(will be inserted by the editor)

Software Tools for Technology Transfer manuscript No.

Mechanical Verification of the IEEE 1394a Root Contention

Protocol using Uppaal2k

David P.L. Simons!, Mariélle I.A. Stoelinga® *

! Philips Research Laboratories Eindhoven,

Prof. Holstlaan 4, 5656 AA Eindhoven, The Netherlands
david.simons@philips.com

Computing Science Institute, University of Nijmegen,
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

marielle@cs.kun.nl

Received: date / Revised version: date

Abstract. This paper reports on the mechanical verifi-
cation of the ITEEE 1394 root contention protocol. This
is an industrial leader election protocol, in which timing
parameters play an essential role.

A manual verification of this protocol using I/O au-
tomata has been published in [25]. We improve the com-
munication model from that paper. Using the Uppaal2k
tool, we investigate the timing constraints on the pa-
rameters which are necessary and sufficient for correct
protocol operation: by analyzing large numbers of proto-
col instances with different parameter values, we derive
the required timing constraints.

We explore the use of model checking in combination
with stepwise abstraction. That is, we show that the im-
plementation automaton correctly implements the speci-
fication via several intermediate automata, using Uppaal
to prove the trace inclusion in each step.

1 Introduction

Various recent studies have evidenced the maturity of
automated tools for the verification of realistic applica-
tions [22,5]. Several case studies are reported in which
automatic verification tools are used to analyze IEEE
standards. The first and probably best—known example
is the verification of the IEEE Futurebus+ standard by
Clarke and his students using SMV [21]. This verification
revealed several errors that were previously undetected.
In [23], using the Caesar/Aldebaran tool set, a deadlock
was revealed in the draft IEEE 1394 standard. In this
work, we investigate the applicability of the Uppaal2k
version [14,19] to analyze the IEEE 1394 root contention
protocol [13], a real-time leader election protocol for two

* Research supported by PROGRESS Project TES4199, Verifi-
cation of Hard and Softly Timed Systems (HaaST).

processes. We examine to what extent Uppaal can used
to do parametric analysis and verification via stepwise
abstraction. As far as we know, our case study is the
first time that a timed—automata—based tool is used to
analyze a part of a (draft) IEEE standard. Given the
importance of timing constraints in many of these stan-
dards, we believe this to be a significant step forward.
Although our analysis did not reveal any errors, we did
discover a number of minor points where the standard
is incomplete.

Timing parameters play an essential role in the root
contention protocol. For certain parameter values, the
protocol is correct, and for other values it fails. We are
interested in deriving the precise constraints that en-
sure correctness. There are currently three tools avail-
able that (at least in some cases, see [3]) can do para-
metric analysis of timed systems: HyTech [10], PMC [8]
and — very recently — the tool described in [4]. Whereas
HyTech and PMC can currently analyse and derive lin-
ear parameter constraints, [4] describes a prototype im-
plementation which can also deal with nonlinear con-
straints. Since the performance of HyTech is limited,
and we expected the protocol to be too complex for it,
and since only prototypes of the other two tools are cur-
rently available, we decided to use the Uppaal tool. By
analyzing numerous instances of the protocol for differ-
ent values of the parameters, Uppaal allowed us to do
an approximate parameter analysis. Uppaal has already
been used successfully in various verifications [9,6]. It
can model real-time systems with a finite control struc-
ture. A limited class of properties, viz. reachability prop-
erties, can be checked automatically and (relatively) ef-
ficiently. Our protocol models fit naturally into its input
language.

We would probably have obtained the same results
if, in stead of Uppaal, we had used the model checker
KRONOS [27], which has been applied successfully in a
number of case studies for timed systems, such as [7].

2 Simons, Stoelinga: Mechanical Verification of Root Contention

A manual verification of the root contention proto-
col has been carried out in [25], where two timing con-
straints where inferred that ensure protocol correctness.
We have mechanically checked the proof invariants in the
model from [25] and our Uppaal experiments affirm that
all invariants hold under the conditions mentioned in
[25]. However, we found informal documents [26] and [18]
on the web, that derived (two slightly different) stricter
constraints for the protocol. A close examination of the
IEEE 1394 specification [13] revealed that the model in
[25] is not completely conform the standard and resulted
in a new, enhanced protocol model, which, we believe,
does carefully reflect the IEEE specification. The main
difference between the models from [25] and the present
work is the way in which the communication between
the processes is modeled: by a package mechanism in the
former versus by continuous—time signals in the latter.

Using the enhanced model, we investigate the correct
operation of the root contention protocol with Uppaal.
The constraints that we deduce by approximate param-
eter analysis are exactly those from [18]. Since the prob-
abilistic phenomena in [25] and in this work are basically
the same, we do not reconsider probabilistic aspects of
the protocol here.

Unlike most other Uppaal case studies, we carry out
the verification using stepwise abstraction, similarly to
[25]. This method allows for separation of concerns and
is common practice in automaton-based verification, but
not in the context of model checkers. In this method,
one relates the implementation and the specification au-
tomaton via trace inclusion, using several intermediate
automata. In order to do so, we need several construc-
tions on Uppaal models. The work [16,15] discusses a
different approach to this problem. The contributions of
this work over [25] consist of: (1) a realistic model of the
communication within the protocol, (2) the investigation
of timing constraints with Uppaal, (3) the application of
stepwise abstraction together with Uppaal, and several
constructions on Uppaal models to verify trace inclusion
(in certain cases) with Uppaal.

The modeling and verification effectively took us ap-
proximately one month. Most of this time has been spent
in understanding the IEEE 1394 standard and in several
prototype—model improvements. Some time could have
been saved by automating tasks, such as certain syntac-
tic operations on the automaton models and repeated
verification of the same properties for different parame-
ter values.

The rest of this paper is organized as follows. Sec-
tion 2 informally describes the root contention proto-
col. In Section 3, we describe how Uppaal can be used
in verifying system correctness via stepwise abstraction.
Section 4 presents the new protocol model and contains
the associated verification results. Finally, in Section 5,
conclusions are given.

2 The IEEE 1394a Root Contention Protocol

The IEEE 1394 standard [12] (also known under the
popular names of FireWire and iLink) specifies a high
performance serial bus. It has been designed for inter-
connecting computer and consumer equipment, such as
VCRs, PCs and digital camera’s. It supports fast and
cheap, peer—to—peer data transfer among up to 64 de-
vices, both asynchronous and isochronous. The bus is
hot—plug—and—play, which means that devices can be
added or removed at any time.

The IEEE standard provides a layered, OSI-style de-
scription, defining four protocol layers. The root con-
tention protocol is part of Tree—identify phase, present
in the lowest, physical layer (PHY). This layer provides
the electrical and mechanical interface for data trans-
mission across the bus. Furthermore, it handles bus con-
figuration, arbitration, and data transmission. At this
moment, the IEEE 1394a supplement [13] to the stan-
dard is the latest approved standard that concerns root
contention and includes several clarifications, extensions,
and performance improvements over earlier standards.

A 1394 network consist of several nodes (devices),
having one or more ports. Each port may be connected to
one other node’s port, via a bi-directional cable. Nodes
should be connected in a tree-like network topology,
without cycles. First, bus configuration is performed.
This is done automatically upon a bus reset: after power
up and after device addition or removal. Bus configura-
tion proceeds in three phases. It starts with bus initial-
ization. This is followed by the Tree—identify phase (Tree
ID). The purpose of this phase is to identify a leader
(root) node and the topology of all attached nodes. The
root will act as bus master in subsequent phases of the
protocol. Finally, in the Self-identify phase (Self ID),
each node selects a unique physical ID and identifies it-
self to the other nodes. When bus configuration has been
completed, nodes can arbitrate for access to the bus and
transfer data to any other node.

The Tree ID phase works as follows. First, it is checked
whether the network topology is indeed a tree. If so, a
spanning tree is constructed over the network and the
root of this tree is elected as leader in the network.

The spanning tree is built as follows. As a basic op-
eration, each node can drive a PARENT _NOTIFY (PN)
or a CHILD_NOTIFY (CN) signal to a neighbor node,
or the node can leave the line undriven (IDLE). The
PN signal is to ask the receiving node to become parent
(connecting closer to the root) of the sending node (then
connecting further away from the root) and is acknowl-
edged by a CN signal. The receipt of a CN signal on a
port in its turn, is acknowledged by removing the PN
signal from the connecting cable. A node only sends a
PN signal via a port, after it has received a PN signal on
all other ports. Thus, initially, only the leaf nodes send
out a PN signal. If a node has received PN signals on
all of its ports, then it has only child ports and it knows

Simons, Stoelinga: Mechanical Verification of Root Contention 3

that is has been elected as the root of the tree. In the
final stage of Tree ID, two neighboring nodes may each
try to find their parent by sending a PN signal to each
other. This situation is called root contention and when
it arises, the contention protocol is initiated to elect one
of the two nodes as the root of the tree.

2.1 The Root Contention Protocol

If a node receives a PN signal on a port, while sending
a PN signal on that port, it knows it is in root con-
tention. Note that root contention is detected by each of
the two contending nodes (Node; and Node,) individu-
ally. Upon detection of root contention, a node backs off
by removing the PN signal, and leaving the line in the
state IDLE. At the same time, it starts a timer and picks
a random bit. If the random bit is one, then the node
waits for a time ROOT_CONTEND_SLOW, whereas, if
the random bit is zero, it will wait for a shorter time
ROOT_CONTEND_FAST. Figure 1 lists the wait times
as specified in the latest draft version of the IEEE 1394a
standard [13].

When its timer expires, a node samples its contention
port once again. If it sees IDLE, then it starts sending
PN anew and waits for a CN signal as an acknowledg-
ment. If, on the other hand, a node samples a PN on its
port, it will send the CN signal back as an acknowledge-
ment and becomes the root.

If both nodes pick different random bits, then the
slowest (picking one) is elected as leader. In the case
that both nodes pick identical random bits, there are
two possibilities. The root contention times allow one
process to wait significantly longer than the other, even
if both processes pick the same random bits. If this is the
case, then the slower node becomes the root. Secondly, if
the nodes with the same speed, then there is a chance of
root contention again: each node may see an IDLE signal
when its timer expires and they both start sending PN
signals. In this case, both nodes will detect renewed root
contention and the whole process is repeated until one of
them becomes root. Eventually (with probability one),
both nodes will pick different random bits, in which case
root contention certainly is resolved.

2.2 Protocol Timing Constraints and their Implications

The timing parameters that are used in the protocol in-
clude the wait times as listed above, and the delay pa-
rameter, which corresponds to the maximal total time
from sending a signal by one node to receiving it by the
other node. It includes the cable propagation delay, and
the time to process the cable line states by the hardware
and software layers at the ports of the two nodes. For
the protocol to work correctly, two constraints on these
timing parameters are essential (Equations 1 and 2).

Node 1 Node 2

PARENT_NOTIFY

root contention

detected
PARENT NOTIFY d
|
|
|
|
|
‘rgplt .C.qn.tfe'.mgn. L e fast_min
detected i |
| |
| |
| |
| |
I LeTre
rc_fast_max ' -
| S
| 1
| |
| |
............... | |
' | rc_slow_min
| PARENT_NOTIFY |
| |
| |
| |
| |
I .
| I
| |
L T
| o
time | ‘
Y Y

Fig. 2. Visualization of the protocol timing constraints

2 x delay < rc_fast_min. 1)

2 x delay < rc_slow_min — rc_fast_mazx. (2)

Throughout the verification, we assume three basic as-
sumptions

0 < re_slow_min < re_slow_maz, (B1)
0 < re_fast_min < re_slow_min and (B2)
re_fast_min < rc_fast_maz. (B3)

We do not assume rc_fast_max < rc_slow_maz before-
hand, but note that this follows from Constraint 2. The
origin of these equations is visualized in Figure 2 and
explained below.

Ad Equation I: In case of Node 2 selecting the short
waiting period, constraint Equation 1 ensures that the
IDLE signal from Node 1 arrives at Node 2 before the
waiting period of Node 2 ends (See circle 1 in Figure 2).
Otherwise, the following erroneous scenario might hap-
pen: Node 2 might still see the first PN signal from Node
1, and erroneously send a CN signal to acknowledge this
parent request. Once the IDLE signal from Node 1 ar-
rives (behind schedule), Node 2 removes its CN signal
again and makes itself root. When Node 1 ends its wait-
ing period, however, it will see the IDLE signal from
Node 2, as if nothing happened, and send a PN to Node
2. Awaiting the response it will time out, which leads to
a bus reset. Therefore, constraint Equation 1 is required
for correct protocol operation.

Ad Equation 2: This constraint ensures that root con-
tention is always resolved in case of one node (say Node

4 Simons, Stoelinga: Mechanical Verification of Root Contention

| minimum

| maximum

ROOT_CONTEND_FAST
ROOT_CONTEND_SLOW

re_fast_min(760 ns)
re_slow_min (1590 ns)

re_fast_maz (850 ns)
re_slow_maz (1670 ns)

Fig. 1. Root contend wait times from IEEE 1394a

1) selecting the short waiting period and the other (Node
2) selecting the long waiting period. More precisely, con-
straint Equation 2 ensures that the new PN signal from
Node 1 arrives at Node 2 before the waiting period of
Node 2 ends (see circle 2 in Figure 2). Otherwise, Node
2 might still see the IDLE signal from Node 1, and start
sending a new PN signal. Together with the PN message
coming from Node 1 (after schedule), this will again lead
to root contention, although the two nodes picked dif-
ferent timers. Therefore, this equation ensures that re-
newed root contention can only occur for if both nodes
pick equal random bits.

This analysis above is based on informal notes [18,
26] to the IEEE P1394a Working Group. The equations
from [18] match ours, whereas [26] incorrectly cites [18]
and contains some errors. In the model of [25], the above
scenario cannot be mimicked, due to an imperfection in
its model, and weaker constraint equations are found.

Note that these timing constraints do not appear in
the TEEE 1394 specification [12,13]. However, the root
contention wait times from the specification (see Fig-
ure 1) meet these constraints. For these values of the
parameters, the timing constraint Equation 2, (which
implies Equation 1 for these parameter values) implies
delay < 370 ns.

The cable propagation delay is specified to be less
or equal than 5.05 ns/m. Unfortunately, any additional
processing delays are not explicitly specified in the stan-
dard. If we disregard such extra delays, then a maximum
cable length between two nodes of 5.3?)7112‘7111 ~ 73m is
allowed. In the IEEE 1394a standard the cable length is,
at the moment, limited to 4.5 m by the worst case round
trip propagation delay during bus arbitration. However,
the above timing constraints require the root contention
times to be longer, when cable lengths increase signif-
icantly. This may be disadvantageous to future appli-
cations, and alternative root contention protocols may
become necessary.

On the other hand, if processing delays are signif-
icant, the current maximum cable length allows for a
maximal processing delay of 379=%5:505 ng ~ 173 ns on
each side of the wire.

3 Verification of trace inclusion with Uppaal

Uppaal [14,19] is a tool box for modeling, simulation
and automatic verification of real-time systems, based
on timed automata. In the present case study, we used
the Uppaal2k version. Uppaal can simulate a model, i.e.

it can provide a particular execution of the model step
by step, and it can automatically check whether a given
(reachability) property is satisfied. If the property is not
satisfied, a diagnostic trace is provided showing how the
property is violated.

Section 3.1 describes how a real-time system can be
modeled in Uppaal and which properties can be checked
automatically. Section 3.2 gives the semantics of a Up-
paal model and Section 3.3 tells how Uppaal can be used
to verify trace inclusion, i.e. that one model in Uppaal
is a correct implementation of another one.

3.1 Model checking with Uppaal

This section gives an informal introduction to Uppaal
and is based on [19]. A system in Uppaal is modeled
as a network of nondeterministic processes with a fi-
nite control structure and real-valued clocks. Commu-
nication between the processes takes place via channels
(via binary synchronization on complementary actions).
Within Uppaal it is possible to model automata via a
graphical description. Furthermore, templates are avail-
able to facilitate the specification of multiple automata
with the same control structure.

Basically, a process is a finite state machine (or la-
beled transition system) extended with clock variables.
The nodes of an automaton describe the control loca-
tions. Each location can be decorated with an invariant:
a number of clock bounds expressing the range of clock
values that are allowed in that location. The edges of the
transition system represent changes in control locations.
Each edge can be labeled by a guard g, an action (label)
a, and a collection r of clock resets. All three types of
labels are optional. A guard is a boolean combination
of inequalities over clock variables, expressing when the
transition is enabled, i.e. when it can be taken. Upon
taking a transition, the clock resets, if present, are exe-
cuted. The action label, if present, enforces binary syn-
chronization. This means that exactly one of the other
processes has to take a complementary action (where a!
and a? are complementary). If no other process is able to
synchronize on the action, the transition is not enabled.
A process can have a location from which more than one
transition is enabled with the same action. Thus, nonde-
terministic choices can be specified within Uppaal. Note
that time can only elapse at the locations (conform in-
variants). Transitions are taken instantaneously, i.e. no
time elapses during transitions. Three special types of
locations are available:

Simons, Stoelinga: Mechanical Verification of Root Contention 5

send?
x:=0
empty filled
::::::::::: x<15
x>=12
receive!

Fig. 3. An example Uppaal process automaton (Buffer)

1. Initial locations, denoted by (O), define the initial
state of the system (exactly one per process).

2. Urgent locations, denoted by (U), are locations in
which no time can be spent, hence a shorthand nota-
tion for a location that satisfies the virtual invariant
2 < 0. The (fresh) clock zx is reset on all transitions
to the urgent location.

3. Committed locations, denoted by (C), are used to
make the incoming and the outgoing transition atomic.
Being in a committed location, the process execution
cannot be interrupted and no time elapses. We used
these locations to encode multi-way synchronization
in Uppaal (see Section A.2).

Moreover, channels can declared as being urgent and
shared integer variables can be used to communicate be-
tween the processes. Since we did not use these features
in our verification, we do not describe them here.

Consider the Buffer process automaton displayed in
Figure 3. This automaton models a one—place buffer
which delivers a message with a time delay between 12
and 15 time units.

Uppaal is able to analyze reachability properties au-
tomatically. These properties must be of the form EQp
or AOp, where p is Boolean expression over clock con-
straints and locations of the automata. For example,
EQBuffer.filled A x > 13 is a property over the au-
tomaton Buf fer. Informally, EQp denotes that there must
be some state (= location + clock values) which is reach-
able from the initial state (= initial location where all
clocks are 0) and in which the property p holds. Dually,
AOp denotes that p holds for all reachable states, i.e.
that p is an invariant of the automaton.

This logic is sufficient to specify reachability prop-
erties, invariants, and bounded liveness properties. For
the latter, see [1]. However, general liveness and fairness
properties, e.g. whether an event occurs infinitely often,
cannot be expressed in Uppaal.

3.1.1 Notational conventions

Throughout this paper we use the following conventions
for automata.

We assume that the automata do not have urgent
channels, committed locations, and shared variables and
we assume that any two components in a network use
different clocks.

We denote the absence of a transition label by a spe-
cial symbol 7. When convenient, we assume that all la-
bels on a transition are present, interpreting the absence
of a guard or invariant by true and the absence of a re-
set set by . We denote the invariant of a location g by
Inv(q).

Moreover, we assume a fixed set of action names,
Names, and for any subset of N C Names, we write N! =
{a! | a € N}, N? = {a? | a € N}. Then the set of dis-
crete actions is given by Act = Names? U Names! U {7}.
The action 7 is called the invisible or internal action; the
other actions are called wisible. The set of wvisible actions
occurring in automaton A is the denoted by Act4. By
abuse of notation, we let a, b range over Act, but in the
expressions a? and a!, a ranges over action names. See
also Appendix B for a glossary of symbols.

3.2 The semantics of Uppaal models

In our verification, we express the behaviour of a system
by the set of its traces and use trace inclusion to express
that one system correctly implements another one. The
Uppaal tool interprets networks of automata as closed
systems, which are systems that cannot interact with
their environment. In closed systems we cannot express
many sets of traces. (The traces of closed systems con-
sists of their time passage actions.) Therefore, we provide
— in addition to the standard Uppaal semantics — an in-
terpretation of Uppaal models as open systems, which
still have the possibility to interact with the environ-
ment. Then we define two operators, parallel composi-
tion || and action restriction \ to express the closed sys-
tem semantics in terms of the open system semantics.
Finally, we give a translation of each open model to a
closed model with equivalent reachability properties. In
this way, we are able to verify all reachability properties
of open systems (and in particular trace inclusion) with
Uppaal.

We use the same (Uppaal) syntax for open and for
closed systems. We use the word “automaton” if we in-
terpret the model as an open system and the term “net-
work of automata” if we use the standard closed system
interpretation.

Now, we give the open system semantics of an au-
tomaton A by its underlying timed labeled transition
system (TLTS). We may assume that A consists of one
component, because we give the semantics of the parallel
composition later in this section.

The states (g,v) of the TLTS consist of a location
q of A and a clock valuation v. The latter is a function
that assigns a value in RZ° to each clock variable of the

automaton. The transitions s — s’ of the TLTS, labeled
with a discrete or time passage action, indicate the fol-
lowing: Being in state s = (g,v), that is, the system
is in location g and the clocks have the values as de-
scribed by v, the system can move from to a new state

6 Simons, Stoelinga: Mechanical Verification of Root Contention

s', in which the location and clock variables have been

updated according to the delay or discrete step taken in

the automaton. The time passage actions s 9 ' of the
TLTS, where d € R>?, augment all clocks with d time
units and leave the locations unchanged. Such a tran-
sition is enabled if augmenting the clocks with d time
units is allowed by Inv(q). The discrete actions s — '
change the state as specified by the transition in the au-
tomaton of automata. This means that the guard of the
transition involved is met in s, that the invariant of the
destination of the transition involved is met in s’ and
that the clock variables are set according to the transi-
tion involved. We label the transition in the TLTS by a
special symbol 7 if the corresponding transition in the
automaton is unlabeled.

Hence, the TLTS has an infinite set of states, actions
and — for non-trivial automata — transitions. The initial
state of the TLTS is given by the initial locations in the
automaton and the clock valuations that assign 0 to each
variable.

FEzample 1. The TLTS underlying the system in Fig-
ure 3 consists of the states (empty,u) and (filled,u) for
u > 0 (where u denotes the valuation that assigns the
value u to the clock z), the initial state (empty,0) and
the transitions

send?

(empty,u) — (filled,0),for u > 0,

(filled ,u) receivel, (empty, u), for u > 12,
(empty,u) N (empty,u + d),for d > 0,
(filled,w) % (filled,u + d),for d > 0,u +d < 15.

When interpreted as a closed system, the TLTS underly-
ing Buffer would not have any transitions, because the
actions receive and send cannot synchronise.

Definition 1. 1. A timed execution of a TLTS is a pos-
sibly infinite sequence sg, a1, s1,as,--. such that sg
is the initial state and s; is a state, a; a (discrete or
delay) action, and s; kLN Si+1 a transition.

2. A timed execution of an automaton is a timed exe-
cution of its underlying TLTS — a sequence (qo,v0),
a1, (q1,v1), a2, (g2,v2),... where ¢; and v;, are a
location and clock valuation respectively.

3. A state is reachable if there exists an execution pass-
ing ending in that state.

4. A trace (of either an automaton or a TLTS) arises
from a execution by omitting the states and internal
actions. The sets of traces of a TLTS or an automaton
A are both denoted by tra. We write A Ctg B if
try C trp.

Example 2. The state (filled, 13) is reachable in the au-

tomaton Buf fer. An execution passing it by is (empty, 0),
18, (empty, 18), send?, (filled, 0), 10, (filled, 10), 3, (filled, 13).

The states (filled,15) and (filled,16) are not reachable
in this automaton.

send? filled

empty =0

©

x<15

Fig. 4. Action restriction

The following theorem expresses the main result by
Alur and Dill [2], upon which Uppaal and other model
checkers based on timed automata are built.

Theorem 1. The set of reachable states of a timed au-
tomaton is decidable.

An important class of automata and TLTS is formed
by the deterministic systems. Intuitively, determinism
means that, given the current state and the action to be
taken, the next state (if any) is uniquely determined.

Definition 2. 1. A TLTS is called deterministicif there
are no 7 labeled transitions and for every state s and
every action a € Act, there is at most one state ¢
such that s = ¢.

2. An automaton is called deterministic if there are no
unlabeled transitions and ¢ —% ¢’ and ¢ ——— ¢"
implies that ¢’ = ¢ Ar = 7' or that gAInv(q) and g'A
Inv(q) are disjoint, (i.e. gAg' AInv(g) is unsatisfiable).

It is not difficult to prove that if an automaton is deter-
ministic then its underlying TLTS is so.

Definition 3. Let C be a set of action names and A be
an automaton. Then A\ C is the automaton obtained
from A by disabling all action with names in C, (i.e. by
removing all transitions labeled by an action in C'?7 U

o)

Example 3. The automaton Buffer\{receive} is shown
in Figure 4.

The parallel composition operator we consider is ba-
sically the one from CCS. The automaton A; || A2 con-
tains the control locations of both automata. A transi-
tion in the parallel composition corresponds to either one
of the components taking a transition and the other one
remaining in the same location or to both components
taking a transition simultaneously, while synchronising
on complementary actions a? and a!. Synchronisation
yields an invisible action in the composition (and hence
no other components can synchronise with the same ac-
tion).

Definition 4. The parallel composition of two automata,
A; and A, is the automaton A; || Az such that

1. The locations of A; || Ay are the pairs whose first
element is a location of 4; and its second element
one of A,.

2. The invariant of the location (g1,¢2) is Inv(gi) A

Inv(gs).

Simons, Stoelinga: Mechanical Verification of Root Contention 7

send!

© O

x<15, y<5

Fig. 5. Sender and Sender || Buffer \ {receive}

3. The initial location is the pair with the initial loca-
tion of A; and the initial location of As.
4. The step (q1,¢2) =25 (¢}, q}) is a transition in the

.. . a,g,r . L. .
parallel composition if ¢; —25% gy is a transition in

. a,g,r . L. .
A; and ¢y = ¢b, or if go —> ¢} is a transition in A,y
T,91/A\g2,71UT2

and ¢; = ¢}. The step (q1,¢2) —————— (q1, ¢5) is

a transition in the parallel composition if ¢, —22™ ¢t

. .. . b,g2,r2 . .y
is a transition in A; and gg ——= ¢} is a transition

in As, and a and b are complementary actions.

Ezxample 4. Figure 5 shows the automaton Sender and
the automaton Sender || (Buffer \ {receive}).

Compositionality results for trace inclusion have been
proven in several settings, see e.g. [20]. It also holds for
automata we consider.

Proposition 1. Trace inclusion is compositional i.e.
A1 Crr A2 = A1 [[BCrr 42 || B.

It is crucial here that the automata we consider do
not contain committed locations, urgent channels and
shared variables. However, the auxiliary automata that
we use to establish trace inclusion within Uppaal do con-
tain committed locations in some cases. This, of course,
does not affect the compositionality result. The following
proposition is an immediate consequence of the defini-
tions.

Proposition 2. Actyp = Acta U Actp and Acty\¢
= Acta \ (C7TU(C)).

Uppaal interprets networks of automata as closed
systems. Thus, the semantics N'(A;,...A,) Uppaal as-

signs to network consisting of components Ay,... , A, is
given by the automaton
N(A1,...A,) = (A1 || --- || An) \ Names

Ezxample 5. In Figure 6 presents the the Uppaal seman-
tics V' (Sender,Buffer \ {receive}) of the network con-

stiting of the components Sender and Buffer\{receive}.

© -O

y<5 x<15

Fig. 6. N(Sender,Buffer \ {receive})

Thus, the network does not have any visible actions,
and therefore its traces only contain time passage ac-
tions. Since we are interested in describing sets of traces,
we cannot do with closed systems only. With Uppaal we
can, of course, only verify closed systems. However, the
reachability problems of automata can be expressed in
terms of reachability properties of closed systems, by
simply adding an automaton to the open system that
synchronises with every visible action. See Appendix A,
Section A.3 for the details.

3.3 Verification of Trace Inclusion

Within automaton—based verification, it is common prac-
tice to describe both the implementation and the speci-
fication of a system as automata. Then an automaton A
is said to be a (correct) implementation of another one
Bif ACtg B. !

We assume that the visible actions of A are included
in those of B. Although it is in general undecidable
whether A Crgr B, Alur and Dill [2] have shown (in
a timed automaton setting without location invariants)
that deciding whether A Ctgr B can be reduced to reach-
ability checking, provided that B is deterministic. The
basic step in this reduction is the construction of an au-
tomaton which we call B¢ here. In our setting, B¢ is
constructed by adding a location error to B and transi-
tions g —% error for all locations ¢ and action labels a
in such a way that this transition is enabled if no other
a—transition is enabled from ¢. Furthermore, an inter-
nal transition from ¢ to error with the guard —Inv(q) is
added and all location invariants are removed. The basic
result is that we need in the verification is that

ACtr B <= error is not reachable in A || B¢'".

The reader is referred to the Appendix A, Section A.4.1
for an elaboration of this.

Moreover, if B is not deterministic, we can try to
make it so by renaming its actions and apply the method
above. We can use a, what is called, step refinement f
(or a conjectured one) for this relabeling. To put it very
briefly, a step refinement is basically a function from the
states of A to the states of B that induces a function from

1 In fact, a coarser notions exist, viz. timed trace and timed trace
inclusion, which abstract from certain irrelevant timing aspects
that are still present in the traces. Timed trace inclusion has a
rather technical definition and trace inclusion implies timed trace
inclusion. Therefore, we deal with trace inclusion in the remainder
rather than with timed trace inclusion.

8 Simons, Stoelinga: Mechanical Verification of Root Contention

the a—transitions of A to the a—transitions of B. Thus,
we can give a transition in A and its image in B the same
fresh label and remove all sources of nondeterminism in
B. This yields automata A and B/ such that

Al Crr BY = ALCtR B,

(but not conversely). We refer the reader to Appendix A,
Section A.4.2 for the details.

4 The Enhanced Protocol Model

A manual verification of the root contention protocol is
described in [25]. However, a major difference between
the model in [25] and the enhanced model presented in
this work lies in the way in which communication be-
tween the nodes across the wires is handled. In [25],
this is modeled as the transfer of single messages (PN
or CN) that are sent only once, and can be overwrit-
ten and lost. This abstraction is inappropriate, since in
IEEE 1394 communication is done via signals continu-
ously being driven across the wire. These signals persist
at the input port of the receiving node, until the send-
ing node changes its output port signal. An important
difference between communication via messages and via
channels is that one can distinguish two subsequent mes-
sages with the same contents, but it is not possible to
distinguish two subsequent signals that are equal. Be-
sides driving PN and CN signals, the wire can be left
undriven (IDLE). Since the enhanced model presented
in this paper closely follows the draft IEEE 1394a stan-
dard, we believe that our model now adequately reflects
the root contention protocol as specified in the IEEE
standard. However, we can never formally prove this be-
cause the specification is partly informal.

We use the constructions and techniques from Sec-
tion 3 to verify this model and we show that — tacitly
assuming the basic constraints B1, B2 and B3 — the con-
straints 1 and 2 are both necessary and sufficient for the
correctness of the protocol. These constraints were given
beforehand in the informal note [18]. However, the works
[25] and [26] also claimed to give (different) constraints
that ensure protocol correctness. Moreover, we consider
in each step of our analysis the constraints needed for
the correctness of this step.

In the sequel, the term “experimental results” is used
for results that have been obtained by checking a num-
ber of instances with Uppaal, rather than by a rigorous
proof.

4.1 The Protocol Model Automata

Figures 7 and 8 display the Uppaal templates of the
Wire and Node automata of the enhanced model. These
template automata are instantiated to a total system
(Impl) of two nodes Node; and Node,, connected by

bi—directional communication channels (Wireq o for mes-
sages from Node; to Nodey, and Wire, ; for the opposite
directions). We require synchronisation between the ac-
tion that model communication between the nodes and
wire, but no synchoronisation is required between root
and child. Thus, model of the root contention protocol
is given by

Impl = (Nodey || Wirey s || Wires s || Nodes) \ C,

where C' is the set of actions used to send signals over the
wire, that is C' = {snd_req; 5, snd_ack; 2, snd_idle; 2,
snd_reqs, 1, snd_acks,1, snd_idles 1, rec_req, 5, rec-ack 2,
rec_idley 2, rec_regs 1, rec_acka 1, rec_idles 1}. The Up-
paal model files can be found at our web site [24].

First of all, the PN message is now called req (parent
request), and the CN message ack (acknowledgement).
A number of timing parameter constants is defined to
include the root contention wait times and the cable
propagation delay into the model. The root contention
wait times, like rc_fast_min, have been set to the val-
ues as specified in Figure 1. The actions like snd_ack
and rec_req are used to send and receive ack and req
messages by the nodes through the wires. The slow /fast
differentiation causes the Node automaton to be rather
symmetric.

Starting in the root contention location, a node picks
a random bit (slow or fast). Simultaneously, a timer
z is reset, and an idle message is sent to the Wire,
which models the removal of the PN signal. Indepen-
dently, but at about the same time, the other contend-
ing Node also sends an idle, possibly followed by a re-
newed req. Therefore, the receipt of this idle and req
message is interleaved with the choice of the random
bit and with the sending of the idle message. In this
way, the two contending Node automata can operate au-
tonomously. The Wire templates have been extended,
compared to the model in [25], such that they can now
transmit PN (req), CN (ack), and IDLE (idle) mes-
sages. These messages mark the leading edge of a new
signal being driven across the wire. Until a new mes-
sage arrives, signals continue to be driven across the
wire. Furthermore, the wires now comprise a two—place
buffer, such that two messages at the same time can
travel across a wire. The IEEE standard does not spec-
ify how many signals can be in the wire simultaneously.
However, the following experimental results shows that
two—place buffer is necessary and sufficient to model the
communication channels. The necessity result (Exper-
imental result 1) has been established by checking for
reachability of the locations where either of the wires
contains two signals. The sufficiency result (Experimen-
tal result 2) has been established by checking that no
input to the wire occurs if it already contains two mes-
sages. Technically, we constructed an automaton Wire
by adding locations unezp_input (unexpected input) to
each of the wires and transitions ¢ — unezp_input for all
the locations q¢ = rec_ack_idle, rec_ack _req, rec_req_ack,

Simons, Stoelinga: Mechanical Verification of Root Contention 9

rec_idle_ack
x<=delay

snd_req’?

rec_ack_req
x<=delay

rec_ack!

rec_req
y<=delay

snd_idle?
y:=0

Fig. 7. The Uppaal Wire automaton template

rec_req_fast
x<=rc_fast_max

x>=rc_fast_min

snd_ack!
snd_idle!

x:=0

root_contentiol
root! Q almost_root

snd_idle!

rec_idle fast
x<=rc_fast_max

x>=rc_fast_min
snd_reqg!

almost_child child

x>=rc_slow_min x:=0

snd_ack!

rec req_slo
x<=rc_slow_max

rec_idle?

x>=rc_slow_min
snd_req!

x<=rc_slow_max

Fig. 8. The Uppaal Node automaton template

rec_idle_req, rec_idle_ack, rec_req_idle and a = snd_idle,
snd_req, snd_ack. Then we checked that the location
unexrp_input is unreachable indeed. See Appendix A, Sec-
tion A.3.1.

Experimental result 1. For all parameter values, the
wire may contain two signals simultaneously at some

rec_req_ack, rec_idle_req, rec_idle_ack or rec_req_idle is
reachable in Impl.

point in time, i.e. one of the locations rec_ack_idle, rec_ack_re

Experimental result 2. The unexp_input locations in
(Nodey || Wiref || Wireyy || Nodey) \ C' are unreachable
if and only if Equation 1 holds.

The Node automaton is not input enabled, which
means that it might block input actions (rec_ack, rec_req
or rec_idle) in certain locations by being unable to syn-
chronize. Experimental result 3 however states that this

éver happens in the protocol, i.e. that no other in-
put can occur than the input specified in Node provided
that Equation 1 holds. This implies equivalence between
Node"- automaton and the Node automaton for param-

10 Simons, Stoelinga: Mechanical Verification of Root Contention

root1!

root2!

Fig. 9. The specification automaton of the protocol

eter values meeting Equation 1. This result has been
established by adding a location called unezp_input to
each component and synchronization transitions to this
location from all locations in which input (via rec_idle,
rec_req and rec_ack) would otherwise be blocked. See
Appendix A, Section A.3.1 for a more formal treatment.

Experimental result 3. The unexp_input locations in
(Nodef~ || Wirefs || Wireg || Node3~) \ C' are unreach-
able if and only if Equation 1 holds.

4.2 Verification of the Protocol

A key correctness property of the root contention pro-
tocol is that eventually, exactly one of the processes is
elected as root. This property is described by the au-
tomaton Spec in Figure 9. We demonstrate that Impl
(the parallel composition of the two Node and Wire au-
tomata) is a correct implementation of Spec, provided
that Impl meets the timing constraint Equations 1 and
2 from Section 2.2.

Following the lines in [25], we do not prove Impl Crg
Spec at once but introduce three intermediate automata
I, Io, and I3 in our verification. We use Uppaal and
the methods described in Section 3.2 to derive from nu-
merous instances of the protocol for different parameter
values that

Impl Crr I1 Cr I2 ETR I3 ETR Spec

if the parameters meet the timing constraints. Further-
more, we argue that Impl is not a correct implementa-
tion of Spec if the parameters do not satisfy the con-
straints.

The method of introducing intermediate automata
in a correctness proof is called stepwise abstraction. It is
a widely used method in automaton—based verification,
because it allows among other things for separation of
concerns.

Here, I, is a timed automaton, which abstracts from
all message passing in Impl while preserving the timing
information of Impl. The automaton I, is obtained from
I; by removing all timing information. In I internal
choices are further contracted. Since timing aspects are
only present in Impl and Iy, the timing parameters only
play a role in the first inclusion (Impl Crg I1).

4.8 The First Intermediate Automaton

The intermediate automaton I; is displayed in Figure
10. It is a Uppaal equivalent of the timed I/O automaton
model from [25], restricted to the reachable locations. It
abstracts from the communication between the nodes
and records the status (start, fast, slow, or done) for
each of the two nodes. Also, I has a clock z to impose
timing constraints on events. The outgoing internal tran-
sitions from start_start, fast_start, start_fast, start_slow,
and slow_start model the consecutive random bit se-
lection of the two nodes. For example, fast_start cor-
responds to Node; having picked the fast random bit,
and Node, still being in root contention. The internal
transitions from fast_fast and from slow_slow back to
start_start represent the protocol restart, which is an
option if the two random bits are equal. The invariants
on clock z cause both nodes to pick a random bit within
a time interval delay after the protocol (re—)start. Also,
within an interval [rc_fast_min — delay, rc_fast_maz] or
[re-slow_min — delay, rc_slow_maz], depending on the
random bit, either a root is selected (root;! or roots!)
or a restart of the protocol occurs.

The method described in Section 3.3 allowed us to
establish trace inclusion between Impl and I;. Figure 11
describes how unlabeled transitions in I; and Impl are
relabeled, yielding Impl™ and I;". (See also Section 3.3
and Appendix A, Section A.4.2.) This relabeling of tran-
sitions has been constructed from the step refinement
from Impl to I; given in [25]. The transitions relabeled
with retry synchronize with an auxiliary automaton called
EchoRetry, which takes this action as soon as root con-
tention re—occurs, i.e. as soon as both Node; and Node,
have taken their snd_req! transitions to the snt_req lo-
cation. This requires the automata Node;, Wire; j and
EchoRetry all to synchronize on the action snd_reg; ;
and Node;, Wire; ; and I; on snd_idle; ;. We encoded
multiway synchronization in Uppaal as described in Sec-
tion A.2.

Manual parameter analysis shows that the error location
is unreachable in Impl” || I;", if the constraint Equa-
tions 1 and 2 hold. Now, Experimental result 4 is a direct
consequence of Lemma, 3.

Experimental result 4. If the timing parameters in
Impl satisfy Equations 1 and 2, then Impl Cpg 1.

In order to show the necessity of Equations 2, we
need a liveness argument. The key liveness property is
that eventually a leader is elected with probability one.
Therefore, it is essential that root contention is resolved
within the same pass (i.e. without renewed root con-
tention) if both nodes pick different random bits. This
is guaranteed by Equation 2, c.f. Section 2.2. Since the
probability to pick different random bits is strictly greater
than zero in each pass, the nodes will eventually pick dif-
ferent bits, and thus elect a root, with probability one.

Simons, Stoelinga: Mechanical Verification of Root Contention

start_start
x<=delay

11

fast_start
x<=delay

fast_slow

x>=rc_slow_min-dela
root2!

>=rc_fast_min-delay
x>=rc_fast_min-delay
root1!

done

x<=rc_slow_max

dow_start
x<=delay

start_slow
x<=delay

x>=rc_slow_min
x:=0

dow_fast
Xx<=rc_slow_max dow dow
X<=rc_slow_max
x>=rc_slow_min-delay

root1!

x>=rc_slow_min-del&
x>=rc_slow_min-delay
root1!

Fig. 10. The Uppaal I; automaton of the root contention protocol

I, Impl

start_start — fast_start
start_start — start_fast
start_start — start_slow
start_start — slow_start
start_fast — slow _fast
slow_start — slow_fast
start_slow — slow_slow
fast_start — fast_fast
start_fast — fast_fast
start_slow — slow_slow
fast_start — fast_slow
fast_fast — start_start

slow_slow — start_start

snd_idlel?2

r00t_contention1 ———yoae; T€C-TEG_fast,

snd_idle21

r00t_contentiony ————$yoae, TeC_TEq_fast,

snd_idle21

r00t_contentions ———— node, TeC_TEG_SlOW,

snd_idlel2

root_contention1 ———yoae; TeC-_TEQ_SlOW,

snd_idlel2

root_contention1 ———— node, TeC_TEG_SlOW,

snd_idle21

r00t_contentions ————tyoae, TeC_TEG_fast,

snd_idlel2

root_contention] ————— Node; rec_req_slow1

snd_idle21

root_contentiony ———— yoae, TEC-_TEY_fAUSE,

snd_idlel2

r00t_contention] ——————ryode; TEC_TEQ.. fast1

snd_idle12

root_contentiony ———— node; T€C-_TEG_SlOW,

snd_idle21

r00t_contentiony ————node, rec_req_slow2
retry,
0Me_req —>EchoRetry Start

retry,
0Me_Teq —PEchoRetry StATt

Fig. 11. Relabeling I; and Impl.

Experimental result 5. Assume that the two nodes
pick different random bits. Then the root contention pro-
tocol is resolved within one pass if and only if Equation
2 is satisfied.

4.4 The Second Intermediate Automaton

The intermediate automaton I, is identical to I, ex-
cept that all timing information has been removed. Since
weakening the guards and invariants in an automaton
yields an automaton with more traces, we get Proposi-
tion 3, as expected.

Proposition 3. I; Cyg Is.

4.5 The Third Intermediate Automaton

Figure 12 shows intermediate automaton I3, in which
internal choices have been further contracted. Selection
of the two random bits is no longer represented via sep-
arate, subsequent transitions, but done at once via a
single transition.

Since neither I nor I3 contains timing information,
trace inclusion can be checked with standard methods,
see [17]. Since we are interested in the applicability of
the relabeling method, we use this one for establishing
I, Ctr I3. Again, we added labels to certain unlabeled
transitions in I, and I3, to obtain I, from I, and (the
deterministic automaton) Izf from Is. Figure 13 lists
the corresponding transitions in I3 and I, that should

12

nodelwin .

Fig. 12. The Uppaal I3 automaton of the root contention protocol

Simons, Stoelinga: Mechanical Verification of Root Contention

start

I3

I,

wing? .
start —2% node2win
wing ? .
start —— nodelwin
wing ? .
start ——— nodelwin
wing? .
start ——— node2win

no_win?

start ——— no_win

no_win?

start —— no_win

no_win?

start ——— no_win

no_win?

start —— no_win

start_fast BELELN slow_fast
slow_start "2 slow_fast
fast_start BELEIN fast_slow
start_slow ~"% slow _fast

no_win!

start_slow ——— slow_slow

no_win!

start_slow ——— slow_slow

no_win!

fast_start ——— slow_slow

no_win!

start_fast ——— fast_fast

Fig. 13. Corresponding transitions getting the same label

get the same (fresh) labels after relabeling. Transitions
not mentioned the table keep the same label. In particu-
lar, the transitions in I, leaving from start_start remain
unlabeled.

It has been established by Uppaal that I,/ Ctr
I37. Now, Proposition 4 is an immediate corollary of
Lemma 3.

Proposition 4. I, Cyg I3.

Since the specification automaton Spec is determin-
istic, we only need to check for reachability of the error
location in the automaton Spec®” to obtain Proposi-
tion 5. (As in the previous case (Is Crr I3) trace inclu-
sion and timed trace inclusion are the same. But now,
because Spec is deterministic, the method we use to es-
tablish timed trace inclusion this is exactly the usual
method for establishing trace inclusion.)

Proposition 5. I3 Ctg Spec.

By transitivity of Crr we get that the Equations 1 and
2 are sufficient.

Experimental result 6. If Equations 1 and 2 are met
by Impl, then Impl Crg Spec.

Combining the Results 2, 3, 5 and 6 yields the final
conclusion.

Experimental result 7. The root contention protocol
is correct if and only if the timing parameters satisfy
FEquations 1 and 2.

5 Conclusions

This paper reports a mechanical verification of the IEEE
1394 root contention protocol. This is an industrial pro-
tocol in which timing parameters play an essential role.

In this case study, we used the Uppaal2k tool and
stepwise verification of trace inclusion to investigate the
timing constraints of the protocol. We analysed a large
number of protocol instances with Uppaal. From these
experiments, we derived that the constraints which are
necessary and sufficient for correct protocol operation
are exactly those from [18]. Although these experiments
do not ensure correctness, we are convinced that the
constraints we derived are exactly those required.

Some minor points of incompleteness have been found:
The TEEE specification only specifies the propagation
delay of signals but not the delay needed to process in-
coming and outgoing signals. Moreover, the IEEE stan-
dard only provides specific values for the timing parame-
ters and not the general parameter constraints, although
these give some useful insight in the correctness of the
protocol and in restrictions on future applications. We
also found some small errors in the informal notes [26,
18].

The fact that the modeling and verification took us
a relatively short time illustrates once again that model
checkers can be used effectively in the design and eval-
uation of industrial protocols. Especially the iterative
modeling via trial and error is valuable when it comes
to understanding the properties of a model. Our case
study has added that this also holds in the presence of
parameters: once an appropriate model and conjectured
timing constraints have been obtained with Uppaal, rig-
orous parameter analysis could be tackled with another
tool or method.

In our case, the very recent work [11] has given the
full evidence of several experimental results in this pa-
per. By feeding Equations 1 and 2 and the basic as-
sumptions Bl, B2 and B3 to a prototype parametric
extension of Uppaal, the Experimental result 4 has been
established. Due to lack of memory, the necessity of the
constraints could only be established partially by the
tool.

We experienced that using the current Uppaal2k im-
plementation to establish trace inclusion suffers from
several disadvantages. The practical modeling and ver-
ification is, as pointed out above, not a problem. How-
ever, the proof that the properties we verified indeed
established trace inclusion, involved several technicali-
ties. Firstly, due to its closed world interpretation, timed
languages cannot be described in Uppaal directly. It is
however no conceptual problem to extend Uppaal such

Simons, Stoelinga: Mechanical Verification of Root Contention 13

that this would be possible. Secondly, the check for lan-
guage inclusion (A Crr B, B deterministic) is not im-
plemented in Uppaal. However, we are not aware of any
other freely available timed model checker which can do
this. This might be remarkable since it is already known
for some time [2] how to reduce language inclusion to a
reachability problem.

Thirdly, the fact that Uppaal does not support multi-

synchronisation enforces the need of committed locations
and this makes the underlying theory more complicated.
Relatively small adaptations of Uppaal would overcome
these problems and make the verification of trace inclu-
sion a lot easier.
Acknowledgements The authors like to thank Judi
Romijn for a helpful discussion and the anonymous ref-
erees of this journal for a remark that has led to a clearer
distinction between networks and automata.

A Appendix

A.1 Notational conventions

Besides the conventions adopted in the paper (Section
3.1.1), we find it convenient to use general boolean ex-
pressions in guards and invariants, whereas Uppaal only

allows the use of a conjunction in these. Therefore, we

a,gVg',r - .
use ¢ —— ¢' as an abbreviation for the two transi-

7
a,g,r a,g T

tions ¢ —— ¢’ and ¢ — ¢'; the guard ¢ — ¢’
stands as an abbreviation for =g V g'; —g stands as an
abbreviation for the guard obtained by replacing every
>in g by <, > by <, > by <, < by < and A by V and
V by A.

A.2 Encoding multi-way synchronization in Uppaal

As explained before, Uppaal only provides binary syn-
chronization. We can use the concept of committed lo-
cation and renaming to enforce synchronization between
more than two action labels. If we want to have an al-
action in A synchronize with n a?-actions in Ay ... A,
(n > 1), then the idea is as follows. Relabel a in A4; into
— a fresh label — a;, i > 0. Whenever Ay performs an
ap! action, an auxiliary automaton ‘catches’ it and ‘dis-
tributes’ it over the other automata. More precisely, the
auxiliary automaton synchronizes on aq! and enforces —
sequentially but without delay nor interruption — syn-
chronization with a1?...a,? in A; ... A, respectively.

Example 6. Consider the automata in Figure 14. Being
in their initial locations, either A or A3 takes an a?-
action to synchronize with the al-action in A;. Synchro-
nization of the three automata on a!, a? and a?, can be
mimicked by introducing an auxiliary automaton and
renaming of actions, see Figures 15 and 16. It is also
possible to integrate the auxiliary automaton within the
other automata.

al
N
a?

Fig. 14. Three automata: Ay, Az, A3

al!

.

Fig. 15. Encoding multisynchronization with binary synchroniza-
tion

Fig. 16. Auxilliary automaton

A.8 Reducing reachability properties of automata to
reachability properties of networks

Definition 5. Let C' be a set of action names. Define
the automaton Sncc as the automaton with one location
gc and transitions go — g¢ for every a in C? U C!. For
an automaton A, define Sncy = Snce, where C are the
action names occuring in A, and write g4 for g¢.

The following result allows us to check the reach-
ability properties of an automaton A via the reacha-
bility properties a network A (A || Snca), which can be
checked by Uppaal. Its proof is straightforward.

14 Simons, Stoelinga: Mechanical Verification of Root Contention

a? x=0
@.—.
X<3 a? X<2

Fig. 17. An input enabled automaton

Proposition 6. Let g be a location and v a clock valu-
ation of A. Then (q,v) is reachable in A if and only if
((g,qa),v) is reachable in (A || Snca) \ Names.

If A is given in terms of restriction and parallel com-
position over the components A;, As, ..., A,, then we
like to carry out the construction with Snc4 above on
A’s components, rather than first computing A explicitly
and then performing the construction.

In our verification, A is given by (A; || A2)\C and we
have checked its reachability properties via the network
N(Ay, Ay, Sncor). This is justified by the following argu-
ment, where C is a set of action names, C' = Names\ C,
s = (q,v) is a state of A and 5= ((g, gcr),v).

s reachable in N'(4;, As, Snear) <

S reachable in (A || A2 || Sneer) \ Names <

5 reachable in (A1 || A2 || Sneer) \C U Q' <=
3 reachable in ((4; || A2) \ O) || Snce) \ C' <=
s reachable in (4; || A2) \ C.

A.3.1 Input enabling in Uppaal

The input actions of an automaton A are the actions of
the form a?. We call A input enabled if synchronization
on input actions is always (in any reachable state) pos-
sible. More precisely, if the a?-transitions in A leaving
from a location ¢ are given by

a?,91,71 a?,9n,Tn
g——>q ..., —5 qp,

then A is input enabled iff the expression Inv(q) =
Vi, (gi ANInv(g;)[r;]) is equivalent to true, where we use
the convention that V(i):1 ... yields false. Here, I[r] de-
notes the invariant that is obtained by replacing each
clock variable in I that occurs in (the reset set) r by 0.
We state that an automaton is input enabled if and only
if its underlying automaton is so, using the standard no-
tion of input enabledness for TLTSs.

Example 7. The automaton in Figure 17 is input en-
abled. Notice that (z < 2)[z := 0] yields true. The con-
struction to make an automaton input enabled is shown
in Figure 18. Notice that -(z <3 = 1<z Az < 2)
is equivalent to x <1V > 2.

A non-input enabled automaton may block input, by
being unable to synchronize on it. This is often consid-
ered as a bad property, since a component is usually not

ar

~ x<=1 -
X<3 X<2
X<3 X<2

a? x<=1

2<= 2

0 unexp_input

Fig. 18. Constructing an input enabled automaton

able to prevent the environment from providing inputs
and this might indicate a modelling error. Therefore, it is
relevant whether blocking of inputs can actually occur in
a network of automata, i.e. whether or not the situation
can occur that one component could provide an input
to another one, while the latter automaton is not able
to synchronise on it. In order to check this, we make ev-
ery component A input enabled by directing every input
that would otherwise be blocked by the component to a
fresh location, called unexp_input 4, and check for reach-
ability of this location. More precisely, we construct the
automaton A" from A as follows. If the outgoing a?-
transitions leaving from ¢ are as above, then we add the
transition ¢ i?ﬂ unezp_input 4, where g is equivalent
to ~(Inv(q) = Vi,(g; VInv(g;)[r;])). (In particu-
lar, if ¢ does not have any outgoing a?-transitions, then
we add ¢ LIN unexp_input 4.) We also add the transition

unexp_input 4 LI unexp_input 4 for every input action
a? of A.

Proposition 7. The automaton A is input enabled.

By checking reachability of the location unexp_input,
we can check whether A and A" are semantically equiv-
alent, i.e. whether their underlying TLTSs are exactly
the same when restricted to the reachable states.

Proposition 8. The network N'(Ay, ... ,A,) is seman-
tically equivalent to the network N'(Ay-, ..., A%Y) if and
only if none of the locations unexp_input 5. is reachable
in the network N' (A}, ..., A%,

A.4 Verification of trace inclusion

The rest of this section describes how Uppaal can be
used in some cases to check whether or not A Crg B,
via the construction of B¢", A™ and B".

Throughout this section, we assume that the visible
actions of A are included in those of B. Recall that we
assume that B does not contain committed locations or
urgent channels.

Simons, Stoelinga: Mechanical Verification of Root Contention 15

A.4.1 The construction of B¢

If we want to check A Crg B, for a deterministic au-
tomaton B, then we build an automaton B¢, which
is an adaption of construction by [2]. The automaton
B is constructed by adding a location error to B and
transitions ¢ —% error for all locations ¢ and action la-
bels a such that this transition is enabled if no other
a-transition is enabled from . Furthermore, an inter-
nal transition from ¢ to error with the guard —Inv(q) is
added and all location invariants are removed.

Definition 6. The automaton B¢ is defined as fol-
lows.

1. The locations of B¢ are the locations of B together
with the (fresh) location error,

2. the initial location of B¢ is the initial location of

B,

. there are no location invariants in B¢,

4. the transitions of the automaton B¢™" are given as
follows, where ¢ and ¢' range over locations in B,
and a over visible actions in B.

w

a"g7,r

WgAT,
Ugag ({g =g ¢ | ¢ =5 ¢, 1 =Tnv(g)} U
{¢ =5 error | I =TInv(q)} U
\Ja I
{q 280l error | I =1Inv(q),

Gaq = _‘V{g lq 25 p g}y

{error % error}).

For a construction of B¢ in the presence of urgent
channels and shared variables, see [16,15]. This work also
describes how to encode, what are called, timed ready
simulation relations as reachability properties. However,
we claim that our construction also works, if committed
locations are only used to encode multisynchronisation
between B and components of A.

Ezample 8. Figure 19 illustrates an automaton and its
error-construction.

In order to decide whether A Ctr B, we check whether
the error-location is reachable in the composition of A
and B°¢". In order to enforce synchronisation between
corresponding actions in A and B¢, we change the ac-
tions a? in B¢ into a! and a! into a?. Note that B¢™
is not deterministic, even not if B is so.

Lemma 1. Let B be a deterministic automaton. Every
finite sequence over Actg\ U R>? is a trace of B
Such a sequence is a trace of B if and only if none of
the executions in B¢ with this trace reach the error
location.

Proposition 9. Assume that B is a deterministic au-
tomaton. Then A Ctr B <= error is not reachable in
A || BC’I"T.

Fig. 19. An automaton and its error-construction

A.4.2 The construction of A™ and B"

If B is non-deterministic, then we can try to make it
deterministic by renaming its labels and then use the
above method to verify trace inclusion.

Definition 7. A renaming function is a function h :
Names — Names. For an automaton (resp. a TLTS)
A, we denote by A" the automaton (resp. the TLTS)
obtained by replacing every visible action a? in A by
h(a)? and a! by h(a)!.

Lemma 2. Let A, B be automata (resp. TLTSs) and
let h be a renaming function on A. Then

ACig B = A" Cqg B".

The previous result shows that, for proving A; Ctgr Bi,
it suffices to find As, By and a renaming function h such
that: Bs is deterministic, A = Ay, By" = B; and
Ay CrRr Bs. The latter can be verified by Uppaal. Notice
that A2 QTR BQ does not imply Al QTR B1 and that
even if Ay Crg By, it is not always possible to find the
required A, B> and h. (For instance if A; consists of the
transition s — s’ and By of t — ¢ and t' — ¢”, then no
such a h exists.)

In our verification, we have constructed h, As and
B, from A;, B; and a given (conjectured) step refine-
ment f. First, we describe this construction for TLTSs
Ly and L,, yielding TLTSs L, and L'. Informally, a
step refinement is a function f from the states of A to
the states of B such that every transition s — s’ of L
can be mimicked in L' by the transition f(s) =g f(s'),
where we also allow internal transitions in L to be mim-
icked by remaining in the same state in L'. Formally, a
step refinement from L to L' is a function mapping the
state space of L to the state space of L' such that the
initial state of L is mapped to the initial state of L' and
for all transitions s —, ¢ of L leaving from a reachable

16 Simons, Stoelinga: Mechanical Verification of Root Contention

state s we have either that f(s) = f(t) or that a is
internal and f(s) = f(t). A step refinement from an au-
tomaton A to an automaton B is a step refinement from
the underlying TLTS of A to the underlying TLTS of B.

The idea behind the construction of Ly and L'y (on
the level of TLTSs) from f and L; and L'y is as follows:
by the step refinement we know for each transition in
L'y exactly the transitions in A; with which it can syn-
chronize. Therefore, we give all the actions occurring in
these transitions the same, fresh label, thus removing the
nondeterministic choices in L';. The TLTSs obtained in
this way from L; and L'; are denoted by L% and L' 1f
respectively.

Formally, the TLTSs L and L'/ are obtained from
L and L' as follows: We start with the same state space
and transition relation as in L and L’ respectively. Then
for all sources of nondeterminism in L' i.e. all transi-
tions t = t' in L' such that either a = 7 or 3t" #
t'[t =1 t"], we change the label a into c;,4, which

c a,t! . o, . .
yields t =255, ¢/ in L' 7 Then, for all transitions in
Ci(s),a,f(s’ . .
A, we replace s 3 s' by s 22Dy ¢ in A7 if and
Cf(s),a,f(s’
only if f(s) L2,)

beling function c, . that

f(s"). We require for the rela-

the label ¢; 4, is not a visible action of A and B,
!

Cs,at 7 Cs,ap fOr t # 1,

Cs,at 7 T, and

Cs,a,s' 7 Cipp fOr @ # b.

W =

Requirement 1 ensures that cs 4+ is fresh. The second re-
quirement ensures that outgoing transitions of the same
state get different labels and the third that no actions are
relabeled into 7; together they ensure that the relabeled
automaton obtained by the construction above is deter-
ministic. The last requirement ensures that transitions
with different labels get different labels after relabeling.
If 5 4+ is contains actions that are also used for syn-
chronization between components of A, we achieve that
B also takes part in these synchronizations by using
three-way synchronization as described in A.2.

Ezample 9. Consider the TLTSs in Figure 20, where we

omitted time passage actions s N s, where d can be arbi-
trary. It is clear that the function s; — t; fori =1,2,5,6
and s3 — t1,84 — t9 is a step refinement form A to
B and that both the transitions sy — s; and sg — s3
should synchronize with the transition to — ¢;. Hence
these transitions get the same action label by the renam-
ing. Similarly, so — s; and sy — s3 should synchronize
and get the same labels (but different the three previ-
ously mentioned) after renaming.

Now, take h to be the identity on the names of A and
B (including 7) and h : (¢s,4,1) = a for the new names. In
the example, h is given by {a; — a,a2 — a,b+— b,c—
c}. Now, we have the following.

Lemma 3. Let A,B be TLTSs, f a function from the
state space of A to the state space of B, and h as defined
in the preceding text. Then

1. A" = A and B" = B.
2. AT Ctr Bf = ACrtr B.

Moreover, we claim that Af Crg B if f is a step
refinement. (Then Lemma 3 yields that A Crg B, which
is a basic result for step refinements.) We do not use this
claim in the verification.

In order to construct A' componentwise, remark that
(41 || A2)" = 417 || A27. In order to build the automa-
ton, (A || A2)\ C)7, we put A;7, A,” and BY in paral-
lel, but we enforce multisynchronisation between A;, Ao
and B on all actions ¢s4¢ € C N Acta, N Acty,, i.e. on
those actions that are used for synchronisation between
A; and Ay on which we want (as ¢4t € C) B also to
synchronise.

The problem is how to lift this construction from
TLTSs to automata, é.e. if L is the TLTS underlying A
and L' the one underlying B, we wish to find automata
Af and Bf whose underlying TLTSs are Lf and L'/
respectively.

In general, we conjecture that this construction can
be lifted to the level of automata, provided that r is
given by a (finite) expression over the clocks and loca-
tions of the automaton. Although the existence of a step
refinement already implies trace inclusion, this construc-
tion (on automata) would yield a method to check this
inclusion with Uppaal. Although a relabeling procedure
can be complex in general, in our case study it is much
faster than checking whether the function r is a step
refinement.

B Appendix

(=

action (names)

step refinements
guards

renaming funcion
locations

reset sets

states

clock valuations
clocks

automaton
deterministic automaton
sets of action names
location invariants
TLTSs

8 S » I QO

S

HE~Q e

References

1. L. Aceto, A. Burgueno, and K.G.Larsen. Model checking
via reachabilty testing for timed automata. In Proc. of

10.

11.

12.

Simons, Stoelinga: Mechanical Verification of Root Contention 17

Fig. 20. The automata A, B and A" and B"

the 3rd International Workshop on Tools and Algorithms
for the Construction and Analysis of Systems, Lisbon,
Portugal, volume 1384 of Lecture Notes in Computer Sci-
ence, pages 263-280. Springer-Verlag, 1998.

. R. Alur and D.L. Dill. A Theory of Timed Automata.

Theoretical Computer Science, 126:183-235, 1994.

R. Alur, T.A. Henzinger, and M.Y. Vardi. Paramet-
ric real-time reasoning. 25th Annual ACM Symposium
on Theory of Computing (STOC 1993), pages 592-601,
1993.

A. Annichini, E. Asarin, and A. Bouajjani. Sym-
bolic techniques for parametric reasoning about counter
and clock systems. In Proceedings of the International
Confence on Computer Aided Verification (CAV00),
Chicago, USA, volume 1855 of Lecture Notes in Com-
puter Science, pages 419-434. Springer-Verlag, 2000.
E.M. Clarke and J. Wing. Formal methods: State of the
art and future directions. In ACM Computing Surveys,
volume 28(4), 1996.

P.R. D’Argenio, J.-P. Katoen, T.C. Ruys, and J. Tret-
mans. The bounded retransmission protocol must be
on time! In Proc. of the 8rd International Workshop on
Tools and Algorithms for the Construction and Analy-
sis of Systems, Enschede, The Netherlands, volume 1217
of Lecture Notes in Computer Science, pages 416-431.
Springer-Verlag, 1997.

C. Daws and S. Yovine. Two examples of verification of
multirate automata using KRONOS. In 16th Annual IEEE
Real-Time Systems Symposium, Pisa, Italy, December
1995, pages 66-75. Computer Society Press, 1995.

TVS group Delft University of Technol-
ogy. PMC: Prototype Model Checker.
http://tvs.twi.tudelft.nl/toolset.html.

K. Havelund, A. Skou, K. G. Larsen, and K. Lund. For-
mal modelling and analysis of an audio/video protocol:
An industrial case study using uppaal. In Proc. of the
18th IEEFE Real-Time Systems Symposium, San Fran-
cisco CA, USA, pages 2-13, 1997.

T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. Hytech: A
model checker for hybrid systems. In Software Tools for
Technology Transfer, volume 1, 1997. Also available via
http://www-cad.eecs.berkeley.edu/ ~tah/HyTech/.
T.S. Hune, J.M.T. Romijn, M.I.A. Stoelinga, and F.W.
Vaandrager. Linear parametric model checking of timed
automata. To appear in Proceedings TACAS’2001.
IEEE Computer Society. IEEE Standard for a High Per-
formance Serial Bus. Std 1394-1995, August 1996.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

IEEE Computer Society. P1394a Draft Standard for a
High Performance Serial Bus (Supplement). Draft 3.0,
September 1999.

Basic Research in Computer Science at Aal-
borg University and Department of Com-
puter Systems (DoCS) at Uppsala University.

http://www.docs.uu.se/docs/rtmv/uppaal/.

H. E. Jensen, K.G. Larsen, and A. Skou. Scaling up Up-
paal - automatic verification of real-time systems using
compositionality and abstraction. In J. Mathai, editor,
Proceedings of the 6th International School and Sym-
posium on Formal Techniques and Fault Tolerant Sys-
tems (FTRTFT00), Pune, India, September 2000, vol-
ume 1926 of Lecture Notes in Computer Science, pages
19-30. Springer-Verlag, 2000.

H.E. Jensen. Abstraction-Based Verification of Dis-
tributed Systems. PhD thesis, Department of Computer
Science, Aalborg University, Denmark, June 1999.

P. Kannelakis and S. Smolka. Ccs expressions, finite state
processes and three problems of equivalence. Information
and Computation, pages 43-68, 1990.

D. LaFollette. SubPHY Root Contention, Overhead
transparencies, August 1997. Available through URL
ftp://gatekeeper.dec. com/pub/standards/io/1394/
P1394a/Documents/97-043r0.pdf.

Kim G. Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a Nutshell. Springer International Journal of Software
Tools for Technology Transfer, 1(1+2):134-152, 1997.
N.A. Lynch and F.W. Vaandrager. Action transduc-
ers and timed automata. Formal Aspects of Computing,
8(5):499-538, 1996.

K.L. McMillan. Symbolic Model Checking: An Approach
to the State Explosion Problem. Kluwer Academic Pub-
lishers, 1993.

J.M.T. Romijn. Analysing industrial protocols with for-
mal methods. PhD thesis, University of Twente, October
1999. Available via http://www.cs.kun.nl/~ judi.

M. Sighireanu and R. Mateescu. Verification of the link
layer protocol of the IEEE 1394 serial bus (FireWire):
an experiment with E-LOTOS. Springer International
Journal on Software Tools for Technology Transfer,
2(1):68-88, 1998.

M.I.A. Stoelinga. http://www.cs.kun.nl/"marielle/uppaal/.

M.I.A. Stoelinga and F.W. Vaandrager. Root contention
in IEEE 1394. In J.-P. Katoen, editor, Proceedings of
5th AMAST Workshop on Real-Time and Probabilistic

18

26.

27.

Simons, Stoelinga: Mechanical Verification of Root Contention

Systems (ARTS’99) Bamberg, Germany, May 1999, vol-
ume 1601 of Lecture Notes in Computer Science, pages
53-75. Springer-Verlag, 1999. Also, Technical Rapport
CSI-R9905, Computing Science Institute, University of
Nijmegen, May 1999.

Takayuki Nyu. Modified Tree-ID Process for
Long-haul Transmission and Long PHY DELAY,
Overhead transparencies, 1997. Available through
URL ftp://gatekeeper.dec.com/pub/standards/
io/1394/P1394a/Documents/97-051r1.pdf.

S. Yovine. Kronos: A verification tool for real-time sys-
tems. Springer International Journal of Software Tools
for Technology Transfer, 1(1/2,), October 1997.

