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t. Re
ently, a large number of equivalen
es for probabilisti
 automata has beenproposed in the literature. Ex
ept for the probabilisti
 bisimulation of Larsen & Skou, noneof these equivalen
es has been 
hara
terized in terms of an intuitive testing s
enario. In ourview, this is an undesirable situation: in the end, the behavior of an automaton is what anexternal observer per
eives. In this paper, we propose a simple and intuitive testing s
e-nario for probabilisti
 automata and we prove that the equivalen
e indu
ed by this s
enario
oin
ides with the tra
e distribution equivalen
e proposed by Segala.1 Introdu
tionA fundamental idea in 
on
urren
y theory is that two systems are deemed to be equivalent if they
annot be distinguished by observation. Depending on the power of the observer, di�erent notionsof behavioral equivalen
e arise. For systems modeled as labeled transition systems, this idea hasbeen thoroughly explored and a large number of behavioral equivalen
es has been 
hara
terizedoperationally, algebrai
ally, denotationally, logi
ally, and via intuitive \testing s
enarios" (also
alled \button pushing experiments"). We refer to Van Glabbeek [Gla01℄ for an ex
ellent overviewof results in this area of 
omparative 
on
urren
y semanti
s.Testing s
enarios provide an intuitive understanding of a behavioral equivalen
e via a ma
hinemodel. A pro
ess is modeled as a bla
k box that 
ontains as its interfa
e to the outside world(1) a display showing the name of the a
tion that is 
urrently 
arried out by the pro
ess, and (2)some buttons via whi
h the observer may attempt to in
uen
e the exe
ution of the pro
ess. Apro
ess autonomously 
hooses an exe
ution path that is 
onsistent with its position in the labeledtransition system sitting in the bla
k box. Tra
e semanti
s, for instan
e, is explained in [Gla01℄with the tra
e ma
hine, depi
ted in Figure 1 on the left. As one 
an see, this ma
hine has no
b a
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...Fig. 1. The tra
e ma
hine (left) and the failure tra
e ma
hine (right).buttons at all. A slightly less trivial example is the failure tra
e ma
hine, depi
ted in Figure 1? Resear
h supported by PROGRESS Proje
t TES4199, Veri�
ation of Hard and Softly Timed Systems(HaaST). A preliminary version of this paper appeared in the PhD thesis of the �rst author [Sto02a℄.



on the right. Apart from the display, this ma
hine 
ontains as its interfa
e to the outside world aswit
h for ea
h observable a
tion. By means of these swit
hes, an observer 
an determine whi
ha
tions are free and whi
h are blo
ked and may be 
hanged at any time during a run of a pro
ess.The display be
omes empty if (and only if) a pro
ess 
annot pro
eed due to the 
ir
umstan
e thatall a
tions are blo
ked. If, in su
h a situation, the observer 
hanges her mind and allows one of thea
tions the pro
ess is ready to perform, an a
tion will be
ome visible again in the display. Figure2 gives an example of two labeled transition systems that 
an be distinguished by the failure tra
e
d
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Fig. 2. Tra
e equivalent but not failure tra
e equivalent.ma
hine but not by the tra
e ma
hine. Sin
e both transition systems have the same tra
es (", a,ab, a
, af , a
d and a
e), no di�eren
e 
an be observed with the tra
e ma
hine. However, via thefailure tra
e ma
hine an observer 
an see a di�eren
e by �rst blo
king a
tions 
 and f , and onlyunblo
king a
tion 
 if the display be
omes empty. In this s
enario an observer of the left systemmay see an e, whereas in the right system the observer may see a d, but no e. We refer to [Gla01℄for an overview of testing s
enarios for labeled transition systems.Probabilisti
 automata have be
ome a popular mathemati
al framework for the spe
i�
ationand analysis of probabilisti
 systems. They have been developed by Segala [Seg95b,SL95,Seg95a℄and serve the purpose of modeling and analyzing asyn
hronous, 
on
urrent systems with dis
reteprobabilisti
 
hoi
e in a formal and pre
ise way. We refer to [Sto02b℄ for an introdu
tion to prob-abilisti
 automata, and a 
omparison with related models. In this paper, we propose and studya simple and intuitive testing s
enario for probabilisti
 automata: we just add a reset button tothe tra
e ma
hine. The resulting tra
e distribution ma
hine is depi
ted in Figure 3. By resetting
c

resetFig. 3. The tra
e distribution ma
hine.the ma
hine it returns to its initial state and starts again from s
rat
h. In the non-probabilisti

ase the presen
e of a reset button does not make a di�eren
e1, but in the probabilisti
 
ase it1 For this reason, the reset button does not o

ur in the testing s
enarios of [Gla01℄. An obvious alternativeto the reset button would be a on/o� button. 2



does: we 
an observe probabilisti
 behavior by repeating experiments and applying methods fromstatisti
s. Consider the two probabilisti
 automata in Figure 4. Here the ar
s indi
ate probabilisti
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bFig. 4. Probabilisti
 automata representing a fair and an unfair 
oin.
hoi
e (as opposed to the nondeterministi
 
hoi
e in Figure 2), and probabilities are indi
atedadja
ent to the edges. These automata represent a fair and an unfair 
oin, respe
tively. We assumethat the tra
e distribution ma
hine has an \ora
le" at its disposal whi
h resolves the probabilis-ti
 
hoi
es a

ording to the probability distributions spe
i�ed in the automaton. As a result, anobserver 
an distinguish the two systems of Figure 4 by repeatedly running the ma
hine until thedisplay be
omes empty and then restart it using the reset button. For the left pro
ess the numberof o

urren
es of tra
e ab will approximately equal the number of o

urren
es of tra
e a
, whereasfor the right pro
ess the ratio of the o

urren
e of the two tra
es will 
onverge to 1 : 2. Elementarymethods from statisti
s allow one to 
ome up with pre
ise de�nitions of distinguishing tests.The situation be
omes more interesting when both probabilisti
 and nondeterministi
 
hoi
esare present. Consider the probabilisti
 automaton in Figure 5. If we repeatedly run the tra
e
1/3
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b dFig. 5. The 
ombination of probabilisti
 and nondeterministi
 
hoi
e.distribution ma
hine with this automaton inside, the ratio between the various tra
es does notneed to 
onverge to a �xed value. However, if we run the ma
hine suÆ
iently often we will observethat a weighted sum of the number of o

urren
es of tra
es a
 and ad will approximately equalthe number of o

urren
es of tra
es ab. Restri
ting attention to the 
ases where the left transitionhas been 
hosen, we observe 12#[a
℄ � #[ab℄. Restri
ting attention to the 
ases where the righttransition has been 
hosen, we observe 13#[ad℄ � #[ab℄. Sin
e in ea
h exe
ution either the left orthe right transition will be sele
ted, we have:12#[a
℄ + 13#[ad℄ � #[ab℄:Even though our testing s
enario is simple, the 
ombination of nondeterministi
 and probabilisti

hoi
e makes it far from easy to 
hara
terize the behavioral equivalen
e on probabilisti
 automata3



whi
h it indu
es. The main te
hni
al 
ontribution of this paper is a proof that the equivalen
eon probabilisti
 automata indu
ed by our testing s
enario 
oin
ides with the tra
e distributionequivalen
e proposed by Segala [Seg95a℄.Being a �rst step, this paper limits itself to a simple 
lass of probabilisti
 pro
esses and toobservers with limited 
apabilities. First of all, only sequential pro
esses are investigated: pro
esses
apable of performing at most one a
tion at a time. Furthermore, we only study 
on
rete pro
essesin whi
h no internal a
tions o

ur. Finally, observers 
an only intera
t with ma
hines in an ex-tremely limited way: apart from observing termination and the o

urren
e of a
tions, the only wayin whi
h they 
an in
uen
e the 
ourse of events is via the reset button2. It will be interesting toextend our result to ri
her 
lasses of pro
esses and more powerful observers, and to 
onsider forinstan
e a probabilisti
 version of the failure tra
e ma
hine des
ribed earlier in this introdu
tion.Related work Several testing preorders and equivalen
es for probabilisti
 pro
esses have been pro-posed in the literature [Chr90,Seg96,GN98,CDSY99,JY01℄. All these papers study testing relations(i.e. testing equivalen
es or preorders) in the style of De Ni
ola and Hennesy [DNH84℄. That is,they de�ne a test as a (probabilisti
) pro
ess that intera
ts with a system via shared a
tions andthat reports su

ess or failure in some way, for instan
e via su

ess states or su

ess a
tions. Whena test is run on a system, the probability on su

ess is 
omputed, or if nondeterminism is presentin either the test or the system, a set of these. By 
omparing the probabilities on su

ess, one
an say whether or not two systems are in the testing equivalen
e or preorder. For instan
e, twosystems A and B are in the testing preorder of [JY01℄ if and only if for all tests T the maximalprobability on su

ess in A k T is less than or equal to the maximal probability on su

ess inB k T . The di�erent testing relations in the mentioned papers arise by 
onsidering di�erent kindsof probabilisti
 systems, by studying tests with di�erent power (purely nondeterministi
 tests, �nitetrees or unrestri
ted probabilisti
 pro
esses) and by using di�erent ways to 
ompare two systemsunder test (e.g. may testing versus must testing). All of the mentioned papers provide alternative
hara
terizations of their testing relation in terms of tra
e{based relations.Thus, these testing relations are button pushing experiments in the sense that a test intera
tswith a system via syn
hronization on shared a
tions. However, in our opinion these relations are notentirely observational, be
ause it is not des
ribed how the probability on su

ess 
an be observed.In our view, this is an undesirable situation: in the end, the behavior of an automaton is what anexternal observer per
eives. Therefore, we believe that any behavioral equivalen
e should either be
hara
terized via some plausible testing s
enario, or be stri
tly �ner than su
h an equivalen
e andbe justi�ed via 
omputational arguments.The only other paper 
ontaining a 
onvin
ing testing s
enario for probabilisti
 systems is byLarsen & Skou [LS91℄. They de�ne a notion of tests for rea
tive probabilisti
 pro
esses, that is,pro
esses in whi
h all outgoing transitions of a state have di�erent labels. Furthermore, the ob-server is allowed to make arbitrary many 
opies of any state. For those tests, a fully observable
hara
terization of probabilisti
 bisimulation based on hypothesis testing is given. (We note that
opies of tests 
an both serve to dis
over the bran
hing stru
ture of a system { as in the nonde-terministi
 
ase { and to repeat a 
ertain experiment a number of times.) Our work di�ers fromthe approa
h in [LS91℄ in the following aspe
ts.{ We present our results in the more general probabilisti
 automaton model, whereas [LS91℄ 
on-siders the rea
tive model. As a 
onsequen
e, the 
omposition of a system and a test in [LS91℄is purely probabilisti
, that is, it does not 
ontain nondeterministi
 
hoi
es, and theory from
lassi
al hypothesis testing applies. In 
ontrast to this, the probabilisti
 automata that we 
on-sider do 
ontain nondeterministi
 
hoi
es. To distinguish between likely and unlikely out
omes2 This ensures that our testing s
enario truly is a \button pushing experiment" in the sense of Milner[Mil80℄! 4



in these automata, we have to extend (some parts of) hypothesis testing with nondeterminism,whi
h is te
hni
ally quite involved.{ The main result of this paper, whi
h is the 
hara
terization of tra
e distribution in
lusion as atesting s
enario, is established for all �nitely bran
hing systems, whi
h is mu
h more generalthan the minimal derivation assumption needed for the results in [LS91℄.{ The possibility in the testing s
enario of Larsen & Skou to make 
opies of pro
esses in anystate (at any moment), is justi�ed for instan
e in the 
ase of a sequential system where one
an make 
ore dumps at any time. But for many distributed systems, it is not possible tomake 
opies in any but the initial state. Therefore, it makes sense to study s
enarios in whi
h
opying is not possible, as done in this paper.Overview Even though readers may not expe
t this after our informal introdu
tion, the rest ofthis paper is a
tually quite te
hni
al. Se
tion 2 re
alls the de�nitions of probabilisti
 automataand their behavior and Se
tion 3 presents the 
hara
terization of the testing preorder indu
ed bythe tra
e distribution ma
hine as tra
e distribution in
lusion. Sket
hes of some of the proofs arein
luded in Appendix A. For 
omplete proofs of all our results we refer to the full version of thispaper [SV03℄.2 Probabilisti
 AutomataWe �rst re
all a few basi
 notions from probability theory and introdu
e some notation.De�nition 1. A probability distribution over a set X is a fun
tion � : X ! [0; 1℄ su
h thatPx2X �(x) = 1. We denote the set of all probability distributions over X by Distr(X). The proba-bility distribution that assigns 1 to a 
ertain element x 2 X and 0 to all other elements, is 
alledthe Dira
 distribution over x and is denoted by fx 7! 1g.De�nition 2. A probability spa
e is a triple (
;F ;P), where{ 
 is a set, 
alled the sample spa
e,{ F � 2
 is �-�eld, i.e. a 
olle
tion of subsets of 
 whi
h is 
losed under 
ountable3 union and
omplement, and whi
h 
ontains 
,{ P : F ! [0; 1℄ is a probability measure on F , whi
h means that P[
℄ = 1 and for any 
ountable
olle
tion fCigi of pairwise disjoint subsets in F we have P[[i Ci℄ =PiP[Ci℄.Now, we re
all the notion of a probabilisti
 automaton from Segala and Lyn
h [Seg95a,SL95℄.Basi
ally, a probabilisti
 automaton is a non-probabilisti
 automaton with the only di�eren
e that,rather than a single state, the target of a transition is a probability distribution over next states.We 
onsider systems with only external a
tions, taken from a given, �nite set A
t . For te
hni
alreasons, we assume that A
t 
ontains a spe
ial element Æ, referred to as the halting a
tion.De�nition 3. A probabilisti
 automaton (PA) is a triple A = (S; s0; �) with{ S a set of states,{ s0 2 S the initial state, and{ � � S � A
t �Distr(S) a transition relation.We write s a! � for (s; a; �) 2 � and sa;� t if s a�! � and �(t) > 0. We refer to the 
omponents ofA as SA; s0A; �A. Moreover, A is �nitely bran
hing if for ea
h state s, the set f(a; �; t) j sa;� tg is�nite, i.e. if every state in A has �nitely many outgoing transitions and the target distribution ofea
h transition assigns a positive probability to �nitely many elements.3 In our terminology, 
ountable obje
ts in
lude �nite ones.5



For the remainder of this se
tion, we �x a PA A = (S; s0; �) and assume that � 
ontains notransition labeled with Æ.As in the non-probabilisti
 
ase, an exe
ution of A is obtained by resolving the nondeterministi

hoi
es in A. This 
hoi
e resolution is des
ribed by an adversary, a fun
tion whi
h in ea
h stateof the system determines the next transition to be taken. Adversaries are (1) randomized, i.e.make their 
hoi
es probabilisti
ally, (2) history-dependent, i.e. make 
hoi
es depending on thepath leading to the 
urrent state, and (3) partial, i.e. they may 
hoose to halt the exe
ution at anypoint in time. For te
hni
al simpli
ity, we prefer adversaries that only produ
e in�nite sequen
es,even if the exe
ution is halted. Therefore, we de�ne the adversaries of a PA A via its haltingextension.De�nition 4. A path of A is an alternating, �nite or in�nite sequen
e� = s0a1�1s1a2�2s2 : : :of states, a
tions, and distributions over states su
h that (1) � starts with the initial state,4 i.e. s0 =s0, (2) if � is �nite, it ends with a state, (3) siai+1;�i+1 si+1, for ea
h non�nal i. We set the lengthof �, notation j�j, to the number of a
tions o

urring in it and denote the set of all �nite paths ofA by Path�(A). If � is �nite, then last(�) denotes its last state. We de�ne the asso
iated tra
e of�, notation tra
e(�), by tra
e(�) = a1a2a3 : : :.De�nition 5. The halting extension of A is the PA ÆA = (S [ f?g; s0; �0), where �0 is the leastrelation su
h that1. s Æ�!ÆA f?7! 1g,2. s a�!A � =) s a�!ÆA (� [ f?7! 0g).Here we assume that ? is fresh. The transitions with label Æ are referred to as halting transitions.De�nition 6. A (partial, randomized, history-dependent) adversary E of A is a fun
tionE : Path�(ÆA)! Distr(A
t �Distr(SÆA))su
h that, for ea
h �nite path �, if E(�)(a; �) > 0 then last(�) a�!ÆA �.We say that E is deterministi
 if, for ea
h �, E(�) is a Dira
 distribution. An adversary Ehalts on a path � if it extends � with the halting transition, i.e.,E(�)(Æ; f?7! 1g) = 1:For k 2 N, we say that the adversary E halts after k steps if it halts on all paths with length greaterthan or equal to k. We denote by Adv(A; k) the set of all adversaries of A that halt after k stepsand by Dadv(A; k) the set of deterministi
 adversaries in Adv(A; k). Finally, we 
all E �nite ifE 2 Adv(A; k), for some k 2 N.The probabilisti
 behavior of an adversary is summarized by its asso
iated probability spa
e.First we introdu
e the fun
tion QE , whi
h yields the probability that E assigns to �nite paths.De�nition 7. Let E be an adversary of A. The fun
tion QE : Path�(ÆA) ! [0; 1℄ is de�nedindu
tively by QE(s0) = 1 and QE(�a�s) = QE(�) �E(�)(a; �) � �(s).De�nition 8. Let E be an adversary of A. The probability spa
e asso
iated to E is the probabilityspa
e given by4 Here we deviate from the standard de�nition, as we do not need paths starting from non-initial states.6



1. 
E = Path1(ÆA),2. FE is the smallest �-�eld that 
ontains the set fC� j � 2 Path�(ÆA)g, where C� = f�0 2 
E j� is a pre�x of �0g,3. PE is the unique measure on FE su
h that PE [C� ℄ = QE(�), for all � 2 Path�(ÆA).The fa
t that (
E ;FE ;PE) is a probability spa
e follows from standard measure theory arguments,see for instan
e [Coh80℄.As for non-probabilisti
 automata, the visible behavior of A is obtained by removing the non-visible elements (in our 
ase, the states) from an exe
ution (adversary). This yields a tra
e distri-bution of A, whi
h assigns a probability to (
ertain) sets of tra
es.De�nition 9. The tra
e distribution H of an adversary E, denoted trd(E ), is the probability spa
egiven by1. 
H = A
t1,2. FH is the smallest �-�eld that 
ontains the sets fC� j � 2 A
t�g, where C� = f�0 2 
H j� is a pre�x of �0g,3. PH is the unique measure on FH su
h that PH [X ℄ = PE [tra
e�1(X)℄.Standard measure theory arguments [Coh80℄ ensure again that that trd(E ) is well-de�ned. The setof tra
e distributions of adversaries of A is denoted by trd(A) and trd(A; k) denotes the set oftra
e distributions that arise from adversaries of A halting after k steps. We write A �TD B iftrd(A) = trd(B); A vTD B if trd(A) � trd(B) and A vkTD B if trd(A; k) � trd(B; k).3 Chara
terization of Testing PreorderThis se
tion 
hara
terizes the observations of a tra
e distribution ma
hine. That is, we de�nethe set Obs(A) of sequen
es of tra
es that are likely to be produ
ed when the tra
e distributionma
hine operates as spe
i�ed by the PA A. Then, our main 
hara
terization theorem states thattwo PAs have the same observations if and only if they have the same tra
e distributions.De�ne a sample O of depth k and width m to be an element of (A
tk)m, i.e., a sequen
e 
onsistingof m sequen
es of a
tions of length k. A sample des
ribes what an observer may potentially re
ordwhen running m times an experiment of length k on the tra
e distribution ma
hine. Note thatif, during a run, the ma
hine halts before k observable a
tions have been performed, we 
an stillobtain a sequen
e of k a
tions by atta
hing a number of Æ a
tions at the end. We write freq(O)for the fun
tion in A
tk ! Q that assigns to ea
h sequen
e � in A
tk the frequen
y with whi
h �o

urs in O. That is, for O = �1; �2; : : : ; �m letfreq(O)(�) = # fi j �i = �; 1 � i � mgm :Note that freq(O) is a probability distribution over (A
tk)m. We base our statisti
al analysis onfreq(O) rather than just O. This means we ignore some of the information 
ontained in samples,whi
h more advan
ed statisti
al methods may want to explore. If, for instan
e, we 
onsider thesample O of depth one and width 2000 that 
onsists of 1000 head a
tions followed by 1000 taila
tions, then it is quite unlikely that this will be a sample of a tra
e distribution ma
hine imple-menting a fair 
oin. However, the frequen
y fun
tion freq(O) 
an very well be generated by a fair
oin.Assume that the pro
ess sitting in the bla
k box is given by the PA A. This means that, whenoperating, the tra
e distribution ma
hine 
hooses a tra
e A a

ording to some tra
e distribution H7



of A. Thus, when running m experiments on the tra
e distribution, we obtain a sample O lengthm generated by a sequen
e of m tra
e distributions in trd(A; k).For a tra
e distribution H 2 trd(A; k), we denote by �H : A
tk ! [0; 1℄ the probabilitydistribution given by �H(�) = PH [C� ℄. Sin
e H halts after k steps, �H(�) yields the probabilitythat the sequen
e � is pi
ked when we generate a tra
e a

ording toH . In other words, �H(�) yieldsthe probability that during a run, the tra
e distribution ma
hine produ
es the a
tion sequen
e �,when it resolves its nondeterministi
 
hoi
es a

ording to an adversary E with trd(E ) = H . Now,we generate a sample of width m by independently 
hoosingm sequen
es a

ording to distributionsH1; : : :Hm respe
tively. Then, the probability to pi
k the sample O = �1; �2; : : : ; �m is given byPH1;:::;Hm [O℄ = mYi=1�Hi(�i):Finally, the probability that an element from the set O � (A
tk)m is pi
ked equalsPH1;:::;Hm [O℄ = XO2OPH1;:::;Hm [O℄:Given H1; H2; : : : ; Hm, we want to distinguish between samples that are likely to be generatedby H1; H2; : : : ; Hm, and those whi
h are not. To do so, we �rst �x an � 2 (0; 1) as the desired levelof signi�
an
e. Our goal is to de�ne the set KH1;H2;:::;Hm , of likely out
omes in su
h a way that1. PH1 ;:::;Hm [KH1;H2;:::;Hm ℄ > 1� �,2. KH1 ;H2;:::;Hm is, in some sense, minimal.Condition (1) will ensure that, most likely, H1; : : : ; Hm generate an element in KH1;H2;:::;Hm . Theprobability that we reje
t O as a sample generated by H1; : : : ; Hm while it is so, is at most�. Condition (2) will ensure that PH01;:::;H0m [KH1;H2;:::;Hm ℄ is as small as possible for sequen
esH 01; : : : ; H 0m di�erent from H1; : : : ; Hm. (How small this probability is highly depends on whi
hH 0i 's we take.) Therefore, the probability that we 
onsider O to be an exe
ution while it is not,is as small as possible. In terminology from hypothesis testing: our null hypothesis states thatO is generated by H1; : : : ; Hm and 
ondition (1) bounds the probability on false reje
tion and(2) minimizes the probability on false a

eptan
e. The set KH1;H2;:::;Hm is the 
omplement of the
riti
al se
tion. Note that in 
lassi
al hypothesis testing all subsequent experiments �1; : : : ; �m aredrawn from the same probability distribution, whereas in our setting, ea
h experiment is governedby a di�erent probability me
hanism given by Hi.The idea behind the de�nition of KH1;:::;Hm is as follows. The expe
ted frequen
y of a sequen
e� in a sample generated by H1; : : : ; Hm is given byEH1;:::;Hm(�) = 1m mXi=1 �Hi(�):Sin
e 
u
tuations around the expe
ted value are likely, we allow deviations of at most " from theexpe
ted value. Here, we 
hoose " as small as possible, but large enough su
h that the probabilityon a sample whose frequen
y deviates at most " from EH1;:::;Hm is bigger than �. Then, 
onditions(1) and (2) above are met. Formally, de�ne the "-sphere B"(�) with 
enter � asB"(�) = f� 2 Distr(A
tk) j dist(�; �) � "g;where dist is the standard distan
e on Distr(A
tk) given by dist(�; �) =qP�2A
tk j�(�)� �(�)j2.8



De�nition 10. For a sequen
e H1; H2; : : : Hm of tra
e distributions in trd(A; k), we de�ne KH1;:::Hmas the smallest5 sphere B"(EH1;:::Hm) su
h thatPH1;:::;Hm [fO 2 (A
tk)m j freq(O) 2 B"(EH1;:::Hm)g℄ > 1� �:We say that O is an observation of A (of depth k and width m) ifO 2 KH1;:::;Hm :We write Obs(A) for the set of observations of A.Example 1. We take � = 0:05 as the level of signi�
an
e. First, 
onsider the leftmost PA in Figure 4and samples of depth 2 and width 100. This means that the probabilisti
 tra
e ma
hine is run 100times and ea
h time we get a tra
e of length 2.Then any sample O1 in whi
h the sequen
e ab o

urs 42 times and a
 58 times is an observationof A, but samples in whi
h ab o

urs 38 times and a
 62 times are not. Let E be the adversarythat, in ea
h state of A, s
hedules with probability one the unique transition leaving that state,if there is su
h a transition. Otherwise, E s
hedules the halting transition with probability one.For H = trd(E ), we have �H(ab) = �H(a
) = 12 and �H(�) = 0 for all other sequen
es. LetH100 = (H1; : : :H100) be sequen
e of adversaries with Hi = H . Then EH100 = �H and, sin
e �Hassigns a positive probability only to ab and a
, we have that PH100 [B"(�H)℄ = PH100 [fO1 j 12�" �freq(O1)(ab) � 12 + "g℄. One 
an show that then smallest sphere su
h that PH100 [B"(�H )℄ > 0:95is obtained by taking " = 110 . Sin
e freq(O1) 2 B"(�H ), O1 is an observation.Then, a sample O2 
ontaining with 20 ÆÆ's, 42 ab's and 58 a
's is an observation of depth 2 andwidth 120. It arises from taking 100 times adversary E as above and 20 adversaries that halt withprobability one on every path. Now, 
onsider the automaton in Figure 5. Consider the s
hedulerE3 that in the initial state, s
hedules both a transitions with probability 12 . In the other states,E3 s
hedules with probability one the unique outgoing transition if avaible and halts otherwise.Let H3 = trd(E3 ) and let H1203 be the sequen
e 
onsisting of 120 times the adversary H3. Theexpe
ted frequen
y of H1203 is 724 for ab, 824 for a
, and 924 for ad. Then KH1203 = B 111 (EH1203 ) andfor instan
e, the sequen
e with 40 ab's, 40 a
's and 40 ad's is an observation of the mentioned PA.We 
an now state our main 
hara
terization theorem.Theorem 1. For all �nitely bran
hing PAs A and BObs(A) = Obs(B) () A �TD B:A
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A AppendixThis appendix proves the main 
hara
terization theorem of this paper, whi
h says that the testingequivalen
e indu
ed by the tra
e distribution ma
hine 
oin
ides with the tra
e distribution equiva-len
e. Our proof uses various auxiliary results whi
h are stated, but the reader is referred to [SV03℄for their proofs.The �rst result we need states that ea
h �nite adversary in a �nitely bran
hing PA 
an bewritten as a 
onvex 
ombination of deterministi
 adversaries.Lemma 1. Let k 2 N, let A be a �nitely bran
hing PA and let E be an adversary in Adv(A; k).Then E 
an be written as a 
onvex 
ombination of deterministi
 adversaries in Dadv(A; k), i.e.,there exists a probability distribution � over Dadv(A; k) su
h that, for all �, a and �,E(�)(a; �) = XD2Dadv(A;k)�(D) �D(�)(a; �) and QE(�) = XD2Dadv(A;k)�(D) �QD(�):A 
ru
ial result needed to 
hara
terize the testing equivalen
e is the Approximation Indu
tionPrin
iple (AIP) (
f. [BK86,BBK87℄). This result is interesting in itself and was �rst observed in[Seg96℄. A proof 
an be found in [SV03℄.Theorem 2 (Approximation Indu
tion Prin
iple). Let A and B be PAs and let B be �nitelybran
hing. Then 8k: A vkTD B =) A vTD B:By Cheby
hev's Inequality, one easily derives the following.Proposition 1. Let �; " > 0. Then there exists an m0 2 N su
h that the following holds. For allm � m0, and all sequen
es X1; X2; : : : ; Xm of m independent random variables, where Xi has aBernoulli distribution with parameter pi, for some pi 2 [0; 1℄ (i.e. P[Xi = 1℄ = pi;P[Xi = 0℄ =1� pi), we have that P[jZm �E[Zm℄j > "℄ � �:Here, Zm = 1mPmi=1Xi yields the frequen
y of the number of times that a 1 has been drawn in(X1; : : : ; Xm).One 
an reformulate this proposition as follows.Corollary 1. Let �; " > 0 and k 2 N. Then there exists an m0 2 N su
h that for all m � m0 andall tra
e distributions H1; H2; : : : ; Hm 2 trd(A; k)PH1;:::;Hm [fO 2 (A
tk)m j freq(O) 2 B"(EH1;:::;Hm)℄ > 1� �:The following results are elementary. The se
ond part follows from Lemma 1.Proposition 2. 1. H = K () �H = �K .2. For every H 2 trd(A; k), �H 
an be written as a 
onvex 
ombination of distributions �Hi , whereHi is generated by a deterministi
 adversary. That is, there exists a probability distribution �over the set Dadv (A; k) su
h that, for all � 2 A
tk, �K(�) =PD2D �(D) � �trd(D)(�):Now, we 
an prove our main theorem. 11



Theorem 3. For all �nitely bran
hing PAs A and BObs(A) = Obs(B) () A �TD B:Proof: The \(=" follows immediately from the de�nitions. To prove \ =) " assume thatA 6vTD B. We show that Obs(A) 6� Obs(B).By Theorem 2, there exists a k su
h that A 6vkTD B, i.e. trd(A; k) 6� trd(B; k). Let H be atra
e distribution in trd(A; k) that is not a tra
e distribution in trd(B; k). Then, Proposition 2(1)
on
ludes that there is no K 2 trd(B; k) su
h that �H = �K . Moreover, Proposition 2(2) statesthat the set f�K j K 2 trd(B; k)g is a polyhedron. Therefore, there is minimal distan
e d > 0between �H and any �K with K in trd(B; k).We write Hm for the sequen
e (H1; H2; : : : ; Hm) with Hi = H for all 1 � i � m. By Corollary 1,we 
an �nd mA and mB su
h that for all m � mA and m � mB and all tra
e distributionsK1;K2; : : : ;Km in trd(B; k)PHm [fO 2 (A
tk)m j freq(O) 2 B d3 (EHm)g℄ > 1� �and PK1;:::;Km [fO 2 (A
tk)m j freq(O) 2 B d3 (EK1;:::;Km)g℄ > 1� �:Hen
e, KHm � B d3 (EHm) = B d3 (�H). On the other hand, for 1 � i � m, let Ei 2 trd(B; k)be su
h that Ki = trd(Ei ) and take K = trd(() 1mPmi=1 Ei). One easily shows that EK1;:::;Km =EKm = �mK . Therefore, KK1;:::;Km � B d3 (EK1;:::;Km) = B d3 (�K). Sin
e j�H ��K j � d > 0, we haveB d3 (�H)\B d3 (�K) = ;, and therefore, KHm \KK1;:::;Km = ;. Hen
e, none of the observations inKHm is an observation of B, i.e. Obs(A) 6� Obs(B). �
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