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Abstract

This note presents some basic results on J-spectral factorization and its connection with

state space realizations. The assumptions needed are mild and the proofs are given in detail.
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1 Introduction

The frequency domain equivalent of the time domain Riccati equation is J-spectral factorization.
And like Riccati equations play an important role in time domain analysis of control problems,
finding a J-spectral factor is often a key step in frequency domain methods.

In a few words, the J-spectral factorization problem is to find rational matrices W that are
stable, with stable inverse, such that
I, 0

0 —Ip> W(s) for all complex s,

2(5)= W (=s)
for some given Z and indices ¢ and p. A special case is the ‘ordinary’ spectral factorization

problem
Z(s) = WI(=s)W(s).

This ‘ordinary’ problem has a long history in control theory that goes back to Wiener filtering in
the mid fifties, and it is nowadays assumed common knowledge that this problem has a solution
iff Z is biproper, Z(s) = ZT(—s) and Z(jw) > 0 on the imaginary axis, including infinity.
The ordinary spectral factorization problem can be tackled using easy arguments only [5]. The
general case, which turns up in Hs control, is much more involved. In several papers on He,
control, many results concerning J-spectral factorization have been proved along the way [5, 8, 7].

Connections between Nevanlinna-Pick interpolation and J-spectral factors are explored in [1, 3].



The links established between .J-spectral factors and their realizations in terms of solutions
of Riccati equations, are all based on the canonical factorization theorem developed in 1979 [4].
Recently some papers appeared devoted solely to the J-spectral factorization problem [10, 11].
In [10] conjugation methods are explored avoiding the use of the ‘difficult’ canonical factorization
theorem. In [11] a review on polynomial methods for J-spectral factorization is given.

It is the aim of this note to show that the canonical factorization theorem has an easy proof.
The proof hinges on the so called equalizing vectors. Equalizing vectors turn out to be effective
in determining the existence or nonexistence of a J-spectral factorization. Proofs are given in
detail.

The related notion of J-losslessness is not considered in this note, for that we refer to [8, 7,
1, 6, 10, 9, 13].

1.1 Notation

C_, Cq, Cy, C Open left half complex plane, open right half com-
plex plane, imaginary axis, C = C_ U Co U (4.

H~, H*, H™™~ H~(s) = H(-5)*, H*(s) = (H(s))* and H™™ =
(=1 = (1)

Loy Lo, Loy {w ] [ w*(D)w(t)dt < oo},
{w] [°, w*(t)w(t)dt < oo, w(t) =0 fort >0},

{w | 57 w*(Hw(t)dt < oo, w(t) =0 for t < 0}.

Ho, Hy Set of vector-valued functions f analytic in Cj
(C_) such that sup,q [*2 ||f(0 + jw)|?dw <
(5P, <o [25 1/(0 + jw)||? dw < o0).

£2(Co) {12 7 (jw) f(jw) dw < oo}
{f.9) 30 J2% [ (J0)g(jw) dw.
S A B S
= 7’7 ,or, G =[A; B;C; D] ( has a realization G(s) = C(sI — A)"'B + D.
Ty, T Orthogonal projection from L£5(Cy) to Ha, 71— =1 —

74 (i.e. the orthogonal projection to Hy ).

A rational matrix is stable if it has no poles in C; UCo U oo. G is bistable if both G and G~1 are
stable. We call a square constant matrix A stable if its eigenvalues lie in C_. This presumably
will not give rise to confusion. A rational matrix G is antistable if G~ is stable; a constant
square matrix A is called antistable if — A is stable.

We say that a realization G = [A; B; C; D] is stable if its “A-matrix” is stable. The zeros of

a realization [A; B; C'; D] are those values s for which the system matrix

<A—sI B)
C D



drops below normal rank. We define J, , as

(i)
N R A

We use J instead of J, , if the values of r» and p are obvious or irrelevant.

1.2 Preliminaries

We make use of the following well known results. Suppose G has realization G = [A; B; C; D],
then

—A* | C*
-B* | D*

G~ =

7

and, if GG is biproper,

A-BD™'C | BD™!
_p-i¢ | p!

G e

For any constant matrix J,
A 0 B
G~YJG = | -C*JC —A*|-C*JD
D*JC  B* | D*JD

If G~ JG is biproper, we may, as before, determine a realization of its inverse:

*

A 0 B
| Come )= (Leyp ) @Iy (D0C B
Gia 2| \—crgc -4 —C*JD

* *

That is, its “A-matrix” is a Hamiltonian matrix.

The Hardy spaces Ho and Hy are the Laplace transforms of Loy and Lo, respectively. All
steps in this note remain valid if Hy (H3) is understood as the set of strictly proper stable
(antistable) rational functions. In the same way, £2(Co) may be understood as the set of strictly
proper rational functions without poles on the imaginary axis.

If a rational matrix G is proper and has no poles on the imaginary axis, then G' L£2(Co) C

L2(Co). If G is stable we have G 'Hy C Hy, and if G is antistable we have GHf C Hy.

2 J-spectral factorization

In this section we provide some if-and-only-if conditions for the existence of a J-spectral factor-

ization. At the end similar results on cofactorization are given.



Definition 2.1 A matriz W is a J-spectral factor of a rational matriz 7 if W is bistable and
Z =W~JW.

The factorization Z = W~ JW is then referred to as a J-spectral factorization. A matriz W is
a J-spectral cofactor of Z if W is bistable and Z = WJW™. The factorization Z = WJW"™ is

then a J-spectral cofactorization of Z. o
If Z has a J, p-spectral factorization
7z =W~J,,W; W bistable,
then necessarily Z satisfies:
o /=7,
e 7 has no poles and zeros on Cy U o0;

o Everywhere on the imaginary axis, Z(jw) has ¢ positive and p negative eigenvalues.

There is one more necessary condition that we need and which is slightly less obvious. A rational

matrix Z has a J, -spectral factorization only if
e There do not exist nonzero i in Hy for which Z is in Hy.

An equivalent statement is that the Toeplitz operator Tz with symbol Z has to be injective on
its domain Hy, (with Tz(%) := 74 (Z4)). This is easy to check: Suppose Z has a J, ,-spectral
factorization Z = W~J,,W and that § := Za is in Hy with @ € Hy and nonzero. Then

W = J, ,Wi.

The left-hand side of this equality is in H3 and the right-hand side is in H3 and nonzero. This is
a contradiction, hence, such % do not exist. These vectors & appear to be very useful in proving

the existence or nonexistence of a J-spectral factorization.

Definition 2.2 A vector @ is an equalizing vector of Z if 4 is a nonzero element of Hy and Z

is in Hy . o

Lemma 2.3 (see [7]) J, ,-spectral factors are unique up to multiplication from the left by a

constant J, p,-unitary' matriz. o

Proof. If W and W are two J, ,-spectral factors of the same matrix W~.J, ,W = W~J, ,W,
then E := WW ™! is bistable and E~J,,FE = J,,. Therefore E~J,, = J, ,E~'. The left-hand
side of E~J,, = J,,E~" is antistable and the right-hand side is stable, hence, E is constant.

The converse is trivial. n

The main result is presented next. Roughly speaking, it says that the four necessary conditions
derived just now, are sufficient as well for a factorization to exist. We assume for the moment
that the matrix Z to be factored is given as Z = G~ JG for some stable (possibly nonsquare) G

and some signature matrix J.

'A constant matrix E is by definition Jyp-unitary if E*Jyp E = Jy p.



Theorem 2.4 Suppose G is a stable rational matriz that has full column rank on Cq U co. Lel
G(s) = [A; B; C; D] be a (possibly nonminimal) stable realization without zeros on the imaginary

axis. Let n denote the dimension of the state space. The following stalements are equivalent.
1. G~ JG has a Jy,-spectral factorization for some (unique) J, .
2. G~ JG has no poles and zeros on Cy U 0o, and has no equalizing vectors.

3. D*JD is nonsingular, and

= , ’ b * -1 * * 2nX2n
= <—C*JC —A*) - <_C*JD)(D JD)"H(D*JC B*) €C (1)

has no imaginary eigenvalues and its stable eigenspace is of the form Im(f,l ) with X1, X5 €
2

C™™ and X1 nonsingular.

4. D*JD is nonsingular, and the Riccali equation
PA+ A*P — [PB+ C*JD)(D*JD) '[D*JC + B*P] + C*JC =0 (2)

has a solution P with A — B(D*JD)~[D*JC + B*P] stable.

In the case that the conditions above are salisfied we have that q is the number of posilive
eigenvalues of D*J D, p is the number of negative eigenvalues of D*JD, and W is a J, ,-spectral
factor of G~ JG if and only if

A | B
Jo WA DIC 4 B*P] [ Wae |

W2 (3)

in which Wy, is a solution of

D*ID = W2 Jy ;W (4)

Proof. [(1) = (2)] See the discussion prior to this theorem.
[(2) = (3)] That D*JD is nonsingular is obvious. Next we show that H does not have

imaginary eigenvalues. Define A, B, C' and D as

[ilB A 0 B
GNJG E | ——| .= | —c*JC —-A* | -C*JD | . (5)
¢|D D*JC  B* \ D*JD
Then
L H |BD™!
(G~IG) ™ 2 | ———1—
~D-'¢| b




(Note that the Hamiltonian H defined in (1) equals H = A — BD~!C.) This realization of
(G~JG)~! has no unobservable or uncontrollable modes on the imaginary axis because A is
stable. By assumption G~JG has no zeros on the imaginary axis, and, therefore, H has no
imaginary eigenvalues. Since H is a Hamiltonian matrix we get as a result that the stable

eigenspace of H is n-dimensional. That is, the stable eigenspace of H is of the form Im(?{l)
with Xy, Xy € C™*". The crucial step in the proof is to show that X is nonsingular and this is
where we use that G~.JG has no equalizing vectors.

Proof by contradiction: Suppose X is singular. The antistable eigenspace of A is the image

of (?) because

i= (e —a)
—C*JC  —A*

and A is stable. The intersection of the antistable eigenspace of A and the stable eigenspace of

H
0 X
Im ( ) N I < 71>
I X,
is nontrivial because X is singular. Take a nonzero zg from this intersection. It is easy to check
that v and y defined as

1) = - =
u(?) —-D~'Cx(t) for ¢ >0 and with & = Ha, 2(0) = zo,

{ 0 for t <0,
(1) = Cz(t) fort < 0and with & = Az, 2(0) = zo,
n= 0 fort > 0,

satisfy the differential equation

<y> - (2 ﬁ) () #(0) = o, (6)

or, equivalently, the differential equation

()=(ohe 5 () o= 2

Both w and y are in £y because xg is as well in the stable eigenspace of H as in the antistable
eigenspace of A. The Laplace transforms @ and § of u and y are, therefore, well defined on the
imaginary axis; they are strictly proper rational funtions and satisfy § = G~JG4. Since u(t) is
zero for negative time and y(t) is zero for positive time we have that @ is in H, and § in Hy, i.e,
that @ is an equalizing vector. By Item 2 such vectors do not exist. This is a contradiction and,
hence, X7 is nonsingular. We glossed over the possibility that @ is the zero function. This can
not be: For ¢t > 0 we have & = Hz = (A— BD™'C)z = Az + Bu. Therefore u is identically zero
only if # = Az = Haz for t > 0. This is clearly impossible as 2(0) = 2o # 0 is in the antistable
eigenspace of A and in the stable eigenspace of H.



[(3) = (4)] Standard result: Define P := X,X; ', then (]ID) spans the stable eigenspace of
H, so that

7o) = (o) ®
P P
with A stable. Obviously A = A — B(D*JD)~'[D*JC + B*P]. Multiplying (8) from the left by
(—P 1I)shows (—P I)H(;) = 0. This, expressed term by term, is the Riccati equation.
[(3) = (1)] Standard result (see [7]) and easy to check.
Finally we show that W is a J, ,-spectral factor only if it has a realization as in (3-4). The
solutions Wy, of (4) are unique up to multiplication from the left by a (constant) J, ,-unitary

matrix. The same holds for W defined in (3), which is easier to see if we rewrite realization (3)

as
s A | B
B Woo(D*JD)'[D*JC + B*P] ‘ We |

By Lemma 2.3 this comprises all J, ,-spectral factors. .

Without proof we give the conjugate version:

Theorem 2.5 Suppose G is a stable ralional matriz thal has full row rank on Co U co. Lel
G(s) = [A; B; C; D] be a (possibly nonminimal) stable realization without zeros on the imaginary
aris. Then GJG~ has a J, ,-spectral cofactorization if and only if DJD* has q positive and p

negative eigenvalues and there exists a (unique) Q such that
AQ +QA* —[QC* + BJD*)(DJD*)'[CQ + DJB*]+ BJB* =0 9)

with A—[QC*+ BJD*|(DJD*)~1C stable. In this case W is a J, ,-spectral cofactor if and only
if

s | A|IBID" +QC WL Iy,
|| W,

in which W is a solution of Woqu,pWo*o = DJD*. o

3 Three corollaries

Corollary 3.1 A rational matriz Z has a J,,-spectral factorization for some (unique) J, , if

and only if the following three conditions hold.
1. Z=7z".
2. 7 has no poles and zeros on Cy U 0.

3. Z has no equalizing veclors.



Proof. Necessity is shown in the previous section.
(Sufficiency) Any Z = Z~ without poles and zeros on Cyp U co may be written as Z = G~JG
for some J and stable G without zeros on Cy U oo. For example, if T is the stable part of Z

and 7 =T 4+ T~, then 7 = G~Jy G with G := %Gi;) The result then follows from

Theorem 2.4, Items 1 and 2. n

~

Corollary 3.2 (Ordinary spectral factorization) A Z = Z~ without poles and zeros on

Co U oo has a spectral factorization
Z=W~W
if and only if Z(iw) > 0 for allw € R. o

Proof. (If) We only need to show that Z has no equalizing vectors. If @ is an equalizing vector
of Z, then (Za, @) = 0 because @ € Hy and Zi € Hy are perpendicular. On the other hand
(Zi,4) = 5= [%, @*(jw)Z(jw)i(jw) dw is positive because Z(jw) > 0 by assumption. This is a
contradiction, hence, 7 has no equalizing vectors and, therefore, has a .J, ,-spectral factorization
Z =W~J,,W for some J, ,. In this case p = 0 because Z(jw) > 0. In other words, J,, = I.

The converse is trivial. n

Corollary 3.3 Let G be a stable rational matriz that has full column rank on CoUoo and suppose

the realization G = [A; B; C; D] is stable, controllable and withoul zeros on the imaginary axis.

Then
GTIG = Jyp
if and only if there exist (unique) P such that
1. D*JD = J, ,;
2. D*JC + B*P =0;

3. PA+ A*P+C*JC = 0.

Proof. We use the fact that G~JG = J,, if W = I is a J, ,-spectral factor of G~ JG.

(If) Items 1,2 and 3 imply that P is also the stabilizing solution of (2). (Note that by Item
2 we have A — B(D*JD)"'[D*JC + B*P] = A, so the stability condition in Theorem 2.4, Item
4 is void.) Therefore W in (3) is constant: W = W, and because D*JD = J,, we may take
W=W,=1.

(Ounly if) That D*JD = J,, is obvious. Let P be the solution of (2). By controllability
of (A, B), the J, ,-spectral factor W in (3) is constant iff [D*JC + B*P] = 0. The Riccati

equation (2) then reduces to the Lyapunov equation in Item 3. ]
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