Ifg:R" — R is
convex then for any o € R the lower level set

Co = {x € R" | g(x) < «} is (closed) convex (possibly empty)
The next exercise shows the converse: Any convex (bounded)
set is given as a lower level set of a convex function.

Ex. 2.13 [gauge-function g]

Let C C R" be a bounded convex set with 0 € int(C). We
define the gauge function g for C by:

g(x) :=inf {A >0 x € AC} :inf{)\>0\§eC} for x € R”

@ Show g(x) >0, vx € R"and g(x) = 0iff x = 0.
©Q Forallo >0,0<p<1andx,yc R"”we have
9(ox) =og(x), g(px+(1—p)y) < pg(x)+ (1 —p)g(y) .

© We have: x € cl(C) iff g(x) < 1and x € bd(C) iff g(x) = 1
Note that g(x) defines a norm. So each compact convex set is
defined as the unit ball of some norm g.
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