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ABSTRACT

We present a web-based interactive comparison of hypoth-
esis tests as are used in statistical model checking, provid-
ing users and tool developers with more insight into their
characteristics. Parameters can be modified easily and their
influence is visualized in real time; an integrated simulation
engine further illustrates the behaviour of the tests. Finally,
since the source code is available, it can serve as a framework
in which newly developed tests can be tried.

Categories and Subject Descriptors

Mathematics of computing [Probability and statistics]:
Probabilistic inference problems— Hypothesis testing and con-
fidence interval computation

General Terms

Performance, verification

Keywords
Statistical model checking, hypothesis testing

1. INTRODUCTION

Statistical model checking (SMC) is increasingly seen as
a powerful alternative to numerical model checking, as wit-
nessed by its implementation in many tools (such as UP-
PAAL, PRISM and MRMC) and libraries (such as COSMOS
and PLASMA) and many publications (such as [1, 5, 10,
11]). The core idea is to repeatedly simulate the behaviour
of a stochastic system model, checking each time whether
some event of interest happens, such as the (in)validity of a
formula in a temporal logic such as PCTL or CSL. The re-
sults are then used to draw a conclusion regarding whether
the probability p of that event is above or below some thresh-
old po. This is where hypothesis testing comes in: based on
the statistical evidence from the simulation runs, one wants
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to accept or reject the “hypotheses” that p > po or that
p < po, with some confidence level.

As it turns out, different tools implement different tests
from the many available (cf. Tables 1 and 2). Most tools
do not allow the user to choose a test, which may lead to
the misconception that one test is the only correct way of
drawing conclusions in SMC. The same happens in many
research papers, which may partly explain the popularity of
the SPRT: it is the one used in the first paper on statistical
model checking [11]. Furthermore, without understanding a
test’s properties, parameterizing it correctly is hard, yet all
tools allow the user to set parameters manually. Since the
tests have fundamentally different properties (cf. Section 2
of this paper), all of this may cause unclarity for the tool
users, and misinterpretation of the results.

In previous work [6], the authors have given an overview of
different hypothesis tests for SMC and their characteristics.
Although that overview should help users to select the right
test and the right tool for their problem, we feel a static ex-
planation of the different tests does not do the topic justice,
since each test depends on parameters that strongly influ-
ence both how many samples are needed and the interpre-
tation of the outcome. Therefore, we have developed a web-
based tool in which the user can easily try different parame-
ter settings and see graphically how these influence the tests’
decision boundaries. Further understanding is provided by
also (optionally) running example simulations and seeing
what decisions the different tests take. It'can be found at
http://wwuwhome.ewi.utwente.nl/ ptdeboer/hyptest-for-smc/ .

In a sense, our tool is a “meta-tool”: it does not by itself
answer qualitative or quantitative questions about system
models, but it helps users better understand what the actual
statistical model checking tools do, and thus choosing the
right one. Also, our tool helps users to parameterize the tests
used in real tools, and can be a testbed for newly developed
tests.

We start this paper by giving some background informa-
tion on statistical model checking and hypothesis testing
in Section 2, followed by describing the tool web page in
Section 3, and illustrating its use in Section 4. Section 5
contains a note about the use of web-technologies for tool
development, and Section 6 provides conclusions.

!The tool originally started out as a companion website
to [6] and thus is already mentioned there, but has since
been enhanced with new features, such as the simulator.
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v': the procedure is implemented as a hypothesis test.

O: the procedure is only implemented for making quantitative statements (i.e., estimating p and
a confidence interval around it, rather than deciding whether p is above or below pg).

Table 1: Implementation of tests in SMC tools. Note that in many tools and papers, the tests are not given
names, so some of the test names were assigned by the authors in [6].

SPRT “Sequential Probability Ratio Test”, draws sam-
ples until it can decide, based on a result by Wald,
that a conclusion can be drawn. [9, 11]

Gauss-SSP “Single Sampling Plan”: fixes number of
samples in advance; correctness guarantees based
on using Gauss distribution. [8]

Chernoff-SSP Same, but using Chernoff bound for cor-
rectness guarantees.

Gauss-CI “Confidence Interval”: fixes number of sam-
ples in advance; computes confidence interval using
Gauss distribution and decides based on whether
po is inside, above, or below.

Chernoff-CI Same, but using Chernoff bound for con-
fidence interval computation [4].

Chow-Robbins Again based on Gaussian confidence
interval, but number of samples is decided on the
fly, based on a result by Chow and Robbins [2].

Azuma Class-III test, with correctness guarantee based
on the so-called generalized Azuma inequality [7].

Darling-Robbins Same but correctness guarantee
based on a result by Darling and Robbins [3, 6].

Table 2: Brief description of the different hypothesis
tests

2. BACKGROUND: STATISTICAL MODEL
CHECKING AND HYPOTHESIS TEST-
ING

As explained above, in statistical model checking, the in-
vestigator simulates a system many times, checking each
time whether some event of interest happens, and wants
to use this evidence to conclude whether the true but un-
known probability p of the event is above or below some
threshhold po. This conclusion should be accompanied by a
statistical guarantee, typically in a form like “the risk that
our procedure draws a wrong (or no) conclusion, is less than

(e.g.) 5%”. The 5% in this example is the allowed error prob-
ability, and its complement, 95%, is the confidence level.

Clearly, if the true probability p is very different from
the threshold value po, only few samples (simulation runs)
are needed to confidently draw a conclusion about whether
p > po or p < po. On the other hand, if the true probability
is close to the threshold, many samples will be needed to
confidently decide on which side of po the true p lies. In our
previous work [6], we identified three classes of hypothesis
tests, which differ in their behaviour if p & po:

I. tests whose risk of drawing a wrong conclusion exceeds
the allowed error probability if p = po;

II. tests whose risk of drawing no conclusion exceeds the
allowed error probability if p ~ po;

III. tests which risk drawing a very large number of sam-
ples if p & po, but will not violate the confidence level

guarantees.

Which of these is most appropriate, depends on the investi-
gator’s area of application. However, as Table 1 shows, SMC
tool support for the different tests is limited; no tool offers a
class-1I1II test, and many offer only class-I or II but not both.
Users are therefore likely to be unaware of the existence of
different tests, and of the exact meaning of the results given
by their particular SMC tool.

In mathematical terms, the problem is formulated as de-
ciding between three hypotheses:

Hii: p> po,
H_1: p<po,
Ho: p=npo.

The latter is called the null hypothesis, and cannot be proven
correct by statistical means [6]. So practically speaking, any
statistical test will either accept H4i, or accept H_i, or
say that there is not enough evidence yet to choose either
of them. A statistical test can make two kinds of error:
accepting a hypothesis which is not true (e.g., accepting H11
while actually p < po), or not accepting a hypothesis which
is in fact true (e.g., terminating undecidedly while p > po).
A practitioner typically will set an (application-dependent)
upper bound on the acceptable probability of each of these



errors; in the current context, these are called « for errors
of the first kind, and S for errors of the second kind. Then
the three classes of tests can be described as:

I. tests whose probability of drawing a wrong conclusion
exceeds o when |p—po| < §, where ¢ is an “indifference
level”;

II. tests whose probability of drawing no conclusion ex-
ceeds 8 when |p — po| < ¢, where ( is again an indif-
ference level;

III. tests which risk drawing a very large number of sam-
ples if p =~ po, but will ultimately draw the correct
conclusion with probability at least 1 — «.

3. THE TOOL

Figure 1 shows what our web-based tool, accessible at
http://wwwhome.ewi.utwente.nl/ ptdeboer/hyptest-for-smc/
looks like. It consists of four parts.

The main part is a graph of decision boundaries. The
horizontal axis shows IV, the number of samples gathered so
far. Recall that each such sample is the result of an entire
simulation run of the model checking tool. On the vertical
axis is Zn, which is the number of those N samples in which
the event of interest (of which p is the unknown probability)
occurred, minus po- N, which is the expected number of those
samples if p would be equal to po. Clearly, Zn has a positive
drift if p > po, and negative drift if p < pg. As more and
more samples are gathered, N increases and Zy changes as
a function of the simulation results; thus, a random path
is traced through the graph. Examples of such paths can
be drawn as wiggly lines using the “Simulate” button, see
below. When this path hits the decision boundary of the
test under consideration, the test terminates and draws a
conclusion based on the sign of Zy; or, for class-II tests,
it terminates undecidedly if the grey section of its decision
boundary is hit.

Secondly, there is a part with controls. Sliders are used
to set parameters of interest, such as the value of the decision
threshold po, the confidence level and the indifference level
that some tests need (cf. Section 2). As the user moves these
sliders, the graph is adapted in real time.

Thirdly, the webpage has a built-in simulator, which gen-
erates a random trace in the Zy vs. N space, using a user-
controlled value of p, and shows this as a line in the graph.
Note that one such a trace represents doing N simulations in
the underlying system-simulation tool (UPPAAL, PRISM,
etc); instead of actually performing these system-simulation
runs, they are replaced here by coin flips with some success
probability p, which can be manipulated by the user.

This is useful in two ways. Firstly, showing a few of these
lines gives the user a quick insight into what is happening,
which tests take long to reach a conclusion and why, etc.,
and how this depends on p (which is normally unknown,
but in this simulation can be set by the user). Secondly,
by repeating this say 1000 times and keeping track of the
individual tests’ decisions, one can check that the tests in-
deed live up to their promised statistical guarantees, and
show that many of them are actually rather conservatively
designed. In fact, the results from Tables 6-8 in [6] can be
reproduced directly on this webpage.

Fourthly, the webpage shows some calculated parame-
ters of the tests. This is useful because many existing tools

require the user to set a parameter which has no clear re-
lationship to the resulting confidence and correctness guar-
antees, e.g., the number of samples for the Gauss-CI test.
Our web tool can be used to compute such parameters from
user-specified correctness bounds.

4. EXAMPLES

In this section, we use the screenshot shown in Figure 1 to
illustrate how the important differences between the differ-
ent tests become evident on our tool. A rough description
of the tests mentioned can be found in Table 2; more details
can be found in [6] and in references given in the table.

As a first example, compare the Gauss-SSP and Gauss-CI
tests: both are fixed-sample-size tests, meaning the number
of samples needed is set in advance; therefore, their decision
boundaries are vertical lines. For the same confidence level,
Gauss-SSP is seen to need far fewer samples than Gauss-CI,
at first glance suggesting Gauss-SSP is superior. However,
this difference stems from Gauss-SSP taking a more serious
risk: it is a class-I test, which risks incorrect conclusions
when p &~ po, while Gauss-CI, being a class-1I test, would
rather risk terminating undecidedly. The different classes of
tests are emphasized by their different colours in the graph.

As a second example, compare the SPRT and Gauss-SSP
test. Both are class-I tests, so they only guarantee the con-
fidence level if p is at least some indifference level away from
po. However, the way they achieve this is different, as is clear
from the different shape of the corresponding curves. Gauss-
SSP is a fixed sample size test, where the sample size N is
set appropriately in advance. In contrast, the SPRT is a
sequential test: after each sample, it checks whether a de-
cision can already be made, using Zx thresholds calculated
appropriately. As a consequence, if the true p is far from
po, the SPRT typically can draw a conclusion much earlier
than the Gauss-SSP, as illustrated by the wiggly lines in the
graph. Only when p is really close to po, the SPRT will
typically take longer.

As a third example, compare the Gauss-CI and Chow-
Robbins tests, both of which are class-II tests. As seen in
the figure, the Chow-Robbins test may require either more
or fewer samples than the Gauss-CI test, for the same con-
fidence level, depending on where Zn ends up; in the exam-
ple sample paths shown in the figure, Chow-Robbins decides
slightly later than Gauss-CI. As one interactively modifies
po however, it becomes apparent that at po = 0.50, the de-
cision boundary of the Chow-Robbins test is such that it
will always terminate earlier than Gauss-CI. Clearly, this is
useful information for choosing between the two tests.

Finally, take a look at the simulation results at the bot-
tom of the figure. In this case, we chose to simulate for
p = po + 0, i.e., p was just at the border of the indifference
region. Furthermore, the acceptable probability of errors of
first and second kind was set to a = 8 = 5%. Indeed, the ta-
ble shows that the class-I tests (SPRT and Gauss-SSP) have
about 5% probability of drawing the wrong conclusion, and
that some class-II tests (Gauss-CI and Chow-Robbins) also
have about 5% probability of terminating undecidedly; the
third class-1I test, Chernoff-CI, is seen to be rather conserva-
tive test with much less than 5% probability of terminating
undecidedly. Finally, the two class-III tests (Azuma and
Darling) terminate mostly undecidedly here; that is because
the simulations were stopped after about 22000 samples (the
right edge of the graph), which for these tests was not enough



to draw a conclusion. Expanding the N range shows them
to draw the correct conclusion in 100% of the simulations,
at an average N of around 40000.

5. HTMLS AND JAVASCRIPT FOR TOOL
DEVELOPMENT

In contrast to most tools, our (meta-)tool is not imple-
mented as application software for a specific computing plat-
form (hardware, operating system, libraries), but as a web-
page. Thus, it can be used in any modern web browser, re-
gardless of the computing platform. It is built using HTML5
for the user interface (mainly the “canvas” as a drawing area)
and JavaScript® for the program logic itself (graphics prim-
itives, calculation of the curves, simulation). Note that al-
though it is a webpage, the computations are done entirely
on the user’s computer, not on the web server. Besides the
universal accessibility, another advantage is the easy devel-
opment: much of the user interface is taken care of by the
web browser, and e.g. other tests could easily be added with
just a plain text editor, without requiring a compiler or other
tools.

Of course, the disadvantage of an interpreted language like
JavaScript is its lower execution speed compared to native
code. For this particular purpose, that is no objection; on
modern computers and in modern web browsers, it is fast
enough for comfortable use: the graph lines move essentially
in real time with the sliders.

Number crunching in the form of running simulations, as
our webpage can also do, is a rather unusual application of
JavaScript. Even for this, JavaScript is often fast enough,
thanks to on the one hand today’s fast computers, and on the
other hand the effort browser developers have made to make
JavaScript run fast. Of course, at large N and large numbers
of simulations runs, the run time would increase to a level
beyond what is expected from a webpage, causing warn-
ing messages (“unresponsive script”) in some browsers. To
solve this, the simulations can be run in a separate thread in
the background, using the so-called “web worker” technique
made available on modern browsers. For very large N, a na-
tive program would technically still be a better choice; but
the convenience of running it inside a web browser, without
needing to install any specific software, may well be worth
the price of a somewhat slower simulation.

6. CONCLUSION

Various hypothesis tests are available for statistical model
checking, each with their own merits and disadvantages, and
it is not always clear which one is best for some particular
situation at hand. We have presented a “meta-tool” which
does not by itself evaluate system models, but helps tool
users and developers to better understand the different tests,
and thus aids them to select the most appropriate test, and
also to adequately parameterize the chosen test. Our tool
comes in the form of an interactive webpage, allowing uni-
versal access on any modern computing platform.

2Note that, despite its name, JavaScript is not related to
Java, nor to the Java applets that, a decade or so ago, were
a popular way of deploying scientific animations on the web.
While Java code is compiled into bytecode that requires sep-
arate software to run, JavaScript is an interpreted language
running inside the web browser. In fact, due to security is-
sues, Java applets nowadays are often disabled in browsers.

We are currently working on developing better hypothe-
sis tests, i.e., tests that can draw a conclusion with fewer
samples, while still satisfying the user-set confidence level.
Since our tool is in the form of a webpage, new tests can be
added to it in the future.
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Figure 1: Screenshot of the website being displayed in the Firefox web browser



