
Remote MIB item look-up service

Aiko Pras, Szabolcs Boros and Bert Helthuis,
Centre for Telematics and Information Technology

University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands,

email: {pras | boros}@ctit.utwente.nl

Abstract: Despite some deficiencies, the Internet management framework is widely
deployed and thousands of Management Information Base (MIB) modules have been
defined thus far. These modules are used by implementors of agent software, as well as by
managers and management applications, to understand the syntax and semantics of the
management information that may be exchanged. At the manager’s side, MIB modules are
usually stored in separate files, which are maintained by the human manager and read by the
management application. Since maintenance of this file repository can be cumbersome,
management applications are often confronted with incomplete and outdated information. To
solve this “meta-management” problem, this paper discusses the design of a remote look-up
service for MIB item definitions. Such service facilitates the retrieval of missing MIB
module definitions, as well as definitions of individual MIB items. Initially the service may
be provided by a single server, but other servers can be added at later stages to improve
performance and prevent copyright problems. It is envisaged that vendors of network equip-
ment will also install servers, to distribute their vendor specific MIBs. The paper describes
how the service, which is provided on a best effort basis, can be accessed by managers /
management applications, and how internally servers inform each other about the MIB
modules they support.

Keywords: Internet management, Management Information Base, MIB module, meta-management

1 Introduction
It is already 13 years back that the first definition appeared of the Management Information
Base (MIB) for the Internet [1]. This definition was replaced in 1991 by the MIB-II [2], which
defines 170 objects for the TCP/IP protocol stack and is now a full IETF standard. Since than a
large number of RFCs, defining 180 different standards track MIB modules, appeared. The total
number of items defined in these modules is around 12500 (in this article the term “item” will
be used to denote object types, object identifiers, notifications, textual conventions, etc.). Next
to the MIB modules defined in RFCs, many working groups within the IETF are currently work-
ing on updated or additional MIB modules, defined in more than 200 internet drafts1.
MIB modules are not only defined by the IETF, but also by vendors of network equipment. The
website of mibCentral [3], for example, hosted in May 2001 for twenty of the top vendors
around 2350 MIB modules. According to that website, the total number of items defined by
these modules is more than 200000. To get an idea of the number of MIB modules that might
be defined worldwide, it is important to know that 9700 organisations already obtained an enter-
prise ID from IANA [4]. Under the assumption that the number of modules / objects defined by
a top vendor is ten times more than that defined by an average organisation, the total number of
MIB modules defined worldwide might be around 100000 and the total number of MIB items
might be around 10 million. Although these numbers are maximum values and real networks
will support just a small fraction, it is still likely that managers of real networks will be
confronted with hundreds of different MIB modules. This number is not fixed, but grows when-
ever new devices get connected to the network.

1. Some of these internet drafts update existing MIBs; others are new but will probably never be standardized.
1



This high and changing number raises several problems. One of these problems is that several
management applications, like for example MIB browsers, need to know the definitions of all
MIB items that they are confronted with. For this purpose these applications load a number of
MIB module files, which are usually stored on the manager’s system. It is the responsibility of
the human manager to maintain this repository of MIB module files. This maintenance task,
which can be seen as “management of the management system” (meta-management), is not
always straightforward. After an application has indicated that the definition of a certain item is
missing, the manager has to determine in which MIB module the item should be defined. To
find the missing MIB module file, the manager may have to search the disks of his management
system as well as his documentation CDs. If the search is without success, the manager may
have to send emails to the equipment vendor, post questions in news groups, perform searches
at FTP and web sites1, etc. After the manager has found the correct MIB module, it may be
necessary to transform the file into the proprietary format understood by the management appli-
cation. In some cases the MIB module contains syntactical errors, which must be corrected by
the manager before the file can be used by conversion tools and management applications.
Another problem of having millions of MIB item definitions, is that it may be difficult to find
the right one. If the manager wants, for example, to know which objects provide information on
the load of his systems, the manager could perform a grep on the MIB module files stored in
his local repository. The chance is realistic, however, that his local repository does not contain
the definitions for the most appropriate objects to measure load. As a result, the manager may
not be able to determine system load reliably.

To solve the meta-management problem of maintaining the local MIB module repository, this
paper discusses the design of a remote look-up service for MIB item definitions. The service
allows the retrieval of complete MIB module definition files, as well as the definitions of indi-
vidual MIB items. The service can be called by management applications that require the defi-
nition of certain MIB items, as well as human managers who are searching for specific manage-
ment information.

The structure of the paper is as follows. Section 2 discusses the characteristics and main design
decisions of the MIB item look up service. The interactions between the management systems,
which will be called clients, and the systems that store the MIB item definitions, which will be
called servers, are presented in Section 3. Section 4 discusses the messages which are
exchanged between server systems, including their parameters and the way they are processed.
Conclusions and recommendations are given in Section 5.

2 Design decisions
A first requirement is to facilitate a step-wise introduction of the MIB item look-up service. It
should be possible to start the service from a single server, such as the Simpleweb [5], and add
other servers at later stages. Although it seems technically possible to store all existing MIB
modules on a single server (the amount of disk space needed to store all modules is probably
less than 10 Gbyte), there are several advantages of running multiple servers: the load will be
shared, the response times reduced and the resilience improved.
Next to these performance advantages, the introduction of multiple servers may also be inter-
esting to create “specialized servers”. The IETF, for example, may operate his own server to
distribute the MIB modules that have been developed by the working groups within the IETF.
Likewise, an equipment vendor may operate a server to distribute his proprietary MIB informa-
tion; vendors of management software may have special servers that function in conjunction
with their own software, etc. By introducing specialised servers, it is no longer necessary that

1. On average 30 people per day use the ‘pointers to enterprise specific MIBs’ page on the Simpleweb [5].
2



every server stores every known piece of MIB information. A complication of specialised serv-
ers, however, is that servers should now be able to forward requests from one server to another;
ways in which this can be achieved will be presented in Section 3.
An additional advantage of having multiple servers, is that it becomes possible to deal with
copyrighted MIB information that may not be distributed from servers owned by other organi-
sations. Note that copyrights can also be used by vendors to ensure that MIB information will
only be down-loaded from their own servers; the statistics obtained from these servers may be
strategic to determine which MIB modules should be implemented in future devices and which
not.

Despite the fact that there are a couple of good reasons to introduce multiple servers, the authors
do not expect that there will ever be a large number of servers. In particular the authors do not
believe that there will ever emerge a complete hierarchical directory of MIB module servers,
like for example the DNS, that use the OID naming tree to structure the directory. Such hierar-
chical system seems to rigid and requires to many organizations to participate. A system of
loosely couple servers, each being free to serve whatever MIB module they like, seems to be a
better alternative.

The basic architecture of the MIB item look-up service is shown in Figure 1. This figure shows
five servers, which are loosely coupled via a mesh structure. The idea is that servers only
connect to “friend” servers. It is up to the owner of a server to decide who are the “friends” and
who are not; the negotiation to determine who might be a “friend” is performed off-line (email,
telephone) and will not be discussed in this paper. A “friend” relationship is commutative, but
not transitive. “Friends” can be hard coded in the server’s configuration files.

The architecture supports two kind of messages: data messages, which contain the actual MIB
information, and administrative messages, which are used by servers to inform each other about
the MIB information that is supported. Administrative messages may only be exchanged
between servers; data messages can be exchanged between servers, as well as between client
and server. Clients, which are the actual management systems, may be connected to one or more
servers.

server

cache

management
application

MIB item

server
server

server

server

clients:

look-up service

Figure 1: Architecture of the MIB item look-up service
3



Another design decision was to create a best effort service, and not a guaranteed service. The
concept of best effort services is well accepted within the Internet, and is already an important
step forward compared to the current situation, which was described in Section 1. To ensure that
failures of the look-up service will not degrade the operation of management applications below
the level of today, every management system should cache retrieved MIB modules for a while.
The information within the cache will be used in case of failures of the look-up service, as well
as to improve performance.
Not only the availability of the service, but also the quality of the provided information will be
best effort. This implies that the service may not always return the best possible information; it
is, for example, conceivable that the service returns no information or only outdated informa-
tion. The reason behind this decision, is that it seems impossible to collect every MIB module
that has been defined thus far and include it in the service; this would require that every organ-
isation that defined a MIB module will be prepared to participate by either installing a server,
or by giving his MIB modules to other organizations, who will put it on servers elsewhere. Best
effort is also sufficient: the goal was to simplify the meta-management problem of maintaining
the repository of MIB module files; a situation in which the service is able to deliver 99% of the
desired information, is a step in the right direction and therefore acceptable.

3 Client-server interactions
The MIB item look-up service can be used by clients, which are the systems that run manage-
ment applications, to obtain the definition of one or more MIB items. MIB items can be object
types, object identifiers, notifications, textual conventions, module identities, group statements,
compliance statements, etc. [7]. A client can specify the item in which he is interested by using
the fully qualified numeric object identifier, or the symbolic name. In case multiple items satisfy
the request (the ifTable, for example, is defined in the MIB-II [2] as well as in the Interface MIB
[8]), all items will be returned. The client can refine the search by using switches to indicate that
he is only interested in the most recently defined item, or in the item that has the highest level
on the standards track. In addition to MIB items, the client may also request complete MIB
modules or, for example, the imports of a module.

The data messages that are exchanged between client and server make use of the HTTP
protocol. The information within the HTTP PDUs can be HTML or XML encoded. HTML
encoded information can be displayed in traditional web browsers and may be helpful for
human managers to find specific objects. XML encoding is easier to parse by computer
programs and is therefore better suited for management applications. The XML format can be
the one that is under development by the IRTF Network Management Research Group (NMRG)
[14], as well as some proprietary format that can directly be used in conjunction with manage-
ment applications written in perl, php, python, tcl etc.

In case a server receives a request for a MIB item that is not stored on the server’s local system,
but the server is aware of another server that does have the item, the server may either fetch the
item from the other server, or return to the client the name of that other server. In the last case
the client should re-issue the request to that other server.

A prototype server, called the SimpleMIB look-up service [6], is currently running at the
Simpleweb [5]. To retrieve, for example, the description of the ifTable in perl, the parameters
?module=IF-MIB&object=ifTable&encoding=perl should be used. The implementation of the
server uses the libsmi library [9], which was developed by the Technical University of Braun-
schweig.
4



4 Server-server interactions
The data messages that were discussed in Section 3, can also be used by servers to obtain MIB
items from other servers. In most cases servers will only request complete MIB modules, and
store these modules on their local system. In addition to data messages, servers may also
exchange administrative messages to inform their “friends” which MIB modules they are aware
of. Although “friend” relationship is commutative and not transitive, MIB module information
may still propagate through the entire network of servers, because it is at the discretion of every
server to decide which part of his knowledge will be forwarded, and which not. To a certain
extent administrative messages are comparable to the distance vectors that are exchanged by
certain routing protocols: distance vector PDUs are only exchanged between neighbours, but
the routing information within these PDUs may be used to inform others [10].
In order to avoid loops, servers won’t propagate MIB item information originated by them, nor
information that was already forwarded by them.

The remainder of this chapter will explain which administrative messages exist (Section 4.1),
how these messages are processed (Section 4.2) as well as a number of usage scenarios (Section
4.3)

4.1 Message formats
Three kind of administrative messages exist:
• i_know messages,
• update messages,
• what_do_you_know messages.

i_know and update messages convey information concerning one or more MIB modules. For
each MIB module, the following information is included:
• The source server of the MIB module. This server will also be called authoritative server.

Note that multiple servers may claim to be the authoritative server (Section 4.2 discusses how
to handle in that situation).

• Timestamp, which denotes the local clock of the authoritative server at the moment the
authoritative server distributed this information.

• MIB module name and numeric identity. This information can directly be derived from the
MIB module definition.

• Last update of the MIB module. This information will be obtained from the “last updated”
clause in the MIB module definition.

• OIDs and symbolic names of the top level node(s) within the module. Note that it is sufficient
to send just the top level OID(s), and it is not necessary to send the complete lists of all OIDs

<i_know state_number = 1>
<module name = IF-MIB id = 1.3.6.1.2.1.31 last-updated = 200006140000Z>

<source>www.simpleweb.org/ietf/mibs/oidd/</source>
<timestamp>200104050000Z</timestamp>
<TLnode name = interfaces id = 1.3.6.1.2.1.2 ></TLnode>
<TLnode name = ifMIBObjects id = 1.3.6.1.2.1.31.1 ></TLnode>
<TLnode name = ifConformance id = 1.3.6.1.2.1.31.2 ></TLnode>
<timeout> 2592000</timeout>

</module>
<module name = ...>

...
</module>
...

</i_know>
Figure 2: Example of an i_know message
5



defined by the MIB module. This is comparable to the top-level registration mechanism
defined by the AgentX protocol [11].

• Time-out value of this module. This value indicates how long other servers may cache this
information. Note that new messages (which have a later timestamp) may override this value.

Administrative messages are transferred over the HTTP protocol and are XML encoded. Figure
2 shows an example of the encoding of an i_know message.

Since the size of i_know messages may be considerable, servers may also inform “friends” of
recent changes by sending update messages. As opposed to i_know messages which include
complete information, update messages include just the information differences (delta). To
maintain synchronization, every i_know and every update message includes a <state_number>
(see the first line of Figure 2). Each server maintains his own <state_number>, and increments
this number whenever the state changes because of the addition or removal of a MIB module
definition. As opposed to sequence numbers which are used in many other algorithms, subse-
quent messages may carry the same state number (provided the state did not change).

i_know message may be sent whenever a server boots up, or whenever a server is requested to
forward the complete list of MIB modules that it is aware of. The second event is triggered by
the reception of a what_do_you_know message; such message is usually sent by a server that
boots up, or by a server that lost synchronization due to a lost HTTP message or some other
malfunctioning.

4.2 Message processing
To get an understanding of how MIB module information is exchanged between friends, this
section discusses how a server that received an update message processes that message.
Because of paper size restrictions, processing of i_know and what_do_you_know messages will
not be discussed; the interested reader is referred to the website of the Internet Next Generation
project [12].
First the server checks the <state_number> contained within the message (see Figure 2), to
determine if the server is still synchronised to his “friend”. If this is the case, the server removes

source
is itself

START

already
knows it

same
source

check time-
stamp

duplicates

update

forward

store

return new

newer

the same

older

conflict
resolution

forward

READY

READY READY READYREADY

yes

yes

yes

no

no

no

Figure 3: General overview of the update message processing
6



the outer wrapper of the message and inspects the information of each MIB module one by one.
The processing of individual MIB modules is illustrated in Figure 3, and will be discussed
below.
• The server checks the <source> field (see also Figure 2) of the received MIB module infor-

mation, to determine if it is itself the source of this information. If that is the case, processing
of this MIB module stops to avoid infinite looping of the information.

• If the information comes from another source, the server checks its database to determine if
it has already an entry for this MIB module.

• If the database does not yet have an entry, the server may store the information in the database
and queue it for later forwarding to other “friends”. The decision whether or not to store and
forward the information, depends on local policies and may, for example, be based on the
amount of free disk space or the “friend” relationships. Note that storing the information that
is contained within update messages is not the same as storing the actual MIB module defi-
nitions; if the server wants to store the actual MIB modules, it should use the normal data
messages that were discussed in Section 3.

• If the server’s database contains already an entry for this MIB module, it checks whether the
<source> within the newly arrived message is the same as the one in the database. If they are
not the same, multiple servers claim to be the authoritative server and further checking
becomes necessary (see Figure 4).

• In case the <source> within the newly arrived message is the same as that in the database, the
server checks the <timestamp> within the message to determine of the received information
is more recent than that within the database. To facilitate this check, the server stores for each
module the timestamp as set by the authoritative server.
- if the <timestamp> within the newly arrived message is earlier than that within the data-

base, the server notifies the friend that sent this outdated information about the existence
of newer information concerning this module;

- if the <timestamp> is the same, the information need not further be processed;
- if the <timestamp> within the newly arrived message is the newer than that within the da-

tabase, the information within the MIB module has to be updated and queued for later for-
warding.

check
last updated

START DUPLICATES

new
is better?

store

forward

READY

yes

earlier

Figure 4: Duplicates conflict resolution

CONFLICT RESOLUTION

clause

store READY

forward

READY

newer

the same or unknown

no
7



Figure 4 shows how a server can resolve cases in which multiple sources claim to be the author-
itative server. First the server compares the <last-updated> field within the newly arrived
message to the information contained within the database. The purpose of this comparison is to
determine if the advertised MIB module is older, newer or the same as the one in the database.
In case it is newer, the server may store the information in its database and forward it to other
“friends”. If the module is older, processing stops to avoid the propagation of a presumably
outdated information. If the advertised module has the same age as the one in the database,
further processing depends on the server’s pre-configured policies. If one of the authoritative
servers is his friend, the server may decide to favour that information. A policy may also be to
store all information, in an attempt to improve the resilience of the look-up service. Note that
SMIv1 [13] MIB modules do not contain last-updated clauses, which means that it is not
possible to determine the “age” of such modules.

4.3 Usage scenarios
This section discusses some usage scenarios for normal as well as error cases. The cases will be
illustrated by means of time-sequence diagrams.

One of the cases that can occur during normal operation, is that a server boots up. This case is
shown in Figure 5; server A boots up and sends an i_know message to his “friend” B. This
message includes a <state_number> (A1), and the list of MIB modules server A is aware of
(mod1 and mod2). Server A knows that it has just booted up and may therefore be out of sync
with server B; it issues therefore a what_do_you_know message. After reception of that
message, server B responds with an i_know message. This response includes the state of server
B (B6), as well as the MIB modules B is aware of (mod1 and mod4). In this specific example
server A did not know about mod4; under the assumption that the definition of mod4 is stored
on server C, server A may now issue a normal data command (see Section 3) to fetch that
module from C. Note that server C need not be a “friend” of A.

Error situations can occur due to the malfunctioning of the underlying transport channel, or due
to the malfunctioning of servers. Figure 6 shows an example of a possible error situation. Server
A sends an update message to his “friend”, server B, with a <state_number> A32. Assume that
the update message gets lost in the network. Also assume that shortly afterwards server A learns
about two new MIB modules: mod5 and mod6. Server A increments his state_number, and issues
a new update message, carrying this new <state_number> (A33). Server B receives this update
message, and detects that the <state_number> is higher that the expected one: B would allow
the value it already has (A31), or one higher (A32). Server B therefore concludes that it is out of
sync with A, and asks server A for the complete list of all MIB modules A is aware of. For this

i_know(state=A1, mod1, mod2)

what_do_you_know()

i_know(state=B6, mod1, mod4)

time

server A server B

get(mod4)

get_response(mod4)

time

server A server C

Figure 5: Server boots up

x

x

8



purpose, B uses the what_do_you_know administrative message. Server A answers with an
i_know message, including all the MIB modules it knows about and with a <state_number>
equal to the one of the previous update message (A33).

5 Conclusions and further work
This paper discussed the design of a remote look-up service for MIB item definitions. Such
service may be useful to solve one piece of the ‘meta-management’ problem. The solution
presented in this paper allows the automatic retrieval of missing MIB module files, and is there-
fore a step forward compared to the current situation, in which human managers have to spend
valuable time to solve that problem themselves.

The look-up service should be provided on a best effort basis, and introduced piecemeal.
Initially the service can be provided by a single server; Section 3 discussed how human manag-
ers / management applications can access that server using HTTP. A prototype of such server
has already been implemented and is running on the Simpleweb [6].
To improve performance, new servers may be added at later stages. Also vendors of network
equipment may install servers; such servers may be limited in the sense that they can only
distribute their own, vendor specific, MIB modules. It is expected that the total number of serv-
ers remains low; it is not envisaged that there will ever emerge a hierarchical directory structure
like the DNS.

This work has been discussed within the IRTF Network Management Research Group (NMRG)
[14], and will be documented into two internet drafts (one for the client-server interactions, the
other for the server-server interactions). These internet drafts will include many details that
could not be discussed within the context of this paper; the assignment of state numbers, for
example, is tricky and also the procedures to recover from errors and deal with security require
quite some text.
An interesting idea that was raised during the discussions within the IRTF NMRG, was to asso-
ciate new material, which is not contained within current MIB module definitions, to the items
defined in such modules. An example of such material could be japanese text for the description
clauses of MIB items; such text will make it easier for japanese network managers to do their
work. Another example of new material, could be pieces of text that explain how a certain MIB
item relates to a certain Command Line Interface (CLI) object; such text would make it easier
for managers who are familiar with CLI terminology to start using MIBs.

update(state=A32, mod4)

what_do_you_know()

time

server A server B

Figure 6: Server B loses synchronisation

i_know(state=A33, mod1, mod2, mod4, mod5, mod6)

update(state=A33, mod5, mod6)

state of A = A31
9



In the mean time work continues to develop client-side software for management applications
like NetSNMP [15] and Scotty [16]. An interesting question is whether it will be possible to
implement such software as a daemon that can interface via a common API to all management
applications that run on the management system. Such daemon would remove the need to
include in every management application the specific code that parses MIB module files.

Acknowledgements
This paper is based on the work performed within Work Unit 2 of the Internet Next Generation
project [12]. This project is part of the dutch Gigaport programme, and sponsored by the
Telematica Instituut (TI). The following organizations are member of the Internet Next Gener-
ation project: the Centre for Telematics and Information Technology (CTIT) of the University
of Twente (UT), Ericsson EuroLab Netherlands BV (ELN), KPN Research and the TI. We
would like to thank all members of the project, as well as the members of IRTF Network
Management Research Group (NMRG), with whom we discussed our ideas and who provided
valuable feedback.

References
[1] K. McCloghrie, M. Rose: RFC 1066 - “Management Information Base for Network Management

of TCP/IP-based internets”, August 1988
[2] K. McCloghrie, M. Rose: RFC 1213 - “Management Information Base for Network Management

of TCP/IP-based internets: MIB-II”, March 1991
[3] mibCentral: http://www.mibcentral.com/
[4] IANA - Private Enterprise Numbers: ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-numbers
[5] The Simpleweb: http://www.simpleweb.org/
[6] The SimpleMIB look-up service: http://www.simpleweb.org/ietf/mibs/oidd/
[7] K. McCloghrie, D. Perkins, J. Schönwälder: RFC 2578 - “Structure of Management Information

Version 2 (SMIv2)”, April 1999
[8] K. McCloghrie, F. Kastenholz: RFC 2863 - “The Interfaces Group MIB”, June 2000
[9] Libsmi project page: http://www.ibr.cs.tu-bs.de/projects/libsmi/
[10] R. Perlman: Interconnections: Bridges, Routers, Switches, and Internetworking Protocols, Addison

Wesley Professional Computing Series, ISBN: 0201634481, 1999
[11] M. Daniele, B. Wijnen, M. Ellison, D. Francisco: RFC 2741 - “Agent Extensibility (AgentX)

Protocol”, january 2000
[12] Internet Next Generation project: http://ing.ctit.utwente.nl/WU2/
[13] M. Rose, K. McCloghrie: RFC 1155 - “Structure and Identification of Management Information for

TCP/IP-based Internets”, May 1990
[14] IRTF Network Management Research Group (NMRG): http://www.ibr.cs.tu-bs.de/projects/nmrg/
[15] NetSNMP project page: http://net-snmp.sourceforge.net/
[16] Scotty project page: http://wwwhome.cs.utwente.nl/~schoenw/scotty/
10

http://net-snmp.sourceforge.net/
http://ing.ctit.utwente.nl/WU2/
http://www.mibcentral.com/
ftp://ftp.isi.edu/in-notes/iana/assignments/enterprise-numbers
http://www.ibr.cs.tu-bs.de/projects/nmrg/
http://www.simpleweb.org/
http://wwwhome.cs.utwente.nl/~schoenw/scotty/
http://www.ibr.cs.tu-bs.de/projects/libsmi/
http://www.simpleweb.org/ietf/mibs/oidd/
http://www.simpleweb.org/ietf/rfcs/complete/rfc1066
http://www.simpleweb.org/ietf/rfcs/complete/rfc1213
http://www.simpleweb.org/ietf/rfcs/complete/rfc2578
http://www.simpleweb.org/ietf/rfcs/complete/rfc1066
http://www.simpleweb.org/ietf/rfcs/complete/rfc2741
http://www.simpleweb.org/ietf/rfcs/complete/rfc1155

