Replace this file with prentcsmacro.sty for your meeting,
or with entcsmacro.sty for your meeting. Both can be
found at the ENTCS Macro Home Page.

Interfaces: a game-theoretic framework to

reason about component-based systems

Luca de Alfaro and Mariélle Stoelinga 12

Department of Computer Engineering, UC Santa Cruz, USA

Abstract

Traditional type systems specify interfaces in terms of values and domains. When
we apply a function to an argument, or when we compose two functions, we have to
check that their types match. In previous work, we have developed several interface
theories that extend type systems with the ability to reason about the dynamic be-
havior of software components. The works [dAH0la,CdAH*02,CdAHMO02] consider
the temporal order in which method calls occur, [dAHS02] reasons about timing
constraints on a component’s input and output signals, [CdAAHS03] deals with con-
straints on the resource usage of the component and [dAHO1b] presents a general
theory of interfaces. Like type systems, interfaces specify both the input assump-
tions a component makes on its environment and the output guarantees it provides.
Interfaces are based on two-player games in which the system plays against the
environment. The moves of the environment (player Input) represent the inputs
that the system can receive from the environment, that is, the input assumption of
the system. Symmetrically, the moves of the system (player Output) represent the
possible outputs that can be generated by the system. Interfaces are built around
the concepts of (1) well-formedness, requiring that the input assumptions of an
interface be satisfiable, (2) compatibility, asking whether two components satisfy
each other’s input assumptions; (3) composition of two compatible interfaces; (4)
component refinement, asking whether one component (being an implementation)
correctly implements another one (being the specification).

This paper provides a tutorial-style introduction to interfaces and discusses the
basic concepts and ideas. In particular, we elaborate on the automaton-based inter-
faces from [dAHOla] and the timed interfaces from [dAHS02] and present techniques
for checking well-formedness and compatibility, and for composing interfaces in these
interface theories. Due space limitations, we do not treat the notion of interface
refinement, but we refer the reader to [dAHOla] and [dA03].

Key words: Component-based design, behavioral type system,
game theory.

(©2003 Published by Elsevier Science B. V.

http://www.math.tulane.edu/~entcs

1 Introduction

The prevalent trend in software and system engineering is towards component-
based design: systems are designed by combining components, some of them
off-the-shelf, other application-specific. The appeal of component-based de-
sign is twofold: it helps to tame complexity through decomposition, and it
facilitates reuse. Components offer the unit in which complex design prob-
lems can be decomposed, allowing the reduction of a single complex design
problem into smaller design problems, more manageable in complexity, that
can be solved in parallel by design teams. Components also provide a unit of
design reuse, defining the boundaries in which functionality can be packaged,
documented, and reused.

Components are designed to work as parts of larger systems: they make
assumptions on their environment, and they expect that these assumptions
will be met in the actual environment. For instance, a software component
may require its objects to be initialized before any other methods are called.
Hence, the effective reuse of software requires adequate documentation of the
components’ behavior and the conditions under which it can be used, along
with methods for checking that components are assembled in an appropriate
way.

We propose a formal notion of component interfaces that provides a frame-
work to specify and analyze component interaction. In particular, our interface
theories support component-based design in the following ways.

Interface specification. An interface specifies how a component interacts
with its environment. It describes the input assumptions the component makes
on the environment and the output guarantees it provides. A simple example
of an interface is a type in a programming language. The type int — real ex-
presses that a function expects integers (input assumption) and produces reals
(output guarantee). A slightly more complicated type is given in Figure 1(b),
where a component produces a real z and expects two integers x and y such
that y = 0 whenever x = 0. These types are two examples of static interfaces,
i.e. they do not change during the execution of the program. An example of a
dynamic type, where the input assumptions and output guarantees can vary
with the state of the system, is given in Figure 2(a). This interface automaton
models the interface of a 2-place buffer, where state b; represents the buffer
containing ¢ messages. In each state, the automaton models the inputs the
component can receive (input assumption) and the outputs it can produce
(output guarantee). Here, the input snd? represents the arrival of a message
from a sender process, and the output rec/, models the delivery of a message
to a receiver process. In particular, the input action snd? is not enabled in

L This research was supported in part by the NSF CAREER award CCR-0132780, the NSF
grant CCR-0234690, and the ONR grant N00014-02-1-0671.

2 Email: {luca,marielle}@soe.ucsc.edu

2

state by, modeling that the buffer cannot receive any messages when it is full.
Similarly, the buffer does not produce an output rec!/ in state by, modeling
that it does not create messages out of the blue if it is empty. Thus, the
buffer requires its environment not to send a message while it is in state b
and guarantees that it will not produce one in state by.

Well-formedness checking. When constructing an interface, we have to
make sure that it is well-formed, i.e. that there exists at least one environment
that satisfies its input assumptions. Otherwise, the interface is useless, since
it cannot be used in any design. While rather straightforward in the untimed
case, well-formedness becomes more complicated in the timed case, where time
progress requirements have to be taken into account.

Interface Composition. Due to the presence of input assumptions, we have
to check for compatibility when we assemble a system from two (or more?)
components. That is, when we put together two components P and R, we
have to make sure that P’s output guarantees imply R’s input assumptions
and vice versa. Since the composition of two components is generally still an
open component, it depends on the environment (of the composite system)
whether or not these input assumptions are met. This phenomenon is known
as migration of constraints: constraints migrate from the components to the
composite system. We are interested in the most liberal assumptions on the
composite system that ensures compatibility of the components. For exam-
ple, consider again the interface P; in Figure 1(b), producing a real z and
expecting two integers z, y with y = 0 whenever z = 0. Now, we compose
P; with component P, in Figure 1(a). The latter has no inputs (hence, no
input assumptions) and can output any integer. To ensure that P;’s input
assumption x = 0 = y = 0 is met, we require that the input z is never
set to 0.* Since x # 0 is the weakest predicate with this property, the input
assumption of the composition Pj|| P, is exactly x # 0. Its output guarantee
is y : int and z : real, see Figure 1(c).

Summarizing, the composition of two interfaces yields a new interface for
the composite system. Its input assumptions are strengthened in such a way
that the component interfaces satisfy each others input assumptions and its
output guarantees combine the guarantees present in the components. Com-
patibility and composition of interface automata will be explained later in this

paper.

3 Multi-component composition can be obtained via binary composition by successively

composing a single component with a system that was previously composed from other
components.

4 If x = 0, then P;’s assumptions may be met, in case P, happens to provide a non-zero
integer, but is not guaranteed to be met, as P, can set y = 0. To ensure satisfaction of the
input assumption for all behaviors of P, we need = # 0.

3

T [z,y:int € int
r=0— |[2:Teal— Z:in Z:real|—

(a) PQ. (b) Pl. (C) P1||P2

Fig. 1. Migration of constraints

Compatibility checking. If the input assumption of the composite system
P||R is equivalent to false, i.e. P||R is not well-formed, then no environment
can make P and R work together. In this case P and R are called incompatible.
In other words, P and R are compatible if and only if there is at least one
environment that makes P and R mutually satisfy their input assumptions.

Interfaces as games. An interface is naturally modeled as a game between
the players Output and Input. Output represents the component: the moves
of Output represent the possible outputs generated by the component (output
guarantees). Input represents the environment: the moves of Input represent
the inputs accepted from the environment (input assumptions).

Then, an interface is well-formed if the Input player has a winning strategy
in the game, i.e., the environment can meet all input assumptions. For timed
interfaces, we need the additional well-formedness condition that a player must
not achieve its goal by blocking time forever. When two interfaces are com-
posed, the combined interface may contain error states. These occur when
one component interface can generate an output that violates an input as-
sumption of the second. Two interfaces are compatible if there is a way for the
Input player, who chooses the inputs of the composite interface, to avoid all
errors. If so, then there exists an environment of the combined system which
makes both components satisfy each other’s input assumptions. Component
composition then boils down to synthezing the most liberal input strategy in
the composite system that avoid all error states. This can be done by adapting
classical game-theoretic algorithms.

Consider the interface P, in Figure 1(b). The Input player chooses values
for z and y and the Output player for z. The interface is clearly well-formed,
because Input can choose values that meet the input assumptions. When we
compose P; with P,, every state with x = 0, y # 0 is an error state. The Input
player of the composite system (who chooses values for x) has a strategy that,
irrespective of the Output strategy (in the composite system choosing values
for y and z), avoids these errors: Input should alway choose a value different
from 0.

Since the underlying games are relatively simple, the theory for interface
automata can be stated without refering to games — as we do here. Due to
time progress requirements, timed interfaces induce fairly intricate games.

4

Related work. Various models for the analysis of components exist. How-
ever, few of them handle open systems that make input assumptions in a
compositional way.

Many models are unable to express input assumptions. I/O automata
[LT89,MMT91,SGSAL9S], SMV [CMCHG96], and Reactive Modules [AH99]
require input-enabledness, meaning that a component must always be able to
accept any possible input. In this way, a component is required to work in
every environment, ruling out the possibility to model input assumptions.

Models that can encode input assumptions, such as process algebras, often
phrase the compatibility question as a graph, whereas we treat it as a game
question. In a graph model, input and output play the same role and two com-
ponents are considered compatible if they cannot reach a deadlock [RR01]. In
our game-based approach, input and output play dual roles. Two components
are compatible if there is some input behavior such that, for a/l output behav-
iors, no incompatibility arises. This notion captures the idea that an interface
can be useful as long as it can be used in some design. In this respect, in-
terfaces are close to types in programming languages, to trace theory [Dil88],
and to the semantics of interaction [Abr96]. The reader is referred to [dA03]
for a more elaborate comparison with related work.

Organization of the paper. This paper treats two automaton-based for-
malisms for the specification and analysis of interfaces. Section 2 presents
interface automata and defines well-formedness, compatibility and composi-
tion for these interfaces. In Section 3, we extend interface automata with
real-time, yielding timed interface automata. Again, we explore the notions
of well-formedness, compatibility and composition. In particular, we explain
how timed interfaces deal with time progress conditions, which are needed to
ensure that time can advance in every system behavior.

2 Interface Automata

This section presents an automaton-based interface theory that is capable of
expressing assumptions and guarantees on the order in which method calls
or signals to the component occur. As one can see from the example in Fig-
ure 2(a), interface automata are similar to normal automata (a.k.a. labeled
transition systems or state machines); it is in the notion of composition that
interfaces differ from ordinary state machines.

Definition 2.1 An interface automaton P = (Sp, S%%* AL, AQ, Tp) consists
of the following elements.

* Spis a set of states.

« St C Sp is a set of initial states.

+ AL and A9 are disjoint sets of input and output actions. We denote by
Ap = AL U A@ the set of all actions.

5

snd? snd? rec?
(o)1) e "(bs)

rec! rec! proc!

(a) Buffer B. (b) Receiver R.

(c) The product B® R. (d) The composition
BJ|R.

Fig. 2. Product and composition of interface automata

e« Tp C Sp x Ap x Sp is a set of transitions or steps. We write s—pt for
(s,a,t) € Tp. If s pt for some t € Sp, then we say that action a is enabled
in state s.

We require that P is deterministic®, that is, (1) S¥# contains at most
one state and (2) if s pt and s pu then u = t.

Input assumptions and output guarantees are expressed via the enabling
conditions in P: an input action a that is not enabled in state s, puts a
requirement on the environment, asking that a is not produced while P is in
s. We say that P is well-formed if S@% = (). Tll-formed interfaces correspond
to the input assumption false and are not useful: no environment can interact
with such interfaces in a meaningful way.

Definition 1 A run of an interface P is a finite sequence sg, a1, S1, - - . , Gp, Sy,
such that sx_;—ps, for all 1 < k < n. A state s € Sp is reachable if there
exists a run from an initial state to s, i.e. a run sq, a1, $1, ..., an, S, in P with
sp € ST and s, = s.

2.1 Compatibility and composition

We define the composition of two interface P and R in four steps. First, we
require that P and R are composable, i.e. that their action signatures match.
If so, we define the product P®Q R as the classical automaton-theoretic product,
where P and R synchronize on shared actions and evolve independently on
others. Within this product, we identify a set of error states, where the
output assumptions of P do not imply the input assumptions of R, or vice
versa. That is, P can produce an output that is not accepted by R, or vice
versa. Finally, we obtain the composition P||R from P ® R by strengthening

5 This requirement is not present in [dAHO1a], but simplifies the technicalities, while the
main concepts are the same.

the input assumptions of P® R in such a way that all error states are avoided,
thus ensuring that P and R mutually satisfy their input assumptions.

Composability imposes restrictions on the action sets to avoid name
clashes.

Definition 2.2 Two interface automata P and R are composable if AZNAG =
(. We let sharedpr = Ap N Ag to be the set of shared actions of P and R.

The product of two composable interfaces P and R is an interface automa-
ton P ® R that represents the joint behavior of the components. The state
space of P ® R consists of pairs (s,t), reflecting that P is in state s and R
is in state t. The components synchronize their shared actions in Ap N Ag.
This means that whenever one component performs a transition involving a
shared action a, the other one should do so; if it cannot, the transition is not
part of the product. The components interleave asynchronously all non-shared
actions: one component takes a step, while the other stays in the same state.

Definition 2.3 If P and R are composable interface automata, their product
P ® R is the interface automaton defined by

Sper =Sp X Sg

Ginit, —ginit » ginit

Apor =Ap U AR

-’4§J®R :(Afﬂ U -Aia) \ 'A]OJ®R

Tror ={(5,1)=(s",t) | s=ps' Aa € Ap \ A} U
{(5,1)5(s,t") | trt' Na € Ag \ Ap} U
{(5,t)5(s", 1) | s5ps' Atspt' Na € Ap N Ag}.

Example 2.4 The automaton R in Figure 2(b) represents the interface of a
receiver component. In state rg, R can receive a message, in which case it
moves to the state r;. In 7y, it processes the message and moves back to 7.
Since R cannot receive a message in state r1, it can hold only one message at
the time. The product B® R is displayed in Figure 2(c). Note that B and R
synchronize on rec! and evolve independently on proc! and snd?.

The product P® R may contain states in which one of the components (say
P) can produce an output action that is an input action of the other automaton
(R), but is not accepted. This constitutes a violation of the input assumptions
of P: input actions that are not enabled in a state encode the assumption that
these will not be present in that state. So, if they are produced nevertheless,
the assumption is violated. The states in P ® R where this happens are called
error states of P and R.

Definition 2.5 Given two composable interface automata P and R, the set

7

Error(P, R) of error states is defined by

Error(P,R) = {(s, t) € Sp x Sg | Ja € sharedpp .

8—)p/\t7L>R t—)R/\S7&)p

Here s—> p means that a € AO and there exists a t € Sp with s—= pt. Similarly,
37&)1: means that a € AL, but there is no ¢t € Sp with S pt.

Example 2.6 The state (b, r;) is an error state in the product B® R (Fig-
ure 2(c)), because the output step b1—>b0 in B has no corresponding input

step in R (i.e. rlHR)

To derive the input assumptions on the composite system that prevent all
error states, we observe that error states propagate through the system. For
example, if B® R is in the state (by, 1), then, no matter how we constrain the
environment, the system cannot be prevented from taking the rec! transition,
leading to the error state (b,71). This is because the environment can only
influence the system through its input actions; the system decides which of its
enabled output actions to take. Hence, the environment should also avoid the
state (bo,70), otherwise it does prevent reaching the error state. For the same
reasons, the environment should avoid any state from which there is a run
that leads to an error state by only following only output transitions. Such
states are called incompatible.

Definition 2 A state s of P ® R is called incompatible these exists a run
$00181 - .. 8, in P ® R such that s = sg, s, € Error(P,P) and, for 1 < i <
n, a; € A9. We write Incmp(P, R) for the set of incompatible states and
Cmp(P, R) = Spgr \ Incmp(Error (P, P)) for the set of incompatible ones.

Example 2.7 As we saw before, Incmp(B, R) = {(b1, 1), (b2,70)}.

If the initial state of P® R is incompatible, then no environment of P ® R
can avoid entering the error state. Therefore such interfaces P and R are
incompatible.

Definition 2.8 Two composable interface automata P and R are incompati-
ble if Siit. N Cmp(P, R) = 0. They are compatible if Siit, N Cmp(P, R) # 0.

Example 2.9 The interfaces B and R are clearly compatible, as the initial
state (bg, o) is not among the incompatible states.

In state (bp,71) on the other hand, the environment can prevent entering
error states, viz. by not providing the input snd?. Hence, the state (by, 1) does
not have to be avoided, but its outgoing snd? action should. This is achieved
by automatically if we remove incompatible state (by,71). Thus, strengthening
the input assumptions to avoid incompatible states simply proceeds by throw-
ing away all incompatible states. That is, the composition P||P is obtained by
removing the set Incmp(P, R) from the product P ® P. As a consequence, all
edges leading from a compatible state to an incompatible state are removed

8

as well. Note that all these edges are labeled by an input action. In this way,
the input action becomes disabled in the source state of the edge.

Definition 3 Consider two composable interface automata P and R. The
composition P||R is an interface automaton with the same action sets as PQR.
The states are Spr = Cmp(P, R), S}Zﬁ}i = Siit. N Cmp(P, R), and the steps
are Tp|r = Tper N (Cmp(P, R) x Ap|r x Cmp(P, R)).

Example 2.10 The composition B||R, displayed in Figure 2(d), is obtained
by removing the incompatible states (be, 7o) and (by,71) from B® R. Notice
how the constraint that R can only hold one message migrates from R to
the composition B||R. The input assumptions of B|| R require that no message
must arrive before the previous one has been processed. In state (bg,), where
the receiver already holds a message, this is achieved by disabling the snd?
action. To prevent entering (by,79) (and hence (b1,71)), the action snd? also
has to be disabled in state (b1, 7). Again, the sender should not provide a
new message until R has processed the old one, but now the old message is
still in the buffer.

2.2 Properties of interface automata

The result below shows that two automata are compatible if there exists at
least one environment that makes the automata satisfy each other’s input
assumptions. This means that there should be at least one environment that
avoids entering any error state. Let a legal environment of P and R be an
interface automaton E such that (1) E is well-formed, (2) E is composable
with P ® R, (3) E synchronizes on every output action of P ® R, i.e. AL =
AZors (4) if (s,t) € Error(P, R), then (u,s,t) is unreachable in £ ® P ® R,
for every state u € Sg.

Proposition 2.11 Let P and R be composable interfaces. The following
statements are equivalent.
(i) P and R are compatible,
(ii) PJ|R is well-formed,
(iii) there exists a legal environment for P and R.
The following result states that composition is transitive, i.e. that the
order in which we compose multiple components is irrelevant, if we restrict

our attention to the reachable states. We write P = R if P and R are identical
once we remove all unreachable states.

Theorem 2.12 Let P, R and M be pairwise composable interface automata.
Then (P||R)|M = P||(M||R).

3 Timed Interface Automata

This section extends the interface automaton model with timing constraints,
yielding timed interface automata. A timed interface automaton augments
an interface automaton with a set of real-valued clocks. Clocks occur in lo-
cation invariants and transition guards, respectively specifying deadlines and
enabling conditions on the actions of the interface. Timed interface automata
are syntactically similar to timed automata [AD94], except that they have
two kinds of invariants, one for input and one for output actions. Semanti-
cally both models differ, because timed automata are interpreted as labeled
transition systems and timed interfaces as games.

3.1 The timed interface model

The timed interface automaton B in Figure 3(a) represents a 1-place buffer,
which delivers messages within 1 to 4 time units. The clock x measures the
time since the last arrival of a message. In location® by, the buffer is empty
and can receive a message. If so, it moves to location by, while resetting the
clock . The output invariant x < 4 in location b, specifies that an output
action (i.c. snd/) has to be taken before z > 4, thus forcing a delivery within
4 time units. The transition guard 1 < x specifies that the snd-action can be
taken if 1 < z, thus enabling a delivery after 1 time unit.

The timed interface in Figure 3(b) represents a component that must re-
ceive a message every 2 to 7 time units: the clock y measures the time between
two consecutive message receipts. The input invariant y < 7 forces the input
action rec? to be taken with 7 time units after the previous receipt. The tran-
sition guard 2 < y says that this action can be taken after 2 time units. Thus,
invariants express when actions must be taken and guards express when they
can be taken.

Guards and invariants are specified by clock conditions, being any boolean
combination of formulas of the form = < c or x — y < ¢. Here, c is an integer,
x,y are clocks in a given set X, and < is either of < or <. We denote the set
of all clock conditions over X by K|[AX].

Note that all time is spent in locations; transitions are instantaneous,
i.e. take no time.

Definition 4 A timed interface automaton (or TIA) is a tuple P = (Qp,
qmit Xp, AL, AQ, Invh, Inv®, Tp) consisting of the following components.

e Qp is a finite set of locations.
s ¢t € Qp is the initial location.

* Xp is a finite set of clocks.

6 The nodes of timed interface automata are called locations, because the word ‘state’
already refers to a location together with a clock valuation, see below.

10

bo snd? x:=0 2<y
e —0:s<4)n rec?
rec! 1<z y:=0

(a) Timed buffer B. (b) Timed
receiver R.

(bo,m0) snd? z:=0 .
Iys,? O$S4 (blﬂ“o)
rec!l 1<z A2<y y:=0 T:y<7

(¢) The product B® R.

(bo, 7o) snd? z:=0 :
I:y<3 O:2<4 | (1)
recl 1<z A2<y y:=0 I1:1<3

(d) The composition B||R.

Fig. 3. Product and composition of TIAs

+ AL and A9 are finite and disjoint sets of immediate input and output ac-
tions, respectively. Let Ap = AL U A9 denote the set of all immediate
actions of P.

e Invl: Qp — K[Xp] maps each location of P to its input invariant.
« Inv9: Qp — K[Xp] maps each location of P to its output invariant.

e Tp C Qp X K[Xp] X Ap X 2*P x Qp is the transition relation. For
(g,9,a,7m,q") € Tp, ¢ € Qp is the source of transition, ¢’ € Qp is the desti-
nation, g € K[Xp]| is the transition guard, a € Ap is an immediate action,
and r C Xp is a reset set, containing the clocks that are reset. We require
the transition relation to be deterministic: for all ¢ € Qp and a € Ap, there
is at most one tuple of the form (g, g, a,r,q') with (¢, g,a,7,q¢") € Tp.

Timed versus untimed interfaces. As said before, interfaces are inter-
preted as games between the players Output and Input, representing the sys-
tem and the environment, respectively.

Due to the presence of time, timed interfaces and their underlying games
have to deal with time divergence. For an interface to be physically meaning-
ful, time should advance in every behavior of the system. Therefore, we call
a timed interface well-formed if it has an initial state and time can progress
in every reachable state. The latter means that both players have a strategy
that ensures time progress.

The error states of a timed interface are as in the untimed case, but in-
compatible states now incorporate time progress requirements. This is because
after removing the set of incompatible states from the product, time should

11

advance in any of the remaining states. Hence, we do not only consider a state
incompatible if it can reach an error state by following only output transitions,
but also if the other incompatible states can only be avoided by violating the
time progress conditions. In this way, incompatibilities propagate through the
system: if, by following output transitions only, a state s can reach another
state that is incompatible because it has to violate time progress conditions
to avoid other incompatible states, then state s is incompatible itself.

This notion of incompatibility is naturally expressed in terms of games.
To derive the composition from the product, we are looking for the weakest
new input assumptions ensuring that all error states are avoided and time can
always progress. This means that, no matter how the system behaves, no state
in Error(P, R) is entered and time can always advance. In terms of games:
we are looking for the most general input strategy, such that for every output
strategy, Error(P, R) is avoided and time progress is ensured. Such a strategy
is called a winning input strategy for the goal “avoid Error(P, R) and ensure
time progress” denoted by O-FError(P,R) N t_div. Winning strategies for
such goals can be computed by adapting classical game-theoretic algorithms
played on the region graph. States from which the Input player does not have a
winning strategy are incompatible. Hence, they are removed when computing
the composition from the interface.

3.2 The Game underlying an Interface

We unfold a TIA P into a game structure [P] by explicitly recording the
clock values in P and by separating the transition relation —p into an input
transition relation —)f[-P]] and an output transition relation _>E)P]]'

A waluation over a set X of clock variables is a function v: X — R that
assigns a clock value to every clock in X. We write Oy (or just 0 if X is clear
from the context) for the valuation that assigns 0 to all clocks in X. Other
clock valuations are often listed as a set of pairs, as in {x = 1,y = 3}. The set
of all clock valuations is denoted by Val(X) and for clock valuation v and a
clock expression g, we can determine whether g holds for this valuation. If so,
we write v = g. For example, if v(z) =1 and v(y) = 3, then v |y — 2 < 0.
For a valuation v € Val(X), we write v + d for the valuation defined by
(v+d)(x) =v(z)+dfor all z € X. Given a set r C X of clocks, we write
v[r := 0] for the valuation that maps z to 0 if z € r, and otherwise to v(z).

Let P be a TIA with components (Q, g™, X, AL, A°, Inv!, Inv®,T). We
obtain [P] from P as follows. The states (g, v) of [P] consist of a location ¢ in
P and a clock valuation v € Val(X). Hence, a state records both the location
the interface is in and the values of all its clocks. Initially, all clocks are 0
and the two invariants have to be met. This means that [P] has an initial
state (g™, 0) if 0 meets the invariants Inv’(¢"") and Inv®(g"") of the initial
location g™, (i.e. 0 = Inv!(¢™") A Inv®(g™?)). If the invariants are not met,
then [P] has no initial state.

12

The input and output transition relations —)EP]] and _)[[OP]] update the lo-
cation and clock values. We distinguish between timed (or delay) transitions,
which are labeled by delay actions d € R?°, and immediate transitions, la-
beled by immediate actions a € A. Here, immediate input transitions i)ﬁpﬂ
are labeled by an input action a € AL, while immediate output transitions
—>[OP]] are labeled by an output action a € A9. More precisly, let 7 is be one
of the players I or O. A timed transition PR represents the passage of d
time units. It increases all clocks with d time units and leaves the location
unchanged. Hence, the destination s’ arises from s by i 1ncreasmg all clocks by
d: writing s = (g, v), we have s’ = (¢,v + d). The transition 574" is enabled
if increasing the clocks with d time units is allowed by 7’s location invariant
Inv7(q). This means that this invariant has to continuously hold if we let d
time units pass: Vd' < d.v+d' | Inv7(q). Writing s = {g,v) and s' = (¢’,v"),
the immediate transition s—"s' changes the state as specified by a transition
¢2*5¢ in P. This transition is enabled if (1) the guard of the transition
involved is met in s, i.e. v = g, (2) the player «’s invariant is met both in
the source s and in the destination s’ i.e. v = Inv?(q) and v' = Inv"(q'),
and (3) the clock variables are set according to the transition involved, that
is, v’ is obtained from v by setting all clocks in r to 0, i.e. v' = v[r := 0].
Summarizing, we have the following.

Definition 5 A TIA P induces a game structure [P], which is a tuple (Sfpy,

zmt

S[EY .A[[P]], .A[[OP]], —>[1[TP]], —>fp]]) consisting of the following components.

* The state set Sgpy = {(q,v) | ¢ € Qp, v € Val(Xp)}.

* The initial states Sfpy = {(qmit Ox,) | Ox, = InvL(g%) A Inv9(g%)}.

* The actions are Afp; = Ap UR™ and Af, = AZUR.

» For v € {I, O} the transition relations of [P] are defined by (g, v)—)IIP]] (¢',v")
if either (1) « € R2%, g = ¢/, v' = v + @, and for all 0 < d' < «, we have
v+d E Inv}h(q); or (2) o € A}, and there is a tuple (q,g,a,r, q) € Tp
with v = Inv}(q) A g, v' = v[r := 0], and v’ = Inv}(q').

Example 3.1 The states of [B] are (by, {x = d}) and (b1, {x = d}), for every
clock value d in RZ°. The transitions are

(bo, {z = d}) =" (bo, o = d +d'})

(bo, {z = d}) SO (bo, {x = d + d'})

(bo, {z = d}) "5 (b, {o = 0})

by, {z =d }>i>0<b1,{x:d+d'>, for d+d' < 4,
(b, {z = d}) =50 (b, {z = d}), for 1 < d.

In each state s of the game [P], both players propose one of their available
moves. That is, each player 7 proposes an immediate or timed move « such
that s=7s', for some s’. The moves proposed by both players together deter-

13

mine a successor state. If both players choose timed moves d and d' € R2°,
then global time will advance by min{d, d'}; if one player chooses an imme-
diate move a, while the other chooses a timed move d, the immediate move
a will be carried out; if both players choose immediate moves, one of them
occurs nondeterministically. Formally, an outcome of two moves is a triple
(a,7,s"), where a is the action being taken, v is the player who took it and s
the destination state.

Definition 6 For v € {I,0}, a player-y move in a state s of [P] is an
action a € Ap UR2? such that siﬁfpﬂs’ for some s’. This state s’ is unique
and we write 6(s, a) for s'. Furthermore, let I',;(s) be the set of all player-y
moves in state s and FEP]] = 'AEP]] URZ? the set of all y-moves. For two moves
oy € FEP}] (s) and ap € F[[OP]](S), the outcome outcypy(s, ar, ao) is given by

outcppy(s, ar, o) =

({(Oq,[, 5[[13]](8,0{]))} if ay € .AP,CMO € RZO,
or ar,ap € R2Y, a; < ap.
{ {(@0,0,6p1(s,20))} if oy € RZ%, ap € Ap,

or ar,ap € R2°, a5 > ap.
| {(ar, I, 0ppy(s, ar)), (a0, O, 01p) (s, a0))} otherwise.

The behavior of a player, i.e. the successive choices being made in the
course of the game, is given by a strategy. This is a function that assigns to
every state” one of the player’s enabled moves. The outcomes that can occur
when player I plays according to strategy 7’ and O according to 7©, form a
set Outcppy(s, 7, m0). Strategies are partial functions, rather than total ones,
because the sets of moves available to the players at a state may be empty.
As a result, a game outcome may be finite, and if so, it ends in a state where
one of the players has no moves.

Definition 7 A strategy for player v € {I,0} is a partial function 77:
Stpy > ['fpy that associates, with every state s € Syp) a move 77(s) € I (s)
provided that I'fpy(s) # 0; otherwise 77(s) is undefined. Let pr]] be the
set of all strategies for player I, and let H[[OP]] be the set of all strategies for

player O. Given a state s € Syp], an input strategy = Hﬁp]], and an output
strategy 7° € prﬂ, the set of outcomes Outcppy(s, 7', 7?) of 7’ and 7© from s
consists of all finite and infinite sequences o = sg, a1, ply, S1, plq, a2, plo, So, . ..
such that (1) sy = s; (2) for all n < length(o), we have (on1, Snt1,Pl,11) €
outcppy(sn, 7 (sn), 7 (sn)), where such that either F[l[-P]](sk) =0 or Ffp]](sk) =

(; and (3) if length(o) < oo, then o ends in a pair (s, pl,).

Informally, a state is reachable if it can be reached from the initial state

" In general, a strategy may depend on the history of the game, that is, on the entire run
leading to the state. In our case history-free strategies suffice.

14

via a pair of strategies.

Definition 8 A state s is reachable in [P] if there are strategies w! € Hﬁp}]
and 79 € H[[OP]], a state gy € Sﬁ?gﬁf, and an outcome o = sg, a1, ply, S1, ... in
Outcppy(qo, 7', m9) such that s = s, for some &k > 0.

The objective for a player is to play a strategy which ensures that all game
outcomes belong to a set of desirable outcomes, called the goal for that player.
We are particularly interested in three kind of goals, viz the set OU containing
all outcomes that stay within a set of good states U; the set ¢_div of outcomes
along which time progresses, and the set blame”, where Player v is blamed for
monopolizing the game, i.e. for playing alone from a certain point on.

Definition 9 For a TIA P, we define

OU = {sg, a1, ply, 51,-.. € Outcypy | Vk . s, € U}
blame” = {so, a1, ply, s1,... € Outcppy | INVE > n. pl, = v}

t_div = {so, a1, ply, s1,... € Outcpy | Z delay(ag) = oo}
k=0

Here, for a move o, delay(a) = a if a € RZ?, and delay(a) = 0 otherwise.

3.3 Well-formedness

Only game outcomes along which time diverges make physically sense. Be-
haviors such as s,0,1,s,0,0,s,0,1,s,0,0,s...and s,%,[,s,i,O,s,%,I,s,...
in which total amount of time Y >, delay(a;) is finite (where a; is the i** ac-
tion in the sequence) do not exist in reality, because an infinite number of
moves is made in a finite amount of time. We rule out such behaviors by only
considering well-formed states, in which both players have the possibility to
let time diverge. We want to say that a state s is called well-formed if from
s both players have a strategy to win the goal ¢_div. However, the situation
is slightly more complex because one of the players may “monopolize” the
game, by playing alone from a certain point on. In such a situation, the op-
ponent is not responsible if time stops. Therefore, we consider all behaviors
in which this happens to be winning for the opponent, irrespective of time
divergence. Thus, a state is well-formed if both players v can win the goal
t_divU blame’ 7. A timed automaton is well-formed if all reachable states are
well-formed. We refer the reader to [dAAHS02] for an algorithm that decides
whether a TTA is well-formed.

Definition 10 A state s € Spp is well-formed if (1) Input can win the
game with goal t_div U blame?; that is, if for all strategies 7° € HE)P]] there
is a strategy ' € Iljp; such that o = ¢_div U blame® for all outcomes o €

Outeppy(s, 7', 7°) and (2) Output can win the game with goal ¢_div U blame’;
that is, if there is a strategy 7° € H[[OP]] such that for all strategies ! € Hﬁp}]

15

!
» Oy
Fig. 4. An ill-formed TIA

and outcomes o € Outcppy(s, 7!, 7°), we have o [t_div U blame’. The
interface P is well-formed if [P] has an initial state, i.e. S{5 # 0, and every
reachable state in [P] is well-formed.

The order of the quantification (first over output strategies, then over
input strategies) makes the game turn-based. i.e. the Output player chooses
its move first and Input use it to determine its own move. The motivation for
this is discussed in [dAHS02].

Example 3.2 The timed interface in Figure 4 specifies that in location p an
input should come before the deadline x = 1, whereas there is no input action
to help the automaton out of p. Such an interface does not make sense, because
no environment meets the input assumptions of this automaton. Bound by
the deadline x < 1, the Input player does not have a strategy to let time pass,
when the Output player plays moves with a duration 2. Hence, this interface
is not well-formed. The receiver R is well-formed because (1) the Input player
can let time pass: it can play the rec? action if y = 7 and timed move with
duration 1 otherwise. (2) the Output player can let time pass: since there are
no output actions, Output can for instance always play moves with a duration
1.

3.4 Product and composition

As in the untimed case, the composition is defined via the notions of compos-
ability, product, error states, uncontrollable states.

Definition 11 Two TIAs P and R are composable if A N A9 = () and
Xp N Xg = (. We denote by sharedpr = Ap N Ag their shared actions.

As before, the product of two timed interfaces represents the joint behavior
of the components, which synchronize on shared actions and interleave asyn-
chronously on others. The input invariant in location (s, t) is the conjunction
the input invariants in s and ¢, requiring that the product automaton should
satisfy the deadlines expressed by both invariants. The output invariants
in s and ¢ are conjoined as well. Tvy\o' sygthonizing transitions s>t and
s’ 2205+ yields the transition (s, s')2Z~2"""5 (¢, #') obtained by conjoining the
invariants g and ¢’ and taking the union of r U 7’ of the reset sets.
Definition 12 For two composable TIAs P, and P,, the product P, ® P, is
the TTA with
* Qrior, = Qp X Qp,, and ¢ggp, = (65", ai")-
¢ XP1®P2 = XPI U XP2'
¢ ‘AIP1®P2 = ‘Aél U AIPQ \ Sha’redPhPZ’ and AIQ“’1®P2 = Agl U ‘A?’Q

16

* Invp,gp,(P,9) = Invp, (p) A Invp,(g) and Invg gp,(p.q) = Invg, (p) A
I, (q).

e (g1, @M(qg, ¢5) is a transition of P, ® P, iff, fori = 1,2, ifa € Ap,,
then (g, gi,a,7i,q.) is a transition in 7p,; otherwise ¢; = ¢., g; = true, and

T, = (Z)
Example 3.3 The product B® R is of B and R is displayed in Figure 3(c).

The composition of two TIAs is again obtained from their product by
strengthening the input assumptions to avoid all error states. In TIAs, input
strengthening means strengthening the input invariants.® A product of two
TTAs may contain two kind of error states: immediate error states and timed
error states. Immediate error states are as in the untimed case, where one
component can preform an output action that is not accepted by the other
component.

Definition 3.4 Given two composable interface automata P and R, the set
Error(P, R) of immediate error states is defined by

Error(P,R) = {(v, u) € Sppy X Siry | Ja € sharedp g .
(U—>[[p]] A u7&)[[R]] U,—>[[R] N U7&)[[p]]

We write Good (P, R) for the set of states in P® R that are not in Error(P, R).

Example 3.5 For example, the state (by, o, {x =1,y=1})isan immediate
error state in B® R, because (b1, {z = 1})—>[[B]], but (ro,{y = 1})7&5[[3]1

The state (b1, ro, {x = 3,y = 3}) is a good state, because (by, {z = 3})—>[5]
and (10, {y = 3}) Sy,

It is an important property that the set of immediate error states for a
certain location are expressible as clock conditions. The (reachable) error
states in location (by,79) of B® R are given by the clock condition 1 < z <
ANy <2.

Timed error states are states where at least one of the players cannot let
time progress. They typically arise when an input deadline is not met. The
state {(b1,70),{x = 0,y = 3.4}) in B® R is a timed error state: due to the
invariants, we cannot stay in (by, 7o) forever. However, we can only leave the
state by the recltransition, which is enabled if z > 1. This means that we
have to remain in (by, 7o) for at most one time unit, but if we do so, the input
invariant z < 4 is violated. Hence, ((b1,70),{z = 0,y = 3.4}) a timed error
state. Timed error states are simply the ill-formed states in the product.

However, also when avoiding immediate error states, the input player has
to let time diverge: it should not avoid those states by blocking time. Thus,
a state s in the product is compatible if the input player has a strategy that,

8 Tt would also make sense to strengthen the guards on input transitions, but we do not
need this.

17

at the same time, avoids the immediate error states and lets time pass (or
blames the Output player). That is, an Input strategy that wins the goal
Good (P, R) N (t_div U blame?).

Definition 13 A state s in [P® R] compatible if for all strategies 70 € H[[OP]
there is a strategy 7! € HEP]] such that all outcomes o € Outcppy(s, ', 7°)

satisfy o = OGood(P, R) N (t_div U blame®). States in Spgr that are not
compatible are called incompatible.

Example 3.6 Note that states in which one of the invariants is violated are
always error states. By reasoning as before, one can show that every state
((bo,70),v) or {(by,70),v) in B® R with v(z) > 3 is incompatible.

A crucial result is that given a location ¢ the set of states (g, z) from
which the Input player can win the goal OGood(P, R) N (t_div U blame®) is
expressible as a clock condition, which we denote by Compatpgr(q). The
clock conditions Compatpgr(¢) can be computed with the game theoretical
algorithms discussed in [dAHS02].

Example 3.7 Example 3.6 shows Compat gy (bo, r0) = Compat gg p(b1,70) =
y < 3.

The composition P||R is obtained by restricting the product P ® R to
those states from which the Input player can avoid all errors, that is, by
strengthening the input invariants Invhg z(q) to Compat pgr(q).

Definition 14 The composition P||R is obtained from the product P ® R
by replacing for each location ¢ € Qpgr the input invariant Invpgg(g) with
Compat pg r(q)-

Example 3.8 Substituting the input invariants in B® R yields the compo-
sition B||R shown in Figure 3(d).

3.5 Properties of timed interface automata

The result below states that if we compose two well-formed and compatible
interfaces, we get a well-formed interface. As well-formedness corresponds to
the interface being useful in some environment, we see that composing two
useful interfaces that can be used together, yields another useful interface.
Note that this result trivially holds in the untimed case.

Theorem 1 Let P and R be composible TIAs. If P and R compatible and
well-formed, then P||R is well-formed as well.

Corollary 3.9 Let P and R be composible TIAs. Then P and R be compatible
if and only if [P||R] has an initial state.

As before, we write P = R if P and R are identical once we remove all
unreachable states. Then interface composition is associative upto =.

18

Theorem 2 Let P, R, and M be pairwise composable TIAs. Then
(PlR)|[M = P|(R|M).

References

[Abr96] S. Abramsky. Semantics of interaction. In H. Kirchner, editor,
Trees in Algebra and Programming — CAAP’96, Proc. 21st Int. Coll.,
Linkoping, volume 1059 of Lect. Notes in Comp. Sci., page 1. Springer-
Verlag, 1996.

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theor. Comp.
Sci., 126:183-235, 1994.

[AH99] R. Alur and T.A. Henzinger. Reactive modules. Formal Methods in
System Design, pages 7-48, 1999.

[CAAHT02] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, Marcin Jurdziniski, and
F.Y.C. Mang. Interface compatibility checking for software modules.
In CAV 02: Proc. of 14th Conf. on Computer Aided Verification, Lect.
Notes in Comp. Sci. Springer-Verlag, 2002.

[CAAHMO02] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang.
Synchronous and bidirectional component interfaces. In CAV 02: Proc.
of 14th Conf. on Computer Aided Verification, Lect. Notes in Comp.
Sci. Springer-Verlag, 2002.

[CAAHS03] A. Chakrabarti, L. de Alfaro, T.A. Henzinger, and M. Stoelinga.
Resource interfaces. In Proceedings of the Third International
Workshop on Embedded Software (EMSOFT 2003), Lect. Notes in
Comp. Sci. Springer-Verlag, 2003.

[CMCHGY6] E. Clarke, K. McMillan, S. Campos, and V. Hartonas-Garmhausen.
Symbolic model checking. In CAV 96: Proc. of 8th Conf. on Computer
Aided Verification, Lect. Notes in Comp. Sci., pages 419-422. Springer-
Verlag, 1996.

[dA03] L. de Alfaro. Game models for open systems. In Int. Symposium on
Verification celebrating Zohar Manna’s 64th Birthday, volume 2772 of
Lect. Notes in Comp. Sci. Springer-Verlag, 2003.

[dAHOla] L. de Alfaro and T.A. Henzinger. Interface automata. In Proceedings
of the 8th European Software Engineering Conference and the 9th ACM

SIGSOFT Symposium on the Foundations of Software Engineering
(ESEC/FSE), pages 109-120. ACM Press, 2001.

[dAHO1b] L. de Alfaro and T.A. Henzinger. Interface theories for component-
based design. In EMSOFT 01: 1st Intl. Workshop on Embedded
Software, volume 2211 of Lect. Notes in Comp. Sci., pages 148-165.
Springer-Verlag, 2001.

19

[dAHS02] L. de Alfaro, T.A. Henzinger, and M. Stoelinga. Timed interfaces.
In Proceedings of the Second International Workshop on Embedded
Software (EMSOFT 2002), Lect. Notes in Comp. Sci. Springer-Verlag,
2002.

[Dil88] D.L. Dill. Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits. MIT Press, 1988.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output
automata. CWI Quarterly, 2(3):219-246, September 1989.

[MMT91] M. Merritt, F. Modugno, and M. Tuttle. Time constrained automata.
In CONCUR’91: Concurrency Theory. 2nd Int. Conf., volume 527 of
Lect. Notes in Comp. Sci., pages 408-423. Springer-Verlag, 1991.

[RRO1] S.K. Rajamani and J. Rehof. A behavioral module system for the pi-
calculus. In Proc. SAS 01, Static Analysis Symposium, volume 2126
of Lect. Notes in Comp. Sci., pages 375-394. Springer-Verlag, 2001.

[SGSAL98| R. Segala, G. Gawlick, J. Sggaard-Andersen, and N. Lynch. Liveness
in timed and untimed systems. Information and Computation,
141(2):119-171, 1998.

20

	Introduction
	Interface Automata
	Compatibility and composition
	Properties of interface automata

	Timed Interface Automata
	The timed interface model
	The Game underlying an Interface
	Well-formedness
	Product and composition
	Properties of timed interface automata

	References

