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1. Introduction
The performance of computer and communication
systems is often characterized by the probability of
certain rare events. For example, the cell loss proba-
bility in asynchronous transfer mode (ATM) switches
should typically be less than 10−9. The performance
of such systems is frequently studied through sim-
ulation. However, estimation of rare event probabil-
ities with naive Monte Carlo techniques requires a
prohibitively large number of trials in most interest-
ing cases. One way to deal with this problem is to
use importance sampling (IS). The main idea of IS,
when applied to rare events, is to make its occur-
rence more frequent, or to “speed up” the simulation.
Technically, IS aims to select a probability distribu-
tion (change of measure) that minimizes the variance
of the IS estimator. Finding the right change of mea-
sure is often described by a large deviation result.
This type of analysis is feasible only for relatively sim-
ple models. See also Asmussen and Rubinstein (1995)
and Heidelberger (1995) for surveys and Parekh and
Walrand (1989) and Frater et al. (1991) for specific
results regarding queueing networks.
Because of the difficulty of analytically finding the

right change of measure, several adaptive approaches
have been proposed to do this. In such approaches,
a simulation (under a not-yet optimal change of

measure) is used to estimate what change of measure
would produce a smaller (or minimal) variance, after
which a new simulation is run under that change
of measure. This may need to be iterated many
times before the optimal change of measure has been
approximated sufficiently well. The optimization step
can be based on stochastic optimization techniques
(al-Qaq et al. 1995; Devetsikiotis and Townsend
1993a, b) or on a more direct calculation of the opti-
mal parameters (Lieber et al. 1997, Rubinstein 1997).
Rubinstein (1999) proposes to minimize the Kullback-
Leibler distance or cross-entropy (CE) instead of the
estimator variance; typically this leads to explicit cal-
culations for the new parameters rather than numer-
ical minimization. As an aside, an attractive feature
of the CE method is that it can be readily modified
for solving NP-hard combinatorial optimization prob-
lems (see Alon et al. 2005; Rubinstein 1999, 2001a, b,
2002).
In this paper, we investigate an adaptive IS algo-

rithm for the efficient simulation of buffer overflow
probabilities in queueing systems, based on the CE
technique discussed above. In contrast to earlier algo-
rithms, the present one needs only three stages: In the
pilot stage, we estimate the minimum CE tilting
parameter for a small buffer level; next, we use this
as a starting value for the estimation of the optimal
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tilting parameter for the actual (large) buffer level.
Finally, the tilting parameter just found is used to esti-
mate the overflow probability of interest.
The reason why the three-stage approach works

well (for arbitrary overflow levels) is that under the
initial change of measure, the buffer process is unsta-
ble; moreover, this change of measure is “close” to
the change of measure for the second stage. In other
words, the initial tilting vector is in some sense a
“good” tilting vector. We investigate these two prop-
erties, which we will call the instability property and
the robustness property in more detail for the M/M/1
queue. A third property is the CE optimality property:
The change of measure found using CE is close to
the one that minimizes the variance. We hypothesize
that these properties hold in more general networks
as well. Numerical results support this conjecture
and demonstrate the high efficiency of the proposed
algorithm.
Compared to earlier work on IS for queueing

models, this method differs in the following ways:
The method from Parekh and Walrand (1989) needs
a rather extensive analysis for every new model;
our method is adaptive, thus obviating the need
for such an analysis. This is important, for exam-
ple, for integration into computer-simulation tools.
In Frater et al. (1991), those calculations are much
simplified, but these simplified calculations only
apply to models where many of the distributions
are exponential; our method does not have this lim-
itation. Compared to the adaptive methods from
al-Qaq et al. (1995) and Devetsikiotis and Townsend
(1993a, b), our method needs far fewer iterations, typ-
ically just three. In de Boer (2000), de Boer et al.
(2000), and de Boer and Nicola (2001), a CE-based
method using a state-dependent change of measure
is described. That method has the significant advan-
tage of being able to handle models (such as those
discussed in Glasserman and Kou 1995), for which
state-independent tilting does not work well. How-
ever, the disadvantages of that method are greater
complexity, larger number of iterations, and limitation
to Markovian models. In situations where state-
dependent tilting is not necessary, the method pre-
sented here is much simpler and faster.
The rest of this paper is organized as follows. In §2,

we summarize the main ideas behind the adaptive
approach to IS. In §3, we formulate the simulation
model and give the main algorithm for simulating
overflows in queueing networks. A closer investiga-
tion of the M/M/1 queue, with, to our knowledge,
various new results, is given in §4. In §5, we demon-
strate numerically the effectiveness of the algorithm
by investigating various queueing models, and in §6
concluding remarks are given. Finally, some auxiliary
results and proofs are given in the appendices.

2. Importance Sampling and the
Cross-Entropy Method

In this section, we briefly review the ideas behind IS
and the CE method. For details, see Rubinstein and
Melamed (1998) and Rubinstein (1999).
Let X= �X1� � � � �Xn� be a random vector taking val-

ues in some (measurable) space � . Let 	f �·�v�� be a
family of probability densities on � , with respect to
some (unspecified) base measure. Here, v is a real-
valued parameter (vector).
Let H be some (measurable) real function on � .

Suppose we wish to estimate, via simulation,

�v �= ƐvH�X��

where Ɛv denotes expectation under f �·�v�. In this
paper, we will be mostly concerned with functions H
that are indicators of certain events; for example
H�X�= IA, with A= 	X ∈�0� for some subset �0 ⊂� .
When the probability of A is very small, we say that A
is a rare event.
The easiest way to estimate �v is to use crude

Monte Carlo simulation: Draw a random sample
X�1�� � � � �X�N � from f �·�v�; then �1/N�

∑N
i=1H�X�i�� is

an unbiased estimator of �v. However, this poses seri-
ous problems when H is the indicator of a rare event.
In that case, a large simulation effort is required to
estimate �v accurately.
An alternative is to use IS simulation: Draw a ran-

dom sample X�1�� � � � �X�N � from f �·� ṽ�; then
1
N

N∑
i=1

H�X�i��W�X�i��v� ṽ� (1)

with likelihood ratio

W�X�v� ṽ� �= f �X�v�
f �X� ṽ�

is an unbiased estimator of �v. We say that we per-
form the simulation under a change of measure param-
eterized by the tilting parameter (vector) ṽ. The aim is
now to find an optimal tilting parameter ∗v such that
the variance, or equivalently, the second moment, of
the IS estimator is minimal. In other words, we wish
to find

∗v= argmin
ṽ

Ɛṽ�H�X�W�X�v� ṽ��2� (2)

More generally, again using the principle of IS, this is
equivalent to finding

∗v= argmin
ṽ

Ɛvj H
2�X�W�X�v� ṽ�W�X�v�vj �� (3)

for any tilting parameter vj .
An analytic expression for the optimal tilting

parameter ∗v is typically not available. However, it



de Boer, Kroese, and Rubinstein: Estimating Buffer Overflows in Queueing Networks
Management Science 50(7), pp. 883–895, © 2004 INFORMS 885

can be estimated by minimizing, possibly numerically,
the estimator of the expectation in (3), leading to the
approximation

vj+1 = argmin
ṽ

N∑
i=1

H 2�X�i��W�X�i��v� ṽ�W�X�i��v�vj ��

(4)

where X�1�� � � � �X�N � is a random sample from f �·�vj �.
This formula forms the basis of an iterative scheme to
estimate the true optimal tilting parameter.

2.1. Cross-Entropy Method
The evaluation of (4) in general involves numerical
optimization, which may be quite time consuming
because it requires repeated evaluation of all N sam-
ples. By replacing (2) with its CE equivalent, as intro-
duced in Rubinstein (1999), typically (4) is replaced
by an expression that can be solved analytically; that
is, the updating rules for vj+1 can be given as explicit
functions of the samples.
It is well known that for positive H the best possible

change of measure to estimate �v is such that X has a
density g given by

g�x�= H�x�f �x�v�
�v

� (5)

for all x ∈ � . However, this density may not belong
to the family 	f �·�v��. Instead of trying to find a
tilting parameter ∗v, which minimizes the variance
of the estimator (1), we could try to find a density
f �·�v∗� which, in some sense, is closest to the density
given in (5). One way of doing this is by minimizing
the Kullback-Leibler or CE “distance” between g and
f �·�v∗�, which is given (see, e.g., Kapur and Kesavan
1992) by

Ɛg log
g�X�

f �X�v∗�
� (6)

where Ɛg denotes expectation under g. It is not diffi-
cult to see that this is equivalent to finding

v∗ = argmax
ṽ

ƐvH�X� log f �X� ṽ�� (7)

Analogously to (3), this is equivalent to

v∗ = argmax
ṽ

Ɛvj H�X�W�X�v�vj � log f �X� ṽ�� (8)

for any tilting parameter vj . Similarly to (4), we may
estimate v∗ by

vj+1 = argmax
ṽ

N∑
i=1

H�X�i��W�X�i��v�vj � log f �X
�i�� ṽ��

(9)

where X�1�� � � � �X�N � is a random sample from f �·�vj �.
Because under quite mild conditions (Rubinstein and
Shapiro 1993), the program

max
ṽ

N∑
i=1

H�X�i��W�X�i��v�vj � log f �X
�i�� ṽ�

is convex and differentiable with respect to ṽ, the
tilting vector vj+1 in (9) may be readily obtained by
solving the following system of nonlinear equations
(with respect to ṽ):

N∑
i=1

H�X�i��W�X�i��v�vj �� log f �X
�i�� ṽ�= 0� (10)

where the gradient is with respect to ṽ. This, of
course, is provided that the expectation and differen-
tiation operators can be interchanged (see Rubinstein
and Shapiro 1993) and the function (8) is convex and
differentiable with respect to ṽ.
As noted above, vj+1 can often be calculated analyt-

ically. In particular, this happens if the distributions
of the random variables belong to a natural exponen-
tial family (NEF); this is demonstrated in Appendix A
for a simple case and in the next section for a general
queueing model.

3. Estimating Buffer Overflow
Probabilities

In this section, we present the main algorithm for
estimating buffer overflow probabilities in queueing
networks.
Consider an open network of GI/G/1 queues with

Markovian routing. We are interested in the probabil-
ity ��l� of the event A that the content of a certain
queue, or the combined contents of several queues,
exceeds a certain level l during an interval �0�T �,
where T is some (random) stopping time for the pro-
cess X of interarrival times (from outside the system),
service times, and routing decisions. Typically, T is
the length of a busy cycle, or the first time until either
the content of a queue exceeds level l or the system
becomes empty.
We wish to estimate ��l� by using an IS procedure,

in which we can change the service and interarrival
time distribution at each queue. We assume that for
each queue the interarrival and service time distribu-
tions belong to a NEF family that is reparametrized
by the mean (vector of means) v, as discussed in
Appendix A. Note that such an IS procedure is state
independent: the change of the distributions is made
globally and does not vary with the state variables of
the system (e.g., the content of the queues).
The idea is first to estimate the optimal tilting

parameter via the iterative schemes (4) or (9) and then
to use this to estimate ��l� via ordinary IS.
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In most cases of interest, ��l� is a rare event prob-
ability. This means that the choice of a “good” ini-
tial tilting parameter v0 for the scheme (4) or (9) is
crucial. For general queueing networks it is unclear
what comprises a good initial guess. Obviously, the
system should be instable, but it is far from trivial to
determine which instable regimes are good and which
are not good.
We now make three conjectures. All conjectures

have been observed numerically and some can be
proved in certain simple situations (see below).
1. Instability Property. The optimal tilting

parameter corresponding to overflow of a low level l0
(e.g., l0 = 3 or l0 = 4) renders the system instable.
2. Robustness Property. An optimal parameter

corresponding to overflow of a low level l0 is a “good”
initial tilting vector for finding the optimal tilting
parameter for the high level l. In other words, the esti-
mation of the tilting parameter for the high level l is
robust (insensitive) to the choice of l0.
3. CE Optimality Property. The minimum-

variance tilting parameter asymptotically coincides
with the minimum CE tilting parameter.
The third property means that we can use a very

simple updating formula for the tilting vectors. In
particular, let v = �v1� � � � � vK� be the (nominal) vec-
tor of means corresponding to the pdfs �f1� � � � � fK�
of interarrival times (customers arriving to the queue
from outside the system) and service times at the
queues. For simplicity, we assume that the routing
probabilities remain fixed; see, however, Remark 3.2.
Let H�X� be the indicator of the event A. Note that
each parameter vk corresponds to a service time or
an (external) interarrival time at a certain queue. For
each such service or interarrival time (indexed by k)
there will be  k service completions/interarrivals.
Denote these by Yk1� � � � �Yk k

. It follows that the den-
sity f �X�v�, corresponding to the history of the pro-
cess X during �0�T �, is the product

f �X�v�=
K∏

k=1

 k∏
j=1

fk�Ykj� vk�� (11)

Thus, the likelihood ratio W�X�v�vj �, corresponding
to the history of the process X during �0�T �, is the
quotient of the products of the form above. Now,
combining (11), (9), and Appendix A it is not diffi-
cult to see that for NEFs the components of the tilting
vector should be updated as

vj+1� k =
∑N

i=1
(
H�i��X��i�W �i��X�i��v�vj �

∑ 
�i�
k
j=1 Y

�i�
kj

)
∑N

i=1H�i��X�i��W �i��X�i��v�vj � 
�i�
k

�

(12)
where the simulation is performed under the tilting
vector vj .
Based on the three properties above, we now have

the following algorithm:

Main Algorithm

Pilot Stage.
1. Choose an initial buffer level l0. Choose the ini-

tial tilting vector v0 = v.
2. Simulate N1 paths, using the tilting vector v0, for

overflow level l0.
3. Find the tilting vector v1 from (12), for overflow

level l0.

Second Stage.
1. Initialize as follows: j �= 0 (iteration counter);

choose as initial tilting vector v0 the resulting tilting
vector �v1� of the pilot stage.
2. Simulate N2 replications with the tilting vector vj .
3. Find the tilting vector vj+1 from (12), for over-

flow level l.
4. Increment j and repeat Steps 2–4, until the tilting

vector has converged.

Third Stage. Estimate the probability �v via IS sim-
ulation, as in (1), with the final tilting vector obtained
in the second stage.

Remark 3.1. To assess if an initial tilting vector v0
is “good,” we have to consider how effective the
second stage of the main algorithm is. Numerical
evidence shows that vectors v1�v2� � � � converge accu-
rately and quickly to the optimal tilting vector v∗. We
examine this issue further in the next section.
Remark 3.2. In the above, each random variable

(and thus each element of v) was assumed to cor-
respond to a service or interarrival time. However,
the same formalism also applies to random routing
among two destinations: This involves a Bernoulli
random variable, with outcomes 0 and 1 correspond-
ing to the two destinations. The mean of this random
variable is just the routing probability, which can be
directly incorporated into v, thus allowing our algo-
rithm to also find the optimal routing probability.

4. Importance Sampling and the
Cross-Entropy Method Applied to
the M/M/1 Queue

In this section, we have a closer look at how IS and
the CE method work for the M/M/1 queue.
Consider the probability that the queue length in

an M/M/1 queue exceeds level l during a busy
period, starting with i customers in the system at the
beginning of the busy period. Denote this probabi-
lity by �i, i = 1�2� � � � � l. Let the arrival intensity
be " and the service intensity #. Also define p =
"/�"+ #�, q = 1− p, and & = p/q = "/#. Let 	Yn, n =
0�1�2� � � �� be the embedded Markov chain describ-
ing the number of customers in the system at arrival
and departure times. Define �i as the probability
measure under which 	Yn� starts at i. The corre-
sponding expectation operator is denoted by Ɛi. Let
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T = inf	n > 0 � Yn = 0 or Yn = l�. We are mainly inter-
ested in the case where we start with i = 1 customer
in the system at the beginning of the busy period. By
the classical Gambler’s Ruin theorem,

�i =
1− �q/p�i

1− �q/p�l
� i= 1� � � � � l� (13)

We wish to estimate �i using a state-independent
IS procedure. To define this procedure precisely it
is convenient to introduce a random walk 	Sn, n =
1�2� � � �� with Sn =X1+· · ·+Xn such that each Xk takes
values 1 and −1 with probabilities, respectively,

p̃= p e)

p e) +q e−)
and q̃ = q e−)

p e) +q e−)
� (14)

The reader may verify from Appendix B that the dis-
tributions of Xk form a NEF with densities

f �x�)�= e)x−+�)� h�x�� x ∈ 	−1�1�� ) ≥ 0�
with h�1�= p and h�−1�= q, where

+�s�= logƐesX1 = log�p es +q e−s�� (15)

Returning to our IS procedure, we define a change
of measure �̃i such that under this measure the pro-
cess 	Yn� starts in i, and the parameters p and q are
changed to p̃ and q̃ in (14). The corresponding expec-
tation operator is denoted by Ɛ̃i. Without loss of gen-
erality we assume that under �̃i the random variables
X1�X2� � � � are i.i.d. and take values 1 and −1 with
probability p̃ and q̃, respectively.
Now let A be the event that 	Yn� reaches l before 0.

Note that under �i (or �̃i), we can view A also as the
event that 	Sn� reaches l− i before −i. Similarly, T can
be viewed as the first time that 	Sn� reaches l− i or −i.
We now have

�i = ƐiIA = Ɛ̃iIAWT �

with
WT = e−)ST +T+�)� � (16)

This last formula follows from the fact that for
any fixed n the likelihood ratio of �X1� � � � �Xn� with
respect to �i and �̃i is e−)Sn+n+�)�.
Hence, we may estimate �i by simulating inde-

pendent copies of the random variable Z �= IAWT ,
and then taking the average. The question is how to
choose the tilting parameter ) optimally. In the next
two subsections, we examine the two approaches dis-
cussed in §2: the minimum-variance method and the
CE method.
Remark 4.1. It can be shown that a zero-variance

way to simulate �i is to use IS with a state-dependent
change of measure in which

pk∝p�k+1 and qk∝q�k−1� k=1�����l−1� (17)

where ∝ is the symbol for proportionality. We will use
this result later on.

4.1. Minimum-Variance Method
The best possible change of measure is such that the
variance of Z under the change of measure is mini-
mal. Because Ɛ̃iZ= �i, it suffices to minimize Ɛ̃iZ

2. But

Ɛ̃iZ
2 = Ɛ̃iW

2
T IA = Ɛi

1
WT

W 2
T IA

= ƐiWT IA = Ɛi�e
−)ST +T+�)� �A��i

= Ɛi�e
T+�)� �A�e−)�l−i� �i�

where we have used the fact that under �i we have
ST = l− i. It remains to find Ɛi�eT+�)� �A� or Ɛi�z

T �A�,
for general z. Here we can use the fact that, condi-
tioned on A, the Markov chain 	Yn� has transition
probabilities given in (17). Let bi�z� �= Ɛi�z

T �A�. Then,
by conditioning on Y1 and using (17) we have the fol-
lowing recursion:

bi�z�= zbi−1�z�
q�i−1

q�i−1+ p�i+1
+ zbi+1�z�

p�i+1
q�i−1+ p�i+1

�

Noting that �i = q�i−1 + p�i+1, and defining ai�z� =
�ibi�z�, we have

ai+1�z�−
1
zp

ai�z�+
q

p
ai−1�z�= 0� i= 1� � � � � l− 1�

with a0�z�= 0 and al�z�= 1. This is readily solved as

ai�z�=
2i
1−2i

2

2l
1−2l

2

� i= 0�1� � � � � l� (18)

where

21 =
1+√

1− 4z2pq
2zp

and 22 =
1−√

1− 4z2pq
2zp

�

(19)
Concluding, we have

Ɛ̃iZ
2 = e−)�l−i� 2

i
1−2i

2

2l
1−2l

2

� (20)

with 21 and 22 given in (19), for z= p e) +q e−) = e+�)�.
This gives us a relatively simple explicit for-
mula to find the optimal minimum-variance tilting
parameter ∗).
Direct inspection shows that as l increases, ∗)

decreases. Consequently, the traffic intensity under ∗),
denoted by ∗&, decreases with l. This is a somewhat
unexpected result. Also, it is not difficult to see that
as l → 
, ∗) → log�#/"�. For this asymptotic tilting
parameter we have the twisted arrival and service
rate "̃=# and #̃= "; in other words, we interchange
the original arrival and service rate. This is a well-
known result (Sadowsky 1991). Note that under this
change of measure the tilted traffic intensity is &̃= &−1.
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Moreover, we have in (20) that z = 1, 21 = &̃, and
22 = 1, so that for example

Ɛ̃1Z
2 = &l &̃− 1

&̃l − 1 � (21)

Note also that for any level l0 the queue is unsta-
ble. This follows from Appendix B, or can be verified
directly. We thus have

Theorem 4.1 (Instability Theorem). The optimal
tilted traffic intensity &̃�l� for the buffer overflow probabil-
ity in a M/M/1 queue is greater than unity regardless of
the buffer size l, �l≥ 2�. In addition, &̃�l� decreases in l and

lim
l→


&̃�l�= &−1�

Remark 4.2. Observe that ai�z�=
∑


n=0 pi�n�z
n is the

generating function of the probability pi�n� of the
gambler’s ruin (absorption at 0) at the nth trial (Feller
1968, p. 351). In particular, we can write the generat-
ing function as

ai�z� =

∑

n=0
zn
{
l−12np�n−i�/2q�n+i�/2

·
l−1∑
3=1
cosn−1

43

l
sin

43

l
sin

4i3

l

}
� (22)

Note that the convergence radius of this power series
is �z� ≤ 1/�2√pq�.

4.2. Cross-Entropy Method
Let T , as before, be the first time until 	Sn� hits level
l− i or −i, and let A be the event that l− i is reached
before −i. Let fn�·�)� be the pmf of the random vec-
tor X= �X1� � � � �Xn� under the change of measure �̃i.
Specifically,

fn�x�)�=
n∏

k=1
p̃�1+xk�/2 q̃�1−xk�/2�

where p̃ and q̃ are given in (14). According to (7), we
have to find ) such that ƐiIA log fT �X�)� is maximized.
Now,

log fT �X�)�

=
T∑

k=1

[
1+Xk

2
log p̃+ 1−Xk

2
log q̃

]

= 1
2T log p̃+ 1

2ST log p̃+ 1
2T log q̃− 1

2ST log q̃

= 1
2T 	log�pq�− 2+�)��+ 1

2ST 	log�p/q�+ 2)��
Hence,

ƐiIA log fT �X�)�

= 1
2 	log�pq�− 2+�)��ƐiT IA + 1

2 	log�p/q�+ 2)�ƐiST IA

= log�pq�− 2+�)�
2

a′i�1�+
log�p/q�+ 2)

2
�i�l− i��

where �i is given in (13) and ai�z� in (18). Conse-
quently, we need to minimize

+�)�
a′i�1�
�i

− )�l− i�� (23)

where +�)� is given in (15). Note that a′i�1� depends
on l and i but not on ). For p �= 1/2, we can show that
for large l

Ɛi�T �A�= a′i�1�
�i

= l

�1− 2p� + o�l��

It follows that for large l, )∗ is such that +�)�−)�1−2p�
is minimized. For 0< p < 1/2, this means that asymp-
totically )∗ = log�q/p�, corresponding to a change of
measure where p and q are swapped. For 1/2< p < 1,
we have )∗ = 0 corresponding to the original measure.
To illustrate that the )∗ (CE method) and ∗)

(minimum-variance method) are close, consider Ɛ̃iZ
2

in (20). Now observe that

Ɛ̃iZ
2 = e�l−i�) ai�e+�)��

�i

�

Second, from the Taylor expansion ai�z� = �i +
a′i�1��z− 1�+O��z− 1�2� at z= 1, we obtain

log
ai�e+�)��

�i

= log
{
1+ a′i�1�

�i

�e+�)�−1�+O��e+�)�−1�2�
}

= a′i�1�
�i

�e+�)�−1�+O��e+�)�−1�2�

= a′i�1�
�i

+�)�+O�+2�)���

In other words, log Ɛ̃iZ
2 ≈ �+�)�a′i�1��/�i −)�l− i�, and

thus it is conceivable that ∗) is close to )∗. The close-
ness of the two optimal tilting parameters is illus-
trated in Figures 1 and 2.

Figure 1 The Graphs of log Ɛ̃iZ
2 and �����a′i �1��/	i − ��l − i�; for

l = 10, p= 3/10, i = 1
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Note. We have ∗�= 0�90 as the argmin of the first function and �∗ = 0�95 as
the argmin of the second function. The asymptotically optimal tilting param-
eter is log�q/p�= log�7/3�.
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Figure 2 Optimal Tilting Parameters ∗� (Stars) and �∗ (Dots) for
Various Values of l, with p= 3/10 and i = 1
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Note. �∗�l� > ∗��l�. Also, ∗��2�= �∗�2�=
.

An alternative way to find the optimal tilting
parameter is to use the fact that we are dealing here
with a NEF. Using a similar argument as in (A2), we
obtain the following simple formula for the optimal
CE parameter if we reparametrize the NEF via the
mean v:

v∗ = ƐiIA
∑T

k=1Xk

ƐiIAT
�

On A,
∑T

k=1Xk is simply l − i, so ƐiIA
∑T

k=1Xk =
�l− i��i. Also, we saw before that ƐiIAT is equal
to a′i�1�. Consequently,

v∗ = �l− i��i

a′i�1�
�

This is in accordance with finding )∗ by minimiz-
ing (23), or solving

+′�)∗�
a′i�1�
�i

− �l− i�= 0�

because v∗ = +′�)∗� by definition (see Appendix A).

4.3. Robustness Property
Consider the main algorithm. In the pilot stage
we obtain an initial tilting parameter v1�l0� via the
estimator ∑N1

k=1 I
�k�
A0

�l0− i�∑N1
k=1 I

�k�
A0

T �k�
� (24)

where the simulation is carried out under the orig-
inal measure (i.e., with ) = 0). Here, the I

�k�
A0

are the
indicators of the event that l0 is reached before 0. The
estimator above is a ratio estimator, that is, an estima-
tor of the form

RN �=
∑N

k=1Ui∑N
k=1Vi

�

where �U1�V1�� �U2�V2�� � � � are i.i.d. It is well known
(see, for example, Asmussen et al. 1994 and Rubin-
stein and Melamed 1998) that if ƐU and ƐV are finite,

then the estimator RN converges with probability 1 to
r �= ƐU/ƐV , as N → 
. Moreover, if ƐU 2, ƐV 2, and
ƐUV are finite, then

√
N�RN − r� converges in distri-

bution to a N�0�<2� distribution, where

<2 = 1
�ƐV �2

VarU + �ƐU�2

�ƐV �4
VarV − 2 ƐU

�ƐV �3
Cov�U�V ��

For the estimator in (24), this means that if we can
show that ƐiIA0

T < 
, then the estimator converges
with probability 1 to the optimal v∗�l0�. But this fol-
lows from the fact that ƐiIA0

T = a′i�1�; and because ai

has convergence radius larger than 1 if p �= 1/2, then
a′i�1� must be finite (for p �= 1/2). Asymptotic normal-
ity for the first stage follows in the same way.
Next, we consider the second stage. Here, we start

with some tilting parameter ) obtained via the pilot
stage. Suppose we estimate v∗�l� via one iteration. The
estimator is given by

�l− i�
∑N2

k=1 I
�k�
A WT �k�∑N2

k=1 I
�k�
A WT �k�T �k�

� (25)

where the simulation is carried out under the tilted
measure with tilting parameter ). To show that this
ratio estimator has the consistency and asymptotic
normality property, we have to show that Ɛ̃iU

2,
Ɛ̃iV

2, and Ɛ̃iUV are all finite, with U �= IAW and
V �= IAWT . Using the definition of ai�z� and the fact
that IAW = IA e−)�l−i� eT+�)�, we have

Ɛ̃iU = ƐiIA = �i�

Ɛ̃iV = ƐiIAT = a′i�1��

Ɛ̃iU
2 = ƐiIAW = e−)�l−i� ai�e+�)���

Ɛ̃iV
2 = ƐiIAWT 2 = e−)�l−i� a′′i �e

+�)��e2+�)�

+e−)�l−i� a′i�e
+�)��e+�)��

Ɛ̃iUV = ƐiIAWT = e−)�l−i� e+�)� a′i�e
+�)���

It follows that a sufficient condition for asymptotic
normality is that

e+�)� <
1

2
√
pq

� (26)

because if e+�)� is less than the convergence radius of
the power series ai�z�, then all derivatives of ai exist
at e+�)�. Moreover, if e+�)� is larger than the conver-
gence radius, then all derivatives must be 
. Note
that condition (26) holds if at the first stage l0 is large
enough, that is, when +�)� is close enough to 0.

Theorem 4.2 (Robustness Theorem). Suppose )0 is
the optimal tilting parameter for estimating the buffer over-
flow probability in an M/M/1 queue with a (low) over-
flow level l0. Consider simulating this same M/M/1 queue
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but with a higher overflow level l, and tilted with )0. If
this simulation is used to estimate the tilting parameter )∗

(using (25)), that would in turn be CE optimal for esti-
mating the overflow probability at level l, and this estimate
of )∗ has finite variance for all l > l0 for all l0 sufficiently
large (namely, such that (26) is satisfied).

Remark 4.3. In general (for cases other than
M/M/1), it will not be easy to find the “cut-off” value
for l0. However, practical experiments (see §5) suggest
that actually a stronger robustness holds: The condi-
tion on l0 does not seem to be necessary, and the esti-
mator’s variance is not just finite, but small enough
to be practical.
As an example, suppose we wish to estimate for

p= 0�3 the optimal tilting parameter )∗ for l = 20,
by simulating the M/M/1 queue under the tilting
parameter ) (obtained from the pilot run). It follows
from (26) that the ratio estimator is asymptotically
normal if ) < 1�03. From Figure 2 we see that any suf-
ficiently accurate pilot stage with initial level l0 ≥ 7
makes ) < 1�03 and thus brings the second stage in a
region where the sufficient condition (26) holds. For
l0 ≤ 6, both the numerator and the denominator of the
ratio estimator (24) have infinite variance, and it is
unclear what consequences this has for their ratio,
which will be used as the tilting parameter for the
next iteration. Note also that for l0 = 2 the optimal )
is 
.

5. Simulation Results
In §§5.1–5.3, we give some numerical examples of the
application of our main algorithm. These examples
are used to illustrate the three properties we have dis-
cussed above.

5.1. Single M/M/1 Queue
As a first example, we consider the M/M/1 queue,
with arrival rate " = 0�3, service rate # = 0�7, and
overflow level (buffer size) l= 20.
The results are presented in Table 1. The table has

one row for every simulation run (iteration), listing
the number of busy cycles (replications) simulated,
the values (in principle) of the tilting parameters vk,
and the estimate for the overflow probability found
in that simulation run along with its relative error
(RE). In the present model, all distributions are expo-
nential, and tilting them exponentially gives again
an exponential distribution. Therefore, instead of list-
ing the tilting parameters vk explicitly, we prefer to
show the resulting rates, because these are more intu-
itive. The same applies to routing probabilities in later
examples.
It should be noted that there is a difference between

the simulation of the M/M/1 queue as performed
here and the analysis in §4. In the analysis, it

Table 1 Simulation Results for the M/M/1 Queue for l = 20

Iteration Repl. � � Estimate RE

l0 = 2
1 100 0�300 0�700 — —
2 1�000 1�406 0�449 8�309 · 10−9 0�3031
3 1�000 1�004 0�319 4�643 · 10−8 0�1332
4 1�000 0�787 0�275 5�286 · 10−8 0�0514
5 1�000 0�743 0�298 5�597 · 10−8 0�0419
6 1�000 0�729 0�296 5�952 · 10−8 0�0406

l0 = 8
1 10�000 0�300 0�700 — —
2 1�000 0�805 0�285 5�609 · 10−8 0�0573
3 1�000 0�728 0�294 6�148 · 10−8 0�0398
4 1�000 0�723 0�299 5�940 · 10−8 0�0406
5 1�000 0�716 0�296 6�211 · 10−8 0�0385

was assumed that the simulation is done in terms
of a discrete-time Markov chain: Basically, samples
are drawn from a Bernoulli distribution to decide
whether the next event is an arrival or a service
completion. In contrast, the present simulation uses
a continuous-time Markov chain: Two independent
exponential distributions are sampled, one for deter-
mining the time of the next arrival, the other for
determining service durations. Obviously, both repre-
sentations are valid and thus should lead to the same
estimate for the overflow probability. The reason the
actual simulations are done with a continuous-time
model is that this formulation is more in line with
the one in §3, and it is easily generalized to non-
Markovian models.
Table 1 shows results for two different values of the

overflow level l0 in the pilot run, namely 2 and 8.
The former is the minimum that can work; for l0 = 1,
the system would already have reached the “rare” tar-
get event in its initial state. In the case with l0 = 8,
the overflow in the pilot run is rather rare, so a large
number of replications are needed to observe it a rea-
sonable number of times (16 in this experiment).
The results for the case l0 = 8 show that three iter-

ations can indeed be enough. The first (pilot run)
makes the system unstable; that is, the " and # that
the pilot run calculates as optimal for the second iter-
ation are such that ">#. The second run does not yet
yield an optimal (i.e., low RE) estimate of the over-
flow probability, because it uses a tilting found in the
first iteration, which is thus optimal for an overflow
level of 8 rather than 20. However, the second run
does find optimal values for " and # to be used in the
third iteration; the third iteration achieves a relative
error of 0.0398, and further iterations do not signifi-
cantly improve this.
In the case of l0 = 2, things look a bit differ-

ent. Clearly, five iterations are needed here before "
and # are sufficiently close to their final values to
achieve a low relative error. This is not surprising.
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Figure 3 Two Queues in Tandem with Feedback
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At the end of §4 it was noted that if l0 is chosen too
low, the estimator for the tilting parameter becomes
the ratio of two infinite-variance estimates, and thus
has unknown behavior. That was calculated for the
discrete-time simulation, but it seems reasonable to
expect similar problems in the continuous-time coun-
terpart. The present simulation results suggest that
the estimator for the tilting vector is biased in this
situation, causing more iterations to be needed. With
every iteration we move closer to the correct tilting
and thus away from the “problematic” region.
Looking at these two examples, it may at first

glance seem beneficial to choose a high l0, because it
saves one or two iterations; however, this comes at
the cost of needing more replications in the pilot run.
Finally, for this simple model, the overflow proba-

bility can also be calculated directly, giving �1 = 5�826 ·
10−8, which confirms the correctness of the simulation
results.

5.2. Two Non-Markovian Queues with Random
Feedback

As a second example, we consider the network
depicted in Figure 3. It consists of two queues in
tandem, where customers departing from the second
queue either leave the network (with probability p) or
go back to the first queue (with probability 1−p). We
are interested in the probability that the total number
of customers in the network exceeds some high level,
50 in this example, during one busy cycle.

Table 2 Simulation Results for the Non-Markovian Network for l = 50

Iteration Repl. � �1 �2 p Estimate RE

l0 = 3
1 100 0�2000 0�0000 0�0000 0�5000 — —
2 104 0�3423 −0�0237 0�2373 0�1778 1�855 · 10−25 0�2097
3 104 0�3622 −0�0256 0�1440 0�2312 1�697 · 10−25 0�0130
4 104 0�3596 −0�0000 0�1579 0�2340 1�641 · 10−25 0�0105
5 104 0�3600 −0�0028 0�1588 0�2341 1�653 · 10−25 0�0115
6 106 0�3594 0�0000 0�1591 0�2343 1�657 · 10−25 0�0011

l0 = 7
1 104 0�2000 0�0000 0�0000 0�5000 — —
2 104 0�3675 0�0000 0�1531 0�2241 1�640 · 10−25 0�0123
3 104 0�3602 0�0000 0�1587 0�2345 1�633 · 10−25 0�0110
4 104 0�3599 0�0000 0�1593 0�2343 1�670 · 10−25 0�0106
5 104 0�3603 0�0000 0�1578 0�2340 1�682 · 10−25 0�0123
6 104 0�3606 −0�0000 0�1586 0�2352 1�651 · 10−25 0�0105
7 106 0�3603 −0�0023 0�1586 0�2348 1�658 · 10−25 0�0012

Interestingly, for this model (and in general, any
model with random feedback) we cannot work with
l0 = 2, as we could in the single M/M/1 queue. The
reason for this is the following. Consider using l0 = 2.
This means that after starting the busy cycle with
1 customer in the network, we are interested in the
probability of reaching a state where 2 customers are
in the network, before the network becomes empty.
So, until the overflow, there will be always exactly
1 customer in the network: if less than 1, the busy
cycle would end, and if more than 1, the overflow
would happen. Therefore, no departures from the sys-
tem can occur on a sample path to the overflow. Con-
sequently, if a service completion ever happens at the
second queue on the sample path, the customer leav-
ing that queue must be routed back to the first queue,
otherwise the busy cycle would end. Therefore, we
will observe customers being routed back to the first
queue with probability 1, which then becomes the
value of the routing probability for the next iteration
due to the CE algorithm. Once a routing probability
has become 1, later iterations will never observe the
alternative routing decision, so the probability will
remain 1. So using a pilot run with l0 = 2 forces the
routing probability to be 1 in all later iterations, which
is incorrect if l > 2 in those iterations.
In this example, the interarrival time distribution

is a two-stage Erlang distribution, with exponential
parameter "= 0�2. The service time distribution of the
first server is uniform on �0�3�333�, and the second
server’s service time has a Weibull distribution with
shape parameter= 2, scaled such that the average ser-
vice duration is 2.5. The results are shown in Table 2.
In this table, )1 and )2 are the exponential tilting fac-
tors applied to the non-Markovian service time distri-
butions; basically, these are the ) from (A1).
The algorithm converges quickly, already reaching

the final accuracy in the third iteration. No numeri-
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Figure 4 A Five-Node Jackson Network
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cal results are available for validation; therefore, we
did the last iteration with 100 times more replications
to see whether relative error decreases appropriately
(i.e., by a factor of

√
100 = 10). The fact that this is

indeed the case gives confidence.
Tilting parameters for the model considered here

could also be calculated using the heuristic method
from (Parekh and Walrand 1989). However, this
would be a very tedious numerical calculation,
involving minimization of a function available only as
the numerical maximum of a function involving the
error function (in this case; for other distributions, this
could be different). This calculation could be done in
principle, but would clearly be much more compli-
cated than the rather straightforward adaptive simu-
lation procedure used here.

5.3. Five-Node Jackson Network
As a final example, consider the estimation of the
overflow probability of the total population of the
five-node Jackson network with random routing
depicted in Figure 4.

5.3.1. One Bottleneck. We first simulate this net-
work at a parameter setting where server 3 is the bot-
tleneck queue; it has a load of 0.2, while the other
servers have a load of 0.1. These parameters are as fol-
lows: "= 3, #1 = 40, #2 = 20, #3 = 25, #4 = 50, #5 = 60,
with all routing probabilities equal to 0.5. The over-
flow level during the pilot run l0 was set to 5; this
level is reached by about 1% of all sample paths under
the original measure.

Table 3 Simulation Results for the Five-Node Network with One Bottleneck; l0 = 5, l = 80

Iteration Repl. � �1 p1 �2 p2 �3 �4 �5 p5 Estimate RE

1 105 3�0 40�0 0�500 20�0 0�500 25�0 50�0 60�0 0�500 — —
2 105 10�5 36�9 0�535 17�4 0�641 20�0 45�0 55�2 0�215 2�510 · 10−55 0�3631
3 105 13�3 36�7 0�464 19�4 0�564 16�7 47�6 57�8 0�185 8�026 · 10−55 0�0604
4 105 13�0 39�8 0�433 19�8 0�589 15�3 49�8 59�8 0�168 7�822 · 10−55 0�0235
5 105 12�9 39�7 0�431 19�6 0�595 15�3 49�4 59�6 0�170 7�495 · 10−55 0�0144
6 105 13�0 39�7 0�431 19�7 0�594 15�4 49�6 59�5 0�168 7�686 · 10−55 0�0477
7 105 13�0 39�7 0�430 19�7 0�594 15�4 49�7 59�4 0�170 7�602 · 10−55 0�0170

The results are shown in Table 3. For an over-
flow level of 80 the method still converges fine; and
although the relative error tends to vary notably
among further iterations, the estimates do appear to
be consistent. We have repeated the simulation for
various overflow levels and have observed that the
relative error does not increase much between l = 20
and l = 80, suggesting that the method is asymptoti-
cally efficient.
Finally, it is noteworthy that the parameters found

by the CE procedure are close to those calculated by
the method of Frater et al. (1991) (based in turn on
Parekh and Walrand 1989), which are

"′ = 13� #′
1 = 40� p′1 = 11

26 ≈ 0�423� #′
2 = 20�

p′2 = 13
22 ≈ 0�591� #′

3 = 15� #′
4 = 50� #′

5 = 60�

p′5 = 1
6 ≈ 0�167�

5.3.2. Equal Loads. Next, we simulate the same
network, but with all servers having an equal load
�=0�1�, with " = 3, #1 = 40, #2 = 20, #3 = 50, #4 = 50,
#5 = 60, and all routing probabilities again equal to 0.5.
The simulation results are presented in Table 4. We

note that a substantially larger number of replications
is needed per simulation than in the previous case.
Still, the basic observations from this paper hold: The
first iteration makes the system unstable, and then
after one or two more iterations the final accuracy is
obtained.
We note that a more efficient simulation of this case

is possible at the expense of complexity, by using a
state-dependent change of measure (de Boer 2000 or
de Boer and Nicola 2001).
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Table 4 Simulation Results for the Five-Node Network with Equally Loaded Queues; l0 = 4, l = 20

Iteration Repl. � �1 p1 �2 p2 �3 �4 �5 p5 Estimate RE

1 107 3�0 40�0 0�500 20�0 0�500 50�0 50�0 60�0 0�500 — —
2 107 12�3 35�6 0�575 16�0 0�647 44�0 43�1 51�8 0�193 7�942 · 10−16 0�0272
3 107 20�5 35�0 0�588 14�8 0�667 43�2 42�1 50�0 0�160 7�759 · 10−16 0�0164
4 107 20�6 35�3 0�581 15�1 0�658 43�1 42�0 50�0 0�161 7�875 · 10−16 0�0231
5 107 20�6 35�2 0�586 15�0 0�651 43�1 42�1 50�4 0�165 7�659 · 10−16 0�0102
6 107 21�0 35�0 0�580 15�3 0�656 43�1 41�9 50�5 0�160 7�522 · 10−16 0�0090
7 107 21�0 34�9 0�578 15�4 0�657 43�1 42�0 50�5 0�157 7�679 · 10−16 0�0132

6. Concluding Remarks
In this paper, we have presented an efficient CE
method for estimating buffer overflow probabilities
in queueing networks via simulation. For an M/M/1
queue we have proved analytically two properties
(instability and robustness) and provided strong evi-
dence for the third property (CE optimality), and we
have conjectured that these three properties also hold
for more general queueing networks. We have also
explained why the method works well in terms of
the three properties. Numerical results support this
conjecture and demonstrate the high efficiency of the
proposed algorithm for queueing networks up to five
queues.
The simulation method used is in principle well

known from earlier work (Parekh and Walrand 1989):
IS with a state-independent exponential change of
measure. As a consequence, our method in principle
handles the same classes of models as earlier work:
networks of a (possibly large) number of queues,
with random routing, with the constraint that a state-
independent change of measure should be sufficient
(the latter constraint excludes models like those in
Glasserman and Kou 1995). However, there are mod-
els for which earlier approaches may not be suitable
for practical reasons, while ours is. This can either be
due to the number of iterations required (our method
usually needs only three) or to the complexity of the
calculations involved (as with the example in §5.2).
Some issues for further research are the following:
• Extension of the proofs of the three properties to

more general queueing models.
• Further investigation of the behavior of the ratio

estimators of type (24) for the M/M/1 queue and
more general queueing models.
• Finding conditions under which a state-

independent change of measure, as used in this
method, can or cannot lead to an (asymptotically)
efficient simulation.

Acknowledgments
The authors thank Søren Asmussen for his helpful com-
ments and for the proof of Appendix B, and Zinovy
Landsman for introducing them to the natural exponen-
tial family. The third author acknowledges the support of

the Binational Science Foundation (grant 191-574) for this
project.

Appendix A. Natural Exponential Families
Consider a univariate family of distributions with densities
(pmfs, pdfs) 	f) , ) ∈=�, for some subset = ⊂�. The family
is said to be a NEF if

f)�x�= ex)−+�)� h�x�� (A1)

where h is a positive (normalization) function (Morris 1982,
Jorgensen 1997).
For example, if we take ) = "/<2 and +�)� = <2)2/2,

then f) is the density of the N�"�<2� distribution, where <2

is fixed. Similarly, for ) = −" and +�)� = −r log�−)� =
−r log", we obtain the class of gamma distributions with
shape parameter r (fixed) and scale parameter ". Note that
in the latter case == �−
�0�. There are many NEFs. In fact,
every distribution with pdf f0 for which the moment gen-
erating function exists in a neighborhood of 0 generates its
own NEF by letting + be the cumulant function

+�)�= log
∫
e)x f0�x�dx

and by defining

f)�x�= e)x−+�)� f0�x��

with = the largest interval for which the cumulant function
exists. We say that f) is obtained from f0 by an exponential
twist/tilt with twisting/tilting parameter ).
Now let X have a distribution in some NEF 	f)�. It is not

difficult to see that

v �= Ɛ)X = +′�)� and Var) X = +′′�)��

Because +′ is increasing, we may reparametrize the family
using the mean v. In particular, to the NEF above corre-
sponds a family 	gv� such that for each pair �)�v� satisfying
+′�)� = v we have gv = f) . For example, for the NEF cor-
responding to the gamma distribution discussed above we
have +′�)�=−r/)= v, and hence

gv�x�= e)x+r log�−)� h�x�= e−�r/v�x

(
r

v

)r

h�x��

Now consider (8) for the case where X is a random vari-
able from a NEF 	f �·�v��, reparametrized by the mean v.
Hence,

f �x�v�= f)�v��x�= gv�x�= exp
(
)�v�x−+�)�v��

)
h�x��

where )�v� is some differentiable function of v. We
wish to maximize, with respect to ṽ, the function D
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defined as

D�ṽ�= Ɛvj
H�X�W�X�v�vj � log f �X� ṽ��

Solving D′�ṽ�= 0 for ṽ gives

Ɛvj
H�X�W�X�v�vj �	)

′�ṽ�X−+′�)�ṽ��)′�ṽ��

= Ɛvj
H�X�W�X�v�vj �)

′�ṽ��X− ṽ�= 0�

which is solved for ṽ= v∗, with

v∗ =
Ɛvj

H�X�W�X�v�vj �X

Ɛvj
H�X�W�X�v�vj �

� (A2)

That v∗ is a global maximum follows from the convexity
of D and the fact that

D′′�v∗�=−)′�v∗�ƐvH�X� < 0�

because )′�v∗�= 1/Varv∗ �X� > 0.
Similarly, the sample version of (A2) is given by

v̂∗ =
∑N

i=1H�X�i��W�X�i�� v�vj �X
�i�∑N

i=1H�X�i��W�X�i�� v�vj �
�

where X�1�� � � � �X�N� is a random sample from f �·�vj �.

Appendix B. Instability for Random Walks
Consider a random walk 	Sn, n = 1�2� � � �� with Sn =
X1+ · · ·+Xn such that the common distribution of the Xk

belongs to a NEF indexed by ), and generated by some
density f0, as in Appendix A. Let +�)� = logƐ0 e)S1 be the
corresponding cumulant function.
Let T = inf	n > 0 � Sn > x or Sn ≤ 0�. Suppose we are inter-

ested in simulating � = �)�A�, with A = 	ST > x�, using IS
with tilting parameter )̃. We will show that if an optimal
)̃= ∗) (in the sense of minimizing the variance) exists, then
necessarily +′�∗)� > 0 so that the IS distribution has positive
drift (in queueing terminology, &> 1).
The estimator to be simulated from �)̃ is Z�)̃� =

WT �)� )̃�IA, where

Wn�)� )̃�= exp
{
�)− )̃�Sn −n�+�)�−+�)̃��

}
�

Let )1 be arbitrary with +′�)1� < 0 and let )2 > )1 be
defined by +�)2� = +�)1�. Because +′�)2� > 0 by convex-
ity, our result will then follow if we can show that
Var)2 Z�)2� <Var)1 Z�)1�, which, because the means are both
�, is the same as Ɛ)1

Z2�)1� < Ɛ)2
Z2�)2�. But

Ɛ)2
Z2�)2� = Ɛ)2

�W 2
T �)� )2��A�

= Ɛ)�WT �)2� )�W
2
T �)� )2��A�

= Ɛ)�WT �)�)2��A�

= Ɛ)

[
exp	�)− )2�ST − T �+�)�−+�)2����A

]
Similarly,

Ɛ)1
Z2�)1�= Ɛ)

[
exp	�)− )1�ST − T �+�)�−+�)1����A

]
�

The result now follows from )2 > )1, ST > 0, and
+�)1�= +�)2�.

Remark B.1. Note that the “instability property” above
is applicable in a queueing theory context provided that we
can write the process of interest as a random walk. Exam-
ples are the actual waiting time process in a GI/G/1 queue
or the process describing the number of customers in the
system just before arrival times in a G/M/1 queue.
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