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Abstract: This note presents frequency domain solutions of the standard MIMOH2 problem
and some non-standardH2 problems. In the standard case the results are equivalent to the well
known state space formulae. The non-standard case is a fairly straightforward generalization
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Fig. 1. The standard system configuration.

1. INTRODUCTION

The LQG problems and relatedH2 problems have
transparent solutions in the time domain (see
e.g. (Doyleet al., 1989), (Zhouet al., 1996)), but
it seems that frequency domain solutions are more
involved (e.g. (Park and Bongiorno, 1989; Huntet
al., 1994; Kučera, 1996)). The situation withH∞
is quite different. TheH∞ control problems have a
very appealing frequency domain solution, which can
stand the test with time domain solutions, and in fact
beat time domain solutions in its compactness and
generality, (Green, 1992; Kwakernaak, 1993).

As H2 andH∞ are intimately related, it is tempting to
think that it is possible to develop a frequency domain
solution of the standardH2 problem along the same
lines as that of theH∞ solution. That we do in this
note. The solution of theH2 problem that we present

is straightforward and quite general. Computationally
it is not essentially easier than existing frequency do-
main solutions; the method still requires two spectral
factorizations and one or two projections. The state
space solution applies to a restricted set of problems,
but when it does apply it has a definite advantage in
that the method does not require computation of pro-
jections. It is not clear whether this comprises a funda-
mental difference between frequency domain and time
domain, or a shortcoming of the present frequency
domain approaches.

1.1 Notation

The frequency domainL2-norm and H2-norm are
defined as

‖H‖2 :=
√

1
2³

∫ ∞
−∞

H∼.j!/H.j!/d!;

whereH∼.s/ := H.−s/∗. Elements ofH∞ are called
stable. A stable transfer matrix is said to bebistable
if also its inverse is stable. For rational functions
H without imaginary poles we denote by{H}+ and
{H}− its strictly proper stable part and strictly proper
antistable part respectively. The polynomial part is
denoted by{H}∞, that is,{H}∞ = H−{H}+ − {H}−.

We say that a rational matrixM is polynomial-stable
if its strictly proper antistable part{M}− is zero. A



polynomial-stable matrix is hence a sum of a polyno-
mial matrix and a stable rational matrix. If bothM and
M−1 are polynomial-stable, then we say thatM is bi-
polynomial-stable.

2. A FUNDAMENTAL LEMMA

A fundamental result in frequency domain approaches
to H∞ is the so called two-block problem. Also in the
H2 case a fundamental role is played by a two-block
problem, but now of course in theH2-norm. It is a
standard projection result:

Lemma 2.1.Suppose thatA and B are polynomial-
stable matrices with equally many rows. Suppose that

(1) B∼B= I ,
(2) B∼A is strictly proper and has no stable poles.

Then for any polynomial-stableQ we have that

‖A+ BQ‖22 = ‖A‖22+ ‖Q‖22:
Therefore‖A+ BQ‖2 is finite for some stableQ iff
‖A‖2 is finite and then the unique polynomial-stable
Q that minimizes‖A+ BQ‖2 is Q= 0.

PROOF. By assumptionB∼B= I . Then there exists
a so-called inner completionT such that

[
B T

]
is

square and
[

B∼
T∼
][

B T
] = I . There holds that

‖A+ BQ‖22 = ‖
[

B∼
T∼
]
.A+ BQ/‖22 =

∥∥∥∥[B∼A+ Q
T∼A

]∥∥∥∥2

2
:

By assumption,B∼A is strictly proper so the above
2-norm is finite only if Q is strictly proper. Further
since{B∼A}+ = 0 and{Q}− = 0 it follows that‖A+
BQ‖22 = ‖

[
B∼
T∼
]
A‖22+ ‖Q‖22 = ‖A‖22+ ‖Q‖22. �
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Fig. 2. The standard system configuration with distur-
bances.

3. THE STANDARDH2 PROBLEM

Consider the loop in Fig. 1. The standardH2 problem
is to minimize‖H‖2 over the stabilizing controllers
K. Here H is the transfer matrix fromw to z and
stability is in this section taken to be that all closed
loop poles are in the open left-half plane and all maps
fromw; v1; v2 to z; u; y are proper (see Fig. 2).

We assume that the transfer functionG and K are
rational. Now take any coprime factorization over the
stable matrices, of plant and controller

G=
[

D11 D12

D21 D22

]−1[
N11 N12

N21 N22

]
; K = X−1Y: (1)

We shall assume the “standard assumptions” which in
terms of the coprime factorization are1 :

(A1)
[−N11 D11

−N21 D21

]
has full row rank on jR∪∞,

(A2)
[

D21 −N12

D22 −N22

]
has full column rank on jR∪∞,

(A3) The closed loop is stabilizable by someK.

The stabilizability assumption implies that we may
shape the coprime factorization a bit. To see this we
first describe the closed loop of Fig. 2:D11 D12 −N12

D21 D22 −N22

0 −Y X


︸ ︷︷ ︸

�:=

z
y
u

 =
N11 D12 N12

N21 D22 N22

0 0 0


︸ ︷︷ ︸

9:=

wv1

v2

 :
Stability is equivalent to bistability of the rational
matrix �. In particular this shows that

[ D11
D21

]
has no

unstable zeros, so we might have chosen our coprime
factorization right from the start in such a way that[ D11

D21

] = [ I
0

]
. This gives for the closed loop that I D12 −N12

0 D22 −N22

0 −Y X

z
y
u

 =
N11 D12 N12

N21 D22 N22

0 0 0

wv1

v2


(2)

In this form stabilizability is equivalent to the exis-
tence of a bistableU such that

[
D22 −N22

]
U = [I 0

]
.

Theorem 3.1.SupposeG satisfies assumptions A1,
A2, A3. Then there is a coprime factorization ofG
such that

[ D11
D21

] = [ I
0

]
and

(1) N21N∼21= I ,
(2) N11N∼21 has no stable poles and is strictly proper.

Also there is then a bistableU such thatA; B defined
as [

A B
I 0

]
:=
[

D12 −N12

D22 −N22

]
U

satisfy

(3) B∼B= I ,
(4) B∼A has no stable poles and is strictly proper.

With these data,K is stabilizing iff K = .U21 +
U22Q/.U11+U12Q/−1 for some stableQ, and then

‖H‖22 = ‖N11‖22+ ‖A‖22+ ‖Q‖22:
In particular‖H‖2 can be made finite if and only if
both N11 and A are strictly proper, in which case the

1 If G.s/ is proper and has minimal realizationG.s/= [C1
C2

]
.sI−

A/−1
[

B1 B2
] + [ E11 E12

E21 E22

]
then Assumption A1 is equivalent to[ A−sI B1

C2 E21

]
having full row rank on jR ∪∞, and Assumption A2

is equivalent to
[ A−sI B2

C1 E12

]
having full column rank on jR∪∞.



stabilizing controllerK that minimizes‖H‖2 is given
by Q= 0 (i.e.,K = U21U−1

11 ).

PROOF. The proof is practically an algorithm.

(a) By Assumption A1 we have thatN21 has full row
rank on the imaginary axis so there is a bistable
V such thatVV∼ = N21N∼21. With it we redefine
the coprime factorization:[

I D12 N11 N12

0 D22 N21 N22

]
:=
[

I 0
0 V−1

][
I D12 N11 N12

0 D22 N21 N22

]
(Now N21N∼21= I .)

(b) Let2 F := −{N11N∼21}+;∞. Then .N11 +
FN21/N∼21 has no stable poles and is strictly
proper. SoN11 := N11+ FN21 satisfies Item 2.
Therefore redefine the coprime factorization,[

I D12 N11 N12

0 D22 N21 N22

]
:=
[

I F
0 I

][
I D12 N11 N12

0 D22 N21 N22

]
:

Now we have a coprime factorization that meets the
conditions of Items 1 and 2. The remaining conditions
(items 3 and 4) follow from a dual version, shown
next.

From (2) we can see that a controller is stabilizing iff
K has a right coprime factorizationK = ȲX̄−1 such
that D22X̄− N22Ȳ = I . Given such a.Ȳ; X̄/ define
QK via [

QK

I

]
:=
[

D12 −N12

D22 −N22

][
X̄
Ȳ

]
: (3)

It is easy to verify from (2) that then the closed
loop transfer matrix equalsH = N11− QK N21. By
Lemma 2.1 we thus have that

‖H‖22 = ‖N11‖22+‖QK‖22: (4)

Hence minimizing ‖H‖2 amounts to minimizing
‖QK‖2. We shall write (3) in a more manageable
form:

(c) By stabilizability there is a bistableW such that[
D22 −N22

]
W = [

I 0
]
. Given this W define

A; B via [
A B
I 0

]
:=
[

D12 −N12

D22 −N22

]
W:

(d) By Assumption A2 we have thatB has full
column rank on the imaginary axis, so there is a
bistableV̄ such that̄V∼V̄= B∼B. RedefineA; B
as [

A B
I 0

]
:=
[

D12 −N12

D22 −N22

]
W

[
I 0
0 V̄−1

]
:

(Now B∼B= I .)
(e) Let F̄ := −{B∼A}+;∞ and redefineA; B once

again[
A B
I 0

]
:=
[

D12 −N12

D22 −N22

]
W

[
I 0
0 V̄−1

][
I 0
F̄ I

]
︸ ︷︷ ︸

U:=

:

2 The {·}+;∞ denotes the strictly proper stable part plus the poly-
nomial part.

(Then B∼A has no stable poles and is strictly
proper.)

The equality (3) may now be written as[
QK

I

]
:=
[

A B
I 0

][
I
Q

]
;

[
I
Q

]
:= U−1

[
X̄
Ȳ

]
: (5)

Note thatQK = A+ BQ. By Lemma 2.1 we therefore
have that

‖QK‖22 = ‖A‖22+ ‖Q‖22: (6)

Combination (4) and (6) yields‖H‖22 = ‖N11‖22 +
‖A‖22 + ‖Q‖22. It follows from (5) that

[
X̄
Ȳ

] = U
[

I
Q

]
,

i.e., thatK := ȲX̄−1= .U21+U22Q/.U11+U12Q/−1.
�

It is interesting to note that the method is not restricted
to proper plants and controllers and they may in fact
even be infinite-gain (i.e.,̄X and D may be singular).
This is a feature of the method, a feature that is shares
with most polynomial approaches, but not with most
state-space approaches. In the event of infinite gain
plants or controllers, the plant or controller can not
be identified with the transfer matrix but as systems
they are still be perfectly valid but then interpreted
behavioristically, that is as the set of solutions of (2).

3.1 Comparison with a state space approach

If G is proper then assumptions A1, A2, A3 are essen-
tially equivalent to the usual state space assumptions
(see e.g. (Zhouet al., 1996, p.384-389)). It is quite
straightforward to translate the state-space solution
into that of Theorem 3.1 and conversely, to derive the
state space solution from Theorem 3.1. There appears
to be a definite advantage, however, with the state
space approach over the frequency domain approach
when it comes to computation: In state space the
two steps (a) and (b) of the proof of Theorem 3.1
are performed in a single step and no explicit pro-
jection F := −{N11N∼21}+;∞ needs to be computed.
Concretely, supposeG.s/ is proper and stable with
minimal realization

G.s/ =
[
C1

C2

]
.sI− A/−1 [B1 B2

]+ [ 0 E12

E21 0

]
and suppose (to further simplify formulae) that
B1E∗21 = 0 and E21E∗21 = I . For D and N we can
take the joint realization[

D11 D12 N11 N12

D21 D22 N21 N22

]
s=
 A 0 0 B1 B2

C1 I 0 0 E12

C2 0 I E21 0


Now, the spectral factorV of VV∼ = N21N∼21 may be
shown to beV.s/ = C2.sI− A/−1QC∗2 + I , whereQ
is the solution of the filter Riccati equation associated
with H2. In State space approaches it is now common
to redefine the coprime factorization as3

3 In state space one does not actually work with coprime factoriza-
tions, but this is how one may interpret the state space formulae.



[
I D12 N11 N12

0 D22 N21 N22

]
s=
 A− QC∗2C2 0 −QC∗2 B1− QC∗2 E21 B2

C1 I 0 0 E12

C2 0 I E21 0


Now N21 satisfiesN21N∼21 = I , that is, Step (a) has
been performed. However, the above redefinition also
has changedN11. Surprisingly,N11N∼21 may be verified
to be antistable. So the projectionF needed in Step (b)
of the proof,F := −{N11N∼21}+;∞ is F = 0. That is,
Step (b) is void. Similarly in the state space approach
also the projection of Step (e) is void.

Is it possible to develop a frequency domain method
that does not explicitly need projections (on top of the
two spectral factorizations)?

4. POLYNOMIAL-STABLE SOLUTION

In the previous section we took coprime factorizations
over the ring of stable transfer matrices. Such a fac-
torization is useful if we want not only our closed
loop poles in the open left-half plane but also want
the map from all disturbancesw; v1; v2 to all outputs
z; u; y proper. Properness is a property “ats= ∞”.
Unfortunately, this approach alsorequiresa property
at s=∞: The assumptions A1 and A2 state that cer-
tain matrices are full rank ats=∞. In many situations
these two assumptions are not satisfied, for example in
Wiener filtering with colored noise.

F

W

P

P

w1

w2

x

x y

z

n

Fig. 3. Wiener filtering with colored noise.

Example 4.1.(Wiener filtering). Consider the system
shown in Figure 3. A message signalx is corrupted
by colored noisen= Ww2, driven by white noisew2.
To recover fromy the messagex one may want to
minimize theH2 norm of the map from

[
w1
w2

]
to z. If

we set up the problem as a standardH2 problem then
we arrive at the generalized plant

G=
[

P 0 − I
P W 0

]
:

Now if both P and W are strictly proper (and they
often are) thenG21 := [P W

]
is strictly proper and

this violates the standard assumptions (Assumption
A1 in our case), so the standard solution does not
work directly. In this particular example the non-
standardness can be easily remedied in the SISO case
by redefining the outputy0.s/ = .s+ 1/ky.s/ where
k is relative degree of

[
P W

]
. From the then found

filter F0 we can form the optimal filter for the original
problem,F.s/ = .s+ 1/kF0.s/. �

A more systematic approach to handle non-standard
H2 problems can be done via a polynomial ap-
proach4 . It allows to dispense with the assumptions
at s= ∞, which are the assumptions we would like
not to need.

Actually, instead of the polynomial factorizations we
propose to take factorizations over the ringQ of
polynomial-stable matrices,

Q= {Q : Q rational and{Q}− = 0}:
For example, 1=.s+ 1/ ands10=.s+ 1/ are inQ, but
s2=.s−1/ is not. The polynomial-stable matrices have
slightly nicer properties than its subset of polynomial
matrices.

Now let (1) denote polynomial-stable factorizations of
G and K. The assumptions that we now impose are
practically the same as A1-A3, except that the point
s=∞ is left out: We assume that

(B1)
[−N11 D11

−N21 D21

]
has full row rank on jR,

(B2)
[

D21 −N12

D22 −N22

]
has full column rank on jR,

(B3) The closed loop is stabilizable by someK.

Closed loop stability now means that all (finite) closed
loop poles are in the open left-half plane. With the
factorizations overQ in place of the factorizations
over the stable matrices, Theorem 3.1 and its proof
remain valid unaltered. For completeness:

Theorem 4.2.SupposeG satisfies assumptions B1,
B2, B3. Then there is a factorization overQ of G such
that

[ D11
D21

] = [ I
0

]
, and

(1) N21N∼21= I ,
(2) N11N∼21 has no stable poles and is strictly proper.

Also there is then a bi-polynomial-stableU such that
A; B defined as[

A B
I 0

]
:=
[

D12 −N12

D22 −N22

]
U

satisfy

(3) B∼B= I ,
(4) B∼A has no stable poles and is strictly proper.

With these data,K is stabilizing iff K = .U21 +
U22Q/.U11+U12Q/−1 for some stableQ, and then

‖H‖22 = ‖N11‖22+ ‖A‖22+ ‖Q‖22:
In particular‖H‖2 can be made finite if and only if
both N11 and A are strictly proper, in which case the
stabilizing controllerK that minimizes‖H‖2 is given
by Q= 0 (i.e.,K = U21U−1

11 ). �

4 In behavioral control problems, the presence of “disturbances”vi

(see Fig. 2) is often not appropriate, and demanding that the map
from thesevi to u andy be proper is often not well motivated. Also
in that case a polynomial approach is more natural than that based
on factorizations over the ring of stable transfer matrices.



We apply the method to a non-standard example taken
from (Kučera, 1996).

Example 4.3.((Kučera, 1996), Ex. 1.6). Consider the
generalized plant

G.s/ =
[

1
s+2

s−1
s+2

1
s+2

s−1
s+2

]
:

It fails to satisfy Assumption A1, but it satisfies B1,
B2, B3, so Theorem 4.2 applies. AsG is stable we can
take forN andD,[

D11 D12 N11 N12

D21 D22 N21 N22

]
=
[

1 0 1
s+2

s−1
s+2

0 1 1
s+2

s−1
s+2

]
:

We follow the steps of the proof of Theorem 3.1.
Now, V is a bi-polynomial-stable solution ofVV∼ =
N21N∼21. As N21= 1=.s+ 2/ we can simply takeV =
N21= 1=.s+2/. Redefine accordingly (Step (a) of the
proof),[

D11 D12 N11 N12

D21 D22 N21 N22

]
:=
[
1 0 1

s+2
s−1
s+2

0 s+ 2 1 s− 1

]
:

The next step is to computeF = −{N11N∼21}+;∞ =
−{ 1

s+2}+;∞ = −1
s+2. With it redefine as in Step (b),[

D11 D12 N11 N12

D21 D22 N21 N22

]
:=
[
1 −1 0 0
0 s+ 2 1 s− 1

]
:

Next we have to find a bi-polynomial-stableW such
that

[
D22 −N22

]
W = [s+ 2 −.s− 1/

]
W = [1 0

]
.

We can take

W=
[
1=3 s− 1
1=3 s+ 2

]
:

In Step (c) we define
[
A B

]
:= [

D12 −N12
]

W =[−1=3 s− 1
]
. Then, in Step (d) we have to compute

bi-polynomial-stablēV from V̄∼V̄= B∼B= .1− s2/.
We takeV̄ = s+ 1. Then redefine as done in Step (d),[

A B
]

:= [A BV̄−1
] = [1=3 s−1

s+1

]
:

Step (e) wants us to computēF := −{B∼A}+;∞ =
−{−s−1
−s+1

1
3}+;∞ = −1=3. This, finally gives usA :=

A+ BF̄ = 1
3

2
s+1 and

U := W

[
1 0
0 V̄−1

][
1 0
F̄ 1

]
=
[

2=3
s+1

s−1
s+1

−1=3
s+1

s+2
s+1

]
:

The optimal controller follows asK = U21U−1
11 =

−1=2, and all sub-level stabilizing controllers are pa-
rameterized by

K = U21+U22Q
U11+U12Q

= −1+ 3.s+ 2/Q
2+ 3.s− 1/Q

; Q stable:

The closed loop transfer matrixH has 2-norm‖H‖2=√
‖N11‖22+ ‖A‖22+ ‖Q‖22 =

√
0+ 1=3+ ‖Q‖22. �

There has been a polynomial method for the non-
standardH∞ control problem for quite a few years,
see e.g., (Kwakernaak, 1993; Meinsma, 1993), and
for that problem the results are more satisfactory than

that for H2. For example, from the polynomialH∞
solution it is easy to show (also in the non-standard
case) that the McMillan degree of the controller is at
most that of the generalized plantG (Meinsma, 1993).
Whether the same is true for theH2 problem is not
easy to answer, at least not from our results. In the
state space setting it is however trivial, but of course
that only applies to a restrictive special case.

5. A FREQUENCY DOMAIN LQ PROBLEM

The LQ problem is normally formulated in time-
domain in terms of an initial statex.0/ of some
state-space realization. In this section we alternatively
formulate the LQ problem without reference to states
and we solve it in frequency domain terms. It will be
convenient to denote the unit step function by1.t/ and
to use sub scripts− and+ to denote past and future of
a signal,

v−.t/ = v.t/1.−t/; v+.t/ = v.t/1.t/:

Definition 5.1. Consider a systemy = Gu. The LQ-
problemis to minimize

∫∞
0 |u+.t/|2+ |y+.t/|2 dt over

the futures.u+; y+/ given a past.u−; y−/. �

The link with LQ will be clear. Some differences and
other things to note are:

• No state is needed,
• The solution generally depends on the past
.u−; y−/,
• It is not (yet) a feedback control problem.

Now let G= NM−1 be a normalized coprime factor-
ization ofG, that is,N andM are coprime andN∼N+
M∼M = I . We can represent the systemy= Guby

y= N M−1u︸ ︷︷ ︸
v

and also by an image representation[
y
u

]
=
[

N
M

]
v: (7)

As
[

N
M

]
is stable it is direct that the past of

[
y
u

]
is determined by the past ofv. It is interesting to
note that coprimeness of.N;M/ implies the converse
as well: The past

[ y−
u−
]

determines the pastv− of
v. Indeed, as.N;M/ are coprime there exist stable
.X; Z/ for which X N+ ZM= I . Thereforev= Xy+
Zuand in particular this shows that the pastv− of v is
determined by the past of

[
y
u

]
.

As the coprime factorization was taken normalized
(i.e,

[
N
M

]
is inner) we actually solved the LQ-problem:

Theorem 5.2.Consider a systemy = NM−1u with
NM−1 normalized coprime. Given the past

[ y−
u−
]
, the

LQ-optimal trajectory is
[

y
u

] = [
N
M

]
v−, where v−

is determined by the past of
[

y
u

]
as shown above.



Moreover the optimal cost
∥∥[ y+

u+
]∥∥2

2 equals‖v−‖22 −∥∥[ y−
u−
]∥∥2

2.

PROOF. Recall that there is a bijection fromv− to[ y−
u−
]

in (7).

Minimizing
∥∥[ y+

u+
]∥∥2

2 is the same as minimizing∥∥[ y
u

]∥∥2
2 as they differ a given constant

∥∥[ y−
u−
]∥∥2

2. But, as[
N
M

]
is inner, we have that

∥∥[ y
u

]∥∥
2 = ‖v‖2. Therefore

min
y=Gu;given

[ y−
u−
] ∥∥[ y

u

]∥∥2
2 = min

v;givenv−
‖v‖22 = ‖v−‖22:

That is, setting the futurev+ of v to zero minimizes
the cost and the minimal cost

∥∥[ y+
u+
]∥∥2

2 then equals

‖v−‖22−
∥∥[ y−

u−
]∥∥2

2. �

Example 5.3.SupposeG.s/ = 1=s. Then

G= NM−1; N.s/ = 1
s+ 1

; M.s/ = s
s+ 1

is a normalized coprime factorization ofG. By The-
orem 5.2,.y; u/ is LQ-optimal if and only if (in fre-
quency domain)[

y.s/
u.s/

]
=
[ 1

s+1
s

s+1

]
v−.s/:

In particular the future.u+; y+/ equals[
y+.s/
u+.s/

]
= ³+

[ 1
s+1v−.s/

s
s+1v−.s/

]
=
[ v−.−1/

s+1−v−.−1/
s+1

]
:

The LQ-optimal trajectories thus have the form
y+.t/ = −u+.t/ = Þe−t for someÞ. �

Example 5.4.When the transfer matrixG is given by
a state space realizationG.s/ = C.sI− A/−1B+ D
then we recover the ubiquitous state feedback law.

It is well known that if the realization ofG is stabiliz-
able and detectable that then the normalized coprime
factorsN andM have the joint realization[

N
M

]
s=
A− BF BW−1

∞
C− DF DW−1

∞
−F W−1

∞

 ;
where P is the stabilizing solution ofPA+ AT P−
.PB+CT D/. I + DT D/−1.DTC+ BT P/+CTC= 0
and F := . I + DT D/−1.DTC+ BT P/ and W∞ any
square (constant) solution ofWT∞W∞ = I + DT D.

According to Theorem 5.2 the LQ-optimal trajectories
satisfy

[
y
u

] = [ N
M

]
v−, which for positive time (i.e.,

wherev−.t/ is zero) gives usẋ
y
u

 =
A− BF

C− DF
−F

 x:

We immediately recognize here that the LQ-optimal
trajectories may be implemented by the state feedback
law u= −Fx. �

The formulation of the LQ problem assumes that the
past is given. As a result, the LQ-optimal trajectory[ y+

u+
]

also depends on the past. Indeed, that is the case.
On the other hand, Theorem 5.2 shows that

[
y
u

]
is LQ-

optimal if and only if
[

y
u

] ∈ Mv−, for some pastv−,
and this makes no reference to the specific past of

[
y
u

]
.

For example, we found in Example 5.3 that
[ y+

u+
]

is
LQ-optimal iff y+.t/ = −u+.t/ = Þe−t for someÞ.
The value of Þ is of course determined by the past[ y−

u−
]

but for anyÞ the trajectoryy+.t/ = −u+.t/ =
Þe−t is LQ-optimal, albeit for different pasts.

Example 5.5.(Behaviors). The so formulated LQ-
problem in fact makes no distinction between inputs
and outputs. Letw denote theexternal signal, of the
system, which in the input-output setting would mean
w = [ y

u

]
. The LQ-problem is now to minimize the

future energy‖w+‖2 over all future continuationsw+
of a given pastw− subject to the system equations. If
we can find an image representation of the system5

w = Mv; (M inner,ZM = I for some stableZ)

then, as before, it may be shown thatw+ is LQ-
optimal if and only ifw = Mv− for some pastv−,
i.e., if and only ifw+.t/ ∈ CeAt

R
n, whereC and A

come from a minimal realization ofM.s/ = C.sI−
A/−1B+ D. �
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