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a b s t r a c t

In this paper we develop an extended center manifold reduction method: a methodology to analyze the
formation and bifurcations of small-amplitude patterns in certain classes of multi-component, singularly
perturbed systems of partial differential equations. We specifically consider systems with a spatially
homogeneous state whose stability spectrum partitions into eigenvalue groups with distinct asymptotic
properties. One group of successive eigenvalues in the bifurcating group arewidely interspaced, while the
eigenvalues in the other are stable and cluster asymptotically close to the origin along the stable semi-
axis. The classical center manifold reduction provides a rigorous framework to analyze destabilizations of
the trivial state, as long as there is a spectral gap of sufficient width. When the bifurcating eigenvalue
becomes commensurate to the stable eigenvalues clustering close to the origin, the center manifold
reduction breaks down. Moreover, it cannot capture subsequent bifurcations of the bifurcating pattern.
Through our methodology, we formally derive expressions for low-dimensional manifolds exponentially
attracting the full flow for parameter combinations that go beyond those allowed for the (classical) center
manifold reduction, i.e. to cases inwhich the spectral gap condition no longer can be satisfied. Ourmethod
also provides an explicit description of the flow on these manifolds and thus provides an analytical tool
to study subsequent bifurcations. Our analysis centers around primary bifurcations of transcritical type
– that can be either of co-dimension 1 or 2 – in two- and three-component PDE systems. We employ
our method to study bifurcation scenarios of small-amplitude patterns and the possible appearance of
low-dimensional spatio-temporal chaos. We also exemplify our analysis by a number of characteristic
reaction–diffusion systems with disparate diffusivities.

© 2015 Elsevier B.V. All rights reserved.
1. Introduction

The analysis of pattern formation in evolutionary partial dif-
ferential equations is directly linked to dynamical systems bifur-
cation theory. At the onset of patterns, a ‘trivial state’ becomes
spectrally unstable as a control or bifurcation parameter, R, passes
through a critical value Rc,1. Typically, a ‘small amplitude pattern’
bifurcates from this state. When the evolution equation is defined
on a bounded domain Ω and the associated spectrum consists of
discrete eigenvalues, the very first step in the onset of pattern
formation can be studied by a center manifold reduction (CMR).
For values of R sufficiently close to Rc,1, the dynamics of the full
infinite-dimensional system can be reduced to the dynamics on
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an exponentially attracting low-dimensional center manifold, by
virtue of the existence of a spectral gap between the first eigen-
value(s) crossing the imaginary axis and all other, stable eigenval-
ues. The presence of this gap makes the analysis of the onset of
pattern formation completely equivalent to the study of bifurca-
tions in finite-dimensional dynamical systems (for instance, [1–3]).
Indeed, the small amplitude patterns that originate in this mech-
anism relate, in general, directly to the standard codimension 1
bifurcations (saddle–node, transcritical, pitchfork and Hopf): the
associated center manifolds are 1- or 2-dimensional.

The center manifold reduction is only valid for R ‘sufficiently
close’ to the – first – critical value Rc,1, so that the spectral gap is
sufficiently wide. However, in perhaps all examples of pattern
forming systems, the pattern originating at Rc,1 undergoes a next
bifurcation at some value Rc,2 of R et cetera. In other words, the
first bifurcation at onset is followed by a secondary one at Rc,2.
Since this latter concerns the bifurcating pattern and not the trivial
state it bifurcated from, it cannot be directly studied through the
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spectral decomposition for that state. One now needs, instead, sta-
bility properties of the pattern bifurcating at Rc,1. Generally speak-
ing, this is an impossible task — especially for analytical studies
of pattern evolution. To overcome that obstacle, formal and/or nu-
merical methods have been developed that are based on spectral
properties – eigenvalues and eigenfunctions – associated with the
original, trivial background state.

Such secondary, tertiary, et cetera subsequent bifurcations can-
not be described by CMR, simply because they do not occur in the
reduced (center manifold) flow. Therefore, they take place for val-
ues of R violating the spectral gap condition. This is often observed
in an explicit setting: the distance between the first, now unstable,
eigenvalue and the imaginary axis becomes proportional to that
between the next largest eigenvalue(s) and the same axis — note
carefully that none of these next eigenvalues needs to destabilize
for the secondary bifurcation to occur. In the terminology of
applied mathematics and/or physics: one must account for the
evolution of ‘modes’ associated with these next eigenvalues and
eigenfunctions, as these modes can no longer be ‘slaved’ to the one
that was first destabilized and that parameterizes the center man-
ifold. In principle, then, studying the full flow through the spectral
properties of the trivial state is possible, provided that one extends
CMR to a higher-dimensional system by a Galerkin approach. In
general, however, there is no ‘next ’ spectral gap in that extended
spectral problem: all next eigenvalues are typically commensu-
rable. Accordingly, there is no telling a priori how many modes
must be accounted for in this extended center manifold Galerkin
reduction — certainly not from the analytic point of view. See, for
instance, [4] and references therein for a practical study centering
on these issues.

Presently, we develop analytical (and asymptotic) extensions
of classical CMR. We describe the onset of pattern formation by
means of low-dimensional systems governing the dynamics of the
full evolutionary system for parameter values violating the spectral
gap condition. We term the process by which we derive such
simplified systems extended center manifold reduction (ECMR). Our
most generic results concern the extension of the 1-dimensional
CMR associated with a transcritical bifurcation to an explicit 2-
dimensional flow on an exponentially attracting 2-dimensional
(local) manifold. We also present explicit classes of systems with
codimension 1 bifurcations where this extended center manifold
is 3- or 4-dimensional.

An earlier version of this method was developed in the context
of a specific model problem, which concerned the emergence
and evolution of localized spatio-temporal patterns in a non-local,
coupled, phytoplankton-nutrient model in an oceanic setting,

ωt = εωxx − 2
√

εvωx + (p(ω, η, x) − ℓ)ω,

ηt = ε

ηxx + ℓ−1p(ω, η, x)ω


;

(1.1)

this is a scaled version of the original model proposed in [5]. In
(1.1), ω(x, t) and η(x, t) denote a phytoplankton and a (trans-
lated) nutrient concentration; x ∈ (0, 1) measures ocean depth.
The growth of the phytoplankton population is delimited by nutri-
ent and light availability; since light is attenuated with depth and
absorbed by phytoplankton, the term p(ω, η, x) is non-local in ω
and depends explicitly on depth x. For more details on this model
and its boundary conditions (BCs), see [5–7]. In realistic settings,
ε ≈ 10−5 while all other parameters — v, ℓ and those entering
p(ω, η, x) — can be considered O(1) with respect to ε [6]. There-
fore, (1.1) is studied in [6,7] as a singularly perturbed system. The
spectral problem associated with the stability of the trivial state
(ω(x, t), η(x, t)) ≡ (0, 0) — no phytoplankton, maximal and con-
stant nutrient concentration— has two distinct sets of (real) eigen-
values: µm = O(ε),m ≥ 1, and λn = λ∗ + λ̃n, with λ̃n = O(ε

1
3 )

and n ≥ 1; λ∗ can be ‘controlled’ by varying the parameters in (1.1),
whileµm < 0 are parameter-independent and negative. In [6], it is
shown through an asymptotic spectral analysis that the trivial state
is destabilized by a transcritical bifurcation, at which λ1 crosses
zero. The associated eigenfunction has the strongly localized na-
ture of a (stationary) deep chlorophyll maximum (DCM), the pattern
playing a central role in the simulations and oceanic observations
in [5].

In our terminology above, emergence of the deep chlorophyll
maximum represents the onset of pattern formation, and it occurs
as the product of the first bifurcation. For the parameter values
considered in [5], the deep chlorophyll maximum only exists (as a
stable, stationary pattern) in an asymptotically narrow strip of
parameter space: the primary bifurcation is almost directly fol-
lowed by a secondary, Hopf bifurcation through which emerges
an oscillating deep chlorophyll maximum [6,7]. In fact, station-
ary deep chlorophyll maxima were not even recorded in the nu-
merical simulations of [5] — the bifurcation scenario drawn there
starts directly with the oscillating deep chlorophyll maximum and
proceeds with period-doubling cascades and spatio-temporal
chaos. In other parameter regimes, not a deep chlorophyll maxi-
mum, but a benthic layer —a localizedmaximumat ocean’s bottom
— marks pattern formation. Numerical simulations have not indi-
cated a secondary bifurcation of the pattern in this regime. In [8],
we analytically substantiate this phenomenon using the frame-
work described in this treatise.

The predictions in [6] on the transcritical nature of trivial state
destabilization were validated in [7], as a first step, by restricting
analysis to the regime 0 < λ1 = O(εσ ) with σ > 1. In that
case, there is a spectral gap driven by the proximity of that primary
eigenvalue to the imaginary axis, λ1 ≪ minm≥1,n≥2{|µm|, |λn|} =

O(ε); the dynamics of system (1.1) can be reduced to a single am-
plitude ODE describing the transcritical bifurcation. As σ ↓ 1 and
λ1 becomes O(ε) like the µm’s, the spectral gap dissolves; modes
associated with all (linearly stable!) µm-eigenvalues must now be
taken into account. As a consequence, the 1-dimensional CMR is
expanded dramatically into an a priori infinite-dimensional sys-
tem. Analysis of thatmodel is nevertheless possible and establishes
the existence of a secondaryHopf bifurcation in (1.1),O(ε)-close to
the primary, transcritical one [7]. The existence of oscillating deep
chlorophyll maxima follows.

In the present paper, we show that this surprising fact —
that a secondary bifurcation becomes amenable to analysis by
extending CMR beyond its classical region of validity — is not
due to model specifics but intrinsically tied to the nature of the
spectrum associated with the trivial background state. In general,
our approach may be developed in the context of systems of the
form
∂

∂t


U
V


=


L 0

εK εM


U
V


+


F(U, V ; x)
εG(U, V ; x)


, (1.2)

for a ‘fast’, unknown U : Ω × R+ → RmU and a ‘slow’ V : Ω ×

R+ → RmV , with mU ,mV ≥ 1. The bounded spatial domain
Ω ⊂ Rn has a piecewise C1 boundary ∂Ω . The operatorsK, L and
M are assumed linear, spatial, differential operators and bound-
ary conditions guaranteeing well-posedness must apply. Several
specific assumptions on the spectrum of L and M and the non-
linearities F(U, V ; x) and G(U, V ; x) must hold, we refer to [8] for
more details. The aim of this paper is to present an exploration into
the possible impact of the extended center manifold reduction ap-
proach. Therefore, wewill mainly restrict our analysis to a strongly
simplified version of (1.2), i.e. to models of the type
Ut = LU + αU + F(U, V ),
Vt = ε [LV + βU + γ V + G(U, V )] , (1.3)

thus K = β , and with a slight abuse of notation, M = L + γ and
the operator L in (1.2) will be replaced by L + α. The linear dif-
ferential operator L in (1.3) — independent of ε — acts on L2(Ω),
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Fig. 1.1. Schematic representation of the eigenvalues that determine the stability
of (U, V ) = (0, 0). The eigenvalues divide into two separate sets. One set of
infinitely many O(1)-interspaced eigenvalues, λk , and one set of infinitely many
O(ε)-interspaced eigenvalues, µk . Here, the parameter values are such that all µk
are negative, while the first O(1) eigenvalue crossed into the right half-plane but
remains small, O(εσ ) with σ > 0.

contains spatial derivatives only and is assumed self-adjoint with
respect to given boundary conditions.Wemostly restrict ourselves
to the scalar case mU = mV = 1. In Section 6, however, we will
treat an example where mU = 2. By assuming that 0 < ε ≪ 1 is
asymptotically small, system (1.3) becomes singularly perturbed;
the parameters α, β, γ ∈ R are assumed O(1) with respect
to ε. The functions F(U, V ) and G(U, V ) are assumed sufficiently
smooth and at least quadratic in U and V . The Laplace operator ∆

subject to Dirichlet boundary conditions is a natural choice for L,
with (1.3) then becoming a reaction–diffusion system. This choice
is considered in Sections 2.2, 4.2, 5.2 and 6.2 to add concreteness
to our discussion, but it is not the sole focus of the present work:
precise assumptions on L and Ω are given in Section 2.

One may see the simplified model (1.3) as stripping the explicit
phytoplankton model (1.1) of its non-locality, heterogeneity and
various other intricacies not central to our stated aim. It is for
that reason that (1.1) does not precisely fit the framework (1.3).
However, it does fit (1.2), and we elaborate further on this in [8].
The main property carried over from (1.1) to (1.3), and also crucial
to (1.2), is a decomposition of the (real) eigenvalues in the spectral
problem determining stability of the trivial state (U, V ) ≡ (0, 0)
into distinct, ordered, ‘small’ and ‘large’ sets

µk = O(ε), and λk = O(1), k ≥ 1; (1.4)

cf. Section 2 and Fig. 1.1. It should be noted here that, strictly
speaking, only asymptotically manyµk’s and λk’s are O(ε), as both
sequences diverge to −∞. Similarly to [7], we focus on the desta-
bilization of (0, 0) by the ‘most unstable’ large eigenvalue λ1, as-
suming that all other eigenvalues remain in the left half of the
complex plane. As in (1.1), destabilization of (0, 0) at λ1 = 0 in
general occurs through a transcritical bifurcation. This is evident
through a standard center manifold reduction, yet we consciously
employ a slightly different, equivalent approach as a means of set-
ting the stage for Sections 4.1 and 4.2; see Section 3.2 for details.

For our abstract model (cf. Fig. 1.1), center manifold reduction
remains valid while σ > 1 just as for (1.1); it breaks down at
σ = 1, recall our discussion above on the commensurability of
λ1 and µ1, µ2, . . . , where we also briefly mentioned an exten-
sion of the 1-dimensional center manifold reduction to an infinite-
dimensional Fourier system. A Fourier decomposition links every
eigenvalue λi and µi to a corresponding eigenfunction with am-
plitudes ai(t) and bi(t), respectively. Concretely, this means that
the ODE governing the evolution in (scaled) time τ of the (scaled)
amplitude a1(τ ) of the λ1-eigenmode must, now, be combined
with ODEs for bk(τ ), k ≥ 1 — the (scaled) amplitudes of the
µk-eigenmodes. One of the main results in this paper is the iden-
tification at leading order in ε of a 2-dimensional, exponentially
attracting, invariant submanifold for this infinite-dimensional sys-
tem. Thus, also for σ = 1, the dynamics of small, O(ε) solutions of
(1.3) is contained in a low-dimensional manifold. However, in con-
trast to the region of classical CMR validity, the dimension of that
manifold is 2. As we will see, this increase in the dimensionality of
the reduced flow lies at the heart of complex phenomena exhibited
by the dynamics of small amplitude solutions of (1.3).

The invariant manifold is parameterized by the modes (a1, b1)
and the flowon it is explicitly deducible. A straightforward analysis
reveals that the original pattern bifurcating at onset generically
undergoes a Hopf bifurcation, provided that equation coefficients
satisfy an explicit sign condition. It follows that the primary
transcritical bifurcation is generically followed within an O(ε)
distance by a Hopf bifurcation, exactly as in the phytoplankton
model. The sub-/supercritical nature of this bifurcation can also be
determined.We finally show that, in such an event, the bifurcating
oscillatory pattern necessarily terminates as the control parameter
moves further away from both bifurcations (transcritical and
Hopf), leaving the attracting 2-dimensional manifold unable to
sustain bounded behavior. Note that this entire sequence plays
out ε-close to the primary bifurcation in parameter space. In that
manner, our analysis provides an explicit bound on the region in
parameter space where small-amplitude center manifold may be
extended: outside it, solutions to the full problem (1.3) can no
longer remain small. This is in stark contrast to standard CMR,
which cannot provide such an explicit bound.

In the phytoplankton-nutrient model (1.1), the first two bifur-
cations are only the first steps in a sequence of events leading
to low-dimensional spatio-temporal chaos [5]. We investigate the
possibility of similar behavior in singularly perturbed systems (1.3)
in the second half of the present paper. Our results so far indicate
that, near the primary bifurcation, small pattern dynamics are in-
herently 2-dimensional and hence cannot exhibit such phenom-
ena. Even worse, Hopf destabilization of the primary pattern — the
second step in the chaotic scenario of (1.1) — is followed by un-
bounded dynamics: if more complex dynamics is present, it does
not play out on the extended center manifold. In contrast, the di-
mensionality of the long-term dynamics in (1.1) is less clear-cut,
and theHopf destabilizationwas deduced fromahigh-dimensional
reduced system. Additionally, it was speculated in [7] already that
a codimension 2 transcritical bifurcation in (1.1) may be the or-
ganizing center of its spatio-temporal chaotic dynamics. Inspired
by these observations, we move on from the most simple case of
(1.3) and consider two types of systems: first, one with amplified
nonlinearities; and second, onewhere the primary bifurcation is of
codimension 2; see Sections 5 and 6 for further motivation.

To motivate the first direction, we ascertain that it is the lin-
ear structure of (1.3) that enables our approach — not the par-
ticular form of the nonlinearities. Hence, the introduction of an
O(1) nonlinearity in the PDE for V should not hinder application
of our method, and we consider (1.3) with an O(1) nonlinearity
G(U, V ) replacing εG(U, V ); see especially system (5.1). This leaves
the linear structure unaltered but affects the dimensionality of the
reduction strongly. The extended invariant manifold is no longer
2-dimensional; in fact, asymptotically many bk-modes — related
to the ‘small’ spectrum {µk}k≥1 — are excited andmust be included
in the reduced system, resembling the situation in (1.1). As an ex-
ploratory example, we consider G(U, V ) = G20U2 and ‘tune’ G20
by having it depend on x, see Section 5.2. In that way, we con-
struct (at leading order in ε) an attracting, linear, 5-dimensional,
extended center manifold and describe the flow on it by means of
the quintuplet (a1, b1, b2, b3, b4). Here a1 and bi, i = 1 . . . 4 are the
(rescaled) amplitudes associated with λ1 and µi, respectively. The
most unstable mode — which, local to onset, is spanned by a1 —
successfully undergoes a Hopf bifurcation. Depending on parame-
ter values, this Hopf bifurcation can be followed by a sequence of
period-doublings resulting in chaotic behavior; recall that this is
exactly the case in (1.1). This last result is established numerically,
with direct PDE simulations within the chaotic regime revealing
a low-dimensional spatio-temporal attractor strikingly similar to
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the one capturing trajectories of the 5-dimensional reduced flow;
see Fig. 5.3. We conclude that the ECMR accurately describes the
dynamics of small amplitude solutions to (5.1), even when this is
complex.

Regarding the second direction, we note that the codimension 2
transcritical bifurcation in (1.1) arises as the merging of two tran-
scritical bifurcations generating different localized patterns — a
deep chlorophyllmaximum(DCM) and a benthic layer (BL).We em-
ulate this situation here by tuning the two-component model (1.3)
so that the two largest O(1) eigenvalues, λ1 and λ2, coincide at the
origin and the corresponding eigenfunctions are distinct — i.e., the
system is not in the most general case where one needs to intro-
duce a generalized eigenfunction. Extending the standard center
manifold to the ‘gapless’ situation in which λ1, λ2, µk = O(ε),
we obtain a leading order, attracting, 4-dimensional, extended
center manifold parameterized by (a1, a2, b1, b2) — the rescaled
amplitudes of modes related to λ1, λ2, µ1 and µ2, respectively
— and the flow on that extended center manifold. See also (6.7)
and its rich behavior we analyze in Section 6. Note, however, that
L = ∆ does not admit a double zero eigenvalue, but examples of
(polyharmonic) operators satisfying both conditions are available;
see [9] for these facts. Since our prior discussion is rooted in reac-
tion–diffusion systems,we consider in parallel a three-component,
reaction–diffusion system of the form (1.3) that admits a double
zero eigenvalue.We keep ourmodel as simple as possible, creating
a codimension 2 bifurcation by introducing a vectorial ‘fast ’ compo-
nent U ,

∂tU1 = D1LU1 + α1U1 + F1(U1,U2, V ),
∂tU2 = D2LU2 + α2U2 + ερ2V + F2(U1,U2, V ),
∂tV = ε [LV + β1U1 + β2U2 + γ V + G(U1,U2, V )] ;

(1.5)

see Section 6.2 formore details on thismodel and its boundary con-
ditions. There exist two sets of large, O(1) eigenvalues, λ1,k and
λ2,k (k ≥ 1), where λ1,k relates to the linear spectrum of the first
equation of (1.5), and λ2,k relates to the linear spectrum of the sec-
ond equation of (1.5). The codimension 2 bifurcation corresponds
to the regime λ1,1 ≈ λ2,1 ≈ 0. Extending the center manifold, to
encompass the regime where λ1,1, λ2,1 and asymptotically many
µk’s areO(ε) yields an attracting 3-dimensionalmanifold parame-
terized by (a1,1, a2,1, b1). The (rescaled) amplitudes a1,1(t), a2,1(t)
and b1(t) are associated with the eigenvalues λ1,1, λ2,1 and µ1,
respectively and denote the amplification in the corresponding
modes of a Fourier-like decomposition, see (6.10). The flow on it
is generated by a rather general quadratic vector field – see (6.21)
– containing the celebrated Lorenz system [10] as a special case. A
simulation of the full PDE system (1.5) motivated by the classical
parameter settings in [10] directly captures the Lorenz attractor;
see Fig. 1.2. We stress, however, an essential difference between
the role of the Lorenz equations relative to the global dynamics
here and in [10]. According to our theory, the Lorenz attractor is
a global attractor for the (small amplitude) flow induced by the
full model (1.5); numerical simulations confirm this, see Fig. 1.2.
Instead, the same attractor does not attract trajectories of the cor-
responding convection model in [10], although the Lorenz equa-
tions are derived from it through a Galerkin-type reduction — [11],
for instance, discusses the differentiating influence of higher-order
Galerkin modes. Small amplitude derivations of the Lorenz system
(e.g., [12]) only concern solutions with special characteristics, and
thus they also do not result in a 3-dimensional flow approximating
the full, infinite-dimensional one.

As already mentioned at various places in this Introduction,
the analysis presented in this paper is exploratory and formal.
Theorems and propositions are provided with proofs, while claims
and conjectures are not. We conclude the paper with a brief
discussion of future plans, including rooting this analysis on
a rigorous foundation, and of the relevance of our study for
phenomena reported in the (mostly reaction–diffusion oriented)
literature.
Fig. 1.2. Simulation of system (1.5) using MATLAB’s pdepe function with L =

∆, Ω = (0, 1) and Dirichlet BCs. Here, ε = 0.01,D1 = D2 = 1, α1 = π2
−

8ε/3, α2 = π2
−ε, β1 = 0, β2 = 10, γ = π2

−10 and ρ2 = 28. The nonlinearities
are F1(U, V ) = (3

√
2π/16)U2V , F2(U, V ) = −(3

√
2π/16)U1V and G(U, V ) = U2

1 .
Plotted are the rescaled amplitudes a1,1(t) and b1(t), (see (6.10)), of the full solution
(U1(x, t),U2(x, t), V (x, t)) of system (1.5).

2. Spectral analysis of the trivial state

The key to analyzing (1.3) is explicit control over the spectrum
and associated eigenfunctions of the linearization around the back-
ground state (U, V ) = (0, 0). In this section, we formulate the
properties that this spectrum must have to enable our analysis;
these effectively formalize Fig. 1.1. Then, to illustrate these prop-
erties, we introduce a reaction–diffusion example in Section 2.2,
working out its spectrum methodically.

2.1. Linear stability

We write the PDE system (1.3) in matrix form, separating the
linear and nonlinear parts,
U
V


t

=


L + α 0

εβ ε(L + γ )


U
V


+


F(U, V )
εG(U, V )


= DT


U
V


+ N (U, V ). (2.1)

The linear stability of solution (0, 0) is governed by the spectral
problem associated with DT ,

Λu = Lu + αu, (2.2a)
Λv = εLv + εβu + εγ v. (2.2b)

Next, we impose boundary conditions and formulate necessary
conditions on the operator L : H → H acting on an appropriate
Hilbert space H equipped with the standard L2-inner product.
Consider the scalar spectral problem of L,

Lφ(x) = νφ(x), (2.3)

where ν is an eigenvalue and φ ∈ H is a scalar eigenfunction,
i.e. φ(x) ∈ R, satisfying boundary conditions adapted from (2.1).
We recall that L does not depend on ε and assume:

A1 L is self-adjoint.
A2 The solutions of (2.3) (eigenvalues of L) are ordered with a

maximal element,

· · · ≤ ν3 ≤ ν2 ≤ ν1 < ∞.
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A3 The invariant subspace associated with any eigenvalue νk is
one-dimensional.

Moreover, we assume that the boundary conditions are the same
for U and V on ∂Ω .

In Section 2.2, we will introduce an explicit example system
with L = ∆ and H = H1

0 (0, 1), the Sobolev space of compactly
supported, weakly differentiable functions. Assumptions A1–A2
are automatically satisfied in this case — see [13]. Note that A3,
on the other hand, is somewhat strong, as it entails that we do
not need to introduce generalized eigenvectors in the case of re-
peated eigenvalues. In Section 6, we will see specific examples
by setting L = −∆2 and H = H2

0 (Aδ) on an annulus Aδ =
(x, y) ∈ R2

: δ2 < x2 + y2 < 1

, 0 < δ < 1. The boundary con-

dition is U = V = 0 and ∇U = ∇V = 0 on ∂Ω [9]. In Re-
mark 4.2,wewill comment briefly onmore general systems that do
not satisfy the assumptions above but are nevertheless expected
to generate dynamics beyond the classical CMR similar to model
(1.3) — such as the phytoplankton-nutrient model (1.1).

The solutions of equations (2.2) and associated BCs are eigen-
vectors (u(x), v(x))T and associated eigenvalues Λ. These eigen-
values are all real-valued, due to the triangular structure of DT
and the condition that L is self-adjoint. As a matter of fact, solu-
tions to the full spectral problem (2.2) are expressible in terms of
the solutions to (2.3).

We normalize the eigenfunctions under the norm of L2(Ω),

⟨φk, φl⟩L2 = δkl, with δkl the Kronecker delta.

We define the function space H spanned by the eigenfunctions of
L,

H = cl

span


{φk}k≥1


× span


{φk}k≥1


, (2.4)

define on it an inner product for a Cartesian product of L2-spaces,
u1(x)
v1(x)


,


u2(x)
v2(x)


H

=


Ω

(u1(x)u2(x) + v1(x)v2(x)) dx, (2.5)

and note the induced norm,(u, v)T
 =


(u, v)T , (u, v)T


H

. (2.6)

The function space H equipped with (2.5) is a Hilbert space. From
here on, we will omit the subscript in writing the inner product
(2.5), because the use of it is never ambiguous. In the case L = ∆

on Ω = (0, 1) and with homogeneous Dirichlet BCs, we have
H = L2(0, 1) × L2(0, 1) and the inner product and norm are
standard, see Section 2.2.

From the assumptions on L, we can formulate the following
proposition.

Proposition 2.1. The eigenvalues determining linear stability of the
trivial state (U, V ) = (0, 0) of system (1.3) partition into two dis-
tinct sets of eigenvalues with asymptotically different interspacing.
The eigenvalues {µk}k∈N are O(ε)-interspaced, while the remaining
eigenvalues {λk}k∈N are O(1)-interspaced. Assuming α, γ ≠ −νk,
for all k ∈ N, asymptotically many eigenvalues {µk}k∈N and {λk}k∈N
are O(ε) and O(1), respectively. The eigenvalues and the associated
normalized eigenfunctions are

µk = −εMk = ε(γ + νk), sk = φk(x)

0
1


k≥1

, (2.7)

andλk = α + νk, σk =
φk(x)
1 + D2

k


1
Dk


k≥1

, (2.8)
where

Dk =
εβ

νk(1 − ε) + α − εγ
=

εβ

λk − µk
. (2.9)

This proposition is proved below. Note that Dk is well-defined
under our assumptions that α, γ stay away from −νk. The fact
that all eigenfunctions can be decomposed as scalar x-dependent
functions and a constant vector is noteworthy and becomes fairly
important in our analysis. It is due to the same differential operator
L appearing in theU- and the V -equation, bothwith the same BCs.

The first Nµ-eigenvalues are O(ε) and O(ε)-interspaced, see
(2.7). Therefore, we call this part of the spectrum the small
spectrum. Accordingly, {λk}k∈N is called the large spectrum, which
has O(1)-interspacing. The threshold values for µ1 and λ1 to
become unstable are theO(1), fixed values γ = −ν1 andα = −ν1.
Initially, we keep γ < −ν1 fixed, so that the small spectrum is
stable. The parameter α is used as a bifurcation parameter and
determines the stability of (0, 0). We define

αT = −ν1, (2.10)

where T stands for ‘transcritical’. The primary eigenvalue of the
large spectrum, λ1, is unstable for α > αT . Note that the desta-
bilization value for the small spectrum could also be described as
γT = −ν1, so that the primary eigenvalue of the small spectrum,
µ1, is unstable for γ > γT . By setting µk = −εMk, we make the
asymptotic magnitude of the small spectrum explicit, and because
γ < γT almost everywhere in this article, we also make the sign
explicit.

Proof of Proposition 2.1. This proof uses assumptions A1–A3 on
L and on the BCs, as well as the solutions of the associated spectral
problem (2.3). Due to the triangular structure of DT , one set of
eigenvectors is of the form

sk(x) :=


0

ζk(x)


. (2.11)

The eigenvalues corresponding to sk are µk. Eq. (2.2a) is satisfied
trivially and (2.2b) yields a scalar, self-adjoint spectral problem,

(µk − εγ )ζk = εLζk. (2.12)

We can identify (2.12) as the scalar spectral problem (2.3) with
a linear shift. Solutions of (2.12) are therefore the eigenfunctions
ζk(x) = φk(x), and the corresponding eigenvalues µk = ε(γ + νk)
immediately follow. Normalizing sk(x) under the norm (2.6) yields
(2.7).

To derive the second set of eigenvalues and eigenfunctions, we
write the eigenfunctions as

σk(x) =


wk(x)
yk(x)


. (2.13)

Substitution of (2.13) into (2.2a) yields an ODE for w(x) that
decouples from y(x). In this ODE, the scalar problem (2.3) can again
be identified, so that,

λk = α + νk and wk(x) = c1,kφk(x),

with c1,k ∈ R, a constant depending on the value of νk. From this,
equation (2.2b) becomes an ODE driven by the inhomogeneity
εβφk(x),

λkyk(x) = εLyk(x) + εβc1,kφk(x) + εγ yk(x), (2.14)

implying

yk(x) = c2,kφk(x), for some c2,k ∈ R.
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Substituting into (2.14), we obtain

(α + νk)c2,kφk = εc2,kLφk + εβc1,kφk + εγ c2,kφk

= ε

c2,kνk + βc1,k + γ c2,k


φk,

so that we find

c2,k =
εβ

α + (1 − ε)νk − εγ
c1,k =

εβ

λk − µk
c1,k.

The constant c1,k is uniquely defined by normalizing σk. We then
obtain the second set of eigenvalues and eigenfunctions (2.8). �

2.2. Example: a reaction–diffusion system

We illustrate our approach by settingL = ∆ andΩ = (0, 1), so
that H = L20(0, 1). Hence, we study the reaction–diffusion system,
Ut = Uxx + αU + F(U, V ),
Vt = ε [Vxx + βU + γ V + G(U, V )] . (2.15)

We assume homogeneous Dirichlet BCs, U(0) = U(1) = V (0) =

V (1) = 0. The eigenvalue–eigenfunction pairs for the 1-dimen-
sional Laplacian ∂xx on the unit interval are

νk = −k2π2 and φk(x) = sin(kπx), with k ∈ N. (2.16)

Normalized under the norm of L2(0, 1), the eigenfunctions form an
orthonormal set in L2(0, 1),
µk = ε(γ − k2π2), sk(x) =

√
2 sin(kπx)


0
1


k≥1

,λk = α − k2π2, σk(x) =

√
2 sin(kπx)
1 + D2

k


1
Dk


k≥1

,

(2.17)

where Dk is defined as in (2.9). In this case, αT = γT = π2, so
when γ < γT , the small spectrum is stable. This example is used
extensively in numerical simulations in Sections 4.2 and 5.2, but in
the next sections we again turn to an abstract L.

3. Emergence of a small pattern

In Section 2, we have obtained explicit control over the
spectrum of (1.3) corresponding to the trivial background state
(U, V ) = (0, 0). In the current section, we set λ1 = rεσ , with
r > 0 and σ > 1, and trace the onset of pattern formation as the
background state destabilizes. Since |λ1| ≪ minm,n{µm, λn}, there
exists a spectral gap and the flow on a center manifold governs
the nonlinear dynamics of small initial conditions. Asmentioned in
the Introduction, we operate slightly different from the textbook
center manifold reduction approach but can recover equivalent
results — a transcritical bifurcation and the corresponding flow on
a 1-dimensional center manifold.

3.1. Fourier expansion and amplitude ODEs

Consider again the function space H defined in (2.4). By con-
struction, the eigenfunctions sk and σk, see (2.7) and (2.8), form a
basis for it. In contrast to [7], we choose to not workwith the eigen-
basis but with
ek :=


φk
0


, e′

k :=


0
φk


k∈N

. (3.1)

Although this will lead to linear coupling between modes, it will
render the amplitude ODEs more amenable to analysis by elimi-
nating many nonlinearities. Since L is self-adjoint, this basis is or-
thonormal:
• ⟨el, em⟩ = ⟨e′

l, e
′
m⟩ = δlm, for all l,m ∈ N;

• ⟨el, e′
m⟩ = 0, for all l,m ∈ N;

• ∥el∥ = ∥e′

l∥ = 1, for all l ∈ N.

Here, ⟨·, ·⟩ and ∥ · ∥ denote the inner product and norm on H as
defined in (2.5) and (2.6). With this basis forH , we can decompose
U and V as
U
V


=


l≥1

Al(t)el + Bl(t)e′

l =


l≥1

φl(x)

Al(t)
Bl(t)


. (3.2)

In the context of our reaction–diffusion example (2.15), (3.2)
amounts to Fourier sine series for U and V . The coefficients Al and
Bl are called amplitudes corresponding to el and e′

l , respectively,
andmeasure the projection of the solution (U, V )T along the corre-
sponding eigenspace. If that solution is known, then the orthonor-
mality relations yield simple formulas for these amplitudes:

Al =


U
V


, el


, Bl =


U
V


, e′

l


.

Because each φl is an eigenfunction of the operator L, substitu-
tion of (3.2) into (1.3) yields


l≥1


Ȧl

Ḃl


φl =


l≥1


λl 0
εβ µl


Al
Bl


φl + N (U, V ), (3.3)

cf. (2.2a)–(2.2b). Here, the dot (̇ ) denotes differentiation with re-
spect to t . We Taylor-expand the nonlinearity N = (F , εG)T as

F(U, V ) = F20U2
+ F11UV + F02V 2

+ O(∥U2
+ V 2

∥
3
2 ),

G(U, V ) = G20U2
+ G11UV + G02V 2

+ O(∥U2
+ V 2

∥
3
2 ),

(3.4)

whereO(∥U2
+V 2

∥
3
2 ) denotes cubic and higher order terms. Upon

substituting (3.2) into these expressions, the nonlinearity becomes

N (U, V ) =


l,m≥1

φlφm


F20AlAm + F11AlBm + F02BlBm

ε (G20AlAm + G11AlBm + G02BlBm)


+ O(∥U2

+ V 2
∥

3
2 ), (3.5)

which can now be substituted back into (3.3). Note that the
quadratic terms φlφm must also be projected onto {φk}k≥1,

φlφm =


k≥1

Cklmφk, with Cklm =


Ω

φkφlφm dx, (3.6)

where Cklm is invariant under index permutations. In the case
L = ∆, Ω = (0, 1) and with Dirichlet BCs, for example, C111 =

8
√
2/(3π) and Cklm = 0 if k+ l+m is even. The resulting system is

reducible to an infinite-dimensional system of ODEs for Ak and Bk
by taking the inner product with ek and e′

k, respectively. One thus
obtains a pair of coupled ODEs per k ∈ N:

Ȧk = λkAk +


l,m≥1

Cklm (F20AlAm + F11AlBm + F02BlBm) ,

Ḃk = −εMkBk + εβAk

+ ε

l,m≥1

Cklm (G20AlAm + G11AlBm + G02BlBm) ,

(3.7)

up to cubic corrections. Note that there is now also linear cou-
pling between Ak and Bk, reflecting the fact that {ek, e′

k}k≥1 is not
an eigenbasis of DT .
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3.2. The classical center manifold reduction

As discussed in the Introduction, center manifold reduction
(CMR) can be used to reduce the flow of a system close to bifurca-
tion, provided that there is a spectral gap between the bifurcating
eigenvalues and the other (stable) eigenvalues. To that effect, we
rescale

α = αT + rεσ , with r > 0 and σ > 1, so that λ1 = rεσ
; (3.8)

this positions us just beyond destabilization of (U, V ) = (0, 0). As
we have already remarked, the spectral gap condition is satisfied in
this regime; recall Fig. 1.1. The results in this section are therefore
equivalent to CMR, see [1–3].

We trace the onset of patterns emerging from a trivial back-
ground state, so we expect all amplitudes to be small. To reflect
this, we scale all amplitudes by means of

A1(t) = εσ1a1(t),
Ak(t) = εσU ak(t), k ∈ N≥2,

Bk(t) = εσV bk(t), k ∈ N,

(3.9)

with σ1 < σU . We assumed here that the primary amplitude A1
is asymptotically larger than all other amplitudes, because it cor-
responds to the bifurcating eigenvalue. The powers σ1, σU , σV are
positive and will be determined in terms of σ in the forthcom-
ing analysis. Substituting the rescaled amplitudes into system (3.7)
yields,

εσ1 ȧ1 = rεσ1+σ a1 + ε2σ1C111F20a21 + εσ1+σV

m≥1

C11mF11a1bm

+ ε2σV

l,m≥1

C1lmF02blbm + O(εσ1+σU , εσV +σU ),

εσU ȧk = εσU λkak + ε2σ1Ck11F20a21 + εσ1+σV

m≥1

Ck1mF11a1bm,

+ ε2σV

l,m≥1

F02Cklmblbm + O(εσ1+σU , εσV +σU ),

εσV ḃ1 = −ε1+σV M1b1 + ε1+σ1βa1
+ O(ε1+2σ1 , ε1+σ1+σV , ε1+2σV ),

εσV ḃk = −ε1+σV Mkbk + ε1+σU βak
+ O(ε1+2σ1 , ε1+σ1+σV , ε1+2σV ),

(3.10)

with the higher order corrections originating from the nonlinear
terms in (3.7). The principle of least degeneracy or of significant de-
generation [14,15] suggests that σ = σ1 = σV , that σU = 2σ and
the rescaling of time τ = εσ t . Denoting differentiation with re-
spect to τ by ′, we find

a′

1 = ra1 + C111F20a21 + F11a1

m≥1

C11mbm

+ F02

l,m≥1

C1lmblbm + O(εσ ),

εσ a′

k = λkak + Ck11F20a21 + F11a1

m≥1

Ck1mbm

+ F02

l,m≥1

Cklmblbm + O(εσ ),

εσ−1b′

1 = −M1b1 + βa1 + O(εσ ),

εσ−1b′

k = −Mkbk + O(εσ ).

(3.11)

For σ > 1, the left hand side of all ODEs except the first one is of
higher order, compared to their linear terms. This reflects the dis-
parity between the O(εσ ) eigenvalue λ1 and all other eigenvalues,
which are at leastO(ε). It ensures that the long-term, leading order
behavior of the corresponding modes are described by algebraic
relations — slaving relations — because the left-hand sides become
higher order compared to the linear terms. The corresponding am-
plitudes are said to be slaved to a1, leaving this as the only dynamic
amplitude and the behavior of (3.11) completely determined by it.
Here, the slaving relations assume the form

b1 =
β

M1
a1 + O(εσ−1),

bk = 0 + O(εσ−1),

ak = −
Ck11H

λk
a21 + O(εσ−1),

(3.12)

where, with a slight abuse of notation, we write

H = F20 +
F11β
M1

+
F02β2

M2
1

. (3.13)

The ODE describing the evolution of a1 on the center manifold is

a′

1 = ra1 + HC111a21 + O(εσ−1), (3.14)
obtained by substituting (3.12) into (3.11). At this point, we have
recaptured the classical centermanifold reduction results. The cen-
ter manifold is 1-dimensional and described by the slaving rela-
tions, while the evolution on it is governed by the single ODE for a1
above. The trivial pattern (U, V ) = (0, 0) corresponds to the trivial
steady state a1 ≡ 0, and there also exists a nontrivial steady state
solution,

a∗

1 = −
r

C111H
. (3.15)

This state indicates the onset of a nontrivial pattern, because the
two steady states exchange stability at r = 0 through a transcriti-
cal bifurcation. As long as σ > 1, (3.14) exhibits no other bifurca-
tions in a neighborhood of (U, V ) = (0, 0).

Theorem 3.1. The trivial state (U, V ) = (0, 0) of system (1.3) un-
dergoes a transcritical bifurcation at α = αT . For α = αT + rεσ

with σ > 1, r > 0 and γ < γT , the nontrivial, stationary, attracting
pattern branching off this trivial state is approximated by
U
V


= εσ


−

r
C111H


1

β/M1


φ1(x) + O(εσ−1)


. (3.16)

This result is derived by combining (3.15) and the slaving relations
(3.12) with the original expansion (3.2). It also follows from a
standard application of center manifold reduction, and therefore
we refer to [1–3] for a full proof.

4. Evolution of the small pattern outside the CMR regime

The dichotomy σ > 1 versus σ = 1 arises naturally in sys-
tem (3.11). Indeed, as σ ↓ 1, the spectral gap between a1 and
the bk-amplitudes disappears, although the assumed disparity be-
tween the large eigenvalues maintains the slaving relations for the
ak-amplitudes with k ≥ 2. Those bk-amplitudes naturally remain
linearly stable, but they now evolve in the same timescale as a1.
As a result, (3.11) does not necessarily support an exponentially
attracting, 1-dimensional center manifold anymore.

Below, we use the spectrum of the background state and (3.11)
to track the evolution of the small pattern (3.16) emerging from
that state well into the regime σ = 1. We first show that the
pattern (conditionally) undergoes a destabilizing Hopf bifurcation
at a value αH > αT for α, through which emerges a small, stable,
temporally oscillatory pattern; see Section 4.1. As α increases even
further, numerical work show the amplitude and period of the
oscillation to increase all the way to a homoclinic bifurcation, at
which the oscillatory pattern disappears. Past that α-value, small
initial conditions grow unboundedly (in the scaled setting), see
Section 4.2; this bounds the span of our analysis explicitly.
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4.1. Beyond classical CMR: a Hopf bifurcation

Setting σ = 1 in (3.11) and retaining the dynamic equations for
the bk-modes, we obtain, up to O(ε) corrections,

a′

1 = ra1 + C111F20a21 + F11a1

n≥1

C1n1bn

+


m,n≥1

Cmn1F02bmbn, (a)

b′

1 = −M1b1 + βa1, (b)
b′

k = −Mkbk, where k ≥ 2. (c)

(4.1)

The amplitudes ak with k ≥ 2 remain slaved. However, since
all bk-modes are now dynamic, each ak is controlled by both the
a1- and the bk-modes,

ak = −

C11kF20a21 + F11a1

n≥1

C1nkbn +


m,n≥1
CmnkF02bmbn

λk
.

In the terminology of center manifold reduction (CMR), one could
say that the center manifold dimension has become infinite or, at
least, that it cannot be bounded uniformly as ε ↓ 0 (asymptotically
large). Analysis of an infinite-dimensional ODE system is a priori
nontrivial. Here, however, all but one — a′

1 — of the equations
are linear and all but two — a′

1 and b′

1 — decouple, see also
Remark 4.2. Moreover, the ODEs for bk with k ≥ 2, see (4.1)(c),
imply exponential decay of those modes at rates increasing with
k. In the long term, therefore, bk = O(ε) for all k ≥ 2, see again
Remark 4.2, and the evolution of the pattern is controlled by the
planar system
a′

1 = ra1 + C111

F20a21 + F11a1b1 + F02b21


+ O(ε),

b′

1 = −M1b1 + βa1 + O(ε),
(4.2)

together with the slaving relations

ak = −
C11k

λk


F20a21 + F11a1b1 + F02b21


+ O(ε),

bk = O(ε), k ≥ 2.

The reduced system (4.2) admits two equilibria, namely the zero
solution corresponding to the trivial state and the continuation of
the pattern (3.16) in this regime,

S∗(r) :=


−

r
C111H

, −
βr

M1C111H


; (4.3)

recall definition (3.13) for H . The Jacobian of the trivial state has
eigenvalues Λ1 = r and Λ2 = −M1, and thus the state changes
from stable node to saddle at the transcritical bifurcation (r = 0).
The stability of S∗ is determined by the Jacobian corresponding to
(4.2),

J(S∗) =

 r
H

(H − J1) −
r
H
J2

β −M1


,

with J1 = 2F20 +
βF11
M1

and J2 = F11 + 2
βF02
M1

. (4.4)

One of its eigenvalues becomes zero if and only if r = 0, as ex-
pected because of the transcritical bifurcation, (see Appendix). The
branch S∗(r) may further lose stability through a Hopf bifurcation,
where limit cycles (periodic amplitudes) are born; this occurs if
the eigenvalues form a complex pair crossing the imaginary axis.
A straightforward computation gives conditions on r for which the
eigenvalues of J(S∗) are purely imaginary complex conjugates:

rH =
HM1

H − J1
and rH > 0. (4.5)
If rH < 0 instead, S∗ remains a stable point for all positive O(1)
values of r . However, we refrain from investigating the fate of S∗

in the case that it does not undergo a Hopf bifurcation. If rH > 0
and H − J1 ≠ 0, then a Hopf bifurcation takes place. The degen-
eracy condition ensuring that the eigenvalues pass the imaginary
axis with nonzero speed is automatically satisfied if rH > 0 [16].
Straightforward computations determine the criticality of the bi-
furcation [16]. Defining
L = (H + rHF20)(2M1F20 + F11β), (4.6)
we obtain that the Hopf bifurcation is supercritical if L < 0 and
subcritical if L > 0. We refer the reader to Appendix for the full
derivation of this expression. Our results so far, concerning the evo-
lutionary system (1.3), are summarized in the following proposi-
tion.

Claim 4.1. In PDE-systems of the class (1.3), the trivial solution
(U, V ) = (0, 0), undergoes a transcritical bifurcation as α passes
through αT = −ν1. When the trivial solution loses stability, the
nontrivial branch becomes stable and, under the condition that rH >
0, undergoes a Hopf bifurcation as α increases to

αH =
HM1

H − J1
ε − ν1.

Neither a rigorous proof of this proposition nor validation of the
asymptotics are foci of this presentation, and they are deferred to
future work. The formal work resulting in Claim 4.1 establishes
that, as long as rH > 0 and L < 0, the bifurcating stationary
pattern (3.16) starts oscillating periodically in time for parameters
O(ε) close to the first transcritical bifurcation. As in the case of the
phytoplankton-nutrient model (1.1), this behavior is confirmed by
direct simulations of the full PDE model; see next section.

Remark 4.1. In system (4.1), the dynamics of the bk-modes is
governed by ODEs. However, together the bk-modes represent the
leading order original PDE for V , see (1.3), through transformation
(3.2). System (4.1) can therefore also be regarded as an ODE
(equation (4.1)(a)) coupled to a PDE (albeit in amplitude form,
(4.1)(b)–(c)). We can reconstruct the PDE to which equation
(4.1)(a) is coupled by writing V (x, t) = εv(x, t) and using the
correct timescale τ = εt in (1.3). The PDE for v then becomes

vτ = Lv + γ v + βa1(τ )φ1(x) + O(ε). (4.7)

System (4.1) is thus equivalent to (4.1)(a) coupled to the inhomo-
geneous, linear PDE (4.7). The analogue of this compact version of
system (1.3) is heavily used in [8]. Note also that all bk-terms ap-
pearing in (4.1)(a) can inprinciple be expressed into nonlocal terms
of v. We did not work with this representation of the dynamics be-
yond classical CMR, because of being able to reduce (4.1) to the
planar system (4.2).

Remark 4.2. The distinct decoupling between the active b1-mode
and the exponentially decaying bk-modes (k ≥ 2) in the extended
center manifold reduction (ECMR) system (4.1) can be traced back
to our assumptions on the structure of the basic system (1.3) and
its BCs. Since the fast (U) and slow (V ) eigenvalue problems are
governed by the same operator L subject to the same BCs, we
can employ the Fourier decomposition (3.2) based on the same
scalar eigenfunctions φk(x) for both the U- and the V -components.
In a more general setting — e.g., when the operator and BCs
for U differ from those for V — the fast and slow eigenvalue
problems do not admit a set of eigenfunctions expressible in
terms of the same scalar function. As a consequence, the leading
order terms in the (beyond CMR) ODEs for bk may employ the
unstable a1-mode; in that case, a direct decoupling of the form
(4.1) is not ascertained. We encounter that in the phytoplankton-
nutrient model (1.1) studied in [5,7,6,8]. It has, nevertheless,
been shown in [7] that, also for (1.1), the full system behavior
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Fig. 4.1. A continuation of the attracting limit cycle in system (4.2) that originates
at the Hopf bifurcation. The horizontal and vertical axes correspond to a1 and b1 ,
respectively. The parameter values are β = −4, γ = 5, F20 = −2, F11 =

5, F02 = 12, so that rH > 0 and L < 0. The supercritical Hopf bifurcation occurs
at rH ≈ 0.9596. The limit cycles accumulate at r ≈ 1.0524, at which point the
period tends to infinity. This indicates the existence of an orbit homoclinic to the
trivial state (0, 0). As r increases beyond r ≈ 1.0524, orbits grow unboundedly.

is essentially 2-dimensional. The transcritical bifurcation in (1.1)
is also followed by a Hopf destabilization. Although we do not
consider the more general case, (1.2), here, we expect it to behave
similarly to systems (1.1) and (1.3): essentially 2-dimensional
dynamics, beyond the classical CMR, which may contain a Hopf
bifurcation. The difference between the present, most transparent
case (1.3) and the more general (1.2) is expected to mostly be a
matter of linear algebra.

4.2. Beyond the Hopf: a homoclinic bifurcation

Having successfully tracked the pattern into an O(ε) regime
beyond the transcritical bifurcation, the question arises whether
the ECMR system (4.2) can possibly capture tertiary bifurcations
for α > αH . It turns out that, unfortunately, we cannot in general
expect (E)CMR to capture the full system dynamics for r > rH . As
we will find out, even small initial conditions are no more trapped
in a neighborhood of the manifold.

First, we select parameter values ensuring the existence of
a supercritical Hopf bifurcation and then trace the stable limit
cycle emerging through it. We do not attempt to follow the
oscillatory pattern analytically but rely, instead, on numerical
ODE continuation toolbox MatCont to do just that [17]. The first
outcome is Fig. 4.1, where we have plotted the limit cycle born at
αH for increasing r (or, equivalently, α; recall (3.8)). Note carefully
that these plots correspond to the reduced, planar system (4.2)
and not to the full PDE model; also, that we have overlaid the
limit cycles corresponding to several r-values — this is not a single
trajectory. As r increases from rH , the period of the limit cycle
tends to infinity while it accumulates to a homoclinic orbit; this
occurs at a well-defined, finite value rHom. As Fig. 4.1 shows, that
orbit is homoclinic to the trivial state (a1, b1) = (0, 0). Increasing
r beyond rHom leads amplitudes to grow unboundedly, rendering
our asymptotic analysis invalid; indeed, the assumption on the
asymptotic magnitude of A1 and B1 is then violated, see (3.9).

Matlab simulations show that the full system (1.3) exhibits
similar behavior and has a periodically oscillating spatial structure
as attractor. Moreover, the periodic patterns also seem to merge
with a homoclinic structure as r increases, see Fig. 4.2 where
we plot the amplitudes a1(τ ) and b1(τ ). Motivated by these
observations, we formulate a conjecture concerning the stability
of the nontrivial steady state.

Conjecture 4.2. Let rH > 0 and assume that the Hopf bifurcation
that (4.2) undergoes is supercritical: L < 0, see (4.6). Then, as r in-
creases beyond rH , the limit cycles grow into a homoclinic orbit at
r = rHom. As r increases beyond that value, all orbits of (4.2) grow un-
boundedly except for those with initial conditions on the stable mani-
fold of the trivial state (0, 0). Qualitatively, this transition is illustrated
in Fig. 4.3.

Fig. 4.3 contains (hypothetical) phase portraits of a 2-dimensional
system as it goes through the transcritical, Hopf and homoclinic
bifurcations. These portraits are meant to illustrate qualitatively
these transitions, not to correspond to (4.2) for specific parameter
values. Note that the scenario laid out in Conjecture 4.2 has a
strong similarity to the behavior of systems near a transcritical
codimension 2 Bogdanov–Takens bifurcation point — see [18], for
instance. Given the structure of (4.2), this is not surprising. There
is, however, a subtle but significant difference between (4.2) and a
generic unfolding of a (non-semisimple) codimension 2 bifurcation
with two zero eigenvalues as that considered in [18]. Specifically,
system (4.2) has been obtained under the assumption that
amplitudes a1 and b1, as well as all parameters, are strictly O(1).
For instance, |r| ≪ 1 will necessarily bring us back to the classical
center manifold reduction case of a transcritical (codimension 1)
bifurcation of Section 3.2. Similarly, it is central to our procedure
that M1 is not ‘small’ — or equivalently that µ1 = O(ε) but not
a b

Fig. 4.2. PDE simulations of (1.3) using matlab’s pdepe function. Here, L = ∆ on Ω = (0, 1) equipped with Dirichlet BCs, and parameters are as in Fig. 4.1 and
G20 = 1,G11 = G02 = 0. Plotted are the amplitudes a1 (horizontal axis) and b1 (vertical axis), obtained by projecting the computed (U(x, t), V (x, t)) onto φ1(x) and
rescaling. (a) An orbit evolving to an attracting limit cycle. Additional parameter values are r = 1 and ε = 0.05. The initial conditions are U(x, 0) = −V (x, 0) = −εφ1(x).
(b) A similar simulation for r = 1.09. For r slightly larger, the limit cycle connects to the origin and orbits continue to grow (data not shown).
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(a) r ∈ (0, rH ). (b) r ∈ (rH , rHom). (c) r ≈ rHom . (d) r > rHom .

Fig. 4.3. Qualitative phase portraits illustrating Conjecture 4.2 on the evolution of the stability of the nontrivial steady state S∗ . (a) r ∈ (αT , rH ); the Hopf bifurcation has
not yet occurred, and S∗ is a stable focus. (b) r ∈ (αH , rHom); a stable limit cycle has appeared after the Hopf bifurcation, making S∗ an unstable focus. (c) r ≈ rHom; the limit
cycles have grown into an homoclinic orbit to the origin with attracting initial conditions within its lobe, and S∗ is unstable. (d) r > rHom; now all orbits grow unboundedly,
except for the stable manifold of the trivial state.
Fig. 4.4. Two possible phase portraits of system (4.8). The red dots mark the folds of the slow manifold. The blue line is B1 = βA1/M1 , and intersections of it with the conic
section are steady states. (a) Here, F20 = 1, F11 = 3, F02 = 1 and β = 0.55M1 , and the conic section is a hyperbola. (b) Here, F20 = −1, F11 = 2, F02 = −3 and β = 0.8M1 ,
and the conic section is an ellipse. In both cases, the nontrivial steady state is repelling all initial conditions other than itself. The only orbits that do not grow unboundedly
are those with initial conditions on the stable manifold of the trivial steady state.
smaller — as Fig. 1.1 clearly illustrates. Therefore, the conjectured
occurrence of the homoclinic bifurcation cannot be deduced from
the existence of homoclinic bifurcations near a Bogdanov–Takens
point: these are all established by a local analysis zooming into
the situation where, in the notation of Eq. (4.2), |a1|, |b1|, r andM1
are all ‘sufficiently small’. A rigorous proof on the existence of an
attracting, extended center manifold as a reduction, is crucial for
the validation of our method, but is part of future work.

In fact, the system beyond the center manifold reduction (CMR)
obtained in [7] for the phytoplankton — nutrient model (1.1)
that inspired the present analysis corresponds to setting γ = 0
in (1.3), since the small eigenvalues µk in (1.1) are parameter-
independent and cannot be ‘tuned’. Hence, in the case of (1.1),
M1 = −π2 and there is no freedom to consider the case M1 → 0.
Nevertheless, the system beyond CMR obtained in [7] also exhibits
the Bogdanov–Takens-like behavior of Conjecture 4.2. This is not
surprising: it is natural to assume that bifurcation curves existing
in a local limit may be extended globally.

Other than the numerical evidence, we do not provide an ana-
lytical proof for the existence of a homoclinic orbit. We will, how-
ever, employ geometric singular perturbation theory (GSPT) and
Fenichel’s theorems to show that, if r increases to be asymptoti-
cally large, all solutions of (4.2) indeed blow up [19–21].

We introduce r =
1
δ
, with 0 < δ ≪ 1. System (4.2) then be-

comes singularly perturbed,
a′

1 =
1
δ
a1 + C111


F20a21 + F11a1b1 + F02b21


+ O(ε),

b′

1 = −M1b1 + βa1 + O(ε),
(4.8)

where the prime denotes differentiation with respect to τ . With
a slight abuse of notation, we rescale A1 = δa1 and B1 = δb1 to
obtain the associated slow system,

δA′

1 = A1 + C111

F20A2

1 + F11A1B1 + F02B2
1


,

B′

1 = −M1B1 + βA1.
(4.9)
Rescaling time as t̂ =
1
δ
τ , we obtain the fast system,

dA1

dt̂
= A1 + C111


F20A2

1 + F11A1B1 + F02B2
1


,

dB1

dt̂
= δ (−M1B1 + βA1) .

(4.10)

Using GSPT, we can now conclude the following.

• To leading order in δ, B1 is constant with respect to the fast
dynamics.

• The slow manifold is defined by

0 = A1 + C111

F20A2

1 + F11A1B1 + F02B2
1


, (4.11)

which is a conic section (ellipse, hyperbola or parabola). This
slowmanifold is normally hyperbolic, except at the folds where
the slope with respect to B1 is zero.

• The eigenvalues of the nontrivial equilibrium S∗ determined
from the fast system are

Λ1 =
M1

rH
+ δ

rH J1
H

+ O(δ2) and Λ2 = δrH + O(δ2), (4.12)

recall (3.13) and (4.4)–(4.5). In the regime which we consider,
rH > 0 andM1 > 0, the equilibrium is a source.

Proposition 4.3. Let rH ,M1 > 0 and β ≠ 0. If a solution Γ (τ ) =

(a1(τ ), b1(τ )) of system (4.8) is bounded, then it lies on the stable
manifold of the trivial steady state: limτ→∞ Γ (τ ) = (0, 0).

Proof. The proof relies on phase portrait analysis. See Fig. 4.4 for
two typical configurations of the phase portrait; the situation is
similar for a parabolic slow manifold (case not shown). Now, as-
sume Γ (τ ) to be bounded and to solve (4.8) but not to limit to the
origin.Without loss of generality,we also assumeΓ (0) to lie on the
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fast plane and not on the slow manifold. Given that Γ is bounded,
the fast flow takes it to a branch of the slow manifold. There, the
slow flow cannot further direct it to the trivial steady state, by as-
sumption. Hence, it carries it to either of the folds of the slowman-
ifold, where the flow of Γ is more subtle. Since there is no other
branch of the slowmanifold to pick upΓ , that remains unbounded
contradicting our assumptions and completing the proof.

Note that, in the above argument, we have implicitly assumed
Γ to stay away from the nontrivial steady state S∗. The linear anal-
ysis (4.12) confirming S∗ as a source supports this conclusion, as
does Fig. 4.4. The same figure, nevertheless, suggests the existence
of trajectories limiting to S∗, and thus bounded, when that equi-
librium lies at the other side of the folds. This cannot happen in
the regime assumed here, M1 > 0 and rH > 0. Indeed, switching
occurs at H − J1 = 0 and, in our regime, either H − J1 > 0 or
H − J1 < 0: the state remains repelling for all rH ,M1 > 0. �

As a corollary of Proposition 4.3, every solution of (4.8) not inter-
secting the stable manifold of the trivial state grows unboundedly.
Hence, orbits of system (4.2) with asymptotically large r grow un-
boundedly, unless they intersect the stable manifold of the trivial
state.

5. Capturing the onset of low-dimensional chaos with the
ECMR

In the previous sections, we have analyzed the onset of patterns
arising from a trivial background state in (1.3), finding that it in-
volves a primary (transcritical), a secondary (Hopf) and a tertiary
(homoclinic) bifurcation. In this and the next section we demon-
strate, first, how a modification in (1.3) creates more complex but
equally low-dimensional dynamics and, second, how to track the
onset of this dynamics using extended center manifold reduction
(ECMR). The first part adds to our ongoing effort to unfold the
driver of low-dimensional chaotic dynamics in (1.1); and indeed,
our work puts the spotlight on awide class of PDE systems exhibit-
ing similar phenomena, see (1.2) and its concomitant paper [8]. The
second part is meant to further highlight this class as one where
analysis is possible and onset of chaos may be understood analyti-
cally, for a large part, through ECMR.

As we discussed in the Introduction, the amplitude system
(4.1)(a)–(c) can hardly support more exciting dynamics, as it is
essentially 2-dimensional through the action of the nonlinearity
εG in (1.3). A straightforward choice is amplifying that nonlinearity
to G. Note that this does not affect the linear structure of the
system near the trivial state — i.e.,DT and thus also the validity of
assumptions A1–A3 — which enabled our analysis in the previous
sections.Wediscuss thismodification below, deferring to Section 6
the discussion of codimension 2 bifurcations as possible organizing
centers for chaos. We start from (cf. (1.3))
Ut = LU + αU + F(U, V ),
Vt = εLV + εβU + εγ V + G(x,U, V ),

(5.1)

equipped with suitable BCs, and focus for specificity on nonlinear-
ities G that are locally quadratic in U only. Spatial inhomogeneity,
modeled here by an x-dependent G and which is also present in
(1.1), will become important in Section 5.2. As we will see, the cor-
responding amplitude system is now infinite-dimensional, with all
bk-modes nonlinearly coupled to a1. To explore the ramifications of
this dramatic increase in dimensionality,we consider a special case
in Section 5.2 and recover an essentially 5-dimensional reduced
systemwith chaotic dynamics.We conclude this exploratory piece
with simulations of the full PDE system, through which we iden-
tify spatio-temporal chaos bearing strong similarities to that of the
reduced system.
5.1. New amplitude equations

In this section, we set G(x,U, V ) = G20(x)U2 at leading order
in (U, V , ε), with G20 an arbitrary function. We thus study a
modification of (1.3) with an O(1), quadratic nonlinearity for V ,

Ut = LU + αU + F(U, V ),

Vt = εLV + εβU + εγ V + G20(x)U2

+ O

εUV , εV 2,

U2
+ V 2

3/2 ;

(5.2)

the nonlinearity F is as in (3.4). We again equip the system with
suitable BCs guaranteeing conditions A1–A3, andwe setα = rεσ

−

ν1 to have (0, 0) destabilize at r = 0.
The analysis proceeds along the same lines as that of system

(1.3) in Sections 3 and 4. Using a Fourier-like decomposition in
terms of amplitudes and eigenfunctions forU andV —recall (3.2)—
system (5.2) is written as an infinite-dimensional system of ODEs,

Ȧk = λkAk +


l,m≥1

Cklm (F20AlAm + F11AlBm + F02BlBm) ,

Ḃk = −εMkBk + εβAk +


l,m≥1

HklmAlAm + O(εAlBm, εBlBm).
(5.3)

Here, Hklm is the projection of G20φlφm onto φk,

Hklm =


Ω

G20(x)φk(x)φl(x)φm(x) dx; (5.4)

note that Hklm reduces to G20Cklm for a constant G20, cf. (3.6). Using
rescaling (3.9) with σ1 = σV = σ and σU = 2σ ,

A1 = εσ a1, Ak = ε2σ ak, Bk = εσ bk, (5.5)

we derive a leading order amplitude systemwhose only difference
from (3.11) is in the nonlinear terms for the bk’s. Switching to
τ = εσ t , we obtain a leading order set of amplitude equations,

a′

1 = ra1 + C111F20a21 + F11a1

m≥1

C11mbm

+ F02

l,m≥1

C1lmblbm + O(εσ ),

εσ a′

k = λkak + Ck11F20a21 + F11a1

m≥1

Ck1mbm

+ F02

l,m≥1

Cklmblbm + O(εσ ),

εσ−1b′

1 = −M1b1 + βa1 + εσ−1H111a21 + O(εσ ),

εσ−1b′

k = −Mkbk + εσ−1Hk11a21 + O(εσ ).

(5.6)

Here again, a prime represents differentiationwith respect to τ and
Cklm,Hklm are reported in (3.6) and (5.4).

For σ > 1, we recover classical center manifold reduction re-
sults, as was the case with (3.11). The slaving relations are

b1 =
βa1
M1

, bk = 0, ak =
C111H

λk
a21, (5.7)

compare with (3.13). Substituting into the ODE for a1 and recalling
definition (3.13), we can write

a′

1 = ra1 + C111Ha21 + O(εσ ). (5.8)

Note that, in line with theory, the newly introduced nonlinearity
does not affect classical center manifold reduction. This, however,
changes as σ ↓ 1: in that limit, and similar to system (3.11), the
bk-equations in system (5.6) retain their evolutionary character.
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a b

Fig. 5.1. Bifurcation figures of system (5.10), with parameters β = −4, F20 = −2, F11 = 5, F02 = 12, A = 0.2 and B = 0.5. (a) Steady state diagram in terms of
the bifurcation parameter r and the first amplitude a1; here, γ = 5. Solid (dashed) lines denote stable (unstable) equilibria. The points labeled ‘T’ and ‘Hopf’ indicate a
transcritical (coincides with the vertical axis) and a Hopf bifurcation. The solid curves emerging from the Hopf bifurcation measure the minimum/maximum a1-values of
the bifurcating stable limit cycle. The limit cycle collides with the trivial steady state at ’Hom’, yielding a homoclinic bifurcation. (b) A two-parameter continuation in (r, γ )

of these three bifurcations; the transcritical one occurs at r = 0.
The system of ODEs governing the behavior of (5.2) in the regime
λ1 = O(ε) is, up to O(ε) corrections,

a′

1 = ra1 + C111F20a21 + F11a1

n≥1

C1n1bn

+


m,n≥1

Cmn1F02bmbn,

b′

1 = −M1b1 + βa1 + H111a21,
b′

k = −Mkbk + Hk11a21, for k ≥ 2.

(5.9)

Asymptotically many bk-modes interact now nonlinearly with the
a1-mode at leading order. Again, a rigorous proof of the validity of
our asymptotic method is necessary, but not part of this paper.

Note that system (5.9) resembles but is not identical to the one
corresponding to (1.1). The readily apparent differences between
the two systems — linear coupling in (5.9) versus more quadratic
terms in the other — are circumstantial and due to our working
with (3.1), instead of with the eigenbasis as in [7]. A more
appreciable difference concerns their coefficients, as the analogue
of (3.6) in [7] involves two sets of eigenfunctions and is less
transparent; recall Remark 4.2. Therefore, their corresponding
flows may be widely different despite sharing the same functional
form, see [22,16].

In the exploratory spirit of this paper, we choose not to study
(5.9) in full generality but restrict ourselves, once again, to a trans-
parent and highly illustrative special case.

5.2. Example: revisiting our reaction–diffusion system

We work with L = ∆, Ω = (0, 1) and homogeneous Dirichlet
BCs, as in Section 2.2; the eigenfunctions are still given by the
simple formulas (2.16). To reach amiddle groundbetween the two-
dimensional (4.2) and the infinite-dimensional (5.9), we choose

G20(x) =
2
√
2

3
A sin(πx) +

√
2B sin(2πx),

with A, B ∈ R free parameters.

With this choice,

H111 = A, H112 = B, H113 = −
1
3
A,

H114 = −
1
2
B and H11k = 0, for all k ≥ 5,

so that the ODEs for bk, with k ≥ 5, only contain higher order non-
linearities: at leading order, ḃk = −Mkbk. From this we conclude
that all bk with k ≥ 5 approach exponentially an O(ε) value. Thus,
we obtain an explicit, exponentially attracting, 5-dimensional ex-
tended center manifold constraining bk to O(ε) values, for k ≥ 5,
and with flow given by

a′

1 = ra1 + C111F20a21 + F11

l≥1

C1l1a1bl + F02

k,l≥1

Ckl1bkbl,

b′

1 = −M1b1 + βa1 + Aa21,
b′

2 = −M2b2 + Ba21,

b′

3 = −M3b3 −
1
3
Aa21,

b′

4 = −M4b4 −
1
2
Ba21.

(5.10)

The differential equations for a1, b1, b2, b3 and b4 characterize the
behavior of the amplitudes in the direction of the modes linking to
λ1, µ1, µ2, µ3 andµ4. Note how the addition of a special, inhomo-
geneous, O(1) nonlinearity has yielded a 5-dimensional system as
our extended center manifold reduction. We study this below us-
ing theODE continuation toolboxMatCont, discussing twodistinct
parameter sets in some detail to illustrate behavioral diversity in it.

First, we fix β = −4, γ = 5, F20 = −2, F11 = 5 and F02 = 12
as in Figs. 4.1 and 4.2. Note that these figures concern system (1.3),
which only has an O(ε), spatially homogeneous nonlinearity. Also
note that γ < γT = π2, so that the small spectrum is stable.
We also fix A = 0.2 and B = 0.5, leaving r to vary. Fig. 5.1(a)
provides a bifurcation diagram of the destabilization of the trivial
steady state (a1, b1, b2, b3, b4) = (0, 0, 0, 0, 0) of (5.10). We
track, as r increases, the branches bifurcating from zero using
the first amplitude, a1, as representative. In this way, we recover
qualitatively the destabilization mechanism from Sections 2 and 4
(small, spatially homogeneous nonlinearity for V ). Specifically, as r
becomes positive, the trivial and nontrivial steady states exchange
stability (transcritical). Tracking the nontrivial steady state for r >
0, we encounter a supercritical Hopf bifurcation at r ≈ 1.04; of the
stable limit cycle bifurcating from this point, we have drawn the
minimumandmaximumvalues of a1. This limit cycle branch exists
up to r ≈ 1.17, where it becomes an orbit homoclinic to the trivial
steady state. For larger r-values, we have found no other attractor.
Note that this scenario corresponds precisely (albeit qualitatively)
with our results in Sections 4.1 and 4.2.

Fig. 5.1(b) shows the continuation of these three bifurcations in
two parameters: r and γ . This figure supports Conjecture 4.2 in the
present case. If one increases r , starting from a negative value, then
one first encounters a transcritical and then a supercritical Hopf
bifurcation, which in turn is followed by a homoclinic bifurcation.
Beyond this homoclinic bifurcation, orbits grow unboundedly and
there seem to be no other attractors. At (r, γ ) = (0, π2),
there exists a transcritical Bogdanov–Takens point, see [18] for its
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Fig. 5.2. (a) A bifurcation diagram corresponding to system (5.10). The parameter set is β = −2.2, γ = 6, F20 = −0.6, F11 = 3, F02 = −3, A = 0.2 and B = 0.5; r
is varied. The nontrivial equilibrium first undergoes a transcritical bifurcation (T), then loses stability through a saddle–node bifurcation (SN), and becomes stable again
through another saddle–node. After that, a supercritical Hopf bifurcation occurs (Hopf). We have plotted the maximum and minimum values of the stable limit cycles that
arise. These undergo period-doubling bifurcations (PD), of which we marked two with an ‘x’. (b) The five Lyapunov exponents corresponding to the chaotic orbit, shown
with five different colors, varying with r . At r ≈ 7.34, the first Lyapunov exponent becomes positive. At r ≈ 7.53, the chaotic orbit collides with a saddle steady state, after
which the chaotic orbit no longer exists. The black dots mark the r-values at which period-doubling bifurcations occur. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
a b

Fig. 5.3. Two similar chaotic attractors obtained by simulating theODE (5.10) (left) and the PDE (5.2) (right),withβ = −2.2, γ = 6, F20 = −0.6, F11 = 3, F02 = −3, A = 0.2
and B = 0.5. (a) r = 7.49. (b) r = 7.7, ε = 0.01 and G20(x) =

2
3

√
2A sin(πx) +

√
2B sin(2πx). The operator is L = ∆ on the 1-dimensional domain (0, 1) and with

homogeneous Dirichlet boundary conditions.
unfolding. For negative values of r the bifurcation diagram is more
subtle but we choose not to focus on that because this does not
correspond to our analytical work.

For the parameter values reported above, we have seen no
significant qualitative differences in the behavior of the reduced
system (5.10) and of the original PDE system (1.3). This changes
drastically if we retain A = 0.2 and B = 0.5 but switch to, for in-
stance, β = −2.2, γ = 6, F20 = −0.6, F11 = 3 and F02 = −3. Us-
ing r as a bifurcation parameter, we observe that the transcritical
bifurcation at r = 0 persists, see Fig. 5.2(a). Tracing the nontriv-
ial steady state stabilized at r = 0, we see that it first encounters
two saddle–node points at r ≈ 11.55 and r ≈ 1.80, before a Hopf
bifurcation at r ≈ 5.99 occurs. This Hopf bifurcation is supercriti-
cal, and again we have plotted the minimum and maximum of the
limit cycle that arises there. Since this stable limit cycle exists for
r-values where the nontrivial steady state is stable, there is bista-
bility of both a steady state and a periodic solution. Contrary to the
Hopf bifurcation in Fig. 5.1(a), the limit cycle here undergoes sev-
eral period-doubling bifurcations and becomes chaotic, before ter-
minating again in a homoclinic orbit for larger r-values (r ≈ 30).

In Fig. 5.2(b), we have plotted all five Lyapunov exponents
corresponding to the chaotic orbit from r = 7 onwards. At r =

7.34, the first Lyapunov exponent becomes positive, indicating
chaos. Increasing r even further, the chaotic orbit persists and its
magnitude grows, until it collides with a saddle steady state at
r = 7.53. For larger values of r , all orbits escape to infinity. See
Fig. 5.3(a), where the chaotic orbit itself is plotted for r = 7.49.
In a simulation of the full PDE (1.3) with the same parameter
values, we recover the same period-doubling scenario leading to
chaos as in (1.1). However, at r = 7.49 the PDE is still in the
‘double period-regime’, whereas the ODE reduction already shows a
chaotic orbit. This can be understood by the fact that our approach
only yields leading order accuracy and ε = 0.01. In principle,
the incorporation of higher order terms is expected to improve
the correspondence between the reduced and the full system,
especially through the slaving relations for ak with k ≥ 2. Note that
a1 ∼ 15–30 in the chaotic regime, thus A1 = εa1 ∼ 0.15–0.30, see
(5.5) with σ = 1; this is already near the boundary for which one
would expect an asymptotic method to work.

Remark 5.1. For parameters in a regime where the Hopf bifurca-
tion is subcritical and with β small enough, we observe behavior
similar to Fig. 5.1(b). In that case, the periodic orbit originating at
the Hopf bifurcation exists for r < rH , but it again accumulates
onto a homoclinic orbit. The branch of homoclinic bifurcations in
(r, γ )-space is now bounded by the transcritical branch to its left
and the Hopf branch to its right.
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Fig. 6.1. Schematic depiction of a codimension 2 bifurcation where λ1 and λ2 pass
through the origin, while all other eigenvalues remain in the stable half-plane.

6. Codimension 2 bifurcations

As explained in the Introduction, it was analyzed in [6] that
the organizing center of chaos in the phytoplankton-nutrient
model (1.1) corresponds to a codimension 2 bifurcation — a point
where two eigenvalues cross the imaginary axis simultaneously. In
this section,we investigate the type of phenomena that such points
can give rise to, within the context of our model problem (1.3). In
the specific case of (1.1), the small spectrum remains contained in
the negative semi-axis for all parameter values [7]. We therefore
also focus on the case where (also) the second eigenvalue crossing
the origin is ‘large’. It is neither our intention nor within the scope
of this paper to offer a complete treatment of all possible transcrit-
ical codimension 2 bifurcations in system (1.3). We are primarily
interested, instead, in giving an indication of the variety of low-
dimensional dynamics exhibited by (1.3) and related models in a
codimension 2 setting, which are not captured by classical center
manifold reduction.

We present our work below in the general setting of a
multidimensional bounded domain Ω ⊂ Rn. In Section 6.1, we
construct and treat an abstract codimension 2 situation, where
the two leading eigenvalues λ1 and λ2 of DT cross zero
simultaneously in a two-component system (i.e., with scalar U
and V ). See Proposition 2.1 and Fig. 6.1. We then reduce the PDE
system to a 4-dimensional ODE one. Subsequently, in Section 6.2,
we consider another type of codimension 2 bifurcation obtained by
adding an extra component to system (1.3). We find there, in turn,
that the flow on the extended center manifold is 3-dimensional,
illustrating our results further by means of our exemplary
reaction–diffusion example with an additional component.

6.1. Coincidence of the two largest eigenvalues

We first consider the case in which λ1 and λ2 cross through the
imaginary axis simultaneously, as is depicted in Fig. 6.1. Recalling
the characterization of eigenvalues in Proposition 2.1, we conclude
that the two largest eigenvalues of L — recall the associated
spectral problem (2.3) — are necessarily equal, ν1 = ν2. We
show that, in this case, our PDE system (1.3) is reducible to a
4-dimensional ODE system close to the bifurcation, and we
examine the rich dynamics of that reduced system.

Note for definiteness that, in our exemplary choiceL = ∆with
homogeneous Dirichlet BCs on a bounded domain Ω ∈ Rn, the
first eigenvalues cannot collide [9,13]. However, there exist com-
binations of operators, spatial domains and BCs for which assump-
tions A1–A3 are satisfied and ν1 = ν2 holds. One such example
is L = −∆2 considered on an annulus and with homogeneous
BCs for the zeroth and second order derivatives, see [9] for details.
Following ideas from that work, we parameterize by a scalar pa-
rameter κ a 1-dimensional, continuous family of bounded domains
{Ωκ}κ , with piecewise continuous boundaries. The eigenvalues νk
corresponding to linear differential operatorL are thus parameter-
ized by κ too, sowewrite {νk(κ)}k for the spectrumof this operator
on Ωκ . To set us up for our analysis, we next assume the existence
of a κ∗ for which

· · · < ν3(κ
∗) < ν2(κ

∗) = ν1(κ
∗),

and we further assume, for ν1 and ν2, asymptotic expansions in
powers of κ up to first-order:

νi(κ) = ν1(κ
∗) + (κ − κ∗)νi,1(κ

∗) + O(|κ − κ∗
|
2),

for i = 1, 2 and with ν1,1(κ
∗) ≠ ν2,1(κ

∗).

Finally, to avoid introducing generalized eigenfunctions, we fur-
ther assume that the eigenspaces corresponding to these two
eigenvalues do not coincide, as κ → κ∗ — this is also the case for
−∆2 considered in [9].

At κ = κ∗, the equality ν1 = ν2 automatically yields λ1 = λ2
and µ1 = µ2 for the eigenvalues of DT , see (2.7)–(2.8). Note that
the equality µ1 = µ2 is an inadvertent consequence of modeling
the evolution of U and V by the same operator L. We additionally
assume the small spectrum to remain ‘harmless’ (negative) and set
for our analysis

κ = κ∗
+ sεσ , with s ∈ R and σ > 0.

The asymptotic expansions for ν1 and ν2 allow us to write, then,

ν1(κ) = ν1(κ
∗) + sεθν1,1(κ

∗) + O(ε2θ ),

ν2(κ) = ν1(κ
∗) + sεθν2,1(κ

∗) + O(ε2θ ).

As usual, we rescale α according to

α = rεσ
− ν1(κ

∗) and also demand that γ < γT ,

thus positioningλ1 andλ2 at anO(εσ ) distance inside the right half
of the complex plain. Here again, r is the bifurcation parameter; the
eigenvalues are, to leading order,

λ1(κ) = (r + sν1,1(κ
∗))εσ

= εσ L1,
λ2(κ) = (r + sν2,1(κ

∗))εσ
= εσ L2.

(6.1)

As before, we set µk = −εMk and consider (L1, L2) as new and
independent bifurcation parameters. Note that varying them is
equivalent to varying (r, s), since ν1,1(κ

∗) ≠ ν2,1(κ
∗) by assump-

tion. Further, we assume the setting of Section 4, where the non-
linearity co-driving V is weak. Returning to the basic system (1.3)
and substituting amplitude expansion (3.2), then, we again obtain
system (3.7) but with two weakly unstable Ak-modes. This is not
surprising, as the Ak-modes link directly to the two destabilizing
eigenvalues λ1 and λ2; all other modes remain stable. We thus
rescale the amplitudes accordingly,

A1 = εσ a1, A2 = εσ a2, Ak = ε2σ ak for k ≥ 3 and
Bk = εσ bk for k ≥ 1, with σ > 0.

The amplitude system becomes,

a′

i = Liai + F20(Ci11a21 + 2Ci21a1a2 + Ci22a22)

+ F11


a1

m≥1

Ci1mbm + a2

m≥1

Ci2mbm


+ F02


l,m≥1

Cilmblbm, for i = 1, 2,

εσ a′

k = λkak + F20

Ck11a21 + 2Ck12a1a2 + Ck22a22


+ F11


a1

m≥1

Ck1mbm + a2

m≥1

Ck2mbm


+ F02


l,m≥1

Cklmblbm, for k ≥ 3,

εσ b′

i = −εMibi + εβai, for i = 1, 2,

εσ b′

k = −εMkbk, for k ≥ 3,

(6.2)
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to leading order and expressed in τ = εt . Again, a critical transi-
tion occurs when σ = 1, see (3.11), in which regime the spectral
gap condition is violated.

We first consider the case σ > 1, in which the spectral gap is of
sufficient width. The leading order slaving relations are, then,

b1 =
βa1
M1

, b2 =
βa2
M2

and bk = 0, for k ≥ 3. (6.3)

The center manifold – in the classical sense, since σ > 1 – is
2-dimensional, with the flow on it given by
a′

1 = L1a1 + C111H11a21 + 2C121H12a1a2 + C122H22a22,
a′

2 = L2a2 + C211H11a21 + 2C221H12a1a2 + C222H22a22.
(6.4)

Here, we have applied the slaving relations and defined the
quantities

Hij = F20 +
F11β
2


1
Mi

+
1
Mj


+

F02β2

MiMj
, for i, j = 1, 2.

This is as expected, for a degenerate codimension 2 transcritical
bifurcation of the present type. Moreover, M1 = M2 + O(εσ−1),
since ν1 = ν2 + O(εσ ). Hence, H11 = H12 = H22 = H at leading
order, cf. (3.13), and (6.4) simplifies to
a′

1 = L1a1 + H

C111a21 + 2C112a1a2 + C122a22


,

a′

2 = L2a2 + H

C112a21 + 2C122a1a2 + C222a22


.

(6.5)

Note that the validity of centermanifold reduction can, in principle,
be rigorously established by classical methods [1–3]. The trivial
state (U, V ) = (0, 0), represented by (a1, b1) = (0, 0), remains
a steady state with eigenvaluesΛ1 = L1 andΛ2 = L2. Since steady
states now correspond to intersections of two conic sections, there
are up to three more steady states (a∗

1, a
∗

2) with Jacobian matrix

J(a∗

1, a
∗

2)

=


L1 + 2H


C111a∗

1 + C112a∗

2


2H

C112a∗

1 + C122a∗

2


2H

C112a∗

1 + C122a∗

2


L2 + 2H


C122a∗

1 + C222a∗

2


=


J11 J12
J12 J22


.

Note that the off-diagonal terms are equal; the eigenvalues Λ± of
matrices of this form are

Λ± =

J11 + J22 ±


(J11 − J22)2 + 4J212
2

,

and they are necessarily real. Hence, none of the steady states
can undergo oscillatory destabilization. The two eigenvalues can,
however, change signs when J11J22 = J212, and a fixed point may
gain or lose stability.

Next, we analyze the regime σ = 1 for system (6.2). Here again,
the bk-amplitudes are no longer slaved but evolve in the same
timescale as a1 and a2. Up to O(ε) corrections,

a′

i = Liai + F20

Ci11a21 + 2Ci21a1a2 + Ci22a22


+ F11


a1

m≥1

Ci1mbm + a2

m≥1

Ci2mbm


+ F02


l,m≥1

Cilmblbm, for i = 1, 2,

b′

i = −Mibi + βai, for i = 1, 2,

b′

k = −Mkbk for k ≥ 3.

(6.6)

System (6.6) contains two quadratically nonlinear ODEs and
infinitelymany linear ones. Similar to Section 4.1, the bk-modes for
k ≥ 3 decouple, at leading order, and are slaved toO(ε) values.We
formally conclude that, in this extended region and codimension
2 setting, the small amplitude flow of the PDE system (1.3) is
attracted to a 4-dimensional invariantmanifold, the flow onwhich
is approximately described by

a′

i = Liai + F20

Ci11a21 + 2Ci21a1a2 + Ci22a22


+ F11a1 (Ci11b1 + Ci12b2)
+ F11a2 (Ci21b1 + Ci22b2)
+ F02


Ci11b21 + 2Ci12b1b2 + Ci22b22


,

b′

i = −Mibi + βai,

for i = 1, 2. (6.7)

The validity of this reduction is not proved in this study.We refrain
from delving into the characteristics of this flow, as the sheer
number of parameters ensures the existence of rich dynamics. We
do note, however, that the corresponding equilibria will naturally
undergo Hopf bifurcations. Thus, also in this, codimension 2
case, transcritical bifurcations may generally be followed by Hopf
bifurcations within an O(ε) neighborhood.

6.2. A three-component system

We consider an extended version of system (1.3), namely the
3-component model (1.5) from the Introduction. The operator L,
spatial domain Ω and BCs satisfy assumptions A1–A3. The con-
stants α1, α2, β1, β2, ρ2 and γ are all real, and the nonlinearities
F1(U1,U2, V ), F2(U1,U2, V ) and G(U1,U2, V ) are smooth functions
of their arguments. Moreover, we have introduced ‘diffusion’ coef-
ficientsD1,D2 > 0, both ofwhich areO(1)with respect to ε; this is
natural in reaction–diffusion 3-component models, since D1 ≠ D2
in general.More importantly,we have now theV -component feed-
ing into the U2-equation also linearly, if weakly; cf. the term ερ2V
in the system. No such mechanism exists for U1, as was also the
case in system (1.3). The rationale behind this weak extension of
the core system (1.3) is its becoming significant in the leading or-
der extended center manifold reduction (ECMR) we derive below.
In that, it highlights how different unfoldings of the primary bifur-
cation may excite different dynamic modes in the ECMR regime.

By construction, the background state (U1,U2, V ) ≡ (0, 0, 0)
has 3 distinct sets of eigenvalues. Assuming that both α2 + D2νk
and γ + νk are O(1) and bounded away from zero, it follows quite
straightforwardly that, for k ≥ 1,

λ1,k = α1 + D1νk,

λ2,k = α2 + D2νk + O(ε2),

µk = ε(γ + νk) + O(ε2) = −εMk + O(ε2),

(6.8)

with νk the eigenvalue associatedwithL— see Proposition 2.1 and
Fig. 1.1. Here, λ1,k is associated with the PDE for U1 and boundary
conditions, and {λ2,k}k≥1 is the spectrum associated with U2 and
the boundary conditions. Thus, the ‘new’ term ερ2V only has an
O(ε2) effect on both λ2,k and µk. In the bifurcational case where
we set α2 + D2ν1 = r2εσ , with σ ≥ 1 and r2 = O(1), the effect of
ρ2 through ερ2V is larger — O(ε2−σ ). Even though γ + νk ≠ 0 is
still O(1), ρ2 also impactsµ1. In fact, in the critical case σ = 1, the
eigenvalues λ2,1 and µ1 are both O(ε) and they are the solutions L
of the equation

L2 + εL(M1 − r2) − ε2(r2M1 + β2ρ2) = 0. (6.9)

However, except for some notational inconveniences, this feature
has no effect on our method.

Our aim is to study the codimension 2 transcritical bifurcation
in which the ‘large’ primary eigenvalues λ1,1 and λ2,1 cross zero
simultaneously. Before that, we first understand the codimension
1 case, where only λ1,1 isO(εσ ) close to zero and λ2,1 far behind it;
here, σ ≥ 1 as in Section 4. To set up our analysis, we assume that
α2 + D2ν1 < 0 and γ + ν1 < 0 are O(1). Mimicking our approach
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in Section 3, cf. (3.2), we introduce the amplitudes A1,k(t), A2,k(t)
and Bk(t) throughU1(x, t)
U2(x, t)
V (x, t)


=


k≥1

φk(x)

A1,k(t)
A2,k(t)
Bk(t)


. (6.10)

Here the (rescaled) amplitudes A1,k, A2,k and Bk link directly to
the eigenvalues λ1,k, λ2,k and µk. The new coupling term ερ2V
suggests a rescaling differing in the particulars from that of
Section 3,

λ1,1 = r1εσ , A1,1 = εσ a1,1, A1,k = ε2σ a1,k,

A2,ℓ = ε1+σ a2,ℓ and Bℓ = εσ bℓ,
(6.11)

for k ≥ 2 and l ≥ 1. We also writeMk = −(γ +νk), as for the two-
components system (1.3), and expand thenonlinearities restricting
to quadratic terms, cf. (3.4). For i = 1, 2, then,

Fi(U, V ) = Fi,200U2
1 + Fi,110U1U2 + Fi,101U1V

+ Fi,020U2
2 + Fi,011U2V + Fi,002V 2,

G(U, V ) = G200U2
1 + G110U1U2 + G101U1V

+G020U2
2 + G011U2V + G002V 2.

(6.12)

For σ > 1, classical center manifold reduction is possible with the
equivalent of (3.14) being

a′

1,1 = r1a1,1 + C111H1a21,1 + O(ε); (6.13)

here, the time derivative is taken with respect to τ = εσ t and

H1 = F1,200 +
F1,101β1

M1
+

F1,002β2
1

M2
1

. (6.14)

This ODE is coupled to the slaving relations,

a1,k = −
1

λ1,k


C11kH1a21,1


+ O(ε),

a2,1 = −
ρ2β1

M1λ2,1
a1,1 + O(εσ−1),

a2,k = 0 + O(εσ−1),

b1 =
β1

M1
a1,1 + O(εσ−1, ε2),

bk = 0 + O(εσ−1),

(6.15)

where k ≥ 2. All a2,k-modes except for the first one behave, then,
as additional bk-modes for σ > 1. The eigenvalues λ2,k, k ≥ 2
induce the same kind of behavior as the µk induce. This changes
beyond center manifold reduction, as σ ↓ 1. In that regime, the
a2,k-modes (k ≥ 2) remain slaved – now to both a1,1 and b1 –
but neither a2,k nor bk with k ≥ 2 are higher order anymore; we
find that b′

k = −Mkbk at leading order (k ≥ 2), similar to (4.1).
We therefore have bk = O(ε) for those k-values and may rewrite
the three-component system (1.5) as a 2-dimensional system of
amplitude equations resembling (4.2),

a′

1,1 = r1a1,1
+ C111


F1,200a21,1 + F1,101a1,1b1 + F1,002b21


+ O(ε),

b′

1 = −M1b1 + β1a1,1 + O(ε).

(6.16)

The evolution of the slaved modes is dictated by this system and
the slaving relations,

a1,k = −
1

λ1,k


C11k


F1,200a21,1

+ F1,101a1,1b1 + F1,002b21


+ O(ε), for k ≥ 2,
Fig. 6.2. Schematic representation of the eigenvalues determining the stability of
(U1,U2, V ) = (0, 0, 0) in system (1.5) and in the codimension 2 setting (6.19).
All eigenvalues are negative except for the primary ones, λ1,1 and λ2,1 ,which are
positive and O(εσ ). All three eigenvalue sets are unbounded below.

a2,1 = −
1

λ2,1


C111


F2,200a21,1

+ F2,101a1,1b1 + F2,002b21

+ ρ2b1


+ O(ε),

a2,k = −
1

λ2,k


C11k


F2,200a21,1

+ F2,101a1,1b1 + F2,002b21


+ O(ε), for k ≥ 2.

Thus, we may conclude that the (codimension 1) transcriti-
cal bifurcation generates precisely the same behavior in the
3-component model (1.5) as in the 2-component one (1.3) up to
and including the regime σ = 1 covered by extended center man-
ifold reduction.

We now proceed to analyze the codimension 2 bifurcation. To
facilitate our presentation,we introduce the quadratic polynomials
(cf. (6.12))

Fj(a, b, c) = Fj,200a2 + Fj,110ab + Fj,101ac

+ Fj,020b2 + Fj,011bc + Fj,002c2, j = 1, 2. (6.17)

Note that (6.13), for instance, can now be rewritten as

a′

1,1 = r1a1,1 + C111 F1(a1,1, 0, β1a1,1/M1) + O(ε). (6.18)

The polynomials Fj can be similarly introduced in (6.14), as well
as in the slaving relations (6.15). To generate a codimension 2
bifurcation, we tune D1,D2, α1, α2 and introduce r1, r2 by

α1 + D1ν1 = λ1,1 = r1εσ and
α2 + D2ν1 = r2εσ , with σ ≥ 1,

(6.19)

cf. (6.8); the spectrum is depicted in Fig. 6.2. Note that α2 +D2ν1 ≠

λ2,1; the equality only holds at leading order, due to the presence
of ερ2V in (1.5); cf. (6.8) again. We also set Mk = −(γ + νk) and
assume M1 to be O(1) and nonzero but not necessarily negative.

We skip the case σ > 1 (but see Remark 6.1) and proceed
immediately to σ = 1. We rescale as

A1,1 = εσ a1,1, A1,k = ε2σ a1,k, A2,1 = εσ a2,1,

A2,k = εσ+1a2,k and Bℓ = εσ bℓ,
(6.20)

for k ≥ 2 and ℓ ≥ 1, see (6.10). The a1,k- and a2,k-modes remain
slaved for all k ≥ 2, while again bk = −Mkbk at leading order; the
situation is analogous to the two-component case, recall Section 4.
Following the path we carved in that case, we restrict ourselves
naturally to the exponentially attracting subspace {bk = O(ε)}k≥2.
Up toO(ε) corrections, then, the a priori infinite-dimensional flow
reduces to a 3-dimensional one,a′

1,1 = r1a1,1 + C111 F1(a1,1, a2,1, b1),
a′

2,1 = r2a2,1 + ρ2b1 + C111 F2(a1,1, a2,1, b1),
b′

1 = β1a1,1 + β2a2,1 + (γ + ν1)b1.
(6.21)

It thus turns out that the three-component, codimension 2 equiva-
lent of the two-component, codimension 1 (planar and quadratic)
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extended center manifold reduction (6.16) is the 3-dimensional,
quadratic system (6.21). In this paper,we study neither the dynam-
ics generated by system (6.21) nor the bifurcational structure as-
sociated with it in any detail; we have done so for the planar flow
generated by (6.16), recall Sections 4.1 and 4.2. We do, however,
observe that the celebrated Lorenz system [10] belongs to the fam-
ily of systems described by (6.21), as can be seen by setting

x(t) = b1(τ ), y(t) = a2,1(τ ), z(t) = a1,1(τ ),

and choosing the Fj,klm-coefficients of Fj(z, y, x), see (6.17), so that

C111F1(z, y, x) = xy and C111F2(z, y, x) = −xz.

Then, (6.21) reduces toẋ = (γ + ν1)x + β2y + β1z,
ẏ = ρ2x + r2y − xz,
ż = r1z + xy,

(6.22)

which is equivalent to the Lorenz systemwith parameters (σ , b, r),
upon setting

(r1, r2, β1, β2, γ , ρ2) = (−b, −1, 0, σ ,−σ − ν1, r).

Note that, at first glance, setting both r1 and r2 negative suggests
that λ1,1 and λ2,1 are stable. However, recall that we have set
α2 + D2ν1 = r2ε, and the eigenvalues of the trivial state are not
represented by (6.8) but rather as solutions of (6.9) instead. A di-
rect check yields that λ1,1, λ2,1, µ1 indeed correspond directly to
the eigenvalues of the unstable critical point (0, 0, 0) of (6.22).

It is apparent in our approach, but we nevertheless underline
it here, that there is a significant difference between our deriva-
tion of (6.21) and the derivation of the Lorenz model. In par-
ticular, the Lorenz model is a truncation of the full flow of the
infinite-dimensional convective system considered in [10], which
approximates neither quantitatively nor qualitatively the dynam-
ics of that original model; see [11] and the Introduction. Instead,
(6.21) describes the flow on a 3-dimensional manifold which at-
tracts by construction the dynamics of small amplitude solutions –
scaled as in (6.20) – of the singularly perturbed evolution equation
(1.5). It is for this reason that (6.21) does approximate the full dy-
namics of (1.5) asymptotically: see Fig. 1.2, where the celebrated
Lorenz butterfly is plainly visible. Note that the figure was pro-
duced by a direct simulation of the PDE system (1.5), with L =

∆, Ω = (0, 1), Dirichlet BCs – similar to Section 2.2 – and all
parameters tuned to the standard chaotic parameter combination
(σ , b, r) = (10, 8/3, 28) in the Lorenzmodel. Indeed, for these pa-
rameter values – as in Fig. 1.2 – the solutions of (6.9) are λ2,1 > 0
and µ1 < 0. Moreover, it should be noted that we have also re-
covered the Lorenz attractor for systems (1.5) with nonlinearities
that are more general than the exactly quadratic ones given in the
caption of Fig. 1.2. Only the leading order quadratic approxima-
tions (6.12) need to be as described above, higher order nonlin-
earities do not have a leading order impact. For example, choosing
F1(U1,U2, V ) = 3

√
2π/16 sin(U2V ) as opposed to F1(U1,U2, V ) =

3
√
2π/16U2V which we have used now, works just as well.

Remark 6.1. The codimension 2 case with σ > 1 is, due to our
rescaling, slightly different from what we expect. All modes are
slaved to a1,1 — related to the eigenvalue λ1,1, see Fig. 6.2 —, even
though this is a codimension 2 situation. This has to dowith the fact
that, forσ > 1, themagnitude of A1,k is scaled differently from A2,k,
see (6.20). We refrain from elaborating further in this paper.

7. Discussion

In this article, we have discussed the extension of center man-
ifold reduction (CMR), a classical nonlinear method for dimension
reduction. We have chosen, as our setting, the transcritical bifur-
cation destabilizing a trivial background state of a singularly per-
turbed, multi-component, evolutionary PDE model. CMR operates
locally to the parameter regime where the destabilization occurs
and as long as a certain spectral gap condition is satisfied. We have
exemplified its extension to regions in parameter space where
that condition is violated and termed our approach extended cen-
ter manifold reduction (ECMR). Our approach was crafted in the
context of a number of explicit and closely related model prob-
lems, see (1.3), (1.5) and (5.1). However, this work has been in-
spired by and builds on an earlier study of a very different model,
namely the phytoplankton-nutrient model (1.1). Model (1.1) has
the same basic structure as these model problems, which enables
ECMR. This structure unsurprisingly concerns the spectrum deter-
mining the stability of the trivial background state and is drawn
schematically in Figs. 1.1, 6.1 and 6.2. Specifically, ECMR hinges on
the assumption that the spectrum in question partitions into fam-
ilies {λk}k and {µk}k of ‘large’ and ‘small’ eigenvalues, respectively.
It is thus expected to be applicable to the general class of systems
given in (1.2), see also [8]. In this paper, and for any fixed k, λk and
µk areO(1) andO(ε), respectively, for an asymptotically small pa-
rameter ε.

Our analysis treats situations where one or two of the large
eigenvalues initiate a bifurcation by crossing through zero while
all others remain stable. Linear theory suffices to pinpoint the codi-
mension 1 or 2 surface (in parameter space) where the bifurca-
tion occurs and, additionally, predicts the ‘shape’ of the bifurcating
pattern. The nonlinear extension of center manifold reduction im-
proves on linear theory by predicting the amplitude of that pattern,
and tracking it along a larger parametric regime. This regime is re-
stricted, nevertheless, in that the ‘eventual fate’ of the pattern lies
even further beyond. The underlying reason is that CMR validity is
relying on the existence of a spectral gap of sufficientwidth; simply
put, the critical (i.e. bifurcating) eigenvalues λj must be sufficiently
closer to the imaginary axis than the largest stable eigenvalue µ1.
In our setting, this condition reads |λj| = O(εσ ) ≪ O(ε) = |µ1|

so σ > 1. ECMR, in turn, improves this state of affairs by oper-
ating in the ‘gapless’ limit σ = 1. A priori, one would expect a
large number ofµk-modes to be excited in that case, sinceµk scale
with ε. In the singularly perturbed setting considered here, how-
ever, it turns out that only theµ1-mode contributes appreciably to
the dynamics. The classical, 1-dimensional CMR describing a codi-
mension 1 transcritical bifurcation must hence be extended to a
merely 2-dimensional extended center manifold. The resulting re-
duced dynamics attract small initial conditions at an exponential
rate and well into the regime λj = O(ε) where secondary and ter-
tiary bifurcations occur.

Using this extended reduction, we showed that the transcritical
bifurcation is typically followed by a supercritical Hopf bifurcation
of the emerging pattern, similarly to the situation for (1.1) [7].
Additionally, we applied our approach to two systems with
codimension 2 (transcritical) bifurcations, finding that the planar
CMR must be extended to either a 3- or a 4-dimensional ECMR
attracting small initial conditions exponentially. Motivated by
simulations of (1.1) in [5], we have explored various scenarios for
the presence of chaotic dynamics in the ECMR flow. Our approach
enabled us to construct several such explicit examples, where the
full PDE semiflow limits to a low-dimensional chaotic attractor,
i.e. in which the full model exhibits low-dimensional chaotic
spatio-temporal dynamics governed by ECMR flows — see Figs. 1.2
and 5.3(b).

This paper has a distinctive exploratory character. We have
chosen to investigate the phenomena exhibited by singularly per-
turbed PDE systems pushed beyond the region of validity of clas-
sical CMR associated with a transcritical bifurcation: our analysis
is entirely formal. Nevertheless, the backbone of our presentation
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provides in itself a solid foundation for a rigorous validation. This
validation is part of futurework, at least for the codimension 1 case
of Section 4 where a scalar CMR extends to a planar ECMR. In the
context of reaction–diffusion equations, especially, results on the
convergence of solutions to N-dimensional Galerkin projections
as N → ∞ seem directly applicable to the present setting, see
e.g. [23,24]. For the codimension 2 case, it is natural to first work
out in detail the general case, where eigenfunctions may not span
the invariant subspace of the bifurcating eigenvalue. In that situa-
tion, one needs to account for generalized eigenfunctions, and we
have refrained from doing so in the present paper.

Another line of future research concerns the application of
ECMR to models where the primary bifurcation, associated with
the first large eigenvalueλ1 crossing the imaginary axis, is not tran-
scritical. In principle, ECMR is directly applicable – at least formally
– when the trivial state is annihilated/destabilized in a pitchfork or
saddle–node bifurcation. Further, although that state cannot un-
dergo a Hopf bifurcation by virtue of L having been assumed self-
adjoint (see A1 in Section 2), a spatially inhomogeneous one could
sustain it. We already emphasized that ECMR is enabled by the
structure of the spectrum and not by particulars of the basic state.
In principle, then, ECMRcan also cover this case, as long as the spec-
trum has a large/small decomposition as depicted in Fig. 1.1. A nat-
ural question in all of these three contexts is whether the primary
bifurcation is also typically followed by a destabilizing Hopf bifur-
cation already upon anO(ε) variation of the bifurcation parameter.
This scenario indeed appears natural, see below; it will thus be rel-
evant to study what ECMR can yield in those situations.

Since the present paper was inspired by the appearance of low-
dimensional spatio-temporal dynamics in model (1.1), we finally
consider the question of how assistive can ECMR be in under-
standing analytically the rich spatio-temporal dynamics of evo-
lutionary PDE systems. Such dynamics are routinely observed in
simulations of systems such as (1.3), see for instance [25] and refer-
ences therein for often encountered reaction–diffusion cases. Sce-
narios involving a stationary pattern that bifurcates from a basic
state, only to be destabilized in a Hopf bifurcation, also appear nat-
urally in reaction–diffusion equations; see, for instance, [26] for
an explicit example. A major question is, of course, how typical
is the existence of a stability problem with small and large eigen-
values? A related question is whether the (assumed) existence of
such a partition can be used to embed these systems into the singu-
larly perturbed framework necessary for our approach. Given the
character of ECMR, we are convinced that it can be applied to
explicit (reaction–diffusion) models found in the literature — by
assuming certain scaling limits, of course. The most natural candi-
dates are those of Gierer–Meinhardt and Gray–Scott type, which
already have the desired singularly perturbed nature; see, for in-
stance, [27–29] and references therein. The complex dynamics ex-
hibited by these systems is largely dominated by singular solutions
of pulse type [30,31], the spectral stability problem of which does
decompose into small and large eigenvalues (onboundeddomains)
— see, for instance, [32,33]. Typically, these pulses are destabilized
throughHopf bifurcations; one thus needs to adapt ECMR to singu-
lar patterns, see our remark above on the nature of the basic state.
This appears to be a promising line for future research, especially
since the low-dimensional chaotic behavior exhibited by solitary
pulses in an extended Gierer–Meinhardt model seems to be driven
by large-small spectrum interactions [31].
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Appendix. Sub- or supercritical Hopf bifurcation

In this appendix the character of the Hopf bifurcation as derived
in Section 4.1 is determined in full detail. We follow the procedure
outlined in [16].

The system that we consider is the subsystem of the first two
equations of (4.2) on the invariant center manifold.
a′

1 = ra1 + C111

F20a21 + F11a1b1 + F02b21


,

b′

1 = −M1b1 + βa1.
(A.1)

The corresponding Jacobian of (A.1) is,

J(a1, b1)

=


r + 2C111F20a1 + C111F11b1 C111 (F11a1 + 2F02b1)

β −M1


. (A.2)

The nontrivial stationary state that becomes stable after the tran-
scritical bifurcation is given in (4.3). Evaluated at this stationary
state, the Jacobian (A.2) is:

J(a∗

1, b
∗

1) =

 r
H


H − 2F20 −

F11β
M1


−

r
H


F11 + 2

F02β
M1


β −M1

 ,

see (3.13) for the definition of H . The eigenvalues of this Jacobian
as a function of bifurcation parameter r are,

Λ± =
tr(J(r)) ± i


4 det(J(r)) − tr2(J(r))

2
= µ(r) ± iω(r),

where tr(J(r)) and det(J(r)) represent the trace and the determi-
nant of J in terms of r , respectively. We find that,

tr(J(r)) =

r

H − 2F20 −

F11β
M1


H

− M1,

det(J(r)) = rM1.

The Hopf bifurcation occurs if µ(rH) = 0 and ω(rH) = ω0 > 0,
where rH is the value of r at the bifurcation. The first condition is
satisfied for

rH =
M1H

−F20 + F02β2/M2
1
.

The value of ω(r) at the bifurcation value is

ω(rH) = ω0 =


rHM1.

For γ < −ν1, the sign of M1 is positive, so the requirement for a
Hopf bifurcation is that

rH > 0.

The following two degeneracy conditions must be satisfied to as-
sure that the Hopf bifurcation is regular.

(C1) l1(rH) ≠ 0, where l1 is the first Lyapunov coefficient;
(C2) µ′(rH) ≠ 0.

The sign of the first Lyapunov coefficient determines the character
of the Hopf bifurcation. If l1(rH) < 0, the bifurcation is supercriti-
cal. That indicates that stable limit cycles bifurcate from the Hopf
bifurcation. If l1(rH) > 0, the bifurcation is subcritical.

Condition (C2) is satisfied for all values of Fij and β , because

µ′(rH) =

−F20 +
F02β2

M2
1

2H
=

M1

rH
.

And if rH > 0, the value µ′(rH) is always positive.
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Computing the first Lyapunov coefficient is a more involved
task. First we translate the variables such that the Hopf bifurcation
occurs at the origin. We introduce

x1 = a1 − a∗

1, and x2 = b1 − b∗

1,

with a∗

1 and b∗

1 the values of the nontrivial stationary state,
evaluated at the Hopf bifurcation, i.e. with r = rH . System (A.1)
then transforms into

x′

1 = rHx1 + C111

F20

x21 + 2a∗

1x1


+ F11

x1x2 + a∗

1x2 + b∗

1x1

+ F02


x22 + 2b∗

1x2


≡ F1(x1, x2),
x′

2 = −M1x2 + βx1 ≡ F2(x1, x2).

(A.3)

Define the symmetric multilinear vector functions of u, v, w ∈ R2,

B(u, v) =


B1(u, v)
B2(u, v)


,

C(u, v, w) =


C1(u, v, w)
C2(u, v, w),


with

Bi(u, v) =

2
j,k=1

∂2Fi((x1, x2)T , rH)

∂xj∂xk

 ujvk
x1=x2=0

,

and

Ci(u, v, w) =

2
j,k,l=1

∂3Fi((x1, x2)T , rH)

∂xj∂xk∂xl

 ujvkwl
x1=x2=0

.

For (A.3), these multilinear forms are

B(u, v) =


C111 (F20u1v1 + F11u1v2 + F11u2v1 + 2F02u2v2)

0


,

C(u, v, w) =


0
0


.

Then the system (A.3) can be represented as

x′
= J(rH)x +

1
2
B(x, x) +

1
6
C(x, x, x).

Define the eigenvectors of J(r,H) and JT (rH), q and p respectively,
as

J(rH)q = iω0q, JT (rH)p = −iω0p.

A straightforward computation yields that,

q =


M1 + iω0

β


,

and with normalization ⟨p, q⟩ = 1,

p =
1

2βM1


β

M1 + iω0


.

Three inner products of these eigenvectors with the multilinear
forms are

g20 = ⟨p, B(q, q)⟩,
g11 = ⟨p, B(q, q̄)⟩,
g21 = ⟨p, C(q, q, q̄)⟩.

The first Lyapunov coefficient is defined as,

l1(rH) =
1

2ω2
0
ℜ (ig20g11 + ω0g21) . (A.4)
Computing all inner products and evaluating l1, we find

l1(rH) =
C2
111

2ω0M2
1


(2M1F20 + F11β)


HM2

1 + ω2
0F20


.

The factor C2
111

2ω0M2
1
is positive because ω0 is positive, so the sign of

the first Lyapunov coefficient is determined by the sign of

(2M1F20 + F11β)

HM2

1 + ω2
0F20


.

This means that the Hopf bifurcation occurring at r = rH is

supercritical if (2M1F20 + F11β)

HM2

1 + ω2
0F20


< 0,

subcritical if (2M1F20 + F11β)

HM2

1 + ω2
0F20


> 0.
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