
Distributed Binary Decision Diagrams for Symbolic
Reachability

Wytse Oortwijn

Formal Methods and Tools,
University of Twente

November 1, 2015

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 1 / 22



Overview

1 Introduction

2 High-performance Networking

3 Storing State Spaces

4 Maintaining Load Balance

5 Experimental Evaluation

6 Conclusions

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 2 / 22



Overview

1 Introduction

2 High-performance Networking

3 Storing State Spaces

4 Maintaining Load Balance

5 Experimental Evaluation

6 Conclusions

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 3 / 22



Formal Methods and Tools

Improving software reliability

Making software safer in practice (increasing quality by reducing risks)

Examples: static & dynamic analysis, risk analysis, model checking

The model checking problem

Given a formal model of a software system and a formal specification, does
the model satisfy the specification?

Exhaustively analyze all model behaviours

Examples

Finding deadlocks in software (e.g. preventing crashes)

Finding solutions in games (e.g. Chess, Sokoban)

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 4 / 22



Formal Methods and Tools

Improving software reliability

Making software safer in practice (increasing quality by reducing risks)

Examples: static & dynamic analysis, risk analysis, model checking

The model checking problem

Given a formal model of a software system and a formal specification, does
the model satisfy the specification?

Exhaustively analyze all model behaviours

Examples

Finding deadlocks in software (e.g. preventing crashes)

Finding solutions in games (e.g. Chess, Sokoban)

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 4 / 22



Formal Methods and Tools

Improving software reliability

Making software safer in practice (increasing quality by reducing risks)

Examples: static & dynamic analysis, risk analysis, model checking

The model checking problem

Given a formal model of a software system and a formal specification, does
the model satisfy the specification?

Exhaustively analyze all model behaviours

Examples

Finding deadlocks in software (e.g. preventing crashes)

Finding solutions in games (e.g. Chess, Sokoban)

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 4 / 22



Explicit State Reachability Analysis

The reachability problem

Given a graph G = (V ,E ), initial states I ✓ V and goal states F ✓ V ,
check if F is reachable from I via edges in E

Allows verification of temporal safety properties, that is:

”Something bad will never happen”

Limitations of model checking

G is often implicitly described;

Set of reachable states is often determined on-the-fly, therefore:

State space explosions frequently occur

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 5 / 22



Explicit State Reachability Analysis

The reachability problem

Given a graph G = (V ,E ), initial states I ✓ V and goal states F ✓ V ,
check if F is reachable from I via edges in E

Allows verification of temporal safety properties, that is:

”Something bad will never happen”

Limitations of model checking

G is often implicitly described;

Set of reachable states is often determined on-the-fly, therefore:

State space explosions frequently occur

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 5 / 22



Fighting State Space Explosions

Reducing the amount of behaviours

Partial Order Reduction (exploit commutative transitions)

Bisimulation Minimization (merge ”similar” states)

E�ciently representing state spaces

Decision Diagrams (e.g. BDDs, MDDs, LDDs, and ZDDs)

SAT-based approaches (for example, IC3)

Adding hardware resources

Using many-core machines or high-performance clusters:
More memory =) larger state spaces supported
More processors =) faster state space exploration

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 6 / 22



Fighting State Space Explosions

Reducing the amount of behaviours

Partial Order Reduction (exploit commutative transitions)

Bisimulation Minimization (merge ”similar” states)

E�ciently representing state spaces

Decision Diagrams (e.g. BDDs, MDDs, LDDs, and ZDDs)

SAT-based approaches (for example, IC3)

Adding hardware resources

Using many-core machines or high-performance clusters:
More memory =) larger state spaces supported
More processors =) faster state space exploration

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 6 / 22



Fighting State Space Explosions

Reducing the amount of behaviours

Partial Order Reduction (exploit commutative transitions)

Bisimulation Minimization (merge ”similar” states)

E�ciently representing state spaces

Decision Diagrams (e.g. BDDs, MDDs, LDDs, and ZDDs)

SAT-based approaches (for example, IC3)

Adding hardware resources

Using many-core machines or high-performance clusters:
More memory =) larger state spaces supported
More processors =) faster state space exploration

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 6 / 22



BDD-based Symbolic Reachability

Binary Decision Diagrams (BDDs)

E�cient representation of Boolean functions (� : Bn ! B), e.g.:

x

1 0

� ⌘ x

x

0 1

� ⌘ ¬x

x0

x1

1 0

� ⌘ x0^x1

x0

x1

1 0

� ⌘ x0_x1

Reachability analysis

Represent the state space as a BDD:

Represent initial states and the transition relation as BDDs

Perform reachability analysis via BDD operations

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 7 / 22



BDD-based Symbolic Reachability

Binary Decision Diagrams (BDDs)

E�cient representation of Boolean functions (� : Bn ! B), e.g.:

x

1 0

� ⌘ x

x

0 1

� ⌘ ¬x

x0

x1

1 0

� ⌘ x0^x1

x0

x1

1 0

� ⌘ x0_x1

Reachability analysis

Represent the state space as a BDD:

Represent initial states and the transition relation as BDDs

Perform reachability analysis via BDD operations

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 7 / 22



BDD-based Symbolic Reachability

Binary Decision Diagrams (BDDs)

E�cient representation of Boolean functions (� : Bn ! B), e.g.:

x

1 0

� ⌘ x

x

0 1

� ⌘ ¬x

x0

x1

1 0

� ⌘ x0^x1

x0

x1

1 0

� ⌘ x0_x1

Reachability analysis

Represent the state space as a BDD:

Represent initial states and the transition relation as BDDs

Perform reachability analysis via BDD operations

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 7 / 22



BDD-based Symbolic Reachability

Binary Decision Diagrams (BDDs)

E�cient representation of Boolean functions (� : Bn ! B), e.g.:

x

1 0

� ⌘ x

x

0 1

� ⌘ ¬x

x0

x1

1 0

� ⌘ x0^x1

x0

x1

1 0

� ⌘ x0_x1

Reachability analysis

Represent the state space as a BDD:

Represent initial states and the transition relation as BDDs

Perform reachability analysis via BDD operations

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 7 / 22



BDD-based Symbolic Reachability

Binary Decision Diagrams (BDDs)

E�cient representation of Boolean functions (� : Bn ! B), e.g.:

x

1 0

� ⌘ x

x

0 1

� ⌘ ¬x

x0

x1

1 0

� ⌘ x0^x1

x0

x1

1 0

� ⌘ x0_x1

Reachability analysis

Represent the state space as a BDD:

Represent initial states and the transition relation as BDDs

Perform reachability analysis via BDD operations

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 7 / 22



BDD-based Symbolic Reachability

Binary Decision Diagrams (BDDs)

E�cient representation of Boolean functions (� : Bn ! B), e.g.:

x

1 0

� ⌘ x

x

0 1

� ⌘ ¬x

x0

x1

1 0

� ⌘ x0^x1

x0

x1

1 0

� ⌘ x0_x1

Reachability analysis

Represent the state space as a BDD:

Represent initial states and the transition relation as BDDs

Perform reachability analysis via BDD operations

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 7 / 22



Improving on Distributed Symbolic Reachability

Challenges on distributed symbolic verification

Many memory accesses compared to computational work;

Memory access patterns are irregular

, therefore:

Good space e�ciency, but limited time e�ciency.

Suggestions by Zhao et al. (2009)

Most important design considerations for improvements are:

1 Data-distribution (including exploiting data-locality);

2 Maintaining load balance;

3 Reducing communication overhead

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 8 / 22



Improving on Distributed Symbolic Reachability

Challenges on distributed symbolic verification

Many memory accesses compared to computational work;

Memory access patterns are irregular, therefore:

Good space e�ciency, but limited time e�ciency.

Suggestions by Zhao et al. (2009)

Most important design considerations for improvements are:

1 Data-distribution (including exploiting data-locality);

2 Maintaining load balance;

3 Reducing communication overhead

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 8 / 22



Improving on Distributed Symbolic Reachability

Challenges on distributed symbolic verification

Many memory accesses compared to computational work;

Memory access patterns are irregular, therefore:

Good space e�ciency, but limited time e�ciency.

Suggestions by Zhao et al. (2009)

Most important design considerations for improvements are:

1 Data-distribution (including exploiting data-locality);

2 Maintaining load balance;

3 Reducing communication overhead

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 8 / 22



Overview

1 Introduction

2 High-performance Networking

3 Storing State Spaces

4 Maintaining Load Balance

5 Experimental Evaluation

6 Conclusions

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 9 / 22



High-Performance Infiniband Networks

Advantages of Infiniband

Specialized hardware used to construct high-performance networks:

1 Comparable in price to standard Ethernet hardware

2 Supports up to 100Gb/s

3 NICs can directly access main-memory via PCI-E bus

4 End-to-end latencies of ⇠ 1µs have been measured

Remote Direct Memory Access (RDMA)

Directly access memory of a remote machine, without invoking its CPU:

Performance: about 20x as fast as TCP with Ethernet hardware

Zero-copy networking

Kernel bypassing

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 10 / 22



High-Performance Infiniband Networks

Advantages of Infiniband

Specialized hardware used to construct high-performance networks:

1 Comparable in price to standard Ethernet hardware

2 Supports up to 100Gb/s

3 NICs can directly access main-memory via PCI-E bus

4 End-to-end latencies of ⇠ 1µs have been measured

Remote Direct Memory Access (RDMA)

Directly access memory of a remote machine, without invoking its CPU:

Performance: about 20x as fast as TCP with Ethernet hardware

Zero-copy networking

Kernel bypassing

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 10 / 22



Partitioned Global Address Space

PGAS memory model

Combines the shared & distributed memory models

Each thread hosts a local block of memory

All local memories are combined into a shared address space

Accessing remote memory via one-sided RDMA

Schematically

t1 t2 . . .
tn

. . .

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 11 / 22



Partitioned Global Address Space

PGAS memory model

Combines the shared & distributed memory models

Each thread hosts a local block of memory

All local memories are combined into a shared address space

Accessing remote memory via one-sided RDMA

Schematically

t1 t2 . . .
tn

. . .

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 11 / 22



Partitioned Global Address Space

PGAS memory model

Combines the shared & distributed memory models

Each thread hosts a local block of memory

All local memories are combined into a shared address space

Accessing remote memory via one-sided RDMA

Schematically

t1 t2 . . .
tn

. . .

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 11 / 22



Partitioned Global Address Space

PGAS memory model

Combines the shared & distributed memory models

Each thread hosts a local block of memory

All local memories are combined into a shared address space

Accessing remote memory via one-sided RDMA

Schematically

t1 t2 . . .
tn

. . .

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 11 / 22



Overview

1 Introduction

2 High-performance Networking

3 Storing State Spaces

4 Maintaining Load Balance

5 Experimental Evaluation

6 Conclusions

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 12 / 22



E�ciently Storing BDDs

Shared distributed hash table
The hash table satisfies the following requirements:

1 Minimal number of roundtrips

2 Minimal memory overhead

3 Must be CPU e�cient (i.e. no polling)

find-or-put(d)

Let T be a hash table. Then, for BDD node d :

If d 2 T , return found

If d 62 T , insert d and return inserted

If d 62 T and d cannot be inserted, return full

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 13 / 22



E�ciently Storing BDDs

Shared distributed hash table
The hash table satisfies the following requirements:

1 Minimal number of roundtrips

2 Minimal memory overhead

3 Must be CPU e�cient (i.e. no polling)

find-or-put(d)

Let T be a hash table. Then, for BDD node d :

If d 2 T , return found

If d 62 T , insert d and return inserted

If d 62 T and d cannot be inserted, return full

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 13 / 22



Design Considerations of find-or-put

Collision resolution
Using linear probing for collision resolution;

Receiving multiple buckets (chunks) per roundtrip;

Dynamically determine chunk sizes to minimize expected number of
roundtrips

Calculating chunk sizes

1 Approximate the load-factor of the hash table

2 Approximate the average probe distance of linear probing

3 Apply a heuristically chosen error margin

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 14 / 22



Design Considerations of find-or-put

Collision resolution
Using linear probing for collision resolution;

Receiving multiple buckets (chunks) per roundtrip;

Dynamically determine chunk sizes to minimize expected number of
roundtrips

Calculating chunk sizes

1 Approximate the load-factor of the hash table

2 Approximate the average probe distance of linear probing

3 Apply a heuristically chosen error margin

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 14 / 22



Overview

1 Introduction

2 High-performance Networking

3 Storing State Spaces

4 Maintaining Load Balance

5 Experimental Evaluation

6 Conclusions

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 15 / 22



Load Balancing via Work Stealing

Task-based parallelism

Dividing computational problems into smaller tasks

Task is a basic unit of work and only depend on intermediate subtasks

Each threads maintains a task pool

Work stealing

Threads are either idle or working

When idle, threads steal from remote task pools

Stealing thread is thief, targetted thread is victim

Termination when all threads are idle

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 16 / 22



Load Balancing via Work Stealing

Task-based parallelism

Dividing computational problems into smaller tasks

Task is a basic unit of work and only depend on intermediate subtasks

Each threads maintains a task pool

Work stealing

Threads are either idle or working

When idle, threads steal from remote task pools

Stealing thread is thief, targetted thread is victim

Termination when all threads are idle

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 16 / 22



Private-Deque Work Stealing

Memory layout for thread ti

ti .deque

. . .

ti .request ti .transfer

. . .

ti .status

Handling steals

Each thread has a shared task pool (a private deque)

idle threads can request a steal by a victim

Threads continuously poll for incoming requests

Requests are handled by writing tasks to the transfer cell of the thief

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 17 / 22



Private-Deque Work Stealing

Memory layout for thread ti

ti .deque

. . .

ti .request ti .transfer

. . .

ti .status

Handling steals

Each thread has a shared task pool (a private deque)

idle threads can request a steal by a victim

Threads continuously poll for incoming requests

Requests are handled by writing tasks to the transfer cell of the thief

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 17 / 22



Overview

1 Introduction

2 High-performance Networking

3 Storing State Spaces

4 Maintaining Load Balance

5 Experimental Evaluation

6 Conclusions

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 18 / 22



Distributed Symbolic Reachability

Designing BDD operations

Using the shared node table and work stealing operations

Overlapping roundtrips as much as possible (i.e. latency hiding)

Using a shared global memoization cache

Experimental evaluation

Performing reachability over well-known BEEM models

Experiments performed on the DAS-5 cluster
We used up to 64 machines
Each machine has 16 CPU cores and 64GB internal memory

Scaling along machines and threads per machine

Measuring wall clock time and speedup

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 19 / 22



Distributed Symbolic Reachability

Designing BDD operations

Using the shared node table and work stealing operations

Overlapping roundtrips as much as possible (i.e. latency hiding)

Using a shared global memoization cache

Experimental evaluation

Performing reachability over well-known BEEM models

Experiments performed on the DAS-5 cluster
We used up to 64 machines
Each machine has 16 CPU cores and 64GB internal memory

Scaling along machines and threads per machine

Measuring wall clock time and speedup

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 19 / 22



Scalability of Distributed Symbolic Reachability

(a) anderson.8 (b) at.6 (c) at.7

(d) collision.4 (e) collision.5 (f) schedule-world.3

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 20 / 22



Overview

1 Introduction

2 High-performance Networking

3 Storing State Spaces

4 Maintaining Load Balance

5 Experimental Evaluation

6 Conclusions

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 21 / 22



Conclusions and Future Work

Conclusions

Good time-e�ciency (in addition to space-e�ciency)

Highest speedups observed: 45x with 64 machines

Combined memory of 64 machines: 4TB on DAS-5

Future Work
Performing reachability on very large models

Experimenting with alternative decision diagrams

Extending to full-blown CTL model checking

Extending to GPU state space exploration

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 22 / 22



Conclusions and Future Work

Conclusions

Good time-e�ciency (in addition to space-e�ciency)

Highest speedups observed: 45x with 64 machines

Combined memory of 64 machines: 4TB on DAS-5

Future Work
Performing reachability on very large models

Experimenting with alternative decision diagrams

Extending to full-blown CTL model checking

Extending to GPU state space exploration

Wytse Oortwijn (Formal Methods and Tools, University of Twente)Distributed Binary Decision Diagrams for Symbolic ReachabilityNovember 1, 2015 22 / 22


	Introduction
	High-performance Networking
	Storing State Spaces
	Maintaining Load Balance
	Experimental Evaluation
	Conclusions

