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w z is straightforward and quite general. Computationally

G it is not essentially easier than existing frequency do-
main solutions; the method still requires two spectral

factorizations and one or two projections. The state
space solution applies to a restricted set of problems,
u K y but when it does apply it has a definite advantage in
that the method does not require computation of pro-
jections. Itis not clear whether this comprises a funda-
mental difference between frequency domain and time
domain, or a shortcoming of the present frequency
domain approaches.

Fig. 1. The standard system configuration.

1. INTRODUCTION

The LQG problems and related, problems have 1.1 Notation

transparent solutions in the time domain (see

e.g. (Doyleet al, 1989), (Zhouet al, 1996)), but  The frequency domain_,-norm and Hp-norm are
it seems that frequency domain solutions are moredefined as
involved (e.g. (Park and Bongiorno, 1989; Huett 1 [~

al.,, 1994; Kwcera, 1996)). The situation with., IH2 = \/—/ H~(jw)H (jw) dw,

is quite different. TheH,, control problems have a 27 J oo

very appealing frequency domain solution, which can whereH™(s) := H(—s)*. Elements oH,, are called
stand the test with time domain solutions, and in fact stable A stable transfer matrix is said to léstable
beat time domain solutions in its compactness andif also its inverse is stable. For rational functions
generality, (Green, 1992; Kwakernaak, 1993). H without imaginary poles we denote i}, and
{H}_ its strictly proper stable part and strictly proper
antistable part respectively. The polynomial part is
denoted by{H}, thatis,{H},c = H — {H}, — {H}_.

As H; andH, are intimately related, it is tempting to
think that it is possible to develop a frequency domain
solution of the standaréH, problem along the same
lines as that of theH,, solution. That we do in this We say that a rational matrid is polynomial-stable
note. The solution of thél, problem that we present if its strictly proper antistable paftM}_ is zero. A



polynomial-stable matrix is hence a sum of a polyno-
mial matrix and a stable rational matrix. If bathand
M~ are polynomial-stable, then we say th\atis bi-
polynomial-stable

2. AFUNDAMENTAL LEMMA

A fundamental result in frequency domain approaches (A1)

to H is the so called two-block problem. Also in the

H, case a fundamental role is played by a two-block (A2)

problem, but now of course in thel,-norm. It is a
standard projection result:

Lemma 2.1.Suppose thath and B are polynomial-

We assume that the transfer functi@hand K are
rational. Now take any coprime factorization over the
stable matrices, of plant and controller

G- [Dll D1 " [Nu Ni2

D21 D22| | N2z Na2
We shall assume the “standard assumptions” which in
terms of the coprime factorization dre

[— Ni1 D1
—N21 D2 |
D21 —Ni2]
D22 — Nz |
(A3) The closed loop is stabilizable by sore

] K=X1Y. (@)

has full row rank onIR U oo,

has full column rank onlig U oo,

The stabilizability assumption implies that we may
shape the coprime factorization a bit. To see this we

stable matrices with equally many rows. Suppose thatfirst describe the closed loop of Fig. 2:

1) B"B=1,
(2) B~ Ais strictly proper and has no stable poles.

Then for any polynomial-stabl® we have that
IA+BQIZ = [IAlI3 + I QII3.

Therefore|| A+ BQ]2 is finite for some stabl& iff
|All2 is finite and then the unique polynomial-stable
Q that minimizes|A+ BQJ2is Q= 0.

PROOF. By assumptiorB~B = |. Then there exists
a so-called inner completioft such that[B T] is

square andl®- ][ 8 7] = I. There holds that
~ 2
- BA+
HA+BQG=M%MA+B®ﬁ=H[-PAQ}.
2

By assumptionB™ A is strictly proper so the above
2-norm is finite only if Q is strictly proper. Further
since{B~ A}, = 0 and{Q}_ = 0 it follows that|| A+

BQIZ = II[$ JAIZ +11QI5 = Il A5+ | QII5. (]

Fig. 2. The standard system configuration with distur-
bances.

3. THE STANDARD H; PROBLEM

Consider the loop in Fig. 1. The standdtd problem

is to minimize ||H||» over the stabilizing controllers
K. Here H is the transfer matrix fromw to z and
stability is in this section taken to be that all closed

D11 D12 —Ni2 | | 2 Ni1 D12 Nio | [ w
D21 D22 —Naz2 | [ Y| = | Nax D22 Nz | | 01
0 -Y X u 0O 0 O V2
Q= U=
Stability is equivalent to bistability of the rational

matrix Q. In particular this shows thdt3" ] has no

unstable zeros, so we might have chosen our coprime
factorization right from the start in such a way that
[B1]=[4]- This gives for the closed loop that

I Do —Np2| |z Niz D12 Npp| | w

0 Doz —Naz| [Y[=]MNax Doz Npz2| |1

0 -Y X u 0 0 0 V2
2

In this form stabilizability is equivalent to the exis-
tence of a bistabl® such thaf D2, —N22] U =1 0.

Theorem 3.1.SupposeG satisfies assumptions Al,
A2, A3. Then there is a coprime factorization Gf
such thaf '] = [§] and

(1) NoaNg; =1,

(2) N11N3; has no stable poles and is strictly proper.

Also there is then a bistablé such thatA, B defined

as
A Bf. (D2 —Np2 U
I Ol | D2 —Ng
satisfy
3) B"B=1,

(4) B~ A has no stable poles and is strictly proper.

With these dataK is stabilizing iff K = (U1 +
U,,Q) (U1 + U12Q) 1 for some stable), and then
IHIZ = IINwli3 + I AIZ + 1 QI35

In particular||H||> can be made finite if and only if
both Ni; and A are strictly proper, in which case the

1 If G(s) is proper and has minimal realizati@\(s) = [%](sl —

A)—1[31 Bz] + [E; E;g] then Assumption Al is equivalent to

loop poles are in the open left-half plane and all maps [“c;" &2, ] having full row rank on R U oo, and Assumption A2

from w, vy, v, t0 Z, U, y are proper (see Fig. 2).

A-sl B,

is equivalent td c Elz] having full column rank onlR U co.



stabilizing controlleK that minimizeg|H ||, is given
by Q=0 (i.e.,K = UnU).

PROOF. The proof is practically an algorithm.

(a) By Assumption Al we have thab; has full row
rank on the imaginary axis so there is a bistable
V such thatv V™ = N1 N7;. With it we redefine
the coprime factorization:

[| D12 Nug le} . [' 0 }[| D12 N1 N12:|
0 D22 Na1 Npo| ™ |0 V71| [0 D2z N1 Ny
(NOW N21N2~1 = )

(b) Let? F = —{N11N2Ni}+’oo. Then (Ni; +
FN21)Ny; has no stable poles and is strictly
proper. SoN;; := Ni1 + FNp; satisfies Item 2.
Therefore redefine the coprime factorization,

| D12 Nig Naz2| . |1 F {1 D12 Nz Np2
0 D22 Noz Noo| ™ |0 I']|0 D22 Nog Npo|*

(Then B~ A has no stable poles and is strictly
proper.)
The equality (3) may now be written as

m = [? 5} [clz} [cla} =u m 5)

Note thatQx = A+ BQ. By Lemma 2.1 we therefore
have that

1Qk 5 = IAIZ+ 1IQI3. (6)
Combination (4) and (6) yield§H |3 = [|Nyu]3 +
IAIZ + 1 QII3. It follows from (5) that[ X] = U[ §],
i.e. thatk ;=YX 1= (U21+U22Q) (U1 + Ule)fl.

n

It is interesting to note that the method is not restricted
to proper plants and controllers and they may in fact
even be infinite-gain (i.eX and D may be singular).
This is a feature of the method, a feature that is shares

Now we have a coprime factorization that meets the \yith most polynomial approaches, but not with most

conditions of Items 1 and 2. The remaining conditions
(tems 3 and 4) follow from a dual version, shown
next.

From (2) we can see that a controller is stabilizing iff
K has a right coprime factorizatiok = YX~* such
that D2, X — NooY = |. Given such Y, X) define

Qk via
Qk]._ [Di2 —Ni2|[X
i v | B
It is easy to verify from (2) that then the closed

loop transfer matrix equalsl = N3 — Qg Np1. By
Lemma 2.1 we thus have that

IH13 = [ Nwall2 + | QklI3. 4)

Hence minimizing |H||z amounts to minimizing
| Qkll2. We shall write (3) in a more manageable
form:

(c) By stabilizability there is a bistabM/ such that
[D22 —Nz2] W = [I 0]. Given this W define
D12 —N12:| W

A, Bvia
AB|.
I 0| | Dy —Nax

(d) By Assumption A2 we have thaB has full
column rank on the imaginary axis, so there is a
bistableV such thalv~V = B~ B. RedefineA, B

as
A B ._[Di2 —=Ni2],, [1 0
I O] | D2 —Np ov1t
(NowB~B=1.)
(e) Let F := —{B~ A}, o and redefineA, B once

again
D12 —Ni2 I 0 I 0
o oo [ 1]

BEEE I

2 The{-}; « denotes the strictly proper stable part plus the poly-
nomial part.

state-space approaches. In the event of infinite gain
plants or controllers, the plant or controller can not
be identified with the transfer matrix but as systems
they are still be perfectly valid but then interpreted
behavioristically, that is as the set of solutions of (2).

3.1 Comparison with a state space approach

If Gis properthen assumptions Al, A2, A3 are essen-
tially equivalent to the usual state space assumptions
(see e.g. (Zhowt al, 1996, p.384-389)). It is quite
straightforward to translate the state-space solution
into that of Theorem 3.1 and conversely, to derive the
state space solution from Theorem 3.1. There appears
to be a definite advantage, however, with the state
space approach over the frequency domain approach
when it comes to computation: In state space the
two steps (a) and (b) of the proof of Theorem 3.1
are performed in a single step and no explicit pro-
jection F := —{N11NJ;}+ o needs to be computed.
Concretely, suppos&(s) is proper and stable with
minimal realization

0 Elz}

G(s) = [gﬂ (s1— A)![By By + [Eu ;

and suppose (to further simplify formulae) that
B:E5; = 0 and Ex;E5; = |. For D and N we can
take the joint realization

Al0O O By B
D11 D12 Nz Npo S c1|| 0 O1 E122
D21 D22 Na1 N G0l Exx O

Now, the spectral factov of VV™ = N»1N;; may be
shown to beV (s) = Cp(sl — A)1QC; + |, whereQ
is the solution of the filter Riccati equation associated
with H,. In State space approaches it is now common

to redefine the coprime factorization®as

3 |n state space one does not actually work with coprime factoriza-
tions, but this is how one may interpret the state space formulae.



I D12 Ni1 Ni2 s A_QCEC2|O _QCE Bl_QqEﬂ B
0 Doo Not Noow |~ Cy | 0 0 Ei»

22 IN21 IN22 C2 0 I E21 0
Now Np; satisfiesN,1N3; = |, that is, Step (a) has

A more systematic approach to handle non-standard
H, problems can be done via a polynomial ap-
proacH . It allows to dispense with the assumptions
at s = oo, which are the assumptions we would like

been performed. However, the above redefinition alsonot to need.

has changedll;;. Surprisingly,N11N3; may be verified

to be antistable. So the projecti®meeded in Step (b)

of the proof,F := —{N11N3;}+ « is F = 0. That is,
Step (b) is void. Similarly in the state space approach
also the projection of Step (e) is void.

Is it possible to develop a frequency domain method
that does not explicitly need projections (on top of the
two spectral factorizations)?

4. POLYNOMIAL-STABLE SOLUTION

In the previous section we took coprime factorizations
over the ring of stable transfer matrices. Such a fac-
torization is useful if we want not only our closed
loop poles in the open left-half plane but also want
the map from all disturbances v1, v, to all outputs

Z, U, y proper. Properness is a property St co”.
Unfortunately, this approach alsequiresa property
ats = oo: The assumptions Al and A2 state that cer-
tain matrices are full rank &t= co. In many situations

Actually, instead of the polynomial factorizations we
propose to take factorizations over the riqQy of
polynomial-stable matrices,

Q={Q : Qrational and Q}_ = 0}.

For example, 1(s+ 1) andst®/(s+ 1) are inQ, but
§?/(s— 1) is not. The polynomial-stable matrices have
slightly nicer properties than its subset of polynomial
matrices.

Now let (1) denote polynomial-stable factorizations of
G and K. The assumptions that we now impose are
practically the same as A1-A3, except that the point
s= oo is left out: We assume that

) —Ni1 D11
—N21 Do
D>
B2
(B2) Doy

1 —N
(B3) The closed loop is stabilizable by sorde

(B1 } has full row rank onIR,

le has full column rank oriR,
— IN22

Closed loop stability now means that all (finite) closed
loop poles are in the open left-half plane. With the

these two assumptions are not satisfied, for example ingactorizations overQ in place of the factorizations

Wiener filtering with colored noise.

Fig. 3. Wiener filtering with colored noise.

Example 4.1(Wiener filtering). Consider the system
shown in Figure 3. A message signals corrupted
by colored noise&n = Ww,, driven by white noisev..
To recover fromy the messag& one may want to
minimize theH, norm of the map fronj ;1] to z. If
we set up the problem as a standatglproblem then
we arrive at the generalized plant

PO —I
G:[PW 0]

Now if both P and W are strictly proper (and they
often are) therG,; := [P W] is strictly proper and

over the stable matrices, Theorem 3.1 and its proof
remain valid unaltered. For completeness:

Theorem 4.2 SupposeG satisfies assumptions B1,
B2, B3. Then there is a factorization ov@rof G such
that[ 3] = [}], and

(1) N2tNg; =1,
(2) N11N3; has no stable poles and is strictly proper.

D> — N12j| U

Also there is then a bi-polynomial-staldlesuch that
D22 —Na»
satisfy

A, B defined as
A B] .
I 0"
(3) B B=1,
(4) B~ A has no stable poles and is strictly proper.

With these dataK is stabilizing iff K = (U1 +
U,,Q) (U1 + U1,Q) 1 for some stable), and then

IHI3 = N1l + 1| Al + | Q3.

In particular||H||> can be made finite if and only if
both Ni; and A are strictly proper, in which case the

this violates the standard assumptions (Assumptionstabilizing controllerk that minimizes| H|l2 is given

Al in our case), so the standard solution does notby Q=0 (i.e.,K = UxU}).

work directly. In this particular example the non-

O

standardness can be easily remedied in the SISO case

by redefining the outpuyo(s) = (s+ 1)Xy(s) where
k is relative degree of P W]. From the then found
filter Fy we can form the optimal filter for the original
problem,F (s) = (s+ 1)XFy(9). O

4 In behavioral control problems, the presence of “disturbaneges”
(see Fig. 2) is often not appropriate, and demanding that the map
from thesev; to u andy be proper is often not well motivated. Also

in that case a polynomial approach is more natural than that based
on factorizations over the ring of stable transfer matrices.



We apply the method to a non-standard example takerthat for H,. For example, from the polynomidd,

from (Kucera, 1996).

Example 4.3((Ku€era, 1996), Ex. 1.6). Consider the
generalized plant

s_l]

S+2

s1 |-

S+2

It fails to satisfy Assumption Al, but it satisfies B1,
B2, B3, so Theorem 4.2 applies. &sis stable we can
1
_ |19k

take forN andD,
s-1
— : s+%
o1l
[0 1 m}

D11 D12 N1z Nz
D21 D22 Noi Npz

We follow the steps of the proof of Theorem 3.1.
Now, V is a bi-polynomial-stable solution &f V™ =
N21N3;. As Np1 = 1/(s+ 2) we can simply take/ =
N21 = 1/(s+ 2). Redefine accordingly (Step (a) of the
proof),

D11 D12 Nuu Nz ._[1 0 5 &5

D21 D22 Nog N2 7 |0s+2 1 s—1]°
The next step is to compute = —{N11NJj}4 o =
—{53}+.00 = 575- With it redefine as in Step (b),

D11 D1z Nig Nizf,_ |1 -1 0 O

Do1 Dos Nog Noo| ™ |0s+21s—1|"
Next we have to find a bi-polynomial-stablé such
that [Dzz —sz]W = [S+ 2 —(s— 1)]W = [1 O].

We can take
_[1/3 s—1
w=[13 373

In Step (c) we defindA B] := [D12 —Nio| W =
[-1/3 s—1]. Then, in Step (d) we have to compute
bi-polynomial-stablé/ fromV~V = B"B = (1—5?).
We takeV = s+ 1. Then redefine as done in Step (d),

[A Bl:=[A BV =[1/3 &1].

2

1
G(S) — |:S-&]:2

Step (e) wants us to compute ;= —{B~A},
—(=11y, o = —1/3. This, finally gives usA :

—s+13
A+ BF = .2 and
s1
st+1
2 |
st+1

2/3
‘ oV 1lllF1 -3
s+1

The optimal controller follows aK = UnU;! =
—1/2, and all sub-level stabilizing controllers are pa-
rameterized by

_ Un+UxpQ  —1+43(s+2)Q
Un+UpQ  24+3(s-1)Q°

The closed loop transfer matrix has 2-norm|H||> =
\/II N11ll3 + [ A3 + QI3 = \/0+ 1/3+1Ql3. o

Q stable

There has been a polynomial method for the non-

standardH, control problem for quite a few years,

see e.g., (Kwakernaak, 1993; Meinsma, 1993), andLQ-optimal trajectory is[LV,] =
for that problem the results are more satisfactory thanis determined by the past c[fz

solution it is easy to show (also in the non-standard
case) that the McMillan degree of the controller is at
most that of the generalized pla@t(Meinsma, 1993).
Whether the same is true for thé, problem is not
easy to answer, at least not from our results. In the
state space setting it is however trivial, but of course
that only applies to a restrictive special case.

5. AFREQUENCY DOMAIN LQ PROBLEM

The LQ problem is normally formulated in time-
domain in terms of an initial stat&(0) of some
state-space realization. In this section we alternatively
formulate the LQ problem without reference to states
and we solve it in frequency domain terms. It will be
convenientto denote the unit step functioniy) and

to use sub scripts and+ to denote past and future of

a signal,

v_(t) = v(t)1(—t), vy (1) = (D) L(1).

Definition 5.1. Consider a systemy = Gu. The LQ-
problemis to minimize [, |u (t)|2 + |y, ()| dt over
the futureg(u,, y,) given a pastu_, y_). O

The link with LQ will be clear. Some differences and
other things to note are:

¢ No state is needed,

e The solution generally depends on the past
(u-, y-),

e Itis not (yet) a feedback control problem.

Now let G = NM~! be a normalized coprime factor-
ization of G, that is,N andM are coprime and™~ N +
M~M = |. We can represent the systgm= Gu by

y=NMtu
——

and also by an image representation

o] =)

As [N] is stable it is direct that the past ¢f]

is determined by the past af. It is interesting to
note that coprimeness 6N, M) implies the converse
as well: The pas{?-] determines the past_ of
v. Indeed, ag'N, M) are coprime there exist stable
(X, Z2) forwhich XN+ ZM = |. Thereforev = Xy+
Zuand in particular this shows that the pastof v is
determined by the past ¢f .

@)

As the coprime factorization was taken normalized
(i.e,[ N ]is inner) we actually solved the LQ-problem:

Theorem 5.2 Consider a systeny = NM~tu with

NM~! normalized coprime. Given the pdsf |, the

f,u]v, where v_
as shown above.



Moreover the optimal cosN[ﬁj]H; equals|v_||3 —

102105

PROOF. Recall that there is a bijection from_ to
[&]in (7).

Minimizing H[Zj]“i is the same as minimizing
I[¥] H; as they differ a given constaf - | ||§ But, as

[ %] is inner, we have thal[ ¥ ]|, = llvllo. Therefore

min

y112 — i 2 _ 2
pcami IEE10z =, min follz = -1

That is, setting the future, of v to zero minimizes
the cost and the minimal cog 51]”2 then equals

-3 = [0 .

Example 5.3.Supposeés(s) = 1/s. Then
2 __S_
s+1’ S s+1

is a normalized coprime factorization &. By The-
orem 5.2,(y, u) is LQ-optimal if and only if (in fre-
guency domain)

yo) | _ [

|:u(s)_ = I:% v_(S).

In particular the futuréu, , y,) equals
[y+<8)} ';11”—(5)} |:—vs(+_ll) }

Ut (s) | 57v-(9) ’”S‘T(Il) )

The LQ-optimal trajectories thus have the form
yi (1) = —uy (t) = e et for somea. o

G=NM1, N(s) = M(s)

:]‘[+ =

Example 5.4.When the transfer matri is given by
a state space realizati@®(s) = C(sl — A)"'B+ D
then we recover the ubiquitous state feedback law.

It is well known that if the realization of is stabiliz-

The formulation of the LQ problem assumes that the
past is given. As a result, the LQ-optimal trajectory
[ ¥ ] also depends on the past. Indeed, that is the case.
On the other hand, Theorem 5.2 shows fhtis LQ-
optimal if and only if[ ¥] € Muv_, for some past_,
and this makes no reference to the specific p ]Jf
For example, we found in Example 5.3 tf{zitt is
LQ-optimal iff y, (t) = —u, (t) = et for somea.
The value of « is of course determined by the past
[¥-] but for any o the trajectoryy, (t) = —u,(t) =

a e tis LQ-optimal, albeit for different pasts.

Example 5.5(Behaviors). The so formulated LQ-
problem in fact makes no distinction between inputs
and outputs. Letv denote theexternal signagl of the
system, which in the input-output setting would mean
w = [¥]. The LQ-problem is now to minimize the
future energyw. || over all future continuations ;.

of a given pastv_ subject to the system equations. If
we can find an image representation of the system

w= Mv, (Minner,ZM = | for some stabl&)

then, as before, it may be shown that is LQ-
optimal if and only if w = Mv_ for some past_,
i.e., if and only ifw, (t) € CeAR", whereC and A
come from a minimal realization df1(s) = C(sl —
A)~B+D. 0O
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