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Abstract— In this paper the standard (four-block) H
∞ control

problem for systems with a single delay in the feedback loop is

studied. A simple procedure of the reduction of the problem

to an equivalent one-block problem having particularly simple

structure is proposed. The one-block problem is then solved by

the J-spectral factorization approach, resulting in the so-called

dead-time compensator (DTC) form of the controller. The ad-

vantages of the proposed procedure are its simplicity, intuitively

clear derivation of the DTC form of the H
∞ controller, and ex-

tensibility to the multiple delay case.

Keywords— Time-delay systems, H
∞ optimization, J-spectral

factorization, dead-dime compensation.

I. Introduction and problem formulation

Consider the dead-time system in Fig. 1, where P (s) is a
finite-dimensional generalized plant with the transfer matrix

P (s) =





A B1 B2

C1 0 D12

C2 D21 0



,

e−sh is the loop delay with the dead-time h > 0, and Kh(s) is
a proper part of the controller to be designed. The problem to
be studied in this paper is formulated as follows:

OPh: Given the plant P (s) and the dead time h, determine
whether there exists a proper Kh(s), which internally sta-
bilizes the system in Fig. 1 and guarantees

‖F`

(

P, e
−sh

Kh

)

‖∞ < γ

for a given γ, and then characterize all such Kh when one
exists.

Here F`

(

G, U
) .

= G11 + G12U(I − G22U)−1G21 stands for the
lower linear fractional transformation of U over G, see [1].

H∞ control of DT systems has been an active research area
since mid 80’s. Early frequency response methods, see [2] and
the references therein, treated DT systems in the framework of
the general infinite-dimensional control theory. This resulted
in rather cumbersome solutions, for which implementation and
analysis issues appear to be very complicated. This fact moti-
vated more problem-oriented approaches, exploiting the struc-
ture of DT systems [3–10], see also the review paper [11] for
additional references.

In the late 90’s it was shown [8,12] that suboptimal H∞ con-
trollers can be presented in the so-called dead-time compensator
(DTC) form, i.e., in the form of the feedback interconnection
of a finite-dimensional part and an infinite-dimensional “pre-
diction” block reminiscent of the celebrated Smith predictor.
The J-spectral factorization approach used in [8, 12] produces
the DTC form of the controller in an intuitively clear fashion,
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Fig. 1. The “standard problem” for DT systems

though the presence of several intermediate steps blurs the final
formulae and the relationship with the delay-free problem.

The further simplifications were proposed in [10], where the
problem is addressed by the extraction of the dead-time con-
trollers from the known parameterization of the delay-free H∞

problem. This reduces the four-block problem to a Nehari prob-
lem which, in turn, is solved using the results of [13]. The
original controller is then recovered in the DTC form as well.
The advantage of the result of [10] lies in the transparency and
“interpretability” of the resulting controller. Yet the controller
recovery there is far from being intuitive. This practically pre-
vents the extension of the approach to multiple delay problems.

The purpose of this paper is to amalgamate the approaches
of [8] and [10]. As in the latter reference the solution is based
on the extraction of the dead-time controllers from the delay-
free parameterization. Yet at this stage the problem is reduced
not to a Nehari, but rather to a one-block problem, which turns
out to possess some nice properties making it particularly suit-
able for the application of the J-spectral factorization ideas of
[8]. This approach allows one to bypass the complicated math
needed in the previous approaches and results in probably the
simplest solution to date.

Notation. The notation used in this paper is fairly standard.
Given a matrix M , M ′ denotes its transpose and M−′ stands
for (M ′)−1 when the inverse exists. Given a transfer matrix
G(s), its conjugate is defined as G(s)∼ = G′(−s) and ‖G(s)‖∞
denotes its H∞ norm (with a slight abuse of notation, it is
assumed throughout the paper that ‖G(s)‖∞ = ∞ whenever
G(s) 6∈ H∞). By Cr

(

G, U
) .

= (G12 + G11U)(G22 + G21U)−1

we denote the chain-scattering (Möbius or homographic) linear
fractional transformation.

For a given G(s) = C(sI −A)−1B the h-completion operator
πh

{

e−shG
}

introduced in [10] is defined as

πh

{

e
−sh

G
}

= Ĝ − e
−sh

G
.
=

[

A B

Ce−Ah 0

]

− e
−sh

[

A B

C 0

]

.

It can be verified that πh

{

e−shG
}

is an entire function of s with
the impulse response having support in [0, h] (FIR system).

II. Reduction to one-block problem

A. Solution to the delay-free problem

We start with a brief review of the now classical results on the
solvability of the delay-free H∞ standard problem, i.e., OP0. To
this end, let us impose the following assumptions on the state-
space realization of P :

(A1): (C2, A, B2) is stabilizable and detectable;

(A2):

[

A − jωI B2

C1 D12

]

and

[

A − jωI B1

C2 D21

]

have full column

and row rank, respectively, ∀ω ∈ R;

(A3): D′

12

[

C1 D12

]

=
[

0 I
]

and

[

B1

D21

]

D′

21 =

[

0
I

]

.
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Fig. 2. All admissible controllers for OP0

Introduce also the following H∞ algebraic Riccati equations:

XA + A
′

X + C
′

1C1 − XB2B
′

2X + γ
−2

XB1B
′

1X = 0 (1)

and

AY + Y A
′ + B1B

′

1 − Y C
′

2C2Y + γ
−2

Y C
′

1C1Y = 0. (2)

The solutions to Riccati equations (1) and (2) are said to be
stabilizing if the matrices AF

.
= A + γ−2B1B

′

1X − B2B
′

2X and
AL

.
= A+γ−2Y C′

1C1−Y C′

2C2, respectively, are Hurwitz. Then
[1] OP0 is solvable iff

(a) there exists a stabilizing solution X = X ′ ≥ 0 to ARE (1);

(b) there exists a stabilizing solution Y = Y ′ ≥ 0 to ARE (2);

(c) ρ(XY ) < γ.

Furthermore, if these conditions hold, then the transfer matrix

G0(s) =





AF ZB2 ZY C′

2

−B′

2X I 0
C2 0 I



, (3)

where Z
.
= (I−γ−2Y X)−1, is well defined and the set of all ad-

missible controllers is parametrized as K0 = Cr

(

G0, Q0

)

, where
Q0 must satisfy ‖Q0‖∞ < γ but otherwise arbitrary.

Remark 1: Note that by construction the matrix AF in (3) is
Hurwitz. Moreover, the “A” matrix of G−1

0 ,

AF + ZB2B
′

2X − ZY C
′

2C2 = ZALZ
−1

, (4)

so it is Hurwitz as well. Hence, G0 given by (3) is bistable.

B. From standard problem to one-block problem

The parameterization of all admissible controllers given above
can be visualized as shown in Fig. 2(a). The key property of
the mapping Q0 7→ K0 for G0 given by (3) is that it is an iso-
morphism, so that K0 = Cr

(

G0, Q0

)

⇐⇒ Q0 = Cr

(

G−1
0 , K0

)

,
see Fig. 2(b). It then follows that provided conditions (a)-(c)
above hold, a controller K0 solves OP0 iff ‖Cr

(

G−1
0 , K0

)

‖∞ < γ.
On the other hand, the delay can be thought of as just an

additional restriction imposed upon the controller K0. This
means that (for any h > 0) OPh is solvable only if so is OP0.
Therefore, combining the parameterization of all solutions to
OP0 with the transformation in Fig. 2 the following result can
formulated:

Lemma 1: OPh is solvable iff so is its delay-free counterpart
OP0 and, in addition, ‖Cr

(

G−1
0 , e−shKh

)

‖∞ < γ.
Lemma 1 actually implies that OPh can be converted to the

following equivalent problem:

OPeq: Given the bistable system G0(s) with the state-space real-
ization (3) and the dead time h, determine whether there
exists a proper Kh(s), which guarantees

‖Cr

(

G
−1
0 , e

−sh
Kh

)

‖∞ < γ
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Fig. 3. All admissible controllers for OPh

for a given γ, and then characterize all such Kh when one
exists.

Note that G−1
0 partitioned according to the signal partition in

Fig. 2(b) has “square” (1, 1) and (2, 2) blocks. Hence OPeq falls
into the class of the so-called one-block problems, the solution
to which is simpler than that to OPh. In other words, Lemma 1
reduced the general (four-block) problem OPh to a simpler one-
block problem OPeq. Moreover, only IO (rather than internal)
stability is required for the system in Fig. 2(b), which may sim-
plify the analysis.

Remark 2: It is worth stressing that the reasoning above ap-
plies to any constrained version of the standard problem. Thus,
any four-block problem with some constraints imposed on the
controller (i.e., multiple delay problems) can be reduced to a
one-block problem in a simple and intuitive way.

III. Solution to the one-block problem

A. The main results

We start with the formulation of the solution to OPeq. Toward
this end the following symplectic matrix function is required:

Σ(t) =

[

Σ11(t) Σ12(t)
Σ21(t) Σ22(t)

]

.
= exp

([

AF + ZB2B
′

2X
1

γ2 ZY C2C
′

2Y Z′

−XB2B
′

2X −A′

F − XB2B
′

2Z
′

]

t

)

. (5)

For the sake of simplicity, hereafter we use Σ to mean Σ(h).
Introduce also the quantity

γh
.
=

∥

∥

∥

∥

[

AF + ZB2B
′

2X ZY C′

2

B′

2X 0

]
∥

∥

∥

∥

L2[0,h]

. (6)

This is the L2[0, h]-induced norm of an LTI system—a notion
extensively studied in the delay and sampled-data literature,
see [2, 14] and the references therein. It is well known [14] that
γ > γh iff Σ22(t) is nonsingular for all t ∈ [0, h].

We are now in the position to formulate our main result:
Theorem 1: OPeq is solvable iff γ > γh. In that case all solu-

tions Kh to the OPeq are given by

Kh = Cr

([

I 0
∆ I

]

Gh, Qh

)

(7)

(see Fig. 3), where

∆ = πh











AF + ZB2B
′

2X
1

γ2 ZY C2C
′

2Y Z′ ZB2

−XB2B
′

2X −A′

F − XB2B
′

2Z
′ −XB2

−C2 − 1
γ2 C2Y Z′ 0











,

Gh =





AF (Z + Σ12Σ
−1
22 X)B2 Σ−′

22ZYC′

2

−B′

2X I 0
C2(Σ

′

22 − 1
γ2 YZ′Σ′

21) 0 I





and Qh must satisfy ‖Qh‖∞ < γ but otherwise arbitrary.
Having this result, the solution to OPh can now be formulated

as follows:
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Corollary 1: OPh is solvable iff so is OP0 and also γ > γh. In
that case all solutions Kh to the OPh are given by (7).

Remark 3: The formulae for Σ(t) and ∆ could be further
cleaned up as shown in [10]. The reader could also find there
the more conventional LFT form of parametrization (7).

The rest of this section is devoted to the proof of Theorem 1.
In §III-B we outline the main ideas of the proof, then, in §III-C,
we introduce some technical machinery to be used in the sequel,
in §III-D we derive the necessary conditions for solvability of
OPeq, §III-E is devoted to the construction of ∆ and Gh, and,
finally, in §III-F we prove the validity of the formulae.

B. Proof outline

In the proof of Theorem 1 we use the J-spectral factorization
approach. Let Jγ

.
=

[

I 0
0 −γ2I

]

. We are looking for a bistable Wα

so that

Πα
.
= G

∼

α JγGα = W
∼

α JγWα, where Gα
.
= G

−1
0

[

e−shI 0
0 I

]

,

and GαW−1
α is Jγ -lossless, see [15,16] for the definitions. If Gα

were finite dimensional, then the existence of such a Wα would
be necessary and sufficient for the solvability of OPeq and the set
of all solutions would be parameterized by Kh = Cr

(

W−1
α , Qh

)

with ‖Qh‖∞ < γ. Yet Gα is infinite dimensional. This com-
plicates both the construction of Wα and the proof that the
factorization above does yield the solution to OPeq. To circum-
vent this obstacle the approach of [8] is used. The idea is to
exploit the special structure of Πα and use it to remove the
infinite dimensional part from the factorization. To this end
note that the infinite dimensional part of Πα only enters the
off-diagonal blocks,

Πα =

[

Π11 eshΠ12

e−shΠ21 Π22

]

.

Here Πij are the subblocks of the (finite-dimensional) transfer
matrix Π

.
= (G−1

0 )∼JγG−1
0 . Also note that the Jγ -spectral fac-

torization of Πα can be reduced to that of

Πβ
.
=

[

I ∆∼

0 I

]

Πα

[

I 0
∆ I

]

provided ∆ ∈ H∞. Indeed, one can see that Wα is a bistable
Jγ -spectral factor of Πα iff

Wβ
.
= Wα

[

I 0
∆ I

]

is a bistable Jγ -spectral factor of Πβ. The idea then is to choose
∆ so as to make Πβ finite dimensional. It is easy to verify that

Πβ =

[

Π11 − Π12Π
−1
22 Π21 + R∼Π22R R∼Π22

Π22R Π22

]

for R
.
= ∆ + e−shΠ−1

22 Π21. This R is finite dimensional if we
choose ∆ to be the stable FIR system

∆ = πh

{

e
−shΠ−1

22 Π21

}

(incidentally, Π22 is invertible because of the structure of G0).
In §III-E we show that this choice yields the ∆ of Theorem 1
and that Gh defined in Theorem 1 equals Gh = W−1

β where Wβ

is a finite dimensional Jγ -spectral factor of Πβ.
Typically it is the existence of such Gh = W−1

β that forms
the bottleneck of the proof. Here, however, we bypass this
difficulty by first showing that γ must exceed γh if OPeq is
to have a solution, see §III-D. Therefore γ > γh and this
guarantees invertibility of Σ22 and, hence, existence of Gh

(see Theorem 1). With Gh known to exist the rest of the
proof follows fairly standard arguments. Continuity is used to
show that GαW−1

α is Jγ -lossless. Finally, as in the finite di-
mensional case, all solutions Kh are shown to have the form
Kh = Cr

(

W−1
α , Qh

)

= Cr

([

I 0
∆ I

]

W−1
β , Qh

)

= Cr

([

I 0
∆ I

]

Gh, Qh

)

with ‖Q‖∞ < γ.

C. Preliminary: S-transformations

Throughout this section we will extensively use the “Schur
complementation” transformations Su

(

O
)

and S`

(

O
)

, which are
defined for a 2 × 2 block operator O as follows:

Su

(

O
) .

=

[

O−1
11 −O−1

11 O12

O21O
−1
11 O22 − O21O

−1
11 O12

]

,

S`

(

O
) .

=

[

O11 − O12O
−1
22 O21 O12O

−1
22

−O−1
22 O21 O−1

22

]

.

In the sequel we call these transformations the upper and lower
S-transformation, respectively. It is clear that the upper (lower)
S-transformation is well-defined iff the upper left (lower right)
subblock of O is nonsingular. S-transformations can be thought
of as the “swapping” of parts of the inputs and outputs, namely

[

ζ1

ζ2

]

= O

[

η1

η2

]

⇐⇒















[

η1

ζ2

]

= Su

(

O
)

[

ζ1

η2

]

[

ζ1

η2

]

= S`

(

O
)

[

η1

ζ2

]

(provided the mappings are well-defined). The relations above
prompt an elegant way to perform S-transformations for sys-
tems given by their state-space realizations. Indeed, if

Φ(s) =





Aφ Bφ1 Bφ2

Cφ1 I 0
Cφ2 0 1

κ
I



,

then the straightforward flow-tracing yields

Su

(

Φ(s)
)

=





Aφ − Bφ1Cφ1 Bφ1 Bφ2

−Cφ1 I 0
Cφ2 0 1

κ
I



, (8a)

S`

(

Φ(s)
)

=





Aφ − κBφ2Cφ2 Bφ1 κBφ2

Cφ1 I 0
−κCφ2 0 κI



. (8b)

The signal swapping interpretation implies also the following
relations when corresponding transformations exist:

Su

(

Su

(

O
))

= S`

(

S`

(

O
))

= O, (9a)

Su

(

S`

(

O
))

= S`

(

Su

(

O
))

= O
−1

. (9b)

See also [16, Ch. 4], where similar transformations were intro-
duced.

Another advantage of looking at the S-transformation of O

instead of at O itself is that

S`

([

I ∆1
0 I

]

O
[

I 0
∆2 I

])

= S`

(

O
)

+
[

0 ∆1
−∆2 0

]

. (10)

This relation will be used in Subsection III-E.

D. Necessary solvability conditions

We start with finding the necessary condition for the solv-
ability of OPeq. To this end, note that given any proper Kh,
the responses of Cr

(

G−1
0 , e−shKh

)

and Cr

(

G−1
0 , 0

)

to any in-
put coincide in the interval [0, h] (the former system is actually
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open-loop in this interval). This, in fact, proves that OPeq is
solvable only if

γ > ‖Cr

(

G
−1
0 , 0

)

‖L2[0,h].

To find the state-space realization of Cr

(

G−1
0 , 0

)

, note that it is

equal to the (1, 2)-subblock of S`

(

G−1
0

)

. Yet, according to (9),

S`

(

G−1
0

)

= Su

(

G0

)

. This, together with (8a), yields that

Cr

(

G
−1
0 , 0

)

=

[

AF + ZB2B
′

2X ZY C′

2

B′

2X 0

]

.

We thus proved the following result:
Lemma 2: OPeq is solvable only if γ > γh, where γh is the

L2[0, h]-induced norm of Cr

(

G−1
0 , 0

)

given by (6).

E. Factorization of G∼

α JγGα

By Lemma 2 we can safely assume throughout that γ > γh.
In this subsection the assumption above is required to ensure
that Σ22 is invertible.

Consider Π = (G−1
0 )∼JγG−1

0 , which has the following state-
space realization (recall (4)):

Π =









ZALZ−1 0 ZB2 ZY C′

2

γ2C′

2C2 − XB2B
′

2X −Z−′A′

LZ′ −XB2 −γ2C′

2

B′

2X B′

2Z
′ I 0

γ2C2 C2Y Z′ 0 −γ2I









.
=





AΠ BΠ1 BΠ2

CΠ1 I 0
CΠ2 0 −γ2I



.

Note that by construction

[

BΠ1 BΠ2

]

= Ĵ
[

C′

Π1 C′

Π2

]

, (11)

where Ĵ
.
=

[

0 I
−I 0

]

.

Now for the construction of ∆
.
= πh

{

e−shΠ−1
22 Π21

}

we use the

fact that −Π−1
22 Π21 is the lower left block of S`

(

Π
)

. Therefore
consider (using (8b))

S`

(

Π
)

=





AΠ + 1
γ2 BΠ2CΠ2 BΠ1 − 1

γ2 BΠ2

CΠ1 I 0
1

γ2 CΠ2 0 − 1
γ2 I





(by (4) one can see that Σ(t) = e(AΠ+γ−2BΠ2CΠ2)t). Then

∆ = πh

{

e
−sh

[

AΠ + γ−2BΠ2CΠ2 BΠ1

−γ−2CΠ2 0

]

}

and this coincides with the realization in Theorem 1. Moreover,

R
.
= ∆ + e

−shΠ−1
22 Π21 =

[

AΠ + 1
γ2 BΠ2CΠ2 Σ−1BΠ1

− 1
γ2 CΠ2 0

]

.

Next, use (10) and then combine the various realizations:

S`

(

Πβ

)

= S`

([

I ∆∼

0 I

]

Πα

[

I 0
∆ I

])

= S`

(

Πα

)

+
[

0 ∆∼

−∆ 0

]

by (10)

=
[

eshI 0
0 I

]

S`

(

Π
)[

e−shI 0
0 I

]

+
[

0 ∆∼

−∆ 0

]

=





AΠ + 1
γ2 BΠ2CΠ2 Σ−1BΠ1 − 1

γ2 BΠ2

CΠ1Σ I 0
1

γ2 CΠ2 0 − 1
γ2 I



.

This, together with (9a) and (8b), yields

Πβ =





AΠ Σ−1BΠ1 BΠ2

CΠ1Σ I 0
CΠ2 0 −γ2I





and the “B” and “C” matrices of Πβ satisfy
[

Σ−1BΠ1 BΠ2

]

= Ĵ
[

Σ′C′

Π1 C′

Π2

]

, (12)

which follows from (11) and the fact that Σ is symplectic and

thus ΣĴΣ′ = Ĵ .
To J-factorize Πβ, let M = M ′ be any matrix satisfying the

following Riccati equation

[

−M I
]

Σ−1
(

AΠ − BΠ1CΠ1 + 1
γ2 BΠ2CΠ2

)

Σ

[

I

M

]

= 0

(we construct one such M below). Then, taking into account
(12), one can verify that stable

Wβ =





ZALZ−1
[

I 0
]

Σ−1BΠ1

[

I 0
]

BΠ2

CΠ1Σ
[

I
M

]

I 0
− 1

γ2 CΠ2

[

I
M

]

0 I





does satisfy Πβ = W∼

β JγWβ. Moreover, the “A” matrix of W−1
β ,

say Aβ, satisfies

Aβ = ZALZ
−1 −

[

I 0
](

Σ−1
BΠ1CΠ1Σ − 1

γ2 BΠ2CΠ2

)

[

I

M

]

=
[

I 0
](

AΠ − Σ−1
BΠ1CΠ1Σ + 1

γ2 BΠ2CΠ2

)

[

I

M

]

=
[

I 0
]

Σ−1(
AΠ − BΠ1CΠ1 + 1

γ2 BΠ2CΠ2

)

Σ

[

I

M

]

=
[

I 0
]

Σ−1

[

AF Z( 1
γ2 Y C′

2C2Y − B2B
′

2)Z
′

0 −A′

F

]

Σ

[

I

M

]

,

where equality (4) and the fact that AΠ + 1
γ2 BΠ2CΠ2 commutes

with Σ were used. Since Σ is symplectic,

Σ−1 =

[

Σ′

22 −Σ′

12

−Σ′

21 Σ′

11

]

and Σ11 −Σ12Σ
−1
22 Σ21 = Σ−′

22 . Then the natural choice for M is
M = −Σ−1

22 Σ21, since this yields

Aβ = Σ′

22AF Σ−′

22 ,

which is Hurwitz, so that Wβ is bistable. Straightforward alge-
bra yields then that W−1

β = Gh, where Gh as in Theorem 1.

F. Necessity & sufficiency

By construction we have that ‖Cr

(

G−1
0 , e−shKh

)

‖L∞ < γ iff
‖Qh‖L∞ < γ for Qh defined as

Qh
.
= Cr

(

G
−1
h

[

I 0
−∆ I

]

, Kh

)

.

Now this Qh is proper if Kh is proper, yet the set of proper op-
erators in L∞ is in fact H∞, [17] (see also [18, A6.26.c, A6.27]).
So if Kh solves OPeq, then necessarily ‖Qh‖∞ < γ. This condi-
tion on Qh is also sufficient as we shall now see. The thing to
note is that

Θ(h)
.
= G

−1
0

[

e−shI 0
0 I

][

I 0
∆ I

]

Gh

is not only stable and Jγ -unitary (i.e., Θ(h)∼JγΘ(h) = Jγ)
but in fact Jγ -lossless (meaning that in addition Θ22(h) is
bistable). Indeed, from Θ(h)∼JγΘ(h) = Jγ it follows that
Θ22(h)∼Θ22(h) ≥ I, and as our Θ(t) (which by Lemma 2 exists
for all γ > γh) is stable and continuous as a function of t ∈ [0, h],
and Θ22(0) = I it follows that Θ22(h) is bistable. It is well
known that for Jγ -lossless Θ(h) we have that Q = Cr

(

Θ(h), Qh

)

is stable for any ‖Qh‖∞ < γ, see, e.g., [8, Thm. 6.2]. Also,
Kh = Cr

([

I 0
∆ I

]

Gh, Qh

)

is proper for any stable Qh.
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IV. Concluding remarks

In this note two “competing” approaches to H∞ control for
systems with a single delay have been put together and the
result is probably the simplest solution to date to the problem.

Instrumental is the idea to reduce the problem to a one-block
problem with a simple structure. In fact in the mean time
this idea has been put to use to solve the case where there are
multiple delays. This will be reported elsewhere.

References

[1] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control. Engle-

wood Cliffs, NJ: Prentice-Hall, 1995.
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