Model-based Verification of Distributed Software

Wytse Oortwijn and Marieke Huisman

Formal Methods and Tools, Dept. of EEMCS, University of Twente
P.O.-box 217, 7500 AE Enschede, The Netherlands
{w.h.m.oortwijn, m.huisman}@utwente.nl

Keywords: deductive verification, model-based verification, distributed systems.

Distributed components that operate and interact concurrently are ubiquitous in industry
software. Many safety-critical systems consist of concurrent components, yet providing any
guarantees on their correctness is very challenging. Therefore, developing tools and tech-
niques that allow to prove functional correctness of such software systems is essential.

In the field of program analysis, several approaches have been proposed that aim to in-
crease the reliability of concurrent systems or to give guarantees about their correctness. For
example, model checking considers an abstract model of a program and checks if it satis-
fies certain temporal properties. Another approach is static/deductive verification, in which
the source code is annotated with a specification language, e.g. JML, that describes the
program behaviour. Automated verifiers are then used to verify whether the program satis-
fies the described behaviour. This research aims to combine the strengths of both approaches.

Approach. Our approach is three-fold. First, an abstract model of the program is de-
fined that captures the concurrent program behaviour. Modelling is done by specifying and
composing atomic actions that match with the interactions between the different program
components, e.g. message exchanges between components or accesses to shared memory lo-
cations. Secondly, we verify deductively whether the program behaves as specified by the
abstract model. To do this, we extend well-known program logics (i.e. separation logic [4]) to
connect the atomic actions in the abstract model with the concrete fragments in the source
code that perform/handle the concurrent interactions. Thirdly, model checking is applied to
analyse the abstract model. As result of the second step in our approach, the model checking
results apply to the actual program and can thus be used in the program logic.

Our approach applies to concurrent software in general, but the research focusses on dis-
tributed software and targets both shared- and distributed-memory systems [3]. The results
of this research can for example be applied to verify functional correctness of message-passing
programs, e.g. MPI, and systems performing remote procedure calls, like web services.

Research directions. To abstractly model program behaviour we currently use a process
algebra with support for data, similar to mCRL2 [2], as this formalisation benefits from
extensive research on concurrent system analysis. We have formalised our approach and
implemented tool support as part of the VerCors toolset [1], available at [5].

The current tool implementation targets concurrent programs. We now aim to cover dis-
tributed programs as well. Moreover, the current formalisation only preserves safety proper-
ties. We plan to investigate the preservation of progress and liveness properties and we plan
to combine our approach with rely-guarantee reasoning.

References

1. S. Blom and M. Huisman. The VerCors tool for verification of concurrent programs. In FM,
volume 8442 of LNCS, pages 127-131, 2014.

2. J.F. Groote and M.R. Mousavi. Modeling and Analysis of Communicating Systems. MIT Press,
2014.

3. W. Oortwijn, S. Blom, and M. Huisman. Future-based static analysis of message passing pro-
grams. In PLACES, pages 65-72, 2016.

4. J.C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in Computer
Science, pages 55—74. IEEE Computer Society, 2002.

5. The VerCors tool online. http://www.utwente.nl/vercors/.


http://www.utwente.nl/vercors/

	Model-based Verification of Distributed Software

