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Outline

1. Data compression

2. Universal compression algorithm

3. Mathematical model for ‘disorder’ (information & entropy)

4. Connection entropy and data compression

5. ‘Written languages have high redundancy’

(70% can be thrown away)
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Data compression

For this LaTeX file:

# bytes after compression (gzip)

# bytes before compression
= 0.295

Some thoughts:

1. Can this be beaten?

2. Is there a ‘fundamental compression ratio’?
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Two extremes

Theorem 1. De optimal compression ratio for this file < 0.001.
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Two extremes

Theorem 1. De optimal compression ratio for this file < 0.001.

....because my own compression algorithm gjerritzip assigns a

number to each file and this LATEX-file happens to get number 1.
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Two extremes

Theorem 1. De optimal compression ratio for this file < 0.001.

....because my own compression algorithm gjerritzip assigns a

number to each file and this LATEX-file happens to get number 1.

gjerritzip probably doesn’t do too well on other files.

Mathematisch cafe 2-10-’03 4



We want a universal compression algorithm

one such that for every file

# bytes after compression

# bytes before compression
≤ α

witjh α > 0 as small as possible.
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We want a universal compression algorithm

one such that for every file

# bytes after compression

# bytes before compression
≤ α= 1

witjh α > 0 as small as possible.

Unfortunately:

Theorem 2.

There is no lossless compression that strictly reduces every file.

Mathematisch cafe 2-10-’03 5



Proof.

Consider the two one-bit files ‘0’ en ‘1’.....
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Proof.

Consider the two one-bit files ‘0’ en ‘1’.....

More convincing:

There are 2N files of N bits.

There are

2N−1 + 2N−2 + · · · 20 = 2N−1

files of less than N bits.

Funny: patents have been granted to universal compression algorithms,

which we know don’t exist.
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Exploiting structure

Why do gzip, winzip work in practice?
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Exploiting structure

Why do gzip, winzip work in practice?

Because computer files have a structure.

gzip works for many, many files, but not for every file.
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Exploiting structure

Why do gzip, winzip work in practice?

Because computer files have a structure.

gzip works for many, many files, but not for every file.

...it’s time to define ‘structure’ mathematically

...the notion of information & entropy
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Towards a definition of information & entropy

Compare

‘I will eat something today’

with

‘Balkenende has a lover’

The second one is more surprising, supplies more information.

• Information is a measure of surprise

• (Entropy is a measure of disorder)
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What do we want ‘information’ to be?
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Example 3. A draw a card. Then I tell you:
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Example 3. A draw a card. Then I tell you:

• ‘It is a spade’ [I supply information]
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Example 3. A draw a card. Then I tell you:

• ‘It is a spade’ [I supply information]

• ‘It is an ace’ [I supply information once again]
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Example 3. A draw a card. Then I tell you:

• ‘It is a spade’ [I supply information]

• ‘It is an ace’ [I supply information once again]

It seems reasonable to demand that

I(ace of spade) = I(spade) + I(ace)

That is to say:

I(A ∩ B) = I(A) + I(B) if A and B are indepedent
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Axiom 4 (Version 1).

1. I(A ∩ B) = I(A) + I(B) if A and B independent

2. I(A) ≥ 0

3. I(A) = I(B) if P (A) = P (B)

Because of the last axiom, information is a function of probability:

Axiom 5 (Version 2). For all p, q ∈ (0, 1):

1. I(pq) = I(p) + I(q)

2. I(p) ≥ 0

3. and we add anoter: I(p) is continuous in p.
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Theorem 6.

Then I is unique: I(p) = −k log(p) modulo scaling k > 0.

Other scaling factor k means other unit (irrelevant).

From now on:

I(p) = − log2(p)
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Example 7 (Special cases).

0 1

• I(0) = +∞, makes sense

• I(1) = 0, makes sense

• I(2−k) = k, well...
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Entropy = expectation of information

Definition 8. Entropy H := E(I)
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Entropy = expectation of information

Definition 8. Entropy H := E(I)

Example 9 (Connection entropy and structure).

Consider the file

aaaaabaabbaaaaababaaaaabaaaaaabaabaaab....

and assume

• P (a) = p

• P (b) = 1 − p
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then entropy per symbol is

H = E(I) = p I(p) + (1 − p) I(1 − p)

p = 0 p = 1

1

Makes sense:

p ≈ 1 : aaaaabaaaaaabaaaa little surprise

p ≈ 0 : bbbbbbbabbbbbbab little surprise

p = 1/2 : abaabbabaabbaaba maximal disorder (symmetry)
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Example 10 (The abcd-file).

Consider file with symbols ‘a’, ‘b’, ‘c’ en ‘d’:

bdaccdaadaabbcaaabbaaabaaacbdaab.....

and suppose that

P (a) = 1/2

P (b) = 1/4

P (c) = 1/8

P (d) = 1/8
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Its entropy (per symbol) is

H =
∑

i

pi I(pi)

=
1

2
I(2−1) +

1

4
I(2−2) + 2

1

8
I(2−3)

=
1

2
(1) +

1

4
(2) + 2

1

8
(3)

=
1

2
+

1

2
+

3

4

= 1.75
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Back to compression

Example 11 (The abcd-file). Consider again

bdaccdaadaabbcaaabbaaabaaacbdaab.....

with again

P (a) = 1/2

P (b) = 1/4

P (c) = 1/8

P (d) = 1/8

This we want to code (binary)
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This is an obvious coding:

a ↔ 00
code word

b ↔ 01

c ↔ 10

d ↔ 11

For example:

abba ↔ 00010100

This coding is decodable
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As all code words ∈ {00, 01, 10, 11} consist of two bits:

(average) # bits per symbol = 2
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As all code words ∈ {00, 01, 10, 11} consist of two bits:

(average) # bits per symbol = 2

Can this be done more efficiently?
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Yes:
a ↔ 0 with probability 1/2

b ↔ 10 with probability 1/4

c ↔ 110 with probability 1/8

d ↔ 111 with probability 1/8

Symbols that appear more often have shorter code words
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Yes:
a ↔ 0 with probability 1/2

b ↔ 10 with probability 1/4

c ↔ 110 with probability 1/8

d ↔ 111 with probability 1/8

Symbols that appear more often have shorter code words

average # bits per symbol =
1

2
(1) +

1

4
(2) + 2

1

8
(3)

= 1.75
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Can this be done still more efficiently?
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Can this be done still more efficiently?

Shannon (1948): ‘No, cause entropy of the source is 1.75’
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Theorem 12.

H ≤ inf
codings

E(L)

# bits per

symbol

≤ H + 1.
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Example 13 (terrible coding). Suppose our file is

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

with P (a) = 1. This file has entropy (per symbol)

H = 0.

and for the ‘optimal’ coding

a ↔ 0

we have

E(L) = 1 = H + 1
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Example 13 (terrible coding). Suppose our file is

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

with P (a) = 1. This file has entropy (per symbol)

H = 0.

and for the ‘optimal’ coding

a ↔ 0

we have

E(L) = 1 = H + 1

Message: Coding per symbol is not a good idea.
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Coding sequence of symbols

Not allowed was the coding

aaaaaaaaaaaaaaaaaaaaaaaaa ↔ 25 a’s ↔ ....

Pity, but not too bad:
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We may consider

absdfuhquwyhgvsdfvsefqwsddfhwdqqwsd

as a sequence of ‘letters’ (symbols)

but also as a sequence of N -letters (symbols)

absdfuhquwyhgvsdfvsefqwsddfhwdqqwsd

This requires coding of many ‘symbols’

absdf ↔ 0110101000
... ↔ ...
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Entropy per N -letter symbol is

HN = NH
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So Shannon says:

NH ≤ inf E(L

# bits per symbol (N -letters)

) ≤ NH + 1

that is

H ≤ inf E(L/N) ≤ H + 1/N

Beautiful:

Theorem 14.

inf
codings

E(# bits per letter) = H
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Entropy of languages—redundancy

Written languages have high redundancy:

Aoccdrnig to rscheearch at an Elingsh uinervtisy, it deosn’t

mttaer in waht oredr the ltteers in a wrod are, the olny

iprmoetnt tihng is taht the frist and lsat ltteer is at the rghit

pclae.

Languages are highly structured.

It doesn’t seem to have high entropy.
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How to determine the entropy of ‘English’

Silly approach:

P (a) = P (b) = · · · = P (z) = P ( ) =
1

27
=⇒ H ≈ 4.8
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First-order approximation:

P (a) = 0.0575

P (b) = 0.0128
... ...

P (e) = 0.0913
... ...

P (z) = 0.007

then

H ≈ 4.1
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Higher-order approximation:

P (be | to be or not to) = ??
... ...

Then

H =?
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It is believed that

0.6 < HEnglish < 1.3

that is: about 1 bit per letter is enough!

Computers represent letters in ASCII (8-bits)

so this compression ratio should be possible (in theory):

HEnglish

8
<

1.3

8
≈

1

6

In other words:

Perfect zippers compress ‘English’ with a factor of 6.
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Proofs

Lemma 15. For every decodable coding

∑

i

2−li ≤ 1

with li the length of code word number i.
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Proof.

N
︷ ︸︸ ︷
aaaaaaaaa ↔

∑N
k=1 lik

︷ ︸︸ ︷
1010001011

baaaaaaaa ↔ 0110110001111
... ... ...

zzzzzzzzzz ↔ 011011010001111

Decodable implies

# codewords of length l :=
N∑

k=1

lik ≤ 2l
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SN := (
∑

i

2−li)N =
∑

i1,i2,...,iN

2−(li1+···+liN
)

then

SN =
∑

l

2−lAl, Al := # of length l

Then Al ≤ 2l because uniquely decodable. So

SN =
∑

l

2−lAl ≤
∑

l

2−l2l = Nlmax

Therefore

(
∑

i

2−li)N ≤ Nlmax

left-hand side is exponential in N , right-hand side linear.

Hence base of exponent ≤ 1.
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Lemma 16. If li such that

∑

i

2−li ≤ 1

then there is a (direct) decodable coding.
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Proof. Construct a tree with those lengths

(suppose lengths are {1, 2, 3, 3})

PSfrag replacements

0 1 2 3
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0

10

110

111

1

11

PSfrag replacements

1 1
2

1
4

1
8

This one is decodable.
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Proof that H ≤ E(L).

E(L) − H =
∑

i

pili +
∑

i

pi log2(pi)

=
∑

i

pi log2(2
lipi)

=
∑

i

pi

ln(2lipi)

ln(2)

=
1

ln(2)

∑

i

pi ln(2lipi)

≥
1

ln(2)

∑

i

pi(1 − 2−li/pi)

ln(x) ≥ 1 − 1
x

=
1

ln(2)

∑

i

pi − 2−li ≥ 0.
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Proof of

inf E(L) ≤ H + 1

is constructive: take

li = d− log2(pi)e

then
∑

i

2−li ≤
∑

pi = 1

so a decodable coding exists.

We have

E(L) =
∑

pili <
∑

pi(− log2(pi) + 1) = H + 1.
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