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What is Reachability Analysis?

Reachability Problem: Given a graph G = (V ,E ), initial states
I ⊆ V and goal states F ⊆ V , check if F is reachable from I via
edges in E

In Model Checking: Allows verification of most temporal safety
properties (”something bad will never happen”)

Examples:
Finding solutions in games (e.g. Chess, Sokoban, etc.)
Asserting mutual exclusion in parallel software
Asserting safety in traffic lights
etc.
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State Space Explosions

Reachability Problem: Given a graph G = (V ,E ), initial states
I ⊆ V and goal states F ⊆ V , check if F is reachable from I via
edges in E

G is often implicitly described (with a transition relation)

Set of reachable states is often determined on-the-fly

Therefore, the size of G is often initially unknown

State Space Explosions: occur when G does not longer fit into the
available memory

Often happens in practice =⇒ major limitation
State space Chess: ∼ 1043

Stars in universe: ∼ 1023
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Fighting State Space Explosions

Reduction Techniques:
Partial Order Reduction (exploit commutative transitions)
Bisimulation Minimization (merge ”similar” states)

Compression Techniques:
Decision Diagrams (e.g. BDDs, MDDs, LDDs, ZDDs)
SAT-based approaches (e.g. IC3)

Adding Hardware Resources:
More memory =⇒ larger state spaces supported
More processors =⇒ faster reachability analysis
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Parallel Symbolic Reachability

Symbolic Reachability:
Represent the state space as a BDD
Represent initial states and the transition relation as BDDs
Perform reachability via BDD operations

Parallel Reachability: Using a many-core cluster with a large
amount of memory to perform reachability

Sylvan reaches speedups up to 38 with 48 cores

Disadvantages:
Upgrading is expensive
Upgrading is limited
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Distributed Symbolic Reachability

Distributed Reachability: Using a network of workstations,
connected via a high-performance network.

Compared to a Many-core Cluster:
Cheaper scalability
Unlimited scalability

Challenges:
Only small amounts of computation per memory access
Many remote memory accesses required
Network latency easily becomes a bottleneck

Achievements: Very large state spaces are supported, but no
speedups are obtained...
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Improving Distributed Symbolic Reachability

Zhao et al (2009): Most important design considerations for
improvements are:

Data-distribution
Load-balancing maintenance
Reducing communication overhead
Exploting data-locality (suggested by Chung et al)

Contribution: Employing modern techniques to implement these
design considerations.
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Motivation

Reducing Communicational Overhead: Infiniband and RDMA

Load-balancing: Work stealing (due to the success of Sylvan and
Lace)

Exploting data-locality: Hierarchical work stealing

Data Distribution: RDMA-based distributed hash table
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Research Questions

Main Question: How efficient can RDMA-based distributed
implementations of BDD operations scale along all processing units
and available memory connected via a high-performance network?

Subquestions:
1 How can the storage and retrieval of data efficiently be managed to

minimize their latencies?
2 How can the total computational work be divided and distributed to

maximize scalability along processors over a high-performance network?
3 How can the idle-times of processes be minimized while performing

network communication?
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Research Method

Project: We split the project into three parts:

1 Storing states (Distributed hash table)
2 Load-balancing mechanisms (Hierarchical work stealing)
3 Distributed BDD operations

All parts have separately been designed, implemented, and
experimentally evaluated
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The Infiniband Architecture

Infiniband: Specialized hardware used to construct high-performance
networks

Advantages:
1 Comparable in price to standard Ethernet hardware
2 Supports up to 100 GB/s
3 NICs can directly access main-memory via PCI-E bus
4 End-to-end latencies of 1µs have been measured (according to the IB

website)
5 Supports RDMA

UTwente: 10 Dell M610 machines, connected via a 20 GB/s
Infiniband network
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Remote Direct Memory Access

RDMA: Directly access memory of a remote machine, without
invoking its CPU

one-sided vs. two-sided RDMA

Advantages:
1 Zero-copy
2 Kernel bypassing
3 CPU efficiency

Roundtrip Latency: Within 3µs in Infiniband hardware, compared to
60µs with TCP on Ethernet hardware
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Kernel Bypassing

(VMWorld 2013 - How Latency Destroys Performance... And What to Do About It)
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Parallel Programming Models

t1 t2 . . . tn t1 t2 . . .

. . .

tn

Shared Memory

Single addr. space

e.g. NUMA, SMP

Distributed Memory

Only local memories

Communication via
Message Passing
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Partitioned Global Address Space

t1 t2 . . .

. . .

tn t1 t2 . . .

. . .

tn

PGAS

Shared + Distributed

Data locality exploited

Hybrid PGAS

PGAS + message
passing
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PGAS: Memory Model

Thread 0 Thread 1 . . . Thread n − 1

Shared

Private. . .

. . .
S[0]

. . .

S[k − 1] S[k]

. . .

S[2k − 1] S[(n − 1)k]

. . .

S[nk − 1]
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PGAS: memget and memput

Thread 0 Thread 1

Shared

Private

. . . . . .

Thread 0 Thread 1

Shared

Private

. . . . . .

memget(P,S)

Copies block of shared
memory S into private
memory P

memput(S ,P)

Copies block of
private P memory
into shared memory S
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PGAS: Synchronous Operations

Initiator
RDMA device

of initiator

RDMA device
of target

Main-memory

of target

Idle
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PGAS: Asynchronous Operations

Initiator
RDMA device

of initiator

RDMA device
of target

Main-memory

of target

Continue
work...
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PGAS: Implementations

Many Implementations:
Berkeley UPC
OpenSHMEM
Co-array Fortran
Titanium
X10
Chapel
etc.

We chose UPC because it supports async operations
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PGAS: Latency of memget
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For messages ≤ 16 bytes:
Local 76 times faster than remote
Local: 50ns on average
Remote: 3.87µs on average
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PGAS: Latency of memput
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For messages ≤ 16 bytes:
Local only 6 times faster than remote
Local: 0.44µs on average
Remote: 2.68µs on average
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PGAS: Throughput of memput
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For messages ≤ 16 bytes:
Local throughput 48 times higher than remote throughput
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Hash Table: Notations

Hash Table

T = 〈b0, . . . , bn−1〉 as a sequence of buckets bi , where:

Hash table size: n, number of inserted elements: m

Load factor: α = m
n

Hash function

h : U → R, with:

Range of keys: R = {0, . . . , r − 1}
Universe: {0, 1}w (of all w-sized binary words)

Mapping words x ∈ U to buckets bh(x) by letting r < n

Notation

For x ∈ U, we write x ∈ bi if bucket bi contains x

For x ∈ U, we write x ∈ T if x ∈ bi for some 0 ≤ i ≤ n − 1
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Distributed Hash Table: Requirements

Requirements

1 Minimal number of roundtrips

2 Minimal memory overhead

3 CPU efficient (no polling)

4 Should support find-or-put

5 Should support PGAS

find-or-put(d)

If d ∈ T , return found

If d 6∈ T , insert d and return inserted

If d 6∈ T and d cannot be inserted, return full
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Resolving Collisions

Hash collision

Occurs when h(x) = h(y) for x , y ∈ U with x 6= y

Hashing strategy determines the number of roundtrips required by
find-or-put

Existing work (RDMA-based key/value stores)

Pilaf (Cuckoo hashing)

Nessie (Cuckoo hashing)

FaRM (Hopscotch hashing)

HERD (high throughput, but CPU inefficient)

We investigated hashing strategies and determined their performance
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Chained Hashing

Chained Hashing

Every bucket is a linked list

Inserting x ∈ U performed by adding it to bh(x)

Finding x ∈ U performed by traversing bh(x)

Complexity of find-or-put(d)

Θ(m) in worst case (when all m elements are in bh(d))

Θ(1 + α) on average when a universal hash function is used

Universal hash function

h : U → R is called universal if Pr [h(x) = h(y)] ≤ 1
|U| for every x , y ∈ U

Good theoretical properties

In practice: ”cheaper” functions are often used
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Cuckoo Hashing

Cuckoo Hashing

Uses k ≥ 2 independent hash functions h1, . . . , hk : U → R with
hi 6= hj for every i 6= j (k-way Cuckoo hashing)

Nessie: 2-way Cuckoo hashing

Pilaf: 3-way Cuckoo hashing

Cuckoo Invariant

For every element x ∈ U it holds that either x 6∈ T or x ∈ bhi (x) for
exactly one 1 ≤ i ≤ k

Complexity

Lookups require k roundtrips

Inserts may require many when all k buckets are occupied
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Bucketized Cuckoo Hashing

Bucketized Cuckoo Hashing

Every bucket bi is subdivided into l slots

Every slot may contain an element from U

Denoted by (k, l)-Cuckoo hashing

Bucketized Cuckoo Hashing

Same as Cuckoo hashing, but linearly reduced by l

Efficient even when α > 0.9 (Andersen et al, 2013)

Pilaf: (2, 4)-Cuckoo hashing could be very effective
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Hopscotch Hashing

Hopscotch Hashing

Each bucket bi has a fixed-sized neighborhood N(bi ) of constant size
H ≥ 1

N(bi ) = 〈bi , . . . , bj〉 with j = (i + H − 1) mod n

N(bi ) thus contains bi itself and the next H − 1 buckets (modulo n)

Neighborhoods are thus consecutive in memory

Hopscotch Invariant

Let x ∈ U and N(bh(x)) = 〈b1, . . . , bH〉. Then either x 6∈ T or x ∈ bi for
exactly one 1 ≤ i ≤ H

Complexity

find-or-put(d) may obtain N(bh(d)) in 1 roundtrip

Inserts may require many more when N(bh(d)) is full
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Linear Probing

Linear Probing

For x ∈ U, it examines bh(x)+0, bh(x)+1, . . . , bh(x)+t (modulo n) with
threshold t > 0

Buckets are consecutive in memory

Therefore, cache-line efficient

Complexity

Same as Hopscotch, but without relocation schemes

Hopscotch invariant not maintained, lookups are more expensive

But inserts are arguable cheaper (amortized complexity)
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Complexity of Linear Probing

Theorem: Examining buckets (Knuth, 1997)

Assuming that a universal hash function is used, the expected number of
buckets to examine until an empty bucket is found is at most:

1

2

(
1 +

1

(1− α)2

)
Chunk retrieval

Similar to Hopscotch, a fixed-sized range of buckets can be obtained
with a single roundtrip, which we refer to as chunks

We denote the chunk size by C ≥ 1
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Complexity of Chunk Retrievals

Corollary: Number of chunks

The expected number of chunks to be inspected is at most:

1

2C

(
1 +

1

(1− α)2

)
Number of chunks to read
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Bounding Efficiency

Theorem: Efficiency bound

A chunk of size C ≥ 1 is expected to contain an empty bucket if:

α ≤ 1−
√

1
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Designing find-or-put

Memory layout

Shared array B[0], . . . ,B[kn − 1] of buckets, so that each thread owns
k buckets

2D array P[0][0], . . . ,P[M − 1][C − 1] per thread in private memory

Bucket layout

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0

16

32

48

(1)

(2)

Bit number

B
it

o
ff

se
t

(1) is a locking bit (1 bit)

(2) contains data (63 bits)
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Cache Efficiency

Cache lines

Typically 64 bytes in size

So 8 buckets per cache line

Therefore, we choose C to be a multiple of 8

Cache line alignment

The arrays P are cache line aligned

The array B is not, since it is shared (could not find support from
UPC to align shared memory)

But the IB verbs libary has support for shared memory alignment...
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Chunk Retrieval

Asynchronous chunk retrievals

Before iterating over a chunk, request the next consecutive chunk

Done to overlap roundtrips with actual work (interleaving queries)

The query-chunk(i , p) operation

Transfers the ith chunk, starting from bp, from B into
P[i ][0], . . . ,P[i ][C − 1] asynchronously

Returns a handle r for synchronization

Synchronization can be performed by calling sync(r)
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Design of find-or-put

1 def find-or-put(data):
2 h← hash(data)
3 s0 ← query-chunk(0, h)
4 for i ← 0 to M − 1:

5 if i < M − 1
6 si+1 ← query-chunk(i + 1, h)
7 sync(si )

8 for j ← 0 to C − 1:

9 if (P[i ][j] & OCCUPIED) = 0
10 B Try to claim bucket B[a]
11 a← (h + iC + j) mod kn
12 d ← data(data) | OCCUPIED
13 val ← cas(B[a],P[i ][j], d)
14 if val = P[i ][j]

15 return inserted

16 elif data(val) = data

17 return found

18 elif data(P[i ][j]) = data

19 return found

20 return full

1 def query-chunk(i , h):
2 B Find start and end index
3 start ← (h + iC) mod kn
4 end ← (h + (i + 1)C − 1) mod kn
5 if end < start

6 return split(start, end)

7 else
8 S ← 〈B[start], . . . ,B[end ]〉
9 P ← 〈P[i ][0], . . . ,P[i ][C − 1]〉

10 return memget-async(S,P)

1 def split(start, end):
2 B Find the blocks in shared memory
3 S1 ← 〈B[start], . . . ,B[kn − 1]〉
4 S2 ← 〈B[0], . . . ,B[end ]〉
5 B Corresp. blocks in private memory
6 P1 ← 〈P[i ][0], . . . ,P[i ][|S1| − 1]〉
7 P2 ← 〈P[i ][|S1|], . . . ,P[i ][C − 1]〉
8 B Retrieve the chunk
9 s1 ← memget-async(S1,P1)

10 s2 ← memget-async(S2,P2)
11 return 〈s1, s2〉
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Asynchronous Query Retrievals

initiator
RDMA device

of target
Main memory

of target

s0 = query-chunk(0, d)
s1 = query-chunk(1, d)

s2 = query-chunk(2, d)

s3 = query-chunk(3, d)

s4 = query-chunk(4, d)

sync(s0)

sync(s1)

sync(s2)

sync(s3)

. . .
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Experimental Evaluation

Experimental setup (m610 partition)

10 Dell M610 machines

8 GPU cores and 24 GB main-memory (each)

Ubuntu 14.04.2 LTS, kernel version 3.13.0

20 GB/s Infiniband network

Benchmarks

Throughput of find-or-put

Latency of find-or-put

Roundtrips required by find-or-put

Under different workloads: mixed, read-intensive, and write-intensive
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Local Throughput of find-or-put

TP per thread (left) and total TP (right)
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Workload
Base Througput Best Throughput

Speedup
Throughput Procs. Througput Procs.

Mixed 324,676,333 1 2,049,388,900 8 6.31
Read-intensive 376,434,000 1 2,342,278,333 7 6.22
Write-intensive 422,593,000 1 1,963,570,267 9 4.65
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Remote Throughput of find-or-put

Mixed workload: TP per thread (left) and total TP (right)

Workload
Base Througput Best Throughput

Speedup
TP. M. Procs./M. TP. M. Procs./M.

Mixed 592,929 2 1 3,607,003 10 3 6.08
Read 742,728 2 1 4,620,752 10 3 6.22
Write 495,370 2 1 2,999,234 10 3 6.05
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Speedups in Remote Throughput

Mixed Read-intensive

Write-intensive
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Latency of find-or-put

Local latency
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Roundtrips Required by find-or-put

Number of roundtrips
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Conclusions

General

Minimizing roundtrips critical for increased performance

Overlapping queries reduces waiting-times and increases latency

Linear probing requires less roundtrips than Hopscotch and Cuckoo

Performance

find-or-put takes 9.3µs on average with α = 0.9 and C = 64

Peak-throughput of 3.6× 106 op/s obtained with 10 machines

Future work

Use adaptive chunk sizes (based on efficiency bounds Theorem)

In addition, update asynchronous queries to prevent unused retrievals
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Load Balancing

Task-based parallelism

Dividing computational problems into smaller tasks

Task is a basic unit of work and only depend on intermediate subtasks

All threads maintain task pools

Load-balancing tasks

Ideally tasks are perfectly distributed (infeasible)

Instead: mapping tasks dynamically to threads

Task granularity

The relation between the computational workload and the amount of
communication required between threads

Fine-grained: large number of small tasks

coarse-grained: small number of large tasks
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Work Stealing and Sharing

Work stealing

Efficient technique for fine-grained task parallelism

Threads are either idle or working

When idle, threads steal from remote task pools

Stealing thread is thief, targetted thread is victim

Termination when all threads are idle

Work sharing

Threads communicate their status

When idle, other threads share work

Communication of work stealing is more efficient (Blumofe, 1999)
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Work Stealing Operations

Operations

spawn: push new task to task pool

call: execute given task

sync: pull task from pool and execute

Fibonacci example

1 int fib(n):
2 if n < 2 return n
3 a← fib(n − 1)
4 b ← fib(n − 2)
5 return a + b

1 int par-fib(n):
2 if n < 2 return n
3 spawn(par-fib, n − 1)
4 r ← call(par-fib, n− 2)
5 return r + sync
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Implementing the Task Pool

Double ended queue (deque)

Similar to queue, but has two ends: head and tail

Items can be pushed or popped from both ends

Implemented as a fixed-sized array

Example

7 1 5

t h

Initial

7 1 5 3

t h

push(3, h)

7 1 5 3 8

th

push(8, t)

7 1 5 3 8

th

pop(h)
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Implementing the Task Pool

Split deque

Deque with a split point s

s determines what sections belongs to head and tail

Used to denote a public and private region

s can be relocated to increase/decrease public region

Example

7 1 5

t hs

Initial

7 1 5 3

t hs

push(3, h)

7 1 5 3 8

ths

push(8, t)

7 1 5 3 8

ths

pop(h)

Wytse Oortwijn (FMT) Distributed Symbolic Reachability Analysis July 22, 2015 55 / 71



Implementing the Task Pool

Performance of split deques

Modifying s may conflict with steal operations

Either locks or memory fences required

Expensive in distributed environment!

Existing work (current state-of-the-art)

HotSLAW: access to public region requires locking

Scioto: whole split deque locked when stealing

Lace: non-blocking, but shrinking public region requires memory fence
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Implementing the Task Pool

Private deques

Implemented as a stack

Do not have a public region (completely private)

Private deque work stealing

When stealing, idle workers explicitly ask for work

Advantage: No locking required

Disadvantage: Requires participation from both victim and thief
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Victim Selection Protocols

Selecting victims

Random victim selection

Hierarchical victim selection (Min et al, 2011)

Leapfrogging

Contribution and motivation

Private-deque work stealing operations:

Minimal number of roundtrips

Uses all three victim selection protocols

Similar approach by Olivier et al. (2008), but requires more
roundtrips and does not exploit network hierarcy
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Designing Private-Deque Work Stealing

Memory layout

Shared 2D-array: deque[0][0], . . . , deque[THREADS− 1][k − 1]

Request cells: request[0], . . . , deque[THREADS− 1]

Transfer cells: transfer[0], . . . , transfer[THREADS− 1]

Status cells: status[0], . . . , status[THREADS− 1]

Schematically

. . .

private deque request transfer status

(k ×m)B 8B (8 + m)B 4B

Where m is the task size (in Bytes) and k the deque size
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Performing Steals

Request cell

Contains either BLOCKING, EMPTY, or a thread ID:

blocking: no tasks can be stolen

empty: no pending steal requests

identifier: pending steal request

Transfer cell

Contains either EMPTY or a task + location:

empty: no task received

task: task received + corresponding location in deque

Status cell

Contains either IDLE or WORKING
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Hierarchical Work Stealing

Domain levels

Berkeley UPC provides thread-distance(i , j) function

Which returns: verynear, near, far, or veryfar

We use an array domain, so that domain[i ] contain all thread IDs on
the ith level

We use a shuffle function that randomly shuffles a domain level.

Hierarchical stealing

1 Threads start by performing leapfrogging

2 Threads perform count(domain[i ]) steal attempts before moving to
level i + 1

3 If all levels have been tried, perform termination detection
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Designing spawn, call, and sync

1 def sync():
2 task ← deque[MY-ID][head − 1]
3 if task.stolen
4 communicate()
5 while ¬task.completed :

6 B Perform leapfrogging
7 if steal(task.owner) continue
8 if task.completed break
9 B Perform hierarchical stealing

10 for i ← 0 to HIERARCHY-LVLS - 1:

11 shuffle(domain[i ])
12 foreach victim ∈ domain[i ] do
13 if steal(victim) goto line 5
14 if task.completed goto line 16

15 B Return result from stolen task
16 head ← head − 1
17 tail ← tail − 1
18 return task.result

19 else
20 head ← head − 1
21 return call(task)

1 def spawn(desc, params):
2 B Build a new task
3 task ← deque[MY-ID][head ]
4 task.desc ← desc
5 task.stolen← false

6 task.completed ← false

7 task.params ← params
8 B Write new task to deque
9 deque[MY-ID][head ]← task

10 head ← head + 1

1 def call(desc, params):
2 communicate()
3 B Find the intended function
4 func ← function-of(desc)
5 B Invoke that function
6 return func(params)
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Initiating a Computation

1 def initiate(desc, params):
2 B Wait for all workers to start
3 status[MY-ID]← WORKING

4 barrier()
5 B Perform task
6 result ← call(desc, params)
7 B Wait for all workers to complete
8 status[MY-ID]← IDLE

9 barrier()
10 return result

1 def compute(desc, params):
2 if MY-ID = 0
3 initiate(desc, params)
4 else
5 participate()

1 def participate():
2 B Wait for all workers to start
3 status[MY-ID]← IDLE

4 barrier()
5 B Perform hierarchical stealing
6 while true:

7 status[MY-ID]← IDLE

8 for i ← 0 to HIERARCHY-LVLS - 1:
9 shuffle(domain[i ])

10 foreach victim ∈ domain[i ] do
11 if steal(victim) goto line 5

12 B No worker had tasks to steal..
13 if termination-detection()

14 break

15 barrier()
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Communicate Work

1 def communicate():
2 if head − tail < 2

3 if request[MY-ID] 6= BLOCKED

4 B Not enough stealable tasks, block further requests
5 if request[MY-ID] 6= EMPTY

6 reject-and-block()

7 elif cas(request[MY-ID], EMPTY, BLOCKED) 6= EMPTY

8 reject-and-block()

9 elif request[MY-ID] = BLOCKED

10 request[MY-ID]← EMPTY

11 elif request[MY-ID] 6= EMPTY

12 thief ← request[MY-ID]
13 request[MY-ID]← EMPTY

14 B Prepare task to be stolen
15 deque[MY-ID][tail ].stolen← true

16 deque[MY-ID][tail ].owner ← thief
17 B Construct the transfer message
18 msg ← new TransferMessage

19 msg .index ← tail
20 msg .task ← deque[MY-ID][tail ]
21 memput-async(transfer[thief ], msg)
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Stealing and Termination Detection

1 def steal(victim):
2 communicate()
3 transfer[MY-ID]← EMPTY

4 res ← cas(request[victim], EMPTY, MY-ID)
5 if res = EMPTY

6 B Wait for response from victim
7 while transfer[MY-ID] = EMPTY:

8 communicate()

9 if transfer[MY-ID] = EMPTY

10 return false

11 else
12 status[MY-ID]← WORKING

13 i ← transfer[MY-ID].index
14 task ← transfer[MY-ID].task
15 task.result ← call(task)
16 B Write back the task result
17 task.completed ← true

18 memput-async(deque[victim][i ], task)
19 return true

20 return false

1 def reject-and-block():
2 B Block further requests
3 thief ← request[MY-ID]
4 request[MY-ID]← BLOCKED

5 B Send a negative response
6 msg ← new TransferMessage

7 msg .index ← 0
8 msg .task ← EMPTY

9 memput-async(transfer[thief ], msg)

1 def termination-detection():
2 B Send status requests
3 for i ← 0 to THREADS− 1:

4 si ← memget-async(
5 res[i ], status[i ])

6 B Wait for status responses
7 for i ← 0 to THREADS− 1:
8 sync(si )
9 if res[i ] = WORKING

10 return false

11 return true
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Experimental Evaluation

Benchmarks

Performed a number of microbenchmarks

Determined speedup when scaling along machines and threads per
machine

Compared speedup with HotSLAW

Benchmark Nr. of Tasks Avg. Task Time
Input/Output Input/Output
Size Size Hotslaw

fib(45) 3,672,623,805 0.154 µs 16/8 bytes 4/8 bytes
nqueens(15) 171,127,071 4.14 µs 20/8 bytes 28/8 bytes
uts(T2L) 96,793,510 0.986 µs 20/8 bytes 32/0 bytes
uts(T3L) 111,345,631 0.722 µs 20/8 bytes 32/0 bytes
matmul(512) 32,767 188.30 µs 20/8 bytes 28/0 bytes
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Speedup Graphs

fib(45) matmul(512) uts(T3L)

nqueens(15) uts(T2L)
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Computation Times

Sequential- and best times

Benchmark
Sequential Best Configuration

Speedup
Time Time Machines Procs./M.

fib(45) 563.87 8.85 10 8 63.69
matmul(512) 6.17 1.07 1 9 5.76
uts(T2L) 90.48 1.90 10 8 47.62
uts(T3L) 73.60 3.48 10 5 21.15
nqueens(15) 707.64 10.29 10 8 68.74

Comparison with HotSLAW

Benchmark
Our Implementation HotSLAW

Seq. Time Best Time Seq. Time Best Time

fib(45) 563.87 8.85 938.49 13.13
nqueens(15) 707.64 10.29 387.53 5.68
uts(T2L) 90.48 1.90 81.22 1.53
uts(T3L) 73.60 3.48 67.64 5.48
uts(T3L)∗ 73.60 3.48 51.69 1.32
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Comparison with HotSLAW (Computation Time)

fib(45)
nqueens(15)

uts(T3L)

uts(T3L) with steal-10 uts(T2L)
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Average Number of Steals

fib(45) nqueens(15) uts(T3L)

uts(T3L) with steal-10 uts(T2L)
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Latency of steal

local remote

HotSLAW - local HotSLAW - remote
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Speedup of steal (vs HotSLAW)

local remote
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