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‘ ‘If you want to get credit for solving a complicated mathematical problem, you will have to
provide a full proof. But if you’re trying to make something as easy as possible, you want to

make it foolproof–so simple even a fool could couldn’t screw it up.”1

1 Introduction

This tutorial tries to explain the basics of how to use the numerical bifurcation package MATCONT
by going through an example. We aim at explaining how you can use the software so we assume
a basic knowledge of bifurcation theory. As with many things one learns, you will only master it
by performing the procedures yourself. So hands on!

We try to cover the following procedures in this tutorial

• Installation, including steps on mex-files

• System definition

• Simulation

• Continuation of equilibria in one parameter

• Continuation of codim 1 bifurcations of equilibria in two parameters

• Starting Limit Cycle from a Hopf point

• Starting Limit Cycle from a time simulation

• Computing homoclinic orbits

Optional Computing PRCs and their derivatives

This is a condensed overview of the capabilities of MatCont. It is not intended to be a course
on Dynamical Systems nor on Numerical Bifurcation Analysis. For the latter, we refer to the lab
sessions 1-5 and the manual at sourceforge. Good reference material may be found at

http://www.staff.science.uu.nl/~kouzn101/NBA/index.html

.

1Every one computer is different from the other. So, although these instructions have been checked step by step,
do not be surprised if your computations take a different direction. Just try again but now in the other direction.
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2 Getting started/Installation

1. Please let Matlab be installed, and download matcont (latest version):

http://sourceforge.net/projects/matcont/files/matcont/matcont5p3/

. If you end up at the main page, then go to Browse all files|matcont|matcont5p3 and
select the zip file. This is the GUI-version, and should not be confused with the version
for maps or command line. Unzip the files to the directory where you want it.

1a. Check that you have a file matcont.m. If not, you have selected the wrong package.

2. Then one should type ”mexext” on the matlab command line. For mexw32, mexw64, mex-
maci64 go to http://sourceforge.net/projects/matcont/files/Auxiliaries/MEXfiles/ and se-
lect the appropriate directory. Download all these files and put them into the directory
LimitCycle of your matcont directory.

2a. For other platforms you need a compiler: For Linux you have gcc, or you should look at
your package manager.

2b. MAC: If at mex -setup you can select gcc without problems, proceed. Otherwise you have
to install the XCode package.

3. Switch to the matcont directory and type ”matcont”. Some windows should appear.

Figure 1: A typical matcont startup screen

Now several windows will open with a standard system called adapt2. A typical screenshot is
shown in Figure 1. One window is titled matcont and has several menu options. For instance, to
end your matcont session, choose ‘Select’ in the matcont window and then ‘Exit’. Hereafter we
will indicate this with matcont:Select|Exit. Alternatively one clicks on the close button of the
matcont window.
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3 Equilibria in Jansen-Rit

In this tutorial we will investigate some simple equilibrium bifurcations in the Jansen-Rit model
with an additional slow inhibitory component [2]. The model is given by

y′′0 + 2ay′0 + a2y0 = AaS(y1 − θy2 − (1− θ)y3)
y′′1 + 2ay′1 + a2y1 = Aa(II + C2S(C1y0))
y′′2 + 2bfy

′
2 + b2fy2 = BfbfC4S(C3y0)

y′′3 + 2bsy
′
3 + b2sy3 = BfbfC4S(C3y0)

(1)

The sigmoidal function S is given by S(u) = 2∗e0/(1+exp(r ∗ (v0−u))) and the constants satisfy
C2 = 0.8C1 and C4 = C3 = 0.25C1.

3.1 Specifying a new model

To specify the differential equations of the sytem click ‘(matcont):Select|Systems|New’ and a
window titled ‘System’ appears with fields ‘Name system’, ‘Coordinates’, ‘Parameters’, ‘Time’,
options for derivatives and a large box. The exact appearance of the System window depends
on the operating system and the availability of the Matlab Symbolic Toolbox. If the latter is
present, the lowest line will read ‘symbolically’. If possible, one should always choose to compute
first,second and third order derivatives symbolically as this is the most reliable and fastest option.
The first and second are mostly used in the continuation, the third order is useful for computing
normal forms accurately. Go to www.math.utwente.nl/ meijerhge/MT.txt (or google Hil Meijer
and go to my teaching page) for copy-pasting all the fields specified. Select symbolic derivatives
up to order 3. You will have something like in Figure 2 and click ok.

Figure 2: Specifying a new model

If you want to change the system or correct the input choose ‘(matcont):Select|Systems|Edit/Load’,
select the system you want to edit and press ‘Edit’.

Common mistakes(apart from simple typos):

• Make sure not to put spaces between variables or parameters in their input fields

• Make sure that multiplication is written explicitly with * or you get errors like ‘Unbalanced or
misused parentheses or brackets’ or ‘error using ==> eval, Index exceeds matrix dimensions’.
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• If your model has some strange behavior like ever increasing variables, check whether you
have specified the differential equations in the same order as the order of the coordinates.

3.2 Time Simulations

Click ‘(matcont):Type|Initial point|Point’ to initialize the computation of an orbit starting
from a point. In the matcont window the curve type is now P O, every curve type has a similar
meaning. Two extra windows ‘Starter’ and ‘Integrator’ appear, the first is to specify initial condi-
tions/points, the second to select the numerical integrator and change its settings. In the starter
window set A = 3.25, a = 100, Bs = 8.8, bs = 20, Bf = 44, bf = 100, e0 = 2.5, r = 0.56, v0 =
6, theta = 0.5, CC = 220, II = 20. We also want to see how the orbits look like and for this we
open a window ‘(matcont):Window|Plot|2D-plot’. In ‘Layout|Variables on axes’ select y0
as abscissa(standard) and y1 as ordinate, press ‘OK’ and let the axes range from -.1 to .1 for the
abscissa and 0 to 3 for the ordinate using ‘(2Dplot:1):Layout|Plotting region’. In ‘Integrator’
change ‘Interval’ to 1 and ‘MaxStepsize’ to 0.1.

Figure 3: An orbit converging to a stable fixed point for CC = 220, II = 20. Left: (y0, y1)-phase
plane, Right: simulation showing y0(t).

After these preparations we are ready to compute some orbits: Select ‘(matcont): Compute|Forward’.
Starting from ~y = (y0 . . . , y7) = (0, . . . , 0) converges to (.0014, 1.79, 4.24, 4.24, 0, 0, 0, 0). You
can monitor the orbit and its final values by opening via numeric window. Select ‘(matcont):
Window|Numeric’ and recompute the orbit. You can try also other initial points and check
that these also converge to this point. So we have a(n apparent) global attractor. To see how y0
evolves over time, select ‘(2Dplot:1): Layout|Variables on axes’ and select time and y0. Re-
draw the curve via ‘(2Dplot:1): Plot|Redraw curve’ and adjust the plot-ranges to obtain Figure
3(right).

Now change to II = 135 and again compute an orbit via ‘(matcont):Compute|Forward’. The
result is quite different. You will have to adjust the axes to see the full range of y0. You can use
the pull-down menu as before, but the zoom-option (looking glass) in the menu bar is also useful,
or manually from the command line with ylim([0 0.12]). The result should like Figure 4(right).
We see some periodic behavior that has a frequency of 3Hz and looks like spike-wave discharge
patterns seen in EEG.

3.3 Continuation of Equilibria in one parameter

We are now going to study the effect on the stability of the equilibrium when varying either II. Se-
lect the last point via ‘(matcont):Initial point’ and then choose the last point on the previous curve.
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Figure 4: An orbit converging to a stable fixed point for CC = 220, II = 135. Left: (y0, y1)-phase
plane, Right: simulation showing y0(t).

Change the curve type to EP EP by selecting ‘(matcont):Type|Initial point|Equilibrium’. Ac-
tivate the parameter II by clicking on the button next to it. In the 2Dplot:1 window change
the abscissa to the parameter II via ‘(2Dplot:1):Layout|Variables on axes’. Also change the
plotting region for II to -250 to 300 and for y0 to 0 to 0.1. To speed up the continuation we will
set ‘Continuer):MaxStepsize=5’ ‘Continuer):MaxNumPoints=600’.

The stability changes upon the variation of II thus we would also like to see how the eigenvalues
of the Jacobian at the equilibrium develop. For this we select ‘(Numeric):Window|Layout’ and
highlight the option ‘eigenvalues’( it changes to capitals). Since we have (too) parameters you
may want to unselect the parameters (changes it to small letters). Press ‘OK’. Select ‘(matcont):
Compute|Forward’.

NOTE: In the lower left corner a small window appears with buttons ‘Pause’,‘Resume’ and
‘Stop’. Whenever a bifurcation is detected, MATCONT pauses and shows some relevant informa-
tion. In the sequel a few such points will be detected, but we will not always indicate to resume
the computation.

At II = 109.388594 the message ‘Limit point’ appears in the status field of the matcont window.
Here one eigenvalue has zero real part: Check that in the numeric window!. The curve(branch) of
equilibria has a turning point, on one side the equilibria are stable on the other unstable. Press
the ’Resume’ button in the lower left of your screen or press space to continue the computation
of the now unstable branch. In the meantime MatCont find a special point, i.e. a test function
is zero, but that is due to two real eigenvalues, one positive and one negative, summing up to
zero, not a complex pair. This is mentioned in the main MatCont window as a neutral saddle.
At II = −211.513481 another Limit point is found. Here the branch does not become stable, just
one more eigenvalue has now positive real part. When II = −188.997488 is reached two complex
conjugate eigenvalues have zero real part and a Hopf bifurcation occurs. The 2Dplot should now
look like Figure 5.

If the computation would be fast to follow, you can select to pause the computation of the
EP EP curve after each computed point. For this choose ‘(matcont):Options|Pause|At each
point’. (Do not forget to change it to ‘At special points’ after this computation.

Now we turn to the command line, i.e. the Matlab window, where you most probably now
have the following information:

first point found

tangent vector to first point found

label = LP, x = ( 0.010348 0.000000 6.716992 0.000000 5.517090 0.000000 5.517090 0.000000 109.388594 )
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Figure 5: A branch of equilibria in the (II, y0)-plane displaying co-existence and Hopf bifurcations.

a=6.161969e+001

label = H , x = ( 0.014027 -0.000000 7.932056 0.000000 6.145333 0.000000 6.145333 0.000000 100.121286 )

Neutral saddle

label = LP, x = ( 0.041898 -0.000000 17.675297 0.000000 13.563251 0.000000 13.563251 0.000000 -211.513481 )

a=-2.696137e+000

label = H , x = ( 0.047787 -0.000000 20.342252 0.000000 15.905967 0.000000 15.905967 0.000000 -188.997488 )

First Lyapunov coefficient = 7.016628e-005

label = H , x = ( 0.056467 0.000000 24.850741 0.000000 19.975932 0.000000 19.975932 0.000000 -91.880633 )

First Lyapunov coefficient = -2.370306e-004

elapsed time = xxx secs

npoints curve = 600

The first two lines indicate that the continuation has started, and the last two that it has ended
together with the number of points computed and the duration (including waiting time). Any
other messages are displayed here, for instance the four bifurcations together with their normal
form coefficients. This information is useful as it indicates the non-degeneracy and criticality of
the bifurcations. First, the two Limit Point bifurcations are shown, x indicates the eight variables
~y and the value of the active parameter II at the bifurcation point. Then the normal form
coefficients are given, note that for a Limit Point the sign of this coefficient is not unique (Why?).
Finally, we know that the limit cycle born from the first and second Hopf bifurcation are unstable
and unstable as the first Lyapunov coeffiecient is positive and negative, respectively.

For further reference we will rename this curve so that it is not overwritten. Select ‘(matcont):Curve|Actions|Rename’
and give the computed curve EP EP(1) an other name, say ’steadystates’.

3.4 Continuation of Bifurcations of Equilibria in one parameter

Figure 5 showed a phenomenon called hysteresis or bistability. This is an important feature of
nonlinear (differential) equations. In parameter space regions of bistability are usually delimited
by a wedge of Limit point bifurcations which we will compute here.
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Select one of the Limit points found in the equilibrium continuation as initial point ‘(matcont):Select|Initial
point’. Activate II and CC as active parameters. Close the 3D-plot and re-open the 2D-plot.
Change the ordinate of the 2D-plot to the parameter CC and its range from 0 to 250. Now select
‘(matcont):Compute|Forward’ and when finished also ‘Backward’. At (CC, II) ≈ (59.11, 168.7)
a Cusp bifurcation (CP) and at (II, CC) = (1.6840517, 1.6829686) a spurious Zero-Hopf bifur-
cation is detected. You have now computed the wedge, see Figure 6 within which you have
bistability. This is not the full story as we also found already Hopf bifurcations, implying that it
is more co-existence and not bistability of equilibria.

Figure 6: Limit Point bifurcation curves in the (II, CC)-plane with codimension 2 points with a
wedge of co-existence of equilibria.

To compute a curve of Hopf bifurcations: select a Hopf point analogously as for the Limit
point as initial point. Change the curve type to H H via ‘(matcont):Type|Curve|Hopf’. Take
here II and CC as active parameters. Press ‘Compute|Forward’ and ‘Compute|Backward’
to obtain the diagram as in Figure 7.

4 Continuation of Limit Cycles

4.1 Starting from a Hopf point

We are now going to compute a branch of limit cycles starting from the Hopf point. Select the
second Hopf point of the curve ‘equi’ using ‘(matcont):Select|Initial point’ as new initial point.
Activate the parameter II and the period by clicking on the buttons in the Starter window. Next
we select ”yes” for Fold under the heading monitor singularities in the starter window. By default,
and for good reasons (many spurious warnings otherwise), detection of bifurcations is switched
off. To speed up computations we will set MaxStepsize=200. This is large, but for this tutorial
this is acceptable. Close the 2DPlot (for speed reasons: plotting the cycles takes too much time
now) and ‘(matcont):Compute|Forward’.

At II = 60.61 we see a Fold bifurcation and the periodic orbit becomes unstable. Resume
the computation and stop when you are near II = −188. Here the branch terminates in the
subcritical Hopf bifurcation. Open a 3D plot with ‘(matcont):Window|Plot|3D-Plot’. Choose
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Figure 7: Limit Point and Hopf bifurcation curves in the (II, CC)-plane with codimension 2
points. The ZH is spurious, the GH indicates where the Hopf bifurcation changes from sub-
to supercritical. The Hopf curve emerges from a Bogdanov-Takens point. To detect the lower
BT-point, you should set the MaxStepsize to 0.05 in the Continuer window.

OX=z, OY=F , OZ=y in the draw3 attributes window. Change the plotting the region to II ∈
[−200, 100], y0 ∈ [0, .15], y1 ∈ [0, 30]. Your 3D-plot will resemble the one in Figure 8.

Figure 8: Equilibria and Limit cycles in (II, y0, y1)-space. The points and limit cycles which
undergo a bifurcation are indicated with red dots.
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4.2 Starting Limit Cycle from a time simulation

The continuation starting from the Hopf bifurcation worked, but it takes forever before the branch
of periodic orbits comes to a relevant parameter regime, i.e. II > 70. In fact, it did not even get
there at all. On the other hand, we already found an interesting periodic orbit and we will use
that one to start the continuation directly in the interesting parameter regime.

We will first recompute the periodic dynamics. Take ~y = 0 as initial condition and set II = 135.
Set the point type matcont:Type|Point and press matcont:Compute|Forward. Now at the
bottom of the starter window we see a tempting button Select Cycle. We cannot yet push it.
What the algorithm does is to find the point of the trajectory nearest to the initial value. If
it finds one, it takes that the time between these points as the period and fits a mesh to the
computed solution. We proceed as follows: matcont:Select|Initial point and select the last point
on the curve we have just computed. In integrator window change the interval to 0.4, which is an
appropiate upper limit of the period. Press matcont:Compute|Forward. Select Plot|Clear and
Plot|Redraw curve to see that it is a periodic orbit.

Now press the Select Cycle button in the starter window. A popup will appear with two
fields: ”Tolerance” equal to 1e-2 and ”test intervals” equal to 20. Change test intervals to 40
and press OK. Tick the boxes for II and Period as free parameters in the new starter window.
Change MaxStepsize to 200 in the Continuer window. Open a Window|Numeric window and
close the figure. Press matcont:Compute|Forward. Most likely, you will notice in the numeric
window that II is decreasing while the period goes up. Around II ≈ 110 the period still goes
up but II only slightly decreases. Here the periodic orbit gets close to a homoclinic orbit and it
cannot be continued further. Rename the computed curve to lc1.

Now we compute the other part of the branch, but first we select ”yes” for Fold under the head-
ing monitor singularities in the starter window. By default, and for good reasons (many spurious
warnings otherwise), detection of bifurcations is switched off. Press matcont:Compute|backward.
You will observe two Fold bifurcations at II = 169.7 and II = 162.2. We can also inspect the
eigenvalues and conclude that here we have a region of bistability again. The continuation then
just runs and II increases, so you just might as well stop it. Rename the computed curve to lc2.

4.3 Continuation of LPC in two parameters

Similar to the fold and Hopf bifurcations of equilibria we want to compute the curves in pa-
rameter space where the dynamics changes. So select one of the computed LPC’s as initial point
‘matcont:Select|Initial Point’. Next set II and CC as active parameters and ‘matcont:Compute|Forward’.
You can monitor the result via the Numeric window or a 2Dplot.

5 Visualizing your output

We have already plotted some of the computations. It is also possible to load the output and
plot and manipulate it yourself. We will give a nontrivial example of plotting the profile. First
we need to access the computed curves. In the matcont directory, there is a subdirectory called
‘Systems/JR slow/diagram’. Here we can find the file ‘lc2.mat’. Load the curve into the matlab
workspace by entering on the command line: ‘load Systems/JR slow/diagram/lc2.mat’. Now your
workspace contains five variables x, v, h, f, s. They contain the following data

x Array containing the phase variables and parameters.

v Array containing the tangent vector.

h Array containing the stepsize, Newton steps and values of testfunctions.

f Array containing eigenvalues or Floquet multipliers and the time discretization.
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s A structure that specifies special points, i.e. detected bifurcations and the first and last
point.

5.1 Plotting the profile

To plot the profile, i.e. the evolution of a variable during the whole period, is nontrivial as it
is stored in a condensed way. Suppose we know how many mesh-points were used. This can be
determined from the f variable, simply look up the first entry equal to 1. Now we need

• the index of the periodic orbit we want to plot: say ii.

• the profile of one variable, say the jj-th: x(jj:ndim:end-2,ii)

• the time-mesh tau=f(1:ntst+1,ii), with 0 = τ0 < τ1 < ... < τntst = 1.

• the period T= x(end-1,ii) to scale the mesh back from [0,1] to [0,T]

So we could plot:

ii=50;jj=1;ntst=40;ndim=8;

plot(f(1:ntst+1,ii)*x(end-1,ii),x(jj:ndim:end-2,ii))

You will get an error message because the computed curve x contains also data about the orbit
between mesh-points. While you are trying to plot the profile only coarsely at the mesh-points.
A first correction would be

ii=50;jj=1;ndim=8;ntst=40;ncol=4;

plot(f(1:ntst+1,ii)*x(end-1,ii),x(jj:ndim*ncol:end-2,ii))

This is usually not good enough, so we actually want the detailed grid. For this we need to know
that between to mesh-points the orbit is stored at equi-distant time-points ti,j = ti + j

m (τi+1 −
τ), j = 0, 1, ...,m. So the correct commands are:

ii=10;jj=1;ndim=8;ntst=40;ncol=4;

mesh=sort([reshape(repmat(f(1:ntst,ii),1,ncol)+...

repmat((0:ncol-1)/ncol,ntst,1).*repmat(diff(f(1:ntst+1,ii)),1,ncol),ntst*ncol,1); 1]);

plot(mesh*x(end-1,ii),x(jj:ndim:end-2,ii))

5.2 Identifying Spike Wave Discharges

One particular feature of this model as that it has Spike-Wave Dynamics. That is, on top of the
3Hz wave, there is an additional spike that can be detected as a local extremum. This is also
called a ‘false’-bifurcation. Here we will compute these local extrema.

load Systems\JR_slow\diagram\lc1.mat

out=x(3:8:end-2,:)-(x(5:8:end-2,:)+x(7:8:end-2,:))/2;

extrema=nan(6,size(out,2));

for i=1:size(out,2)

diff_tr=diff(out(1:end-1,i));

diff_tr_shift=diff(out(2:end,i));

temp=[out(find([ (diff_tr>0).*(diff_tr_shift<0) ]),i);...

out(find([ (diff_tr<0).*(diff_tr_shift>0) ]),i)];

extrema(1:size(temp,1),i)=temp;

end

figure(1);hold on;plot(x(end,:),sort(extrema));

Do this again for the part lc2.mat and your plot will look like Figure 9.
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Figure 9: Extrema in the output signal. The appearance of local extrema indicate spikes in the
waveform. Near the fold bifurcations the figure suffers from the large stepsizes.

6 Connecting Orbits

In the following instructions we will see how to start the computation of homoclinic orbits. The
main difficulty is to get good starting data for the continuation. We will show two methods that
may be useful to accomplish this.

6.1 Homoclinic orbits starting from a limit cycle

Sometimes when following a limit cycle you will notice that the parameters do not change anymore.
Meanwhile the period goes to infinity. Typically, in a graphic window plotting the continuation
parameter versus the period you see something as in Figure 10right. In such cases you may suspect
that you are close to a connecting orbit. You will have to look at the orbit to be sure. But suppose
you notice that the orbit is close to a steady state at some point, wouldn’t it be nice to take this as
starting data for the computation of connecting orbit? This method is implemented in Matcont for
homoclinic orbits only. Along a limit cycle we can make a guess for an equilibrium by checking at
which point of the cycle the vectorfield has smallest norm. This goes well for a single equilibrium,
but not for two.

We will use the last point on the curve lc1, which you already computed. Take the last point
on that curve via ‘matcont:Select|Initial Point’ and browse in the menu. Change the curve
type ‘matcont:Type|Curve|’ and select “homoclinic to saddle”. The Starter window should show
108.4 < II < 108.6 and the period is at least 0.8. If not, select Compute|Forward or backward
to make sure you are closer to the homoclinic bifurcation.

Select the last point of the LC LC curve just computed as initial point. Next select Curve|Homoclinic
to saddle and select II, CC and eps0, eps1 as free parameters. It turns out that eps0 and eps1 are
the correct auxilary parameter to free, but in general this needs experience or trial-and-error, by
trying and singlet or doublet of T,eps0,eps1 sequentially. This is the hardest part for the continu-
ation. Set Maxstepsize to 200 again in the continuer window and Compute|Forward. Compute
a few points and stop the continuation when you want to see results. For this open a 2Dplot and
choose Layout|Variables on axes to II and CC for the abscissa and ordinate, respectively, and
change Layout|Plotting region the range to [0, 200]× [0, 250] and zoom in as appropriate
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Figure 10: Left: a suitable initial orbit for finding nearby homoclinic orbits. Right: The period
blows up while the parameter II does not change anymore...

6.2 Approximating connecting orbits by limit cycles

Sometimes you do not get this method to work, but still you have this limit cycle with very
large period at parameters close enough to the homoclinic bifurcation. So you could also do a
continuation of the limit cycle keeping the period fixed and continue in two system parameters. You
will get a good indication where the homoclinic bifurcation is in parameter space. However, there
can be a large discrepancy between this continuation result and the actual homoclinic bifurcation.

6.3 Connecting orbits from BT or by homotopy

For connecting orbits, homoclinics and heteroclinics, follow lab session 5 written by Yuri Kuznetsov,
at sourceforge see lab5.pdf in files–matcont–matcont3p3.
It is also possible to start from a Bogdanov-Takens bifurcation, see the BTHomTutorial in the
documentation folder on sourceforge.

7 Phase Response Curves

We assume some knowledge about PRCs and synchronization. This part only shows how to com-
pute them. We will take the classical Hodgkin-Huxley equations. Make a new system, copy+paste
the equations from the template and select 1st and 2nd order derivatives. Press ok. Select
Type|Initial Point|Point and open a graphic 2D plot. Select time for the horizontal axis. Ad-
just the plotting region to [0, 100]× [−90, 50] and the interval in the integrator to 100 as well. Set
Istim equal to 20 and press Compute|Forward and see some nice spikes, i.e. a periodic orbit
here.

In this example we could start LC continuation from a Hopf bifurcation, but that takes way
too much time as it is far away. So, as before let us take the last point via Select|Initial Point
of the simulated curve and an estimate by the eye of the period says that we should change the
Interval to 12. Press Select Cycle in the Starter window and accord with standard options.

In the Starter window you can now see at the bottom (scroll if necessary) a heading Calculate
Phase Response with three fields. We will set the input to 1.0. The amplitude of the input does not
really matter as this is the linearized response. Set the PRC and dPRC fields to Yes. Also set the
Period and Istim as active parameters. Two windows will appear and press Compute|Forward
to see a family of PRCs being computed as a byproduct of the continuation.
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• If you are interested in just one PRC, just set MaxNumPoints in the Continuer window to
1.

• The derivative is also computed as it is related to phase-locking and synchronization, see [3].
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