Case study research in information systems engineering

Roel Wieringa
University of Twente
The Netherlands

CAISE 2013 © Roel Wieringa 20 July 2013

Case study research in information systems engineering

How to generalize, how not to generalize, and how not to generalize too much

CAISE 2013 © Roel Wieringa 20 July 2013

Two things

- 1. Case study research
- 2. Generalizing from cases

CAISE 2013

© Roel Wieringa 20 July 2013

Definition

- In a case study, a case is studied in its real world context
- (TBD: What is a case?)

CAISE 2013

© Roel Wieringa 20 July 2013

Case studies in other sciences

- Middletown. Lynd & Lynd, 1929/1937. Sociology
- Street corner society. Whyte 1943/1955. Sociology
- Explaining the Cuban missile crisis. Allison, 1971. Politocology.
- The man who mistook his wife for a hat. Sacks, 1985. Case studies in psychopathology.
- •

CAISE 2013

© Roel Wieringa 20 July 2013

5

Case studies require a journalistic attitude

- Reporting the facts
 - Detailed, concrete, accurate
 - Lack of control over events by reporter
 - Detached, neutral
 - Eye-witness reports
 - Independent fact-checking
 - More than one measurement instrument
 - Reporter has no opinion

CAISE 2013

© Roel Wieringa 20 July 2013

Case studies require a scientific attitude

- 1. Using scientific theory
 - To ask research questions
 - To describe facts
 - To explain facts
 - To generalize to other cases
- 2. Acknowledging fallibility of theory
 - Submit case study to the critique of others: Peer review.
 - Submit theory to the test of observations: **Test** in future case studies

To prevent theories turning into opinions

CAISE 2013

© Roel Wieringa 20 July 2013

What, why and how of case studies in Information Systems Engineering

CAISE 2013

© Roel Wieringa 20 July 2013

ISE is a design science

- Design science is the design and study of artifacts in context
 - Artifacts: notations, techniques, methods, etc.
 - Context: IS engineering

Artifact to be investigated, Problem to be investigated Designing Investigating Knowledge about artifact, Knowledge about problem

Designing an artifact, Solving a stakeholder problem, Achieving their goals

Answering a knowledge question, Describing, explaining, generalizing

CAISE 2013 © Roel Wieringa 20 July 2013

Examples

- Ly, Rinderle-Ma, Dadam. ``Design and Verification of Instantiable Compliance Rule Graphs in Process-Aware Information Systems", CAiSE 2010.
 - Design an artifact that improves something for stakeholders,

- Auer et al., "Exploratory case study research on SOA investment decision processes in Austria". CAiSE 2011. Six observational case studies.
- De Boer et al. ``RadioMarché: Distributed voice- and web-interfaced market information systems under rural conditions." CAiSE 2012. Action research: problem-treatment-prototype-actual use.

CAISE 2013

© Roel Wieringa 20 July 2013

Examples

Observation, no intervention

• Researcher's goal: knowledge

Observation, and intervention to help the client

- Researcher's goal: knowledge
- Client's goal: improvement
- Auer et al., "Exploratory case study research on SOA investment decision processes in Austria". CAISE 2011. Six observational case studies.
- De Boer et al. RadioMarché: Distributed voice- and web-interfaced market information systems under rural conditions." CAiSE 2012. **Action research**: problem-treatment-prototype-actual use.

CAISE 2013

© Roel Wieringa 20 July 2013

11

ISE is a design science

Designing

Artifact to be investigated, Problem to be investigated

Knowledge about artifact,
Knowledge about problem

Investigating

- Conceptual analysis
- Empirical research: surveys, experiments, case studies, action research
- Meta-research

CAISE 2013 © Roel Wieringa 20 July 2013

The empirical cycle

- Research problem investigation
 - Conceptual framework, theory, research questions, population to which you want to generalize
- Research design
 - Object of study, measurement instruments, treatment (if any), inferences to be done
- Research design validation
- Research execution
- Analysis of results (inferences from the data)
 - Descriptions, explanations, generalization

CAISE 2013

© Roel Wieringa 20 July 2013

Observational case study

CAISE 2013 © Roel Wieringa 20 July 2013

Example 1 Damian & Chisan. RE introduction in a development company. TSE July 2006.

- Research problem
 - What are the effects of RE improvements on productivity, quality, and risk management?
 - RE and SE concepts
 - No theory ….?
- Research design
 - Object of study: A global development organization
 - Interviews, questionnaires
 - No inferences planned....
- Validity
- Execution

Analysis

- Observations
 - Descriptive statistics, correlations of opinions
- Explanations
 - Improvements in P, Q and RM were caused by RE improvement;
 - or by new management;
 - or by other processes
- Generalizations
 - Same effects will occur in organizations with similar problems

CAISE 2013

© Roel Wieringa 20 July 2013

Technical action research

CAISE 2013

© Roel Wieringa 20 July 2013

Example 2: Morali & Wieringa: Confidentiality risk assessment in outsourcing. RE 2010

- Research problem
 - Does the method CRAC++ (designed by Morali) support risk assessment?
 - Without disclosing confidential info?
 - Easy to use? Repeatable?
 - The method is the theory
- · Research design
 - Objects of study: Two organizations
 - Treatment: Consulting using CRAC++
 - Measurement: Diary, interviews, work products
 - No inferences planned ...
- Validity

CAISE 2013

© Roel Wieringa 20 July 2013

- Execution
- Analysis
 - Observations
 - Work products, interview results
 - Explanations
 - Structure of the problem & structure of the method explain results
 - Generalizations
 - Same effects will occur in organizations with similar problems

- These explanations seem almost analytically true!
- Yes.
- We need a real-world case to see if the analysis also stands in the real world

CAISE 2013

© Roel Wieringa 20 July 2013

21

2. Generalizing from case studies

CAISE 2013

© Roel Wieringa 20 July 2013

• If we could not generalize from a single case, then we could not learn from a single case.

CAISE 2013

© Roel Wieringa 20 July 2013

Two ways to generalize

- Case-based
 - By analogy
 - From case to case

Not for case studies

- Sample-based
 - Random sample of at least 30 cases. 100 is better.
 - Few variables
 - From averages, variances, correlations of variables over cases in the sample generalize to the population

CAISE 2013

© Roel Wieringa 20 July 2013

- What we generalize from a case is an explanation
- Architectural explanations make this generalization less fallible than other explanations

CAISE 2013

© Roel Wieringa 20 July 2013

27

How to generalize from a single case by architectural analogy

- 1. **Describe** architecture of the case
 - Components and their capabilities
 - Possible interactions between components
- 2. Observe how components respond to events
- **3. Explain** in terms of components and their interactions (called mechanisms)
- **4. Generalize** by analogy
 - "In a similar architecture, similar mechanisms will occur"

CAISE 2013

© Roel Wieringa 20 July 2013

How to continue by analytical induction

5. To confirm

- Find a similar case
- Test if prediction is correct

6. To falsify

- Find a dissimilar case
- Test if prediction occurs anyway

7. In both cases, refine

- The conceptual framework and/or
- The generalization

CAISE 2013

© Roel Wieringa 20 July 2013

29

How to generalize from a single case by architectural analogy

- 1. **Describe** architecture of the case
 - Components and their capabilities
 - Interactions between components
- 2. Observe how components respond to events
- **3. Explain** in terms of components and their interactions (which we call mechanisms)
- **4. Generalize** by analogy
 - "In a similar architecture, similar mechanisms will occur"

CAISE 2013

© Roel Wieringa 20 July 2013

Explanation

- Causal explanation refers to variables
 - "Temperature increased because pressure increased"
 - "Account balance increased because interest is high"
- Mechanical explanation refers to components and interactions
 - "Pressure increase produces more collisions between gas particles, which raises their kinetic energy by which the gas becomes hotter"
 - Mechanisms can explain causality between variables
- But are there social mechanisms?
- Yes!

CAISE 2013 © Roel Wieringa 20 July 2013 31

Variable-based and architectural explanations

- Variable-based explanations refer to causes
 - Change in X causes change in Y
- · Architectural explanations refer to mechanisms
 - Components with capabilities and interactions
 - Mechanism = interaction between components that produces effects
- A mechanism can explain a cause-effect relation

CAISE 2013

© Roel Wieringa 20 July 2013

How to generalize from a single case by architectural analogy

- 1. Describe architecture of the case
 - Components and their capabilities
 - Interactions between components
- 2. Observe how components respond to events
- **3. Explain** in terms of components and their interactions (which we call mechanisms)
- **4. Generalize** by analogy
 - "In a similar architecture, similar mechanisms will occur"

CAISE 2013

© Roel Wieringa 20 July 2013

35

Variable-based analogy

- "Piet is a computer scientist from NL, is tall and likes cheese."
- "Anne is a computer scientist from NL".
- "Anne is tall and likes cheese"

CAISE 2013

© Roel Wieringa 20 July 2013

Pointed metal rod attracts electric fluid in the laboratory."

• "In the laboratory, electric fluid produces light and crackling noise in a swift crooked motion, destroys animals and melts metals."

• "Lightning produces light and crackling noise in a swift crooked motion, destroys animals and melts metals."

• "Pointed metal rod will attract lightning."

Variable-based analogy

- Looks at similarity in features
- It may lead to a correct generalizations, if we talk about a natural kind.
- "If it walks like a duck and sounds like a duck, it is a duck."
- But: it is very unreliable reasoning
 - Similar to sympathetic magic
- Mechanism that can support conclusion is unknown

CAISE 2013

© Roel Wieringa 20 July 2013

Component-based analogy

- ``Project X
 - develops an information system,
 - it has more than 15 people in the delivery team, and
 - it is too late due to coordination and communication overhead among developers
- "Project Y

Mechanism

- develops an information system,
- it has more than 15 people in the delivery team."
- "Project Y will be late due to coordination and communication overhead among developers too."

We generalize the mechanism

CAISE 2013

© Roel Wieringa 20 July 2013

39

Example 2:

Morali & Wieringa: Confidentiality risk assessment in outsourcing. RE 2010

- Architecture
 - Manufacturing company A, outsourcing ERP administration to outsourcing service provider B
 - Employees of B have access to info in ERP system
 - Sarbanes-Oxley compliance requirement on A
 - Auditors of A do not have access to B's IT architecture
 - Security analyst has access to shared outsourcing architecture
- This results in a deadlock mechanism: auditors of A cannot give compliance judgment

CAISE 2013

© Roel Wieringa 20 July 2013

- The CRAC++ method introduces a new mechanism by which IT confidentiality risks can be assessed,
 - which allows renegotiation of SLA,
 - which allows auditors to give judgment

CAISE 2013 © Roel Wieringa 20 July 2013

- NB the method is the theory is the mechanism.
- Versus natural mechanisms

CAISE 2013 © Roel Wieringa 20 July 2013

Summary of single-case generalization

- 1. Describe architecture of the case
 - Components and their capabilities
 - Interactions
- 2. Observe emergent effects
- 3. Explain effects in terms of mechanisms.
- 4. Generalize by analogy
 - "In a similar architecture, similar mechanisms will occur"

CAISE 2013

© Roel Wieringa 20 July 2013

43

However

- Architectural analogy is fallible
 - What if we misunderstood the mechanism?
 - What if we misjudge similarity?
 - What if in the next similar case, other mechanisms defeat the one we observed?

CAISE 2013

© Roel Wieringa 20 July 2013

How to continue by analytical induction

- 5. To **confirm** an architectural generalization
 - Find an analogous case
 - Test if mechanism has same effect
- 6. To falsify
 - Find a dissimilar case
 - Test if effect occurs anyway
- 7. In both cases, refine to match all cases so far
 - Improve the conceptual framework and/or
 - Improve the generalization

CAISE 2013 © Roel Wieringa 20 July 2013 4.

A. Mockus, R. Fielding, and J. Herbsleb, "Two case studies of open source software development: Apache and Mozilla," TOSEM july 2002.

- Architecture: open source development project.
- After first case study:
 - Mechanism: A core developer team larger than 15 people gets overwhelmed by communication & coordination overhead
- Second case study falsified this.
 - Mechanism a: A core developer team larger than 15 people without defined process as in Apache, gets overwhelmed by communication & coordination overhead
 - Mechanism b: If core developer team has a defined process, as in Mozilla, it may consist of up to 36 developers without being overwehelmed by C & C overhead

CAISE 2013 © Roel Wieringa 20 July 2013 46

- Why is case-based induction analytical?
 - The emergent effects follow analytically from the architecture

CAISE 2013

© Roel Wieringa 20 July 2013

17

- Why is case-based induction analytical?
 - The emergent effects follow analytically from the architecture

- Galileo Galilei (1564-1642):
- ``Two cannon balls of equal weight fall equally fast.
- Put a string between them.
- The resulting object is twice as heavy but falls at the same speed as the original two cannon balls"

© Roel Wieringa 20 July 2013

- Galileo never did the experiment
- He knew what the outcome would be because he had an analytical argument for it
- He unwittingly made an idealizing assumption: no air resistance
- Need to test the generalization in conditions of practice! Case studies needed

CAISE 2013

© Roel Wieringa 20 July 2013

49

Galilean idealization

- Galileo used idealization to understand the real world
 - Point masses
 - Frictionless surfaces
 - **–** ...
- We do that in computer science too
 - Turing machines
 - Infinite data types
 - **–** ...

CAISE 2013

© Roel Wieringa 20 July 2013

Idealization in basic science and design science

- Basic scientist approximate idealizations in the laboratory
 - Laboratory experiments are similar to the ideal case
 - Replications of idealized lab experiments are identical
 - Research budget spent on creating ideal conditions.
- Contrast with design science
 - We spend our budget on simulating real-world conditions
 - and therefore on doing case studies.

CAISE 2013 © Roel Wieringa 20 July 2013 51

The real world is not ideal

- How to apply idealizing laws of nature?
 - You can't.
 - First you must drop the idealizations

CAISE 2013 © Roel Wieringa 20 July 2013

The world is full of details

- Conditions of practice do not do us the favor of going away
 - Every case is unique
 - We are interested in the general mechanisms in a case, but perhaps there are too many details for us to see them.

CAISE 2013

© Roel Wieringa 20 July 2013

53

Mechanisms are non-compositional

- A case may contain aditional mechanisms that interfere with the original mechanism
- We do not know how to compose mechanisms in general
 - There is a universal law of vector addition
 - But no universal law of mechanism addition
 - We have to investigate this case by case

CAISE 2013

© Roel Wieringa 20 July 2013

Case-based generalization is limited

- Researchers have to reason case by case
 - Analytical induction is a way to check if we have dropped idealizations in the right way
 - Generalizations are limited and uncertain.
- Practitioners have to do a risk assessment case by case
 - What is the risk of applying the wrong generalization?
 - What is the risk of missing the right generalization?

CAISE 2013 © Roel Wieringa 20 July 2013 55

What is a case?

- A system
 - A coherent collection of phenomena
- We are studying its architecture

CAISE 2013

© Roel Wieringa 20 July 2013

57

Summary part 2 Case-based generalization

- How to generalize from cases
 - By analytical induction over a series of cases
 - Using architectural analogy
- How not to generalize from cases
 - By statistical inference
 - By variable-based analogy
- How not to generalize too much
 - Mid-range generalizations
 - Practitioners do a risk assessment when applying a generalization

CAISE 2013

© Roel Wieringa 20 July 2013

