
Prototyping Web Services based
Network Monitoring

Thomas Drevers, Remco van de Meent, Aiko Pras

Abstract— Web services is one of the emerging ap-
proaches in network management. This paper de-
scribes the design and implementation of four Web
services based network monitoring prototypes. Each
prototype follows a specific approach to retrieve man-
agement data, ranging from retrieving a single manage-
ment data object, to retrieving an entire table of such
objects at once. We have focused on the interfaces ta-
ble (ifTable), as described in the IF-MIB.

This paper also provides some preliminary measure-
ment results, showing the amount of bandwidth re-
quired by our prototypes, the effect of compression of
the management data, and the effect of having more
management data objects. It turns out that the band-
width usage without compression is between 1 Kbyte
to retrieve a single data object, up to 4.2 Kbyte to
retrieve the entire ifTable. Compression, however, re-
duces these numbers significantly: up to 87% less band-
width usage.

Keywords— Web services, performance, network
management.

I. Introduction

SEVERAL new approaches to network manage-
ment are currently emerging. These approaches

often focus on the use of the XML language, exam-
ples of these approaches are JUNOscript [1] and the
work of the IETF network configuration workgroup
(netconf) [2].

A special form of XML technology is Web ser-
vices [3], which are being developed by the World
Wide Web Consortium (W3C). Web services seem
to be a promising technology for network manage-
ment [4].

Although several papers have been published on the
use [5] and performance [6] of Web services based man-
agement, these papers usually focus on the use of a
gateway between the Web services, and the Simple
Network Management Protocol (SNMP) [7].

In our research we focus on the performance of Web
services based network management without the use
of gateways. Our intention is to measure the perfor-
mance of the Web services with respect to bandwidth
consumption, agent CPU time consumption, agent
memory consumption and round trip time. To de-
termine the impact of different data encodings on the
performance, multiple Web services based prototypes
will be created, each using a different data retrieval
scheme.

All authors are with the Department of Electrical Engineer-
ing, Mathematics and Computer Science, University of Twente,
PO Box 217, 7500 AE Enschede, the Netherlands. Email:
{drevers,meent,pras}@cs.utwente.nl .

A. Contribution

In this paper we present the design and implementa-
tion of several Web services based agents for network
management. These agents focus on network monitor-
ing, because this is one of the most common tasks of
management. The paper also includes some prelim-
inary measurement results; a full comparison study
will be described in a future paper.

B. Approach and Structure

The development of Web services based network
monitoring agents can be divided into two phases: a
design phase, in which the functionality of the agent is
defined, and an implementation phase, in which pro-
totypes are build.

The design phase, which is presented in Section II,
starts with an analysis of the structure of SNMP’s
interfaces table (ifTable). We decided to focus on
this table, since it contains important data with re-
spect to the usage of the network links. In the tradi-
tional SNMP world, the ifTable is probably the most
frequently used table for network monitoring pur-
poses. The outcome of the design phase are several
WSDL [11] descriptions; each specific for one particu-
lar approach to retrieve interface data.

The implementation phase, which is presented in
Section III, starts with the selection of a Web services
toolkit to handle the encoding and decoding of the
Web services messages. This toolkit will be respon-
sible for generation the communication (WSDL) part
of the prototypes; additional software will be needed
to retrieve data from the kernel. After the toolkit has
been selected, the structure of the agent prototypes
will be discussed. At the end of the implementation
phase, certain additions should be made to facilitate
measurements. This section therefore concludes with
a discussion of the measurements we want to perform,
and the additions needed for such measurements.

Section IV provides some preliminary measurement
results. These results give an indication of the perfor-
mance differences between two types of Web services
based network monitoring agents. This section will
not discuss all possible performance issues, but only
the issue of bandwidth consumption. A full perfor-
mance study is outside the scope of this paper, but
will be the subject of another paper.

II. Design

In this section the design of the Web services based
network monitoring agents is discussed. The struc-
ture of SNMP’s ifTable is analyzed in order to deter-

Prototyping Web Services based Network Monitoring

mine suitable data retrieval schemes, which we will
call granularities. For each of the granularities a Web
service is designed and described using WSDL.

A. Structure of the ifTable

In this study we have focused on the ifTable, which
is part of the Interfaces Group MIB (IF-MIB) [12].
The ifTable contains data objects related to the state
of all network interfaces available in the system on
which the agent runs.

The ifTable consists of a variable amount of rows,
depending on the number of network interfaces in the
agent system, and a fixed number of 22 columns. For
each network interface in the agent system, both phys-
ical (Ethernet, token-ring, etc.) and virtual (loop-
back, tunnel, etc.), one row is assigned. Every col-
umn represents a specific piece of information on the
interface, e.g., the index number, or the amount of in-
coming data octets. See Figure 1 for an excerpt from
the entire ifTable.

Interface 1

Interface 2

Interface 3

i
f
I
n
d
e
x

i
f
D

e
s
c
r

i
f
S

p
e
e
d

i
f
M

T
U

i
f
P

h
y
s
A

d
d
r
e
s
s

i
f
O

u
t
U

c
a
s
t
P

k
t
s

i
f
O

u
t
E

r
r
o
r
s

i
f
O

u
t
Q

L
e
n

i
f
S

p
e
c
i
f
i
c

Fig. 1. Excerpt of the ifTable

In our research, we want to make make a full com-
parison between our Web services based network man-
agement agents, and the Net-SNMP agent [13]. Net-
SNMP is a widely used open source SNMP implemen-
tation. The ifTable represented by Net-SNMP con-
tains only 18 of the 22 columns described in the IF-
MIB. To ensure a fair comparison between SNMP and
the network monitoring Web services, our prototypes
will use the same 18 columns.

B. Granularities

Using the ifTable as partly shown in Figure 1, we
have determined 4 distinct data retrieval schemes,
each resulting in a different network monitoring agent.
All schemes (or granularities) will be able to retrieve
any data object from the ifTable; the distinction is
that the structure and amount of data objects that
are retrieved varies.

The first granularity is to retrieve all data objects
separately. This method is comparable to the method
used by the SNMP protocol (through the Get oper-
ation), although SNMP allows multiple data objects
to be contained in a single message. Our Web service
that retrieves a single data object at a time is called
GetIfCell.

The second granularity is to retrieve all data objects
in the ifTable in a single operation. The Web service
that retrieves all data objects in the ifTable at once is
called GetIfTable.

The third granularity is to retrieve an entire row of
data objects at a time, thus transmitting all available
information on a single network interface. The Web
service that retrieves a single row of data objects at a
time is called GetIfRow.

The last granularity we have investigated, is to re-
trieve an entire column of data objects at a time, thus
transmitting the same piece of information for all net-
work interfaces. The Web service that handles one
column at a time will be called GetIfColumn.

Figure 2 shows examples of the data objects re-
trieved by one operation of each of the granularities:
GetIfCell (a), GetIfColumn (b), GetIfRow (c) and
GetIfTable (d).

A. Cell
 B. Column

C. Row
 D. Table

Fig. 2. The interfaces table

C. WSDL descriptions of the ifTable

The WSDL description of each of the four Web ser-
vices consists of five main (container) elements:
• The <types> element.
• The <message> elements.
• The <portType> element.
• The <binding> element.
• The <service> element.

Each of the five main elements contains a set of el-
ements used to describe a part of the interface for the
Web services based network monitoring agents. The
purpose and contents of each main element will be ex-
plained in the remainder of this section. The complete
WSDL descriptions of our Web services can be found
at http://www.simpleweb.org/wsdl-if-mib/ .

C.1 <types> element

There are two types of type-elements used by XML:
simpleType and complexType elements. simpleType
elements contain a single value of predefined form.
An example of a simpleType is an integer or a string.
complexType elements group other elements together.
An example of a complexType element is an Address

element which contains street, postal code, and city

(sub)elements.
In the WSDL description of our Web services net-

work monitoring agents, complexType elements are
used to group management data objects as defined
by the ifTable together. The grouping corresponds
to the granularity of the Web service. For instance,
all columns of the ifTable can be grouped together,

EUNICE 2004 Tampere, Finland

yielding a complexType definition that can be used to
denote an entire column.

For the GetIfRow and GetIfCell Web services, it
may be necessary to retrieve a list of all available net-
work interfaces in the agent system, in order to refer-
ence the desired interface in the actual operation. The
following WSDL excerpt shows the <complexType>
that is used to denote this list.

<types>
<complexType name="interfaces">
<sequence>
<element name="index"/>

</sequence>
</complexType>
...

</types>

The GetIfColumn Web service uses complexTypes
to denote lists of integers and strings in order to seri-
alize the requested data. The definition of these com-
plexTypes is similar to the definition above.

For the GetIfTable and GetIfRow Web services,
we introduce the complexType “ifEntry”, grouping
columns together as shown below. Note that for the
GetIfRow Web service, the <sequence> element is left
out, as only one row is selected at a time.

<types>
<complexType name="ifEntry">
<sequence>
<element name="ifIndex" type="xsd:unsignedInt"/>
<element name="ifDescr" type="xsd:string"/>
<element name="ifType" type="xsd:unsignedInt"/>
<element name="ifMtu" type="xsd:unsignedInt"/>
<element name="ifSpeed" type="xsd:unsignedInt"/>
<element name="ifPhysAddress" type="xsd:string"/>
<element name="ifAdminStatus" type="xsd:unsignedInt"/>
<element name="ifOperStatus" type="xsd:unsignedInt"/>
<element name="ifInOctets" type="xsd:unsignedInt"/>
<element name="ifInUcastPkts" type="xsd:unsignedInt"/>
<element name="ifInDiscards" type="xsd:unsignedInt"/>
<element name="ifInErrors" type="xsd:unsignedInt"/>
<element name="ifOutOctets" type="xsd:unsignedInt"/>
<element name="ifOutUcastPkts" type="xsd:unsignedInt"/>
<element name="ifOutDiscards" type="xsd:unsignedInt"/>
<element name="ifOutErrors" type="xsd:unsignedInt"/>
<element name="ifOutQLen" type="xsd:unsignedInt"/>
<element name="ifSpecific" type="xsd:string"/>

</sequence>
</complexType>
...

</types>

C.2 <message> elements

The <message> container elements are used to the
describe the information that is being exchanged be-
tween a Web service and a user. There are <message>
elements for both request (input) messages as well as
response (output) messages. For request messages, a
<message> consists of zero or more <part> elements
that correspond to the parameters of the Web service.
For response messages, the <part> elements describe
the response data. All <part> elements are associ-
ated with a type as defined in the <types> container
element.

The GetIfTable Web service supports one opera-
tion: retrieving the complete table. The following list-
ing shows the message elements the GetIfTable Web
service uses for this operation. This listing shows
a request message containing a “community” string,
which is used for authentication similar to the first two

versions of SNMP. The response message contains the
“ifEntry” element, which was shown in the previous
section, and an integer containing the amount of rows
in the table.

<message name="GetIfTableRequest">
<part name="community" type="xsd:string"/>
</message>

<message name="GetIfTableResponse">
<part name="sizeTable" type="xsd:int"/>
<part name="ifEntry" type="utMon:ifEntry"/>
</message>

The other Web services all support more than one
operation. The GetIfRow Web service supports two
operations, i.e., retrieving a specified row and retriev-
ing a list of valid row index numbers (corresponding
to the network interfaces in the agent system). The
description of GetIfColumn Web service defines 18 op-
erations: a distinct operation for retrieving data from
each of the columns in the ifTable. Similarly, the
GetIfCell Web service also has a separate operation
for each column. The GetIfCell Web service also sup-
ports an operation to retrieve a list of valid row index
numbers.

The following listing shows the messages for two of
the operations used by the GetIfCell Web service. The
request messages have an index element, which is used
to reference the correct cell.

<message name="getIfIndexRequest">
<part name="index" type="xsd:unsignedInt"/>
<part name="community" type="xsd:string"/>
</message>

<message name="getIfIndexResponse">
<part name="ifIndex" type="xsd:unsignedInt"/>
</message>

<message name="getIfDescrRequest">
<part name="index" type="xsd:unsignedInt"/>
<part name="community" type="xsd:string"/>
</message>

<message name="getIfDescrResponse">
<part name="ifDescr" type="xsd:string"/>
</message>

C.3 <portType> element

A <portType> element describes the operations
supported by a specific Web service: the request and
response messages associated to each operation, and
(optional) documentation of these operations.

As mentioned above, the GetIfTable Web service
supports a single operation, which is shown in the fol-
lowing listing:

<portType name="GetIfTableServicePortType">
<operation name="GetIfTable">
<documentation>function utMon__GetIfTable</documentation>
<input message="tns:GetIfTableRequest"/>
<output message="tns:GetIfTableResponse"/>

</operation>
</portType>

The other Web services support more operations;
the following listing shows part of the <portType>
element for the GetIfColumn Web service.

<portType name="GetIfColumnServicePortType">
<operation name="getIfIndex">
<documentation>function utMon__getIfIndex</documentation>
<input message="tns:getIfIndexRequest"/>
<output message="tns:uIntArray"/>

</operation>

Prototyping Web Services based Network Monitoring

<operation name="getIfDescr">
<documentation>function utMon__getIfDescr</documentation>
<input message="tns:getIfDescrRequest"/>
<output message="tns:stringArray"/>

</operation>
<operation name="getIfType">
<documentation>function utMon__getIfType</documentation>
<input message="tns:getIfTypeRequest"/>
<output message="tns:uIntArray"/>

</operation>
...

</portType>

C.4 <binding> element

A <binding> container element provides concrete
information on what protocol is being used for the
Web service, and how data is encoded and trans-
ported. Similar to the <portType> element, it also
includes the operations that are supported by the Web
service, as well as the request and response messages
associated to each operation.

The following listing shows part of the <binding>
element for the GetIfColumn Web service. In our pro-
totypes, we use SOAP messages on top of the HTTP
protocol. The <binding> elements of the other Web
services use the same encodings.

<binding name="GetIfColumnServiceBinding"
type="tns:GetIfColumnServicePortType">

<SOAP:binding style="rpc"
transport="http://schemas.xmlsoap.org/soap/http"/>

<operation name="getIfIndex">
<SOAP:operation soapAction=""/>
<input>
<SOAP:body use="encoded" namespace="urn:utMon"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<SOAP:body use="encoded" namespace="urn:utMon"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
<operation name="getIfDescr">
<SOAP:operation soapAction=""/>
<input>
<SOAP:body use="encoded" namespace="urn:utMon"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</input>
<output>
<SOAP:body use="encoded" namespace="urn:utMon"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
</output>

</operation>
...

</binding>

C.5 <service> element

The fifth and last container element, i.e. the
<service> element, is used to define the location of
the Web service and the binding element that this
server supports. The following listing shows the ser-
vice definition for the GetIfRow Web service.

<service name="GetIfRowService">
<documentation>GetIfRow service</documentation>
<port name="GetIfRowService"
binding="tns:GetIfRowServiceBinding">
<SOAP:address location="http://yourhost.com"/>

</port>
</service>

III. Implementation

This section describes the implementation of the
previously defined Web services. Firstly, a Web ser-
vices toolkit is chosen to support the handling of en-
coding and decoding of the Web services messages.

This toolkit should preferably also assist in the con-
version of the WSDL descriptions into program code.
Secondly, an overview is given of the prototype imple-
mentation. Finally, the instrumentation of the proto-
type implemententation to support performance mea-
surements is discussed.

A. Web services toolkits

A toolkit is used to support the prototype imple-
mentations with regard to handling WSDL. We have
found three toolkits that support the same program-
ming language as Net-SNMP, i.e., the C programming
language. It is highly recommended that the toolkit
of choice supports the same programming language as
Net-SNMP, so that the code of Net-SNMP that re-
trieves data from the operation system kernel (which
keeps track of counters necessary for the ifTable) can
be re-used. We consider the following toolkits:

1. easySOAP++ [14],
2. WASP server for C++ [15], and
3. gSOAP [16].

A short description of each of the toolkits will be
given next, in order to illustrate their capabilities, and
to select one toolkit that suits our needs best.

A.1 EasySOAP++

The easySOAP++ Web services toolkit is an open
source initiative intended to create Web services very
fast. The toolkit uses a very simple API to create,
read, write and remove elements in messages. The
toolkit does not do any validity checking of the mes-
sages. There are no apparent compatibility problems
between easySOAP++ and other Web services toolk-
its.

The easySOAP++ toolkit does have several draw-
backs, however. The first drawback is that this toolkit
is only able to act as a server. This means that another
toolkit must to be used to create a client that com-
municates with the easySOAP++ server. The sec-
ond drawback is that the easySOAP++ toolkit does
not support WSDL descriptions in any way. The last
drawback is that there is no documentation for the
toolkit except for some examples. Together, these
three drawbacks make the easySOAP++ toolkit un-
suitable for our purposes.

A.2 WASP server for C++

The WASP server for C++ (WASP) is a commercial
product. This toolkit features an integrated develop-
ment environment, which is not available for the other
toolkits.

The WASP toolkit can use a WSDL description to
create Web services. The toolkit can create both a
server and a client, making it possible to use a single
toolkit for both manager and agent in our research.

Contrary to easySOAP++, the WASP toolkit
comes with extensive documentation, including tutori-
als, reference guides, etc. Also the WASP toolkit cre-
ator, Systinet, mentions an excellent performance [17],

EUNICE 2004 Tampere, Finland

although we have not been able to verify this via an
independent source.

There is only one relatively minor problem with the
WASP toolkit, i.e., it does not support all Linux ver-
sions: just some versions of Redhat and Suse. Con-
cluding, the WASP toolkit is a viable option for im-
plementing our prototypes.

A.3 gSOAP

The gSOAP toolkit is, like easySOAP++, an open
source initiative. The gSOAP toolkit can create both
a client and a server. This toolkit can be used to
create Web services in two ways:

1. A WSDL description is supplied to the toolkit, and
the toolkit then generates the necessary code to en-
code and decode corresponding messages, or
2. An interface description is provided in the C pro-
gramming language, and this description is then used
to create the necessary code and a WSDL description.

Extensive documentation on the use of the gSOAP
toolkit is available, making it relatively easy to use.
Independent sources report that the performance of
gSOAP is good [18]. The gSOAP toolkit supports
compression of the messages by using either the
ZLIB [19] or deflate [20] algorithm. Compression is
not supported by the other toolkits. Because we would
like to investigate the influence of data compression on
our Web services, this is an advantage of gSOAP over
the WASP toolkit.

Because of the advantages of gSOAP compared to
the other toolkits, we have chosen the gSOAP toolkit
as the basis for our prototype implementation.

B. Agent structure

Figure 3 shows the structure of the Web services
prototype implementations. The prototypes are di-
vided into two main areas, i.e., Web services handling
and the management data retrieval.

Management data
 Web services

Z
 L
 I
B

d
 e
 c
 o
 m

 p
 r
e
 s
 s

gSOAP

Decode

Z
 L
 I
B

c
 o
 m

 p
 r
e
 s
 s

gSOAP

Encode

W

 e
 b

s
 e
 r
v
 i
c
 e
 s
 /

M

 a
 n
 a
 g
 e
 m

 e
 n
 t

d
 a
 t
a

i
n
 t
e
 r
f
a
 c
 e

Net-SNMP

Code

L
 i
n
 u
 x

k
 e
 r
n
 e
 l

Initialize

interface

information

Retrieve

interface

infomation

Fig. 3. Structure of the Web services agents

The Web services handling area encompasses all
processing that takes care of encoding, decoding, com-
pressing and decompressing of messages, see subsec-
tion C. The management data retrieval area analyzes
each request, retrieves the management data that is
requested (e.g., from the operating system kernel),

and responds with this management data, see sub-
section D.

C. Web services handling

The Web services handling area provides two sets
of functionality: the encoding and decoding of SOAP
messages, and the (de)compression of these SOAP
messages (when necessary).

As part of the message decoding, the gSOAP toolkit
validates the received SOAP messages on their confor-
mance to the WSDL description of the agent. Based
on the operation mentioned in the SOAP message, a
specific routine is then called to retrieve the requested
management data (see next subsection for details).
After the routine for management data retrieval is fin-
ished, the data returned by the operation is used to
create a response message that will be transmitted to
the manager.

(De)compression of SOAP messages is handled by
ZLIB. The gSOAP toolkit detects whether an incom-
ing message has been compressed or not, and calls the
ZLIB decompression routines in case decompression
is needed. If a request was compressed, the Web ser-
vices agent will automatically compress the response
message.

D. Management data retrieval

The network management data of the ifTable that
is requested through the Web service, is retrieved from
the operating system kernel. This area can be divided
into three parts, as shown in Figure 3: an interface
between the Web service and the actual data retrieval
functions, the re-used Net-SNMP program code to re-
trieve information from the kernel, and the kernel it-
self.

The first part consists of routines that correspond
to the operations as defined in the WSDL descriptions
of the agents (see Section II-C.3). These routines call
the necessary functions from the Net-SNMP code, to
retrieve the requested information. The resulting data
is then put in a data structure that the gSOAP toolkit
can use to construct the response message.

The second part is the re-used code from Net-
SNMP, i.e., program code that retrieves information
from the operating system kernel. The Net-SNMP
code opens, reads and parses a “virtual file” in Linux’
/proc filesystem that contains management informa-
tion of the network interfaces, i.e., /proc/net/dev.

The third part is the Linux kernel, which, among all
its other tasks, keeps track of, e.g., names of network
interfaces and the amount of transmitted data. It up-
dates the “virtual file” that is used by the Net-SNMP
code with the latest information every time the file is
read.

E. Instrumentation of measurements

In order to compare the performance of our various
Web services based network monitoring prototypes
with each other, and with Net-SNMP in the future,
we will look at the following performance measures:

Prototyping Web Services based Network Monitoring

1. Bandwidth consumption: the amount of data trans-
mitted by an operation.
2. CPU time consumption: the amount of time an
operation takes, and how this time is divided over the
different parts of the Web services prototypes.
3. Memory consumption: the amount of memory used
by the Web services prototypes.
4. Round Trip Time: the amount of time that an in-
voking manager has to wait for a response on a request
made to an agent.

The bandwidth consumption and round trip time

can be measured without modifying the network mon-
itoring agents: bandwidth consumption can be mea-
sured by a network analyzer (such as Ethereal), and
the round trip time can be measured at the manager
side.

To measure the CPU time consumption, however,
some modifications of the Web services prototypes
have to be made for calculating the time difference
between the beginning and ending of various func-
tions. To retrieve these time differences, the Linux
gettimeofday function is used. The gettimeofday

function returns the current time with a precision of
at least ten milliseconds. However, with modern pro-
cessors the precision is even better, and likely in the
order of a few microseconds. We distinguish two as-
pects: the total time an operation takes to complete,
and the time needed for data retrieval from the oper-
ating system kernel. By subtracting the time for data
retrieval from the total time, the time for message
processing can be calculated.

Finally, to measure memory consumption, the dMal-

loc library [21] is used, by linking our Web services
prototypes against this library. The dMalloc library
keeps track of all memory allocations, and writes a
summary to disk when the application is terminated.
Subsequent analysis of this data yields memory con-
sumption information.

IV. Preliminary measurement results

For the present paper we have only investigated the
bandwidth consumption of our 4 Web services based
network monitoring agents; the other three perfor-
mance measures will be discussed in future work.

We have focused on bandwidth consumption mea-
sured at the application layer and on the IP layer, see
Figure 4. The IP layer measurements will give band-
width consumption values that can be compared to
other applications, which may use a different protocol
stack (e.g., SNMP over UDP). The application layer
measurements will show the bandwidth consumption
of the Web services themselves, without the overhead
from the HTTP, TCP, and IP protocols.

The Web services based network monitoring agents
allow for compression of messages. We have performed
our measurements for both uncompressed and com-
pressed messages. To indicate the effectiveness of
compression on different message sizes, we have per-
formed measurements of the GetIfTable Web service
for a varying number of network interfaces (between

SOAP

HTTP

TCP

IP

Ethernet

Application-Layer

measurements

IP-Layer

measurements

Fig. 4. Protocol stack of the Web services prototypes

three and fifteen). For the other measurements, the
measurement system was equipped with three network
interfaces (Ethernet, local loopback, and tunnel).

A. IP layer bandwidth consumption

Figure 5 shows the IP layer bandwidth consump-
tion of the Web service prototypes. The figure shows
that in case of uncompressed data, the bandwidth con-
sumption grows relatively fast if the amount of data
increases. To retrieve a single object, approximately
1.8 Kbyte of data is transmitted; to retrieve the entire
ifTable, 5 Kbyte is required. Although the GetIfTable

operation uses more bandwidth than the GetIfCell op-
eration in absolute values, the GetIfTable operation
retrieves 54 data objects at once, while the GetIfCell

operation retrieves only one data object at a time.
Therefore the GetIfTable is relatively more efficient
per data object than the GetIfCell operation.

��������

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	
	�	

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

1000

2000

3000

4000

5000

6000

7000

8000

N
et

w
or

k
us

ag
e

(b
yt

es
)

Cell Column Row Table

Web services
Web services with compression

Fig. 5. Network usage on the IP layer

In case compression is used, the absolute differences
between the different Web services are much smaller
than without compression. For the IP layer the band-
width consumption is decreased by 13% for the GetIf-

Cell operation, up to 56% for the GetIfTable opera-
tion when compared to the bandwidth consumption
of uncompressed data. The compression of the actual
SOAP messages is even better, because the data at
the IP, TCP and HTTP layers is not compressed and,
hence, these layers use the same bandwidth either with
or without compression of the Web services.

B. Application layer bandwidth consumption

At the application layer, the bandwidth consump-
tion is measured without the overhead of the underly-

EUNICE 2004 Tampere, Finland

������

�

�

�

�

�

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

0

1000

2000

3000

4000

5000

6000
N

et
w

or
k

us
ag

e
(b

yt
es

)

Cell Column Row Table

Web services
Web services with compression

Fig. 6. Network usage on the application layer

ing protocols. For instance, the TCP protocol intro-
duces overhead due to connection setup, connection
termination, and ACK packets. The overhead gen-
erated by the underlying protocols does not change
much among the different Web services.

Figure 6 shows the bandwidth consumption of the
Web services at the application layer. From the fig-
ure it can be seen that the (total) size of the SOAP
messages to retrieve a single cell is approximately 1
Kbyte. When retrieving the entire ifTable, the size of
the SOAP messages amounts to some 4.2 Kbyte.

Comparing Figure 6 to Figure 5, it can be seen that
the overhead introduced by the underlying protocols
ranges from 500 to 1000 bytes. This implies that the
relative difference in bandwidth consumption between
the various Web services increases.

The effect of compression is now more apparent,
due to the absence of the overhead of the lower level
protocols. The compression now reduces the size of
the messages to between 50% (GetIfCell) and 27%
(GetIfTable) of the size of the uncompressed SOAP
messages.

The (absolute) differences between the operations in
terms of bandwidth consumption are not very large:
the largest operation, i.e., GetIfTable, requires only
between 3.9 times (no compression) and 2.1 times
(compression) times as much bandwidth as the GetIf-

Cell operation, while the GetIfTable operation trans-
mits 54 times as much management data.

C. Bandwidth usage for larger amounts of interfaces

Figures 5 and 6 have shown that compression re-
duces larger messages more than smaller messages. In
order to determine the effect of compression on even
larger amounts of data, we have measured the band-
width consumption of the GetIfTable operation while
adding up to 12 (virtual) tunnel interfaces to the mea-
surement system’s configuration.

To prevent unrealistic good compression due to a
high number of zeros, the values of the “ifInOctet”,
“ifOutOctet”, etc. columns are randomly generated.
Figure 7 shows the results of these measurements. The
figure shows that compression reduces the bandwidth
consumption per data object in case more interfaces
are added (which increases the number of rows in the

0

5000

10000

15000

20000

2 4 6 8 10 12 14 16

N
et

w
or

k
us

ag
e

(b
yt

es
)

Amount of interfaces

Web services
Web services with compression

Fig. 7. Network usage of the GetIfTable prototype for different
amounts of interfaces

ifTable). In our case the compression reduced the
bandwidth consumption to between 27% of the un-
compressed variant for three interfaces, and only 13%
of the original size for the combination of 3 physical
and 12 tunnel interfaces.

V. Conclusion and Future Work

In this paper we have presented the design and im-
plementation of four Web services based network mon-
itoring prototypes. Each prototype follows a specific
approach to retrieve management data; the data we
have concentrated on is that of the interfaces table
(ifTable), as described in the IF-MIB.

The differences in approach to retrieve management
data, are based on the granularity of the retrieval op-
erations (WSDL messages). The GetIfCell prototype
allows a management application to retrieve only one
data object from the ifTable at a time, the GetIfCol-
umn prototype allows the retrieval of one complete
column, the GetIfRow prototype allows retrieval of
one complete row of the ifTable at a time, and the
GetIfTable retrieves the complete ifTable at once.

This paper also provided some preliminary mea-
surement results. These results show the bandwidth
needed by our prototypes, the effect of compression,
and the effect of having more objects (15 ifTable rows
instead of 3).

The bandwidth usage without compression, mea-
sured at the application layer (i.e., SOAP messages),
is between 1 Kbyte per operation for the GetIfCell
prototype, and 4.2 Kbytes for the GetIfTable opera-
tion. When compression is used, the required band-
width decreases with 50% for the GetIfCell prototype
(to 0.5 Kbyte), and with 73% for the GetIfTable oper-
ation (to 1.1 Kbyte). With a larger ifTable, containing
15 interfaces, the decrease in bandwidth is even 87%
(from 16.6 Kbyte to 2.1 Kbyte).

A. Future work

This paper presented some initial performance fig-
ures; additional measurements are still needed. Ex-
amples of such future measurements are CPU usage,
memory usage, and the round trip time for complete

Prototyping Web Services based Network Monitoring

operations. These figures will also be compared to
those obtained from traditional SNMP agents. The
results of these measurements, as well as the compar-
ison with SNMP agents, will be described in a future
paper

References

[1] P. Schafer, ”XML-Based Network Management”, White pa-
per, Juniper Networks, Aug. 2001.

[2] Network Configuration. netconf Working Group, 2003.
Available at: http://www.ietf.org/html.charters/netconf-
charter.html. IETF

[3] F. Cubera et al., ”Unravelling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI”, IEEE Internet
Computing, vol. 6, Issue 2, pages 86-93, March/Apil 2002.

[4] J. Schönwälder et al., ”On the Future of Internet Man-
agement Technologies”, IEEE Communications Magazine,
pages 90-97, October 2003.

[5] Y. J. Oh et al. ”Interaction Translation Methods for
XML/SNMP Gateway”, 13th IFIP/IEEE International
Workshop on Distributed Systems: Operations and Man-
agement (DSOM 2002), pages 54-65, October 2002

[6] R. Neisse et al., ”Implementation and Bandwidth Consump-
tion Evaluation of SNMP to Web Services Gateways”, To
be published at NOMS 2004.

[7] J. Case, M. Fedor, M. Schoffstall, and J. Davin. ”A Simple
Network Management Protocol (SNMP)”, IETF RFC 1157,
May 1990.

[8] Information processing systems - Open Systems Intercon-
nection, ”Specification of Abstract Syntax Notation One
(ASN.1)”, International Organization for Standardization,
International Standard 8824, December 1987.

[9] Information processing systems - Open Systems Intercon-
nection, ”Specification of Basic Encoding Rules for Ab-
stract Notation One (ASN.1)”, International Organization
for Standardization, International Standard 8825, Decem-
ber 1987.

[10] SNMPv2 Working Group, J. Case, K. McCloghrie, M.
Rose, S. Waldbusser, ”Structure and Identification of Man-
agement Information for Version 2 of the Simple Net-
work Management Protocol (SNMPv2)” RFC 1902, Jan-
uary 1996.

[11] R. Chinnici et al., ”Web Services Description Language
(WSDL) Version 1.2 Part 1: Core Language”, W3C Work-
ing Draft, June 2003.

[12] K. McCloghrie, F. Kastenholz, ”The Interfaces Group
MIB”, IETF RFC 1902, June 2000.

[13] W. Hardaker et al., ”Net-SNMP package”, available from:
http://www.net-snmp.org/.

[14] D. Crowley et al., ”EasySOAP++ Web services toolkit”,
available from: http://easysoap.sourceforge.net/.

[15] Systinet, ”WASP server for C++
Web services toolkit”, available from
http://www.systinet.com/products/wasp cserver.

[16] Robert A. van Engelen, ”gSOAP Web
services toolkit”, 2001, available from:
http://www.cs.fsu.edu/ engelen/soap.html.

[17] Systinet, ”WASP server for C++ Product Datasheet”,
Available from: http://www.systinet.com/.

[18] K. Chiu and M. Govindaraju and R. Bramley, ”Investigat-
ing the Limits of SOAP Performance for Scientific Com-
puting”, 2002.

[19] P. Deutsch and J. L. Gailly. ”ZLIB compression Data For-
mat Specification version 3.3”, IETF RFC 1950, May 1996.

[20] P. Deutsch, ”Deflate compression Data Format Specifica-
tion version 1.3”, IETF RFC 1951, May 1996.

[21] G. Watson, ”Debug Malloc Library (dMalloc)”, available
from: http://www.dmalloc.com.

