
J. v. Sloten, A. Pras, M.J. v. Sinderen
On the standardisation of Web service management operations

This paper has been published at EUNICE 2004: 10th Open European Summer School
and IFIP WG6.3 Workshop.

Eds: Harjo J., Moltchanov D. and Silverajan B.
ISBN: 952-15-1187-7
Tampere, Finland, June 2004
Page 143-150

Page source can be downloaded from:
- Local homepage
- Eprints

http://wwwhome.cs.utwente.nl/~pras/publications/2004-Eunice-WS-Standardization.pdf
http://wwwhome.cs.utwente.nl/~pras/publications/2004-Eunice-WS-Standardization.pdf
http://eprints.eemcs.utwente.nl/15475/01/2004-Eunice-WS-Standardization.pdf
http://eprints.eemcs.utwente.nl/15475/01/2004-Eunice-WS-Standardization.pdf

On the standardisation of Web service
management operations

Jeroen van Sloten, Aiko Pras, Marten van Sinderen

Abstract—Given the current interest of TCP/IP net-
work management research towards Web services, it
is important to recognise how standardisation can be
achieved. This paper focuses on management opera-
tions instead of management information. We state
that standardisation should be done by standardising
the abstract parts of a WSDL document, i.e. the inter-
faces and the messages. Operations can vary in gran-
ularity and parameter transparency, creating four ex-
treme operation signatures, all of which have advan-
tages and disadvantages.

Keywords— Network management, Web services, op-
eration granularity, WSDL, SOAP.

I. Introduction

O
VER the years the Simple Network Management
Protocol (SNMP), in its different versions [1], has

grown to be the most commonly used network man-
agement platform in IP networks. However, while
originally developed in an environment where net-
works were small, bandwidth was scarce and process-
ing power on networked devices was low, the design
choices made then [2] are nowadays becoming appar-
ent limitations in the network management area.

A. Towards XML-based network management

SNMP is based on the manager-agent paradigm.
For the exchange of messages SNMP relies on UDP,
which is, according to many, a cause of great concern
[3] [4]. Originally agents were meant to be as simple as
possible, with most of the processing and control done
at the manager-side. But times have changed and
current devices are powerful enough to perform more
complex management operations also at the agent side
[5]. Furthermore, SNMP is a domain-specific protocol
that, despite its name, is not easy to use. Integration
with existing software is difficult and only a limited
number of experts have sufficient knowledge to de-
velop new management applications [5]. Because of
these limitations, there is nowadays a trend towards
generic, open and extensible technologies for network
management, based on XML technologies [6], [7].

These problems have also been the topic of dis-
cussion within the Internet Engineering Task Force
(IETF) [8], the Network Management Research Group
(NMRG) [9] of the Internet Research Task Force
(IRTF) [10] and the Internet Architecture Board
(IAB) [11]. The IAB, for example, organised a spe-
cial workshop in June 2002 to discuss the future of
network management (RFC3535 [12]). Many atten-

Centre for Telematics and Information Technology, University
of Twente. PO Box 217, 7500 AE Enschede, The Netherlands.
{sloten, pras, sinderen}@cs.utwente.nl.

dees at that meeting expected that the so-called evo-
lutionary approaches would fail and that more focus
should be put on revolutionary approaches, most no-
tably approaches that are XML-based [5]. This out-
come, combined with the fact that there has not been
substantial output yet, has made for ongoing IETF
workgroups such as Evolution of SNMP (EoS) [13] and
SMIng [14] to be discontinued. Meanwhile, there are
even those who state that standardisation of network
management protocols should move from the IETF to
the World Wide Web Consortium (W3C) [15], partly
because of this focus shift towards XML [16].

B. Web services-based network management

One of the emerging standards based upon XML is
Web services [17]. Web services is a generic technol-
ogy, because it is XML-based and platform/program-
ming language independent. One can clearly notice an
industry-wide interest in Web services, supported by
the growing availability of various related application
servers and development tools. Web services are ex-
pected to become a standard part of future operating
systems, which will have a growing familiarity among
many users and developers. This makes it to be a very
promising technology, even though standards, such as
security, transactions, choreography, etc. are still un-
der development.

The availability, combined with being a generic
technology and an open standard, makes it easier for
people to develop applications using Web services.
Apart from dedicated management applications, one
can also think of presenting management information
in a spreadsheet or storing management information in
databases simply by calling a Web service for which
support is already present in the operation system.
SNMP also makes clear that availability of applica-
tions is a key factor for the market acceptance of a
technology [5]. But these advantages of Web services
are very general and not only relevant to network man-
agement. What is very important for network man-
agement is that there is a standardised form in which
management information is defined and how this in-
formation is accessed [16]. It remains hard to develop
a management application when management infor-
mation and its accessors are not standardised. With
regard to the accessors, hereafter called operations,
there is a need for a variety of operations and most
notably, more efficient operations than SNMP offers.

C. Goal

The goals of this paper are: firstly, to explain
how standardisation of management operations can

On the standardisation of Web service management operations

be achieved for Web services and secondly, what form
these management operations can take. Hereby we
will discuss the merits of both very specific and very
generic management operations and compare them to
existing Web services-based management approaches.
Our intention is to abstract from the definition of man-
agement information, or at least leave choices open in
how management information should be defined in or-
der to use it for Web services.

D. Approach

We will firstly present a short state of the art of
Web services in section II, where the focus is placed
on the definition of Web services. This is followed
section III about how standardisation of Web services
operations can be achieved in the definition of Web
services. An elucidation on the form of management
operations is given in section IV, where we will distin-
guish two degrees of freedom. We will conclude with
section V which gives an overview of already existing
Web services-based management approaches.

II. Web services background

M
ANY people will nowadays regard the Web as a
large collection of web sites, web portals and

all other kinds of information displays. Most cer-
tainly this is and will remain a very important as-
pect of the Internet. However, the machine-aware
part of the Internet is becoming increasingly impor-
tant, for it is currently under heavy development and
the technologies look promising. The machine-aware
part referred to is called Web services for which the
World Wide Web Consortium gives the following def-
inition [18]: "A Web service is a software system
designed to support interoperable machine-to-machine
interaction over a network. It has an interface de-
scribed in a machine-processable format (specifically
WSDL). Other systems interact with the Web ser-
vice in a manner prescribed by its description using
SOAP-messages, typically conveyed using HTTP with
an XML serialisation in conjunction with other Web-
related standards". Simply said, Web services make it
possible for machines to communicate with each other
by means of standardised messages and regardless of
specific hardware or software that a machine uses. Of
course, the only requirement is that a machine is able
to process Web service requests or send responses.

Web services commonly communicate through the
exchange of Simple Object Access Protocol (SOAP)
messages [19] which is a standardised form of XML
messages. SOAP is language and platform indepen-
dent and it allows programs to communicate through
standard communication protocols, such as HTTP or
SMTP. However, Web service communication is not
limited to SOAP only. One can for instance also
use HTTP-GET or HTTP-POST messages instead of
SOAP messages to access the same service, depending
on the implementation of the Web service of course.
This is depicted in figure 1.

Client� Web service�

endpoint�

endpoint�

SOAP/HTTP request�

SOAP/HTTP response�

HTTP GET request�

HTTP response�

Fig. 1: Web services communication

A Web service is described in a Web Service De-
scription Language (WSDL) document [20]. This doc-
ument exposes the operations, which parameters to
pass to an operation, via which protocols an opera-
tion can be accessed and on which location (i.e. the
IP number or domain name) the Web service resides.
Web services are by design highly extensible and there-
fore its descriptions too. WSDL documents can ei-
ther be kept very simple, using the basic elements
and data-types (from XML Schema [21] for instance),
but they can also be defined in a modular manner,
distributed to any extend and using self-defined data-
types of any complexity. SOAP also defines a basic
message structure, which can be extended with (ex-
tra) headers, attachments and fault messages.

For the explanation of the most important WSDL
elements definitions from WSDL version 2.0 will be
used. The main differences with the previous version
(1.1) is that the element <porttype> is now called
<interface> and <port> is now called <endpoint>.
An example of a WSDL document is shown in listing
1. This lists the main elements and shows the relation
between them.

A WSDL document has <definitions> as root el-
ement. The namespaces can be defined as attributes
of this element. Each Web service is defined by means
of a <service> element and can be accessed through
endpoints. An endpoint specifies at which address this
particular service can be accessed and which proto-
col should be used for that. Suppose the Web ser-
vice can be accessed using both SOAP messages over
HTTP and HTTP-GET messages, the physical loca-
tions of both endpoints need not necessarily be the
same. Listing 1 shows that the connectionManage-
mentService can be accessed only with SOAP at lo-
cation "http://example.com/cms". If this service can
also be accessed with HTTP GET messages, it should
have a second endpoint such as in listing 2 which also
shows how the location of each endpoint can be dif-
ferent.

An interface exposes the operations of the Web ser-
vice. This can be compared to a function library or
a class in a common programming language. Within
an operation one can define what the input and out-
put messages are with the <input> and <output>
elements. Each of these elements corresponds to a
(SOAP) message exchanged between the client and
the service. The structure of such a message is de-
fined in a <message> element to which the input or
output refers. A message describes exactly of which
parts it consists with <part> elements. WSDL dis-

EUNICE 2004 Tampere, Finland

Listing 1: WSDL example
! "
<definitions

xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

>

<types />

<message name="getNumberOfTcpConnsRequest">
<part name="index" type="xs:int"/>

</message>

<message name="getNumberOfTcpConnsResponse">
<part name="tcpconns" type="xs:int"/>

</message>

<interface name="cmsStatistics">
<operation name="getNumberOfTcpConns">

<input message="getNumberOfTcpConnsRequest"/>
<output message="getNumberOfTcpConnsResponse"/>

</operation>
</interface>

<binding name="cmsSoapBinding" type="cmsStatistics">
<soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>
<operation name="getNumberOfTcpConns">

<soap:operation soapAction="http://example.com/cms/
getNumberOfTcpConns"/>

<input>
<soap:body use="literal"/>

</input>
<output>

<soap:body use="encoded" namespace="http://example.
com/cms/message/" encodingStyle="http://
schemas.xmlsoap.org/soap/encoding/"/>

</output>
</operation>

</binding>

<service name="connectionManagementService">
<endpoint name="cmsSOAP" binding="cmsSoapBinding">

<soap:address location="http://example.com/cms"/>
</endpoint>

</service>

</definitions>
$

Listing 2: Endpoints
! "
<service name="connectionManagementService">

<endpoint name="cmsSOAP" binding="cmsSoapBinding">
<soap:address location="http://example.com/cms"/>

</endpoint>
<endpoint name="cmsHTTP" binding="cmsHttpBinding">

<soap:address location="http://example2.com/cms"/>
</endpoint>

</service>
$

tinguishes several types of operations that are distin-
guished from one another by the order of the input
and output blocks. This is called a message pattern
[22].

An interface is merely an abstract description of the
Web service operations while a <service> element
more concretely describes where this interface is lo-
cated. The mapping of the abstract description to a
location is done with a binding. A binding specifies
what kind of messages are exchanged and in which
style. In the example SOAP messages are used over
HTTP, which is defined in the <soap:binding/> ele-
ment. For each message that is defined in the inter-

Listing 3: Import of interface WSDL
! "
<definitions>

<import location="http://example.com/wsdl/foo_interface.
wsdl"/>

<binding>...</binding>

<service>...</service>
</definitions>

$

face, the binding specifies how the contents should be
interpreted: the encoding.

III. Standardisation for network

management

I
N order to easily use Web services for network man-
agement there should be agreement on the man-

agement information and operations. In other words,
there is a need for standardisation of information and
operations. Standardisation of information is a very
broad subject and it is not directly related to Web
services. Therefore we will abstract from it and just
assume we have certain management information de-
fined in a MIB, such as in SNMP. Note however, that
there have been efforts to represent MIBs in XML [23],
[7] and reverse engineer MIBs to deduce a UML [24]
class diagram [25] that may be interesting when stan-
dardising information. The focus here will be on stan-
dardisation of operations.

WSDL provides a mechanism to describe a Web ser-
vice in a modular manner. This means that a WSDL
document can be split up in parts and each part can be
stored in a separate document, even at separate loca-
tions. For example, messages and interfaces could be
defined in a single document, enabling another WSDL
document to omit messages and interfaces and im-
porting them instead. This enhances the reusability
of the first document in such a way, that it can also
be used for the definition of messages and interfaces
of a WSDL document with a different service and/or
binding component.

By using the elements <import> and <include>
modularisation can be achieved. Both elements pro-
vide the same functionality of separating different
components of a WSDL description, but <include>
does this for components from the same target names-
pace, whereas <import> is used for different target
namespaces [20]. Listing 3 gives an idea of how inter-
faces are imported from a separate WSDL document,
having only the binding and service elements de-
fined in the main WSDL document.

Simply said, the Universal Description, Discovery
and Integration (UDDI) standard [26] is a protocol
for the discovery of Web services in a network, or even
Internet-wide. The UDDI Technical Committee rec-
ommends a division of WSDL documents into two sep-
arate WSDL definitions. One is the "service interface
definition" part, which should contain the <types>
(if any), <message>, <interface> and <binding> el-
ements. The other WSDL definition is the "service

On the standardisation of Web service management operations

implementation definition" part, which should contain
the <service> element. Like the names suggest, it is
an attempt to split up a WSDL definition in an inter-
face part and an implementation part.

The above recommendation is an attempt to pro-
vide a best practice in modularising WSDL docu-
ments. However, it can be argued that bindings are
better defined separate from the service interface def-
inition. Suppose a service is deployed at many dif-
ferent locations, all of which can be accessed by the
same binding, it would not be necessary to define the
binding at each location where one location would be
sufficient. Bindings could possibly also be standard-
ised, thereby making operations available through a
default protocol and defining a standard encoding of
the message parts. However, it still should be stan-
dardised separate of the abstract definitions. Figure
2 shows how a WSDL document is built up, when a
modular approach is used. This shows how a WSDL
document can be separated into an abstract part con-
taining the messages and interfaces (the what part),
and two concrete parts: a binding (the how part) and
a service (the where part).

WSDL document�

<binding name="foobar"�
 type=”foo”>�

 <operation name=”get”>�
 <input>...</input>�

 <output>...</output>�
 ...�

 </operation>�
</binding>�

<types />�

<message name="getRequest">...</message>�
<message name="getResponse">…</message>�

<interface name="foo">�

 <operation name="get">�
 <input message="getRequest"/>�

 <output message="getResponse"/>�
 </operation>�

</interface>�

 <service name="foobarService">�
 <endpoint name="foobarEndpoint"�

 binding="foobar">�
 ...�

 </endpoint>�
 </service>�

</definitions>�

Import�

Import�

<definitions>�

Fig. 2: WSDL import mechanism

For standardisation, the abstract part of a WSDL
document is the most important, since the operations
and messages are defined here. When standardising
the abstract part of a WSDL definition, the need for
a modular approach is again stressed by the fact that
standards should be defined independent from each
other and for different purposes, whilst running on the
same management agent and offering a similar means
of access. Much like SNMP, where for example the
IF-MIB [27] and HOST-RESOURCES-MIB [28] are
also defined by different persons, each standardising a
disjoint set of management information, while all in-

Listing 4: Interface extension
! "
<interface name="intf1">

<operation name="op1" ... />
...

</interface>

<interface name="intf2" extends="intf1">
<operation name="op2" ... />
...

</interface>
$

formation from both MIBs can be accessed in a similar
manner.

With regard to the standardisation of interfaces in
the abstract part, the extensibility mechanism pro-
vided by WSDL could also be used. Extensibility of
interfaces is the possibility to extend an interface with
more operations. This can be achieved in WSDL by
using the attribute extends for the <interface> el-
ement, with its value pointing to one or more other
interfaces. As shown in listing 4 interface intf1 ex-
poses certain operations, such as op1. Interface intf2
exposes the same operations as intf1, but can also add
extra operations as shown in table I.

TABLE I: Interface extension.

interface exposed operations

intf1 op1, ...
intf2 op1, op2, ...

IV. Web services-based management

operations

T
HE previous section described how a Web service
should be composed when only parts of it are

standardised. But when discussing standardisation of
management operations, it first has to be made clear
what exactly should be standardised and what the im-
plications of standardisation are on certain types of
operations. In order to reason about the implications,
the different types of operations need to be defined.

Just as with SNMP, that uses a few generic opera-
tions, there needs to be agreement on which operations
are to be supported for Web services. Of course, a very
simple way is to translate SNMP operations directly
to corresponding Web service operations, such as get,
set, trap, etc. But Web services provide much more
flexibility without necessarily increasing the complex-
ity. Two extreme approaches are distinguished in [5].
One approach has basic operations on WSDL level,
such as get and set, with parameters passed as opaque
types. This means, parameters are not defined at
WSDL level, although it is possible to specify them
on a higher-level XML schema. Another approach is
to define separate operations for each managed ob-
ject, such as getIfInOctets or changeIfoperationalSta-
tus that both provide management functionality for
a part of a network interface. These operations only
expect one parameter which is the index of the inter-
face, to distinguish it from other interfaces in the same

EUNICE 2004 Tampere, Finland

system.
We state that in theory there are four different ex-

treme approaches for the definition of management
operations. As the example above already mentions,
there can be a difference in the granularity of oper-
ations: coarse grained such as get and fine grained
such as getIfInOctets. But for each form of granular-
ity the parameters of operations can be either defined
at WSDL level, or be kept opaque and possibly de-
fined in a higher-level (XML) schema. This will be
referred to as operations that have either transparent
or non-transparent parameters at WSDL level. These
extreme forms are summarised in figure 3.

P
�a

�r�a
�m

�e
�t�e

�r�
�t�r

�a
�n

�s
�p

�a
�r�e

�n
�c
�y

�

Operation granularity�

coarse� fine�

full�

none�

Get(param)� GetIfInOctets(param)�

Get(oid, index,�

filter, ...)�

GetIfInOctets(index,�

filter, ...)�

Fig. 3: Operation extremes

A. Parameter transparency

For WSDL operations, management information is
exchanged through (SOAP) messages. These mes-
sages can consist of several parts. Note that there is a
difference between the traditional view of parameters
passed to an operation and the parts of the messages
that are involved in a WSDL operation. Of course,
each parameter can be explicitly defined in a <part>
element. Input parameters would then be parts of an
input message and vice versa for the output parame-
ters. An example is given in figure 4, which explains
how messages are defined in case each parameter is
mapped to a single part.

On the other hand, parameters can also be com-
bined and/or serialised in such a way, that the parame-
ters are not described at WSDL level anymore. Merely
their serialisation, is described in a message part. This
is called parameter transparency. In that case, se-
rialising should be done upon composing a message
and desexualisation upon receiving it. This means
that besides awareness of the operation parameters, a
management application (and agent) should also offer
(de-)serialisation capabilities. Figure 5 shows what a
WSDL message looks like when operation parameters
are transparent at WSDL level.

An advantage of transparency is that management
information is abstracted from protocol level, so the
structure of information can change without having

WSDL document�

 <interface name="getInterface">�

 <operation name="get">�
 <input message="getRequest"/>�
 <output message="getResponse"/>�
 </operation>�
 </interface>�

<message name="GetRequest">�
 <part name="oid" type="string"/>�
 <part name="index" type="string"/>�
 <part name="filter" type="string"/>�

 ...�
</message>�

…�

Fig. 4: Operation with non-transparent parameters

WSDL document�

 <interface name="getInterface">�
 <operation name="get">�
 <input message="getRequest"/>�
 <output message="getResponse"/>�
 </operation>�

 </interface>�

<message name="GetRequest">�
 <part name="param" type="string"/>�

</message>�

…�

Fig. 5: Operation with transparent parameters

to modify the operation messages. Suppose a Web
service supports an operation (irrespective of granu-
larity) with full transparent parameters, such as in the
bottom half of the graph of figure 3. All parameters
are serialised into one message part, called param. In
case the parameters are serialised in an XML struc-
ture, it can be contained in a message where the part
has (XML-)string type. On both the manager and
agent side, a generic XML parser can then be used to
extract the parameters from the message.

Suppose management information is also defined in
XML structures [23], [7], when the agent receives an
information request, selecting the information from
these structures can be easily done using XPath [29]
expressions.

On the manager side however, it means that there
should be functionality to firstly create such an XML
data structure before the Web service can be called.
This entails that it can only be used in either more
specific network management applications or by more
experienced users/developers. In other words, param-
eter transparency offers the use of operations very ex-
pressively, but this is only useful for professional users
who need this kind of flexibility. For a PC user in his
home environment who wants to include some man-
agement information in his spreadsheet, this will be-
come too complicated. In that case, a simple opera-
tion is required where a user does not need to create
complicated parameter structures in order to compose

On the standardisation of Web service management operations

the messages in a correct form.
Therefore we can conclude that only if expressive-

ness is wanted or the use of generic XML parsers is ac-
cepted, it is interesting to have operations with trans-
parent parameters. Non-transparent parameters make
operations easy to understand for users and easy to
develop for developers.

B. Operation granularity

The other degree of freedom is operation granular-
ity: the level of variation between very coarse and very
fine operations. In order to illustrate this, we will as-
sume to have a managed system of which system in-
formation and network interface information can be
requested. The variables for system information are
rather straightforward, namely its location and up-
time: SysLocation and SysUptime. The network in-
terface information is a bit more complex, since a
system can have more than one interface. Therefore
the same variables can be retrieved for each single
network interface: IfInOctets, IfOutOctets, IfInErrors
and IfOutErrors. Figure 6 shows a containment dia-
gram, which depicts these several types of information
we can retrieve from a system.

All�

Interface (index = n)�

Interface (index = 2)�

System�

SysLocation�

SysUptime�

Interface (index = 1)�

IfInOctets�

IfOutOctets�

IfInErrors�

IfIOutErrors�

getAll()�

getSystem()�

getSysUptime()�

getInterface(index)�

getIfOutOctets(index)�

Fig. 6: Containment diagram

In order to retrieve this information from the sys-
tem, we can define operations that request the man-
aged system for this information. If we consider using
very fine operations we would get operations such as
getSysUptime or getIfOutOctets as is also shown in fig-
ure 6. So a fine granularity of operations means that
for each variable a single operation is defined. Oper-
ations for network interface information need to have
a parameter supplied to identify the interface.

Suppose one wants to request all information from
one network interface. This would result in calling an
operation for each single variable. Therefore, a bit
coarser operations can also be defined, such as getSys-
tem, getInterface(index) or perhaps even all informa-
tion contained in the managed system. In that case,
there is not only a single operation for each variable,
but also for each container where All is the container
that contains ’everything’.

An advantage of this approach is that if the naming
of the operations precisely defines the functionality, it
is very clear to a user which operation to call to re-
trieve the information he wants. Generally speaking,
the parameters passed to an operation, be it trans-
parent or not, can be simpler since selecting an object
is already done by choosing the corresponding oper-
ation. In the case of more than one instance of an
object (such as the network interface example) one
has to provide an instance identifier.

Suppose someone wants to select different types of
variables, such as all System variables and the IfIn-
Errors of an interface with index = 2, then one is
forced to call two separate operations. If we consider
the containment hierarchy as a tree of fine operations
(figure 7), then we can state that one fine operation
does not allow selection in separate branches of the
tree, e.g. one operation can not retrieve both System
and IfInErrors. Only the operation corresponding to
the node where these branches meet (getAll) would
make it possible to retrieve this information. However,
getAll does not only retrieve System and IfInErrors,
but much more information that in this case would be
redundant.

getInterface(index)�getSystem()�

getSysLocation()�

getAll()�

getSysUptime()� getIfInOctets(index)�

getIfOutOctets(index)�

getIfInErrors(index)�

getIfOutErrors(index)�

Fig. 7: Containment tree

Suppose filtering the result would be possible on the
agent side. This makes it possible to get all informa-
tion that satisfies some criteria, or get all information
with some exceptions or up until a certain depth of
the tree. We will use the term filtering for any of
these kinds of criteria. Theoretically filtering would
make it possible to retrieve any single variable or con-
tainer only using getAll together with a filter. This
leads to the concept of a very generic operation, for
instance get. When provided with a container-name or
variable-name, a possible index and perhaps a (sim-
pler) filter, get can be used to retrieve any kind of
information on any level in the containment tree. In
that case, get is an example of an extreme coarse op-
eration, having a very generic name and used for more
than a single task, in fact for all tasks.

This behaviour makes get a very expressive oper-
ation, because with one single operation one can get
any type of information from the managed system. It
does make the parameters that should be passed to
the operation more complex, whether they are trans-
parent or not.

It also poses a more complex naming problem. With
fine operations, the network manager only needs to
know which index to provide when it requests infor-
mation from an object that can have more than one

EUNICE 2004 Tampere, Finland

instance. On the other side, with coarse operations a
network manager needs to know how to address any
objects or instances on the agent side.

C. Summary

Four extreme forms of management operations are
distinguished, all of which have some advantages and
disadvantages. Operation with non-transparent pa-
rameters are more likely to be used easily, since pa-
rameters are defined at WSDL level. When types are
kept simple, it is very easy for a simple user in a home
environment to include management information in
for instance a spreadsheet or word processing docu-
ment. The disadvantage of specifying management
information at WSDL level is that in case the man-
agement information changes, the WSDL also needs
to be modified and possibly also management appli-
cations.

This in contrast to transparent parameters, where
management information is abstracted from protocol-
level. This does pose the need for a higher-level
(XML) schema for the definition of management infor-
mation. The result is that even though this approach
seems more flexible and expressive, it is more likely
to be used by professional operators. It can be more
complicated to create a higher level message structure
in "simple", generic applications such as spreadsheets.

An advantage of having very coarse operations is
that the Web service definition can be kept rather sim-
ple, with regard to the number of available operations.
The implementation of such an operation however, is
more likely to be more complicated than a fine op-
eration, same as for the structure of parameters and
therefore its usability. Fine operations should make
clear what functionality it entails and both its usabil-
ity and implementation can be kept simple.

The choice for a certain granularity will be a trade-
off between simplicity and expressiveness. However,
with the extensibility of Web service interfaces it
could be possible to have both an interface with fine-
grained operations, as well as an extended interface
with coarse-grained operations for professional users.

V. Web services-based management

approaches

T
HUSFAR there have been several approaches for
network management with Web services.

Hewlett Packard [30] has developed a logical ar-
chitecture for managing computing resources through
Web services. This is called The Web Services Man-
agement Framework (WSMF) and it has now been
adopted by OASIS [31]). It is developed to address
the growing need of businesses to integrate their sys-
tems, and more specifically the management of those
systems. The framework provides a collection of in-
terfaces that expose a certain type of management in-
formation for so-called managed objects. Each inter-
face has operations that are related to a specific task,
such as monitoring, discovery or configuration. The
WSMF allows for interfaces to be extended or new in-

terfaces to be added for a managed object. The aim is
to provide a generic, platform independent interface to
management information. The operations provided by
the interfaces that are standardised, are generally op-
erations with a fine granularity which serve a specific
task. When needed, the extensibility of Web services
can be used to specify new non-standardised opera-
tions. Since common interfaces provide common op-
erations, one single interface (and thus its operations)
can also be used for a collection of managed objects.

Ricardo Neisse et al. [32] introduce the idea of
defining methods on different levels of granularity in-
stead of merely copying the SNMP primitives. In
this SNMP to Web services gateway, methods are de-
fined on a so-called protocol-level or on an object-level.
Methods on protocol-level are translations of SNMP
primitives: Get, GetNext and Set, whereas on the
object-level there is a specific Get method for each
scalar and table object, such as GetSysLocation or
GetIfTable. A Set method is created for each writable
object, i.e. SetSysLocation or SetIfAdminStatus. So
the protocol-level gateway has a few operations with
very coarse granularity, whereas the object-level gate-
way supports only operations with very fine granu-
larity. The incentive of this research project was to
conduct a bandwidth comparison between the gate-
way fine coarse operations and the gateway with fine
operations. The result of this comparison was that
protocol-level gateways are only interesting when just
a few SNMP objects are concerned. This type of gate-
way uses SNMP object identifiers and the SNMP style
of communication: a response message for each single
value. The object-level gateway reduces network traf-
fic, because it can send collected management infor-
mation back to the manager in one SOAP message.
This turns out to be more efficient with a high num-
ber of instances (this number varies for compressed
or uncompressed messages and for SOAP over HTTP
or over HTTPS). Therefore an object-level gateway is
of particular interest for configuration management,
where typically large amounts of information is trans-
ferred.

NETCONF [33] is a Working Group of the IETF
and chartered to produce a protocol suitable for net-
work configuration. Configuration typically entails
relatively simple tasks such as up- or downloading
whole configurations. It therefore needs only a few ba-
sic operations to transfer large amounts of data. The
NETCONF protocol offers a small set of coarse op-
erations to manage device configurations and retrieve
device state information. However, these set of coarse
operations is meant to be extensible with finer opera-
tions when specific functionality is required. But con-
sidering the expected usage of coarse operations, there
is no need for standardising finer operations. Commu-
nication is performed through the exchange of XML
messages, which makes NETCONF acknowledge that
using SOAP for message exchange is definitely inter-
esting [34]. It offers the functionality that is wanted,
but more important it is widely supported on many

On the standardisation of Web service management operations

platforms and understood by more and more people.
It could therefore be used as a Web service, especially
since Web services also provide standard support for
importing definitions in case of extensible operations.

VI. Conclusion

In summary, standardising Web services-based net-
work management operations should be done by stan-
dardising the messages, interfaces and possibly the
types of a WSDL document, i.e. the abstract part.
This allows for the reusability of operation definitions
for several bindings or services. The concrete WSDL
(with a location and possibly a protocol binding) of
a network management Web service can then import
the abstract WSDL document and thereby using stan-
dardised operations to monitor or configure manage-
ment information. Interfaces have the extra feature
that they can be extended, therefore allowing sim-
ple, generic interfaces be defined and where necessary,
more complex, specific interfaces based on these.

Operations with fine granularity are generally very
simple to use. They are easily understood, provide
limited functionality per operation and are therefore
very suitable for easily creating management applica-
tions. Should an application require coarser opera-
tions, there is still the possibility to extend interfaces
with these operations.

Non-transparent parameters are also a means of
providing easy understanding of operation function-
ality. It also makes it possible to simply use these op-
erations in office applications, such as a spreadsheet,
or in a simple database environment, for there is no
need for extra tools like XML parsers or other tools
to (de-)serialise parameters in case of higher trans-
parency.

What becomes clear from the existing Web services
approaches, is that two of them offer a small basic set
of coarse operations and at the same time acknowledge
the need for extensibility with finer operations. Only
the WSMF provides some basic fine operations, but
they can be applied to similar managed objects that
reside on different locations. The WSMF also allows
for extension of its operations.

The work presented here is part of ongoing research.
We strongly encourage interested parties to react and
comment on the discussed issues.

References

[1] R. Frye, D. Levi, S. Routhier, and B. Wijnen, “Coex-
istence between Version 1, Version 2, and Version 3 of
the Internet-standard Network Management Framework,
RFC3584,” RFC 3584, Internet Engineering Task Force,
August 2003.

[2] William Stallings, SNMP, SNMPv2, SNMPv3, and
RMON 1 and 2, Addison-Wesley, Reading, MA, USA,
third edition, 1999.

[3] Jean-Philippe Martin-Flatin, Web-Based Management of
IP Networks and Systems, John Wiley & Sons, Ltd.,
Chichester, West Sussex, PO19 8SQ, England, 2003.

[4] Chris Wellens and Karl Auerbach, “Towards useful man-
agement,” The Simple Times, vol. 4, no. 3, pp. 1–6, July
1996.

[5] J. Schönwälder, A. Pras, and J.P. Martin-Flatin, “On the
future of internet management technologies,” IEEE Com-

munications Magazine, vol. 41, no. 10, pp. 90–97, Oct.
2003.

[6] Mi-Jung Choi, James W. Hong, and Hong-Taek Ju, “XML-
based Network Management for IP Networks,” ETRI Jour-
nal, vol. 25, no. 6, pp. 445–463, Dec. 2003.

[7] F. Strauß and T. Klie, “Towards XML oriented inter-
net management,” in Proc. 8th IFIP/IEEE International
Symposium on Integrated Network Management, Colorado
Springs, Mar. 2003, pp. 505–518.

[8] “The Internet Engineering Task Force (IETF),”
<url:http://www.ietf.org>.

[9] “Network Management Research Group,”
<url:http://www.ibr.cs.tu-bs.de/projects/nmrg/>.

[10] “Internet Research Task Force,”
<url:http://www.irtf.org>.

[11] “Internet Architecture Board,”
<url:http://www.iab.org>.

[12] J. Schönwälder, “Overview of the 2002 IAB Network Man-
agement Workshop, RFC3535,” RFC 3535, Internet Engi-
neering Task Force, May 2003.

[13] “IETF: Evolution of SNMP Working Group,”
<url:http://www.ietf.org/ietf/eos/>.

[14] “IETF: Next Generation Structure of Management Infor-
mation Working Group,”
<url:http://www.ietf.org/ietf/sming/>.

[15] “W3C: World Wide Web Consortium,”
<url:http://www.w3.org>.

[16] Frank Dzubeck, “Is it time to re-engineer SNMP?,”
<url:http://www.nwfusion.com/columnists/2004/
0322dzubeck.html>, Mar. 2004.

[17] “W3C: Web Services Activity,”
<url:http://www.w3.org/2002/ws/>.

[18] “W3C: Web Services Architecture (8 August 2003),”
<url:http://www.w3.org/TR/2003/
WD-ws-arch-20030808/\#whatis>.

[19] “W3C: XML Protocol Working Group,”
<url:http://www.w3.org/2000/xp/Group/>.

[20] “W3C: Web Services Description Language (WSDL) Ver-
sion 2.0 Part 1: Core Language,”
<url:http://www.w3.org/TR/wsdl20/>.

[21] “W3C: XML Schema,”
<url:http://www.w3.org/XML/Schema>.

[22] “W3C: Web Services Description Language (WSDL)
Version 2.0 Part 2: Message Patterns,”
<url:http://www.w3.org/TR/2004/
WD-wsdl20-patterns-20040326/>.

[23] “Avaya Labs Research - XML based Mgmt Interface,”
<url:http://www.research.avayalabs.com/user/mazum/
Projects/XML/>.

[24] “Unified Modeling Language,”
<url:http://www.omg.org/uml/>.

[25] J. Schönwälder and A. Müller, “Reverse engineering
internet MIBs,”
<url:http://www.ibr.cs.tu-bs.de/vs/papers/im-2001.
pdf>.

[26] “OASIS Universal Description, Discovery and Integration
TC,”
<url:http://www.uddi.org/>.

[27] K. McCloghrie and F. Kastenholz, “The interfaces group
MIB using SMIv2,” RFC 2233, Internet Engineering Task
Force, Nov. 1997.

[28] P. Grillo and S. Waldbusser, “Host resources MIB,” RFC
2790, Internet Engineering Task Force, Mar. 2000.

[29] “W3C: XML Path Language (XPath) Version 1.0,”
<url:http://www.w3.org/TR/xpath/>.

[30] “HP - Web Services Management Framework,”
<url:http://devresource.hp.com/drc/specifications/
wsmf/>.

[31] “OASIS Web Services Distributed Management TC,”
<url:http://www.oasis-open.org/committees/wsdm/>.

[32] R. Neisse, R. L. Vianna, L. Z. Granville, M. J. B. Almeida,
and L. M. R. Tarouco, “Implementation and Bandwidth
Consumption Evaluation of SNMP to Web Services Gate-
ways,” IEEE/IFIP Network Operations & Management
Symposium, Apr. 2004.

[33] “IETF: NETCONF Working Group,”
<url:http://www.ops.ietf.org/netconf/>.

[34] T. Goddard, “NETCONF over SOAP,” Internet-Draft,
feb 2004,
<url:http://www.ietf.org/internet-drafts/
draft-ietf-netconf-soap-01.txt>.

	I Introduction
	I-A Towards XML-based network management
	I-B Web services-based network management
	I-C Goal
	I-D Approach

	II Web services background
	III Standardisation for network management
	IV Web services-based management operations
	IV-A Parameter transparency
	IV-B Operation granularity
	IV-C Summary

	V Web services-based management approaches
	VI Conclusion

