Course: Continuous Optimization

Contents.

- 1. Introduction
- 2. Convex Analysis
- 3. Constrained Convex Optimization
- 4. Duality in Convex Optimization
- 5. Constrained nonlinear (nonconvex) Optimization

- 7 lectures by Georg Still

6. Conic programming

5 lectures by Peter Dickinson

Version: 21-09-2015 (Georg Still)

We make use of

• Script: de Klerk/Roos/Terlaky, Optimization

on: http://wwwhome.math.utwente.nl/ ~stillgj/conopt/

We refer to this script e.g. by [KRT, Th.4.3]

 Book: Faigle/Kern/Still, Algorithmic principles of Mathematical Programming.

on: http://wwwhome.math.utwente.nl/~stillgj/priv/

We refer to this book e.g. by [FKS, Th.4.3]

Lecture sheets (on the home-page above)

Material for the lectures:

For Chapter 1-4 of the course: Chapter 0-3 of [KRT]

For Chapter 5 of the course: Chapter 12 of [FKS]

Chapter 1. Introduction

General optimization problem

$$P: \quad \inf_{\min} \ f(x) \quad \text{s.t.} \quad x \in \mathcal{F}$$

Notation:

- $\mathcal{F} \subset \mathbb{R}^n$, feasible set $f : \mathcal{F} \to \mathbb{R}$, objective function
- A point $\overline{x} \in \mathcal{F}$ is called:
 - global minimizer of f on \mathcal{F} if:

 $f(\mathbf{x}) \geq f(\overline{\mathbf{x}}) \quad \forall \mathbf{x} \in \mathcal{F}$

• *local minimizer* of *f* on \mathcal{F} if with some $\varepsilon > 0$:

$$f(\mathbf{x}) \geq f(\overline{\mathbf{x}}) \quad \forall \mathbf{x} \in \mathcal{F}, \ \|\mathbf{x} - \overline{\mathbf{x}}\| < \varepsilon$$

strict local minimizer if:

$$f(\boldsymbol{x}) > f(\overline{\boldsymbol{x}}) \quad \forall \overline{\boldsymbol{x} \neq \boldsymbol{x}} \in \mathcal{F}, \|\boldsymbol{x} - \overline{\boldsymbol{x}}\| < \varepsilon$$

Unconstrained/Constrained Optimization

 $P: \min f(x) \text{ s.t. } x \in \mathcal{F}$

- *P* is an *unconstrained* problem if *F* is open (in particular if *F* = ℝⁿ)
- P is a constrained problem if F ≠ ℝⁿ is closed.
 Often, F is given by equality- and inequality constraints:

 $\mathcal{F} = \{ x \in \mathbb{R}^n \mid h_i(x) = 0, i \in I, g_j(x) \le 0, j \in J \}$

with $h_i, g_j(x) \in C(\mathbb{R}^n, \mathbb{R})$

rough Classification: P is called

- *linear* if f, h_i, g_j are (affine) linear
- *convex* if *f* is a convex function and \mathcal{F} is a convex set.
- nonlinear if the problem functions are (nonconvex) nonlinear.

<u>As a rule:</u> Special subclasses, e.g., linear or (some) convex problems allow *efficient solution methods*.

In general: To compute a *global minimizer* in nonlinear optimization is *"very difficult"*

 $\underline{\min} \longleftrightarrow \underline{\max}: \overline{x} \text{ is max of } f \text{ on } \mathcal{F} \text{ iff } \overline{x} \text{ is min of } -f \text{ on } \mathcal{F}$ and

$$\max_{x\in\mathcal{F}}f(x)=-\min_{x\in\mathcal{F}}\{-f(x)\}$$

Ex.1.1 [KRT, Ex0.1] (from Euclid's book \approx 300 BC) In a given triangle ABC find an inscribed parallelogram ADEF of max area.

Show that Euclid's problem is: P: $\max_{0 < x < b} \frac{H}{b}(b-x)x$ See [KRT] for a sketch and the definition of **H**,**b**.

Tartaglia's problem (*Niccolo Tartaglia, 1500-1557*) **How to divide the number 8 into two parts such that the result of multiplying the product of the parts by their difference is maximal?**

This leads to (check):

$$P: \max x_1 x_2 (x_1 - x_2) \quad \text{s.t.} \quad x_1 + x_2 = 8, \ 0 \le x_2 < x_1$$

Answer: $x_{1,2} = 4 \pm \frac{4}{\sqrt{3}}$ (see also [KRT, Ex2.4]).

Keplers problem

(*in "New solid geometry of wine barrals"* (1615))

Given a sphere (of radius R), inscribe a cilinder of maximal volume.

2.1 Convex sets, convex functions

<u>Def.2.1</u> Given $x^1, x^2 \in \mathbb{R}^n$ and $0 \le \lambda \le 1$. Then the point

$$\boldsymbol{x} = \lambda \boldsymbol{x}^1 + (1-\lambda)\boldsymbol{x}^2$$

is a *convex combination* of x^1, x^2 . The set $C \subset \mathbb{R}^n$ is called convex, if all convex combinations of any two points $x^1, x^2 \in C$ are in C.

<u>Def.2.2</u> $f : C \to \mathbb{R}$, defined on a convex set $C \subset \mathbb{R}^n$ is called convex if for all $x^1, x^2 \in C$ and $0 \le \lambda \le 1$ one has

$$f(\lambda x^1 + (1-\lambda)x^2) \leq \lambda f(x^1) + (1-\lambda)f(x^2)$$

and called strictly convex if for all $x^1 \neq x^2 \in C$ and $0 < \lambda < 1$:

$$f(\lambda x^1 + (1-\lambda)x^2) < \lambda f(x^1) + (1-\lambda)f(x^2)$$

Examples: The following functions are convex:

•
$$f(x) = x^2, x^4, e^x, -\ln x$$

- any norm f(x) = ||x|| on \mathbb{R}^n
- linear functions: $f(x) = a^T x + b$, $x = (x_1, \dots, x_n)$

Ex.2.1 Show the convexity of the functions

$$f(x) = ||x||$$
, and $f(x) = a^T x + b$ for $x \in \mathbb{R}^n$.

<u>**Recall</u>** A matrix $Q \in \mathbb{R}^{n \times n}$ is called *positive semidefinite* (*psd*) (notation $Q \succeq 0$) if Q is symmetric (i.e., $Q = Q^T$) and</u>

 $x^T Q x \ge 0 \quad \forall x \in \mathbb{R}^n$

and positive definite (pd) (not. $Q \succ 0$) if $Q = Q^T$ and

 $x^T Q x > 0 \quad \forall x \in \mathbb{R}^n, x \neq 0$.

Quadratic functions

Ex.2.2 Let be given the quadratic function on \mathbb{R}^n ,

$$f(x) = x^T Q x + c^T x + d,$$

with symmetric matrix $Q, c \in \mathbb{R}^n, d \in \mathbb{R}$. Show that f is convex iff Q is psd.

<u>Def.2.3</u> Given $x^i \in \mathbb{R}^n$, i = 1, ..., k, a combination

• $\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i$ with $\lambda_i \in \mathbb{R}, \sum_{i=1}^{k} \lambda_i = 1$ is called an affine combination and

•
$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i$$
 with $\underline{\lambda_i \ge \mathbf{0}}, \sum_{i=1}^{k} \lambda_i = \mathbf{1}$

is called a convex combination of the elements x^i .

Let $\mathcal{S} \subset \mathbb{R}^n$ be an arbitrary set. The set aff (\mathcal{S}) defined by

aff (S) := {
$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i | \mathbf{x}^i \in S$$
,
 $\underline{\lambda_i \in \mathbb{R}}, \sum_{i=1}^{k} \lambda_i = 1, \ k \ge 1$ }

is called the *affine hull* of the set S (set of affine combinations of S).

The set conv (\mathcal{S}) ,

conv (S) := {
$$\mathbf{x} = \sum_{i=1}^{k} \lambda_i \mathbf{x}^i \mid \mathbf{x}^i \in S$$
,
 $\lambda_i \ge \mathbf{0}, \sum_{i=1}^{k} \lambda_i = \mathbf{1}, \ k \ge \mathbf{1}$ }

is called the *convex hull* of the set S (set of convex combinations of S).

<u>Def.2.4</u> A set of the form $x_0 + V$ with $x_0 \in \mathbb{R}^n$ and V a linear subspace of \mathbb{R}^n is called an *affine space* with dimension given by dim(V).

<u>Ex. 2.3</u> Show that for $S \subset \mathbb{R}^n$ the set aff (S) is the smallest affine space containing S.

Lemma 2.5 (Jensen's inequality, [KRT,L.1.39]) Let $C \subseteq \mathbb{R}^n$ be a convex set and let $f : C \to \mathbb{R}$ be a convex function. Let the points $x^1, \dots, x^k \in C$ be given and let $\lambda^1, \dots, \lambda^k \ge 0$ be such that $\sum_{i=1}^k \lambda^i = 1, k \ge 2$. Then

$$\sum_{i=1}^{k} \lambda^{i} \mathbf{x}^{i} \in \mathcal{C} \quad \text{and} \quad f\left(\sum_{i=1}^{k} \lambda^{i} \mathbf{x}^{i}\right) \leq \sum_{i=1}^{k} \lambda^{i} f(\mathbf{x}^{i}).$$

Proof by induction wrt. k as an exercise

<u>Ex. 2.4</u> Show that for $S \subset \mathbb{R}^n$ the set conv (S) is the smallest convex set containing S.

- Ex. 2.5 Prove [KRT, L1.40].
- Ex. 2.6 Prove [KRT, L1.42].

<u>Def. 2.6</u> The point $\overline{x} \in C$ is an *extreme point* of the convex set C if there cannot exist $x^1 \neq x^2, x^1, x^2 \in C$ and $0 < \lambda < 1$ such that

$$\overline{\mathbf{x}} = \lambda \mathbf{x}^1 + (1 - \lambda) \mathbf{x}^2$$

<u>Th.2.7</u> [*Krein–Milman Theorem*], [KRT,Th.1.19] Let $C \subset \mathbb{R}^n$ be a compact convex set. Then C is the convex hull of its extreme points.

Proof. See file Extraproofs on CO-site

Ex.2.7 (Max-value of a convex function is attained at an extreme point)

Consider with compact, convex $\mathcal{F} \subset \mathbb{R}^n$ and convex continuous function *f* the max problem:

(P) max f(x) s.t. $x \in \mathcal{F}$.

Show that the maximum value of (P) is attained (also) at an extreme point of \mathcal{F} .

<u>Def. 2.8</u> Let $C \subset \mathbb{R}^n$ be a convex set. The point $x \in C$ is in the *relative interior* of C if for any $\overline{x} \in C$ there exists $\tilde{x} \in C$ and $0 < \lambda < 1$ such that $x = \lambda \overline{x} + (1 - \lambda) \tilde{x}$. The set of points in the relative interior of the set C will be denoted by C^0 .

By definition: $C^0 \subseteq C$.

L.2.9 [KRT,L.1.34,1.36]

Let $\mathcal{C} \subset \mathbb{R}^n$ be convex and nonempty. Then \mathcal{C}^0 is nonempty, convex and $(\mathcal{C}^0)^0 = \mathcal{C}^0$.

Properties of convex functions

Th.2.10, *[KRT,L.1.37]*

Let *f* be a convex function defined on the convex set *C*. Then *f* is continuous on the relative interior C^0 of *C*.

Ex.2.8 (A convex function may have "jumps" at boundary points) Find a function f which is convex on [-1, 1] but not continuous on [-1, 1]

(It must however be continuous on $C^0 = (-1, 1)$).

<u>**Recall:**</u> Gradient and Hessian of $f : \mathbb{R}^n \to \mathbb{R}$, $f \in C^1$ or C^2

- The gradient of f is: $\nabla f(x) := \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)^T$
- The Hessian matrix (or shortly Hessian) ∇²f(x) of f ∈ C² at a point x:

$$\nabla^2 f(\mathbf{x}) = \left(\frac{\partial^2 f(\mathbf{x})}{\partial \mathbf{x}_i \partial \mathbf{x}_j}\right)_{i,j=1,\cdots,n}$$

Taylor expansion around \overline{x} of order 2

Let $f : \mathbb{R}^n \mapsto \mathbb{R}$ be C^2 near \overline{x} . Then for $h \in \mathbb{R}^n$ (||h|| small):

$$f(\overline{x}+h) = f(\overline{x}) + \nabla f(\overline{x})^T h + \frac{1}{2} h^T \nabla^2 f(\overline{x}+\alpha h) h$$

for some $\alpha = \alpha(h) \in [0, 1]$. Alternative form:

$$f(\overline{x}+h) = f(\overline{x}) + \nabla f(\overline{x})^T h + \frac{1}{2}h^T \nabla^2 f(\overline{x})h + o(||h||^2)$$

<u>Ex.2.9</u> For $f(x) = \frac{1}{2}x^TQx + c^Tx$ with symmetric Q and $c \in \mathbb{R}^n$ show: $\nabla f(x) = Qx + c$ and $\nabla^2 f(x) = Q$

Characterizations of convex C¹, C²-functions

L.2.11 [KRT,L. 1.49]

Let *f* be a C^1 function on the open convex set $C \subseteq \mathbb{R}^n$. Equivalent statements:

- **①** The function f is convex on C.
- **2** For any $x, \overline{x} \in C$ one has

$$f(\mathbf{x}) \geq f(\overline{\mathbf{x}}) + \nabla f(\overline{\mathbf{x}})^T (\mathbf{x} - \overline{\mathbf{x}}).$$

L.2.12, [KRT,L.1.50]

Let *f* be a C^2 function on the open convex set $C \subseteq \mathbb{R}^n$. The function *f* is convex iff its Hessian $\nabla^2 f(x)$ is psd for all $x \in C$.

Ex. 2.10 Let *f* be a C^2 function on the open convex set *C*. Then *f* is strictly convex if its Hessian $\nabla^2 f(x)$ is positive definite for all $x \in C$.

<u>Remark</u> The converse is not true: $f(x) = x^4$ is strictly convex on \mathbb{R} , but f''(0) = 0.

Ex.2.11 The function $f(x) = e^x$ is convex on \mathbb{R} and

$$e^x \geq 1 + x \quad \forall x \in \mathbb{R}$$

Ex.2.12 Show that the function $f(x) = -\log x$ is convex for x > 0. Moreover for $a_i \ge 0, i = 1, ..., n$ we have

$$(a_1\cdots a_n)^{1/n}\leq rac{a_1+\ldots+a_n}{n}$$

The following is easy to prove (*Exercise!*): If $g : \mathbb{R}^n \to \mathbb{R}$ is convex then for any $\alpha \in \mathbb{R}$ the lower level set

 $C_{\alpha} := \{x \in \mathbb{R}^n \mid g(x) \le \alpha\}$ is (closed) convex (possibly empty)

The next exercise shows the converse: Any convex (bounded) set is given as a lower level set of a convex function.

Ex. 2.13 [gauge-function g]

Let $C \subset \mathbb{R}^n$ be a bounded convex set with $0 \in int(C)$. We define the *gauge function* g for C by:

$$g(x) := \inf \{\lambda \ge 0 \mid x \in \lambda \mathcal{C}\} = \inf \{\lambda > 0 \mid \frac{x}{\lambda} \in \mathcal{C}\} \text{ for } x \in \mathbb{R}^n$$

1 Show
$$g(x) \ge 0$$
, $\forall x \in \mathbb{R}^n$ and $g(x) = 0$ iff $x = 0$.
2 For all $\sigma \ge 0$, $0 \le \rho \le 1$ and $x, y \in \mathbb{R}^n$ we have

 $g(\sigma x) = \sigma g(x)$, $g(\rho x + (1 - \rho)y) \leq \rho g(x) + (1 - \rho)g(y)$.

3 We have: $x \in cl(C)$ iff $g(x) \le 1$ and $x \in bd(C)$ iff g(x) = 1Note that g(x) defines a norm. So each compact convex set is defined as the unit ball of some norm g.