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eives. In this paper, we propose and study a sim-ple and intuitive testing s
enario for probabilisti
 automata. We provethat the equivalen
e indu
ed by this s
enario 
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iple.1 Introdu
tionA fundamental idea in 
on
urren
y theory is that two systems are deemed tobe equivalent if they 
annot be distinguished by observation. Depending on thepower of the observer, di�erent notions of behavioral equivalen
e arise. For sys-tems modeled as labeled transition systems, this idea has been thoroughly ex-plored and a large number of behavioral equivalen
es has been 
hara
terizedoperationally, algebrai
ally, denotationally, logi
ally, and via intuitive \testings
enarios" (also 
alled \button pushing experiments"). We refer to Van Glabbeek[Gla01℄ for an ex
ellent overview of results in this area of 
omparative 
on
ur-ren
y semanti
s.Testing s
enarios provide an intuitive understanding of a behavioral equiva-len
e via a ma
hine model. A pro
ess is modeled as a bla
k box that 
ontains as? Resear
h supported by PROGRESS Proje
t TES4199, Veri�
ation of Hard andSoftly Timed Systems (HaaST). A preliminary version of this paper appeared inthe PhD thesis of the �rst author [Sto02a℄.



its interfa
e to the outside world (1) a display showing the name of the a
tionthat is 
urrently 
arried out by the pro
ess, and (2) some buttons via whi
hthe observer may attempt to in
uen
e the exe
ution of the pro
ess. A pro
essautonomously 
hooses an exe
ution path that is 
onsistent with its position inthe labeled transition system 
ontained in the bla
k box. Tra
e semanti
s, forinstan
e, is explained in [Gla01℄ with the tra
e ma
hine, depi
ted in Figure 1on the left. As one 
an see, this ma
hine has no buttons at all. A slightly less
b a
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...Fig. 1. The tra
e ma
hine (left) and the failure tra
e ma
hine (right).trivial example is the failure tra
e ma
hine, depi
ted in Figure 1 on the right,whi
h, apart from the display, 
ontains as its interfa
e to the outside world aswit
h for ea
h observable a
tion. By means of these swit
hes, an observer maydetermine whi
h a
tions are free and whi
h are blo
ked. This situation may be
hanged at any time during a run of a pro
ess. The display be
omes empty if(and only if) a pro
ess 
annot pro
eed due to the 
ir
umstan
e that all a
tionsare blo
ked. If, in su
h a situation, the observer 
hanges her mind and allowsone of the a
tions the pro
ess is ready to perform, an a
tion will be
ome visibleagain in the display. Figure 2 gives an example of two labeled transition sys-
d
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Fig. 2. Tra
e equivalent but not failure tra
e equivalent.tems that 
an be distinguished by the failure tra
e ma
hine but not by the tra
ema
hine. Sin
e both transition systems have the same tra
es (", a, ab, a
, af ,a
d and a
e), no di�eren
e 
an be observed with the tra
e ma
hine. However,via the failure tra
e ma
hine an observer 
an see a di�eren
e by �rst blo
king2



a
tions 
 and f , and only unblo
king a
tion 
 if the display be
omes empty. Inthis s
enario an observer of the left system may see an e, whereas in the rightsystem the observer may see a d, but no e. We refer to [Gla01℄ for an overviewof testing s
enarios for labeled transition systems.Probabilisti
 automata have be
ome a popular mathemati
al framework forthe spe
i�
ation and analysis of probabilisti
 systems. They have been devel-oped by Segala [Seg95b,SL95,Seg95a℄ and serve the purpose of modeling andanalyzing asyn
hronous, 
on
urrent systems with dis
rete probabilisti
 
hoi
e ina formal and pre
ise way. We refer to [Sto02b℄ for an introdu
tion to probabilisti
automata, and a 
omparison with related models. In this paper, we propose andstudy a simple and intuitive testing s
enario for probabilisti
 automata: we justadd a reset button to the tra
e ma
hine. The resulting tra
e distribution ma
hineis depi
ted in Figure 3. By resetting the ma
hine it returns to its initial state and
c

resetFig. 3. The tra
e distribution ma
hine.starts again from s
rat
h. In the non-probabilisti
 
ase the presen
e of a resetbutton does not make a di�eren
e1, but in the probabilisti
 
ase it does: we 
anobserve probabilisti
 behavior by repeating experiments and applying methodsfrom statisti
s. Consider the two probabilisti
 automata in Figure 4. Here the
2/31/31/21/2
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bFig. 4. Probabilisti
 automata representing a fair and an unfair 
oin.ar
s indi
ate probabilisti
 
hoi
e (as opposed to the nondeterministi
 
hoi
e inFigure 2), and probabilities are indi
ated next to the edges. These automatarepresent a fair and an unfair 
oin, respe
tively. We assume that the tra
e dis-tribution ma
hine has an \ora
le" at its disposal whi
h resolves the probabilisti
1 For this reason a reset button does not o

ur in the testing s
enarios of [Gla01℄. Anobvious alternative to the reset button would be a on/o� button.3




hoi
es a

ording to the probability distributions spe
i�ed in the automaton. Asa result, an observer 
an distinguish the two systems of Figure 4 by repeatedlyrunning the ma
hine until the display be
omes empty and then restart it usingthe reset button. For the left pro
ess the number of o

urren
es of tra
e ab willapproximately equal the number of o

urren
es of tra
e a
, whereas for the rightpro
ess the ratio of the o

urren
e of the two tra
es will 
onverge to 1 : 2. El-ementary methods from statisti
s allow one to 
ome up with pre
ise de�nitionsof distinguishing tests.The situation be
omes more interesting when both probabilisti
 and nonde-terministi
 
hoi
es are present. Consider the probabilisti
 automaton in Figure5. If we repeatedly run the tra
e distribution ma
hine with this automaton in-
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b dFig. 5. The 
ombination of probabilisti
 and nondeterministi
 
hoi
e.side, the ratio between the various tra
es does not need to 
onverge to a �xedvalue. However, if we run the ma
hine suÆ
iently often we will observe that aweighted sum of the number of o

urren
es of tra
es a
 and ad will approxi-mately equal the number of o

urren
es of tra
es ab. Restri
ting attention tothe 
ases where the left transition has been 
hosen, we observe 12#[a
℄ � #[ab℄.Restri
ting attention to the 
ases where the right transition has been 
hosen,we observe 13#[ad℄ � #[ab℄. Sin
e in ea
h exe
ution either the left or the righttransition will be sele
ted, we have:12#[a
℄ + 13#[ad℄ � #[ab℄:Even though our testing s
enario is simple, the 
ombination of nondeterminis-ti
 and probabilisti
 
hoi
e makes it far from easy to 
hara
terize the behav-ioral equivalen
e on probabilisti
 automata whi
h it indu
es. The main te
h-ni
al 
ontribution of this paper is a proof that the equivalen
e (preorder) onprobabilisti
 automata indu
ed by our testing s
enario 
oin
ides with the tra
edistribution equivalen
e (preorder) proposed by Segala [Seg95a℄. A result thatwe need to establish on the way is an Approximation Indu
tion Prin
iple (AIP)(
f. [BK86,BBK87℄) for probabilisti
 pro
esses. This prin
iple says that if two�nitely bran
hing pro
esses are equivalent up to any �nite depth, then they areequivalent.Being a �rst step, this paper limits itself to a simple 
lass of probabilisti
pro
esses and to observers with limited 
apabilities. First of all, only sequential4



pro
esses are investigated: pro
esses 
apable of performing at most one a
tionat a time. Furthermore, we only study 
on
rete pro
esses in whi
h no internala
tions o

ur. Finally, observers 
an only intera
t with ma
hines in an extremelylimited way: apart from observing termination and the o

urren
e of a
tions, theonly way in whi
h they 
an in
uen
e the 
ourse of events is via the reset button2.It will be interesting to extend our result to ri
her 
lasses of pro
esses and morepowerful observers, and to 
onsider for instan
e a probabilisti
 version of thefailure tra
e ma
hine des
ribed earlier in this introdu
tion.Related work Several testing preorders and equivalen
es for probabilisti
 pro-
esses have been proposed in the literature [Chr90,Seg96,GN98,CDSY99,JY01℄.All these papers study testing relations (i.e. testing equivalen
es or preorders)in the style of De Ni
ola and Hennesy [DNH84℄. That is, they de�ne a test as a(probabilisti
) pro
ess that intera
ts with a system via shared a
tions and thatreports su

ess or failure in some way, for instan
e via su

ess states or su

essa
tions. When a test is run on a system, the probability on su

ess is 
omputed,or if nondeterminism is present in either the test or the system, a set of these. By
omparing the probabilities on su

ess, one 
an say whether or not two systemsare in the testing equivalen
e or preorder. For instan
e, two systems A and Bare in the testing preorder of [JY01℄ if and only if for all tests T the maximalprobability on su

ess in A k T is less than or equal to the maximal probabilityon su

ess in B k T . The di�erent testing relations in the mentioned papers ariseby 
onsidering di�erent kinds of probabilisti
 systems, by studying tests withdi�erent power (purely nondeterministi
 tests, �nite trees or any probabilisti
pro
ess) and by using di�erent ways to 
ompare two systems under test (e.g. maytesting versus must testing). All of the mentioned papers provides alternative
hara
terizations of their testing relation in terms of tra
e{based relations.Thus, these testing relations are button pushing experiments in the sensethat a test intera
ts with a system via syn
hronization on shared a
tions. How-ever, in our opinion these relations are not entirely observational, be
ause it isnot des
ribed how the probability on su

ess 
an be observed. In our view, this isan undesirable situation: in the end, the behavior of an automaton is what an ex-ternal observer per
eives. Therefore, we believe that any behavioral equivalen
eshould either be 
hara
terized via some plausible testing s
enario, or be stri
tly�ner than su
h an equivalen
e and be justi�ed via 
omputational arguments.The only other paper 
ontaining a 
onvin
ing testing s
enario for probabilis-ti
 systems is by Larsen & Skou [LS91℄. They de�ne a notion of tests for rea
tiveprobabilisti
 pro
esses, that is, pro
esses in whi
h all outgoing transitions of astate have di�erent labels. Furthermore, the observer is allowed to make arbitrarymany 
opies of any state. For those tests, a fully observable 
hara
terization ofprobabilisti
 bisimulation based on hypothesis testing is given. (We note that
opies of tests 
an both serve to dis
over the bran
hing stru
ture of a system {2 This ensures that our testing s
enario truly is a \button pushing experiment" in thesense of Milner [Mil80℄! 5



as in the nondeterministi
 
ase { and to repeat a 
ertain experiment a numberof times.)More pre
isely, ea
h test T in [LS91℄ gives rise to a set of observations OT .Tests allow 
ertain properties to be tested with arbitrary 
on�den
e � 2 [0; 1℄,the so{
alled level of signi�
an
e. More pre
isely, a property � is said to betestable if for every level of signi�
an
e �, there is a test T and a partition ofobservations OT into (E�; OT nE�) su
h that (1) if � holds in a state s and T isrun in s, then it is likely that we observe an element from E�, i.e. P�[E�℄ � 1��and (2) if � does not hold, then the probability to observe an element in E� issmall: P:�[E�℄ � �. Thus, by 
he
king whether the out
ome of the test is in E�or not, we 
an �nd out whether s satis�es � and probability that the judgmentis wrong is less than �. Using the terminology from hypothesis testing, � is thenull hypothesis and E� is the 
riti
al se
tion.Then is it shown that two states in a system that satis�es the minimal deriva-tion assumption are probabilisti
ally bisimilar if and only if they satisfy exa
tlythe same testable properties. Here the minimal derivation assumption requiresthat any probability o

urring in the system is an integer multiple of some value". Thus, although not expli
itly phrased in these terms, one 
an say Larsen &Skou present a button pushing s
enario for probabilisti
 pro
esses.Our work di�ers from the approa
h in [LS91℄ in the following aspe
ts.{ We present our results in the more general PA model, whereas [LS91℄ 
onsid-ers the rea
tive model. As a 
onsequen
e, the 
omposition of a system anda test in [LS91℄ is purely probabilisti
, that is, it does not 
ontain nonde-terministi
 
hoi
es, and theory from 
lassi
al hypothesis testing applies. In
ontrast to this, the probabilisti
 automata that we 
onsider do 
ontain non-deterministi
 
hoi
es. To distinguish between likely and unlikely out
omes inthese automata, we have to extend (some parts of) hypothesis testing withnondeterminism, whi
h is te
hni
ally quite involved.{ The main result of this paper, whi
h is the 
hara
terization of tra
e distri-bution in
lusion as a testing s
enario, is established for all �nitely bran
hingsystems, whi
h is mu
h more general than the minimal derivation assump-tion needed for the results in [LS91℄.{ The possibility in the testing s
enario of Larsen & Skou to make 
opies ofpro
esses in any state (at any moment), is justi�ed for instan
e in the 
aseof a sequential system where one 
an make 
ore dumps at any time. But formany distributed systems, it is not possible to make 
opies in any but theinitial state. Therefore, it makes sense to study s
enarios in whi
h 
opyingis not possible, as done in this paper.Overview Even though readers may not expe
t this after our informal introdu
-tion, the rest of this paper is a
tually quite te
hni
al. We start in Se
tion 2 withsome mathemati
al preliminaries 
on
erning fun
tions, sequen
es and probabil-ity theory. In Se
tion 3 we re
all the de�nitions of probabilisti
 automata andtheir behavior. Se
tion 4 is entirely devoted to the proof of the AIP for proba-bilisti
 pro
esses. Se
tion 5, �nally, presents the 
hara
terization of the testing6



preorder indu
ed by the tra
e distribution ma
hine as tra
e distribution in
lu-sion.2 PreliminariesFun
tions If f is a fun
tion, then we denote the domain of f by Dom(f).The range of f , notation Ran(f), is the set ff(u) j u 2 Ug. If U is a set,then the restri
tion of f to U , notation f � U , is the fun
tion g with Dom(g) =Dom(f)\U satisfying g(u) = f(u) for ea
h u 2 Dom(g). We say that a fun
tionf is a subfun
tion of a fun
tion g, and write f � g, if Dom(f) � Dom(g) andf = g � Dom(f). A fun
tion f is 
alled �nite if Dom(f) is �nite.Sequen
es Let U be any set. A sequen
e over U is a fun
tion � from a downward
losed subset of the natural numbers to U . So the domain of a sequen
e is eitherthe set N of natural numbers, or of the form f0; : : : ; kg, for some k 2 N, or theempty set. In the �rst 
ase we say that the sequen
e is in�nite, otherwise wesay it is �nite. The sets of �nite and in�nite sequen
es over U are denoted byU� and U1, respe
tively. We will sometimes write �n rather than �(n). Thesymbol " denotes the empty sequen
e, and the sequen
e 
ontaining one elementu 2 U is denoted by u. Con
atenation of a �nite sequen
e with a �nite or in�nitesequen
e is denoted by juutaposition. We say that a sequen
e � is a pre�x ofa sequen
e �, denoted by �v�, if � = � � Dom(�). Thus �v� if either � = �,or � is �nite and � = ��0 for some sequen
e �0. If � is a nonempty sequen
ethen �rst(�) denotes the �rst element of � and, if � is also �nite, then last(�)denotes the last element of �. Finally, length(�) denotes the length of a �nitesequen
e �. A subsequen
e of an in�nite sequen
e � is an in�nite sequen
e � thatis obtained by removing �nitely or in�nitely many elements from �. Formally, �is a subsequen
e of � if there is an index fun
tion, that is a fun
tion � : N ! Nsu
h that (a) � is stri
tly monotone (i.e., n < m implies �(n) < �(m)), and (b)� = � Æ �.An elementary (but fundamental) result from Analysis is the following the-orem from Bolzano{Weierstra�.Theorem 1 (Bolzano{Weierstra�). Every bounded in�nite sequen
e in Rnhas a 
onvergent subsequen
e.Let f0, f1, f2; : : : be an in�nite sequen
e of fun
tions in U ! [0; 1℄, where Uis a �nite set. Then this sequen
e 
an be seen as a sequen
e over [0; 1℄n, wheren is the 
ardinality of U . Applying the Bolzano{Weierstra� Theorem to f0, f1,f2 : : : yields that this sequen
e has a 
onvergent subsequen
e, i.e. there existsan index fun
tion � su
h that f�(0), f�(1), f�(2); : : : has a limit (in [0; 1℄n).Probability Theory We re
all a few basi
 notions from probability theory andintrodu
e some notation. 7



De�nition 1. A probability distribution over a set U is a fun
tion � : U ![0; 1℄ su
h that Pu2U �(u) = 1. We de�ne the support of � by supp(�) = fu 2U j �(u) > 0g. It follows straightforwardly from the de�nitions that this isa 
ountable set. We denote the set of all probability distributions over U byDistr(U).We denote a probability distribution � on a 
ountable domain by enumeratingit as a set of pairs. So, if Dom(�) = fu1; u2 : : :g then denote � by fu1 7!�(u1); u2 7! �(u2) : : :g. If the domain of � is known, then we often leave outelements of probability 0. For instan
e, the probability distribution assigningprobability 1 to an element u 2 U is denoted by fu 7! 1g, irrespe
tive of U .Su
h distribution is 
alled the Dira
 distribution over u.De�nition 2. A probability spa
e is a triple (
;F ;P), where{ 
 is a set, 
alled the sample spa
e,{ F � 2
 is �-�eld, i.e. a 
olle
tion of subsets of 
 whi
h is 
losed under
ountable3 union and 
omplement, and whi
h 
ontains 
,{ P : F ! [0; 1℄ is a probability measure on F , whi
h means that P[
℄ = 1and for any 
ountable 
olle
tion fCigi of pairwise disjoint subsets in F wehave P[[i Ci℄ =PiP[Ci℄.3 Probabilisti
 AutomataNow, we re
all the notion of a probabilisti
 automaton from Segala and Lyn
h[Seg95a,SL95℄. Basi
ally, a probabilisti
 automaton is a non-probabilisti
 au-tomaton with the only di�eren
e that, rather than a single state, the target ofa transition is a probability distribution over next states. We 
onsider systemswith only external a
tions, taken from a given, �nite set A
t . For te
hni
al rea-sons, we assume that A
t 
ontains a spe
ial element Æ, referred to as the haltinga
tion.De�nition 3. A probabilisti
 automaton (PA) is a triple A = (S; s0; �) with{ S a set of states,{ s0 2 S the initial state, and{ � � S �A
t �Distr(S) a transition relation.We write s a! � for (s; a; �) 2 � and sa;� t if s a�! � and �(t) > 0. We refer tothe 
omponents of A as SA; s0A; �A.For the remainder of this se
tion, we �x a PA A = (S; s0; �) and assumethat � 
ontains no transition labeled with Æ.De�nition 4. A PA A is �nitely bran
hing if for ea
h state s, the set f(a; �; t) jsa;� tg is �nite.3 In our terminology, 
ountable obje
ts in
lude �nite ones.8



Thus, ea
h state in a �nitely bran
hing PA has �nitely many outgoing tran-sitions and the target distribution of ea
h transition has a �nite support. Asin the non-probabilisti
 
ase, an exe
ution of A is obtained by resolving thenondeterministi
 
hoi
es in A. This 
hoi
e resolution is des
ribed by an adver-sary, a fun
tion whi
h in ea
h state of the system determines the next transitionto be taken. Adversaries 
an be randomized, i.e. make 
hoi
es probabilisti
ally,history-dependent, i.e. make 
hoi
es depending on on the path leading to the 
ur-rent state, and partial, i.e. they may 
hoose to halt the exe
ution at any pointin time. Sin
e we want adversaries to produ
e in�nite sequen
es only, even whenthe exe
ution is halted, we de�ne adversaries of a PA via its halting extention.De�nition 5. A path of A is an alternating, �nite or in�nite sequen
e� = s0a1�1s1a2�2s2 : : :of states, a
tions, and distributions over states su
h that (1) � starts with the ini-tial state,4 i.e. s0 = s0, (2) if � is �nite, it ends with a state, (3) siai+1;�i+1 si+1,for ea
h non�nal i. We set the length of �, notation j�j, to the number of a
-tions o

urring in it and denote the set of all �nite paths of A by Path�(A). Forn 2 N [f1g, the set of all paths of A of length n by Pathn(A). We de�ne theasso
iated tra
e of �, notation tra
e(�), by tra
e(�) = a1a2a3 : : :.De�nition 6. The halting extension of A is the PA ÆA = (S [ f?g; s0; �0),where �0 is the least relation su
h that1. s Æ�!ÆA f?7! 1g,2. s a�!A � =) s a�!ÆA (� [ f?7! 0g).Here we assume that ? is fresh. The transitions with label Æ are referred to ashalting transitions.De�nition 7. A (partial, randomized, history-dependent) adversary E of A isa fun
tion E : Path�(ÆA)! Distr(A
t �Distr(SÆA))su
h that, for ea
h �nite path �, if E(�)(a; �) > 0 then last(�) a�!ÆA �.We say that E is deterministi
 if, for ea
h �, E(�) is a Dira
 distribution.An adversary E halts on a path � if it extends � with the halting transition, i.e.,E(�)(Æ; f?7! 1g) = 1:For k 2 N, we say that the adversary E halts after k steps if it halts on all pathswith length greater than or equal to k. We denote by Adv(A; k) the set of alladversaries of A that halt after k steps and by Dadv(A; k) the set of deterministi
adversaries in Adv(A; k). Finally, we 
all E �nite if E 2 Adv(A; k), for somek 2 N.4 Here we deviate from the standard de�nition, as we do not need paths starting fromnon-initial states. 9



The probabilisti
 behavior of an adversary is summarized by its asso
iatedprobability spa
e. First we introdu
e the fun
tion QE , whi
h yields the proba-bility that E assigns to �nite paths.De�nition 8. Let E be an adversary of A. The fun
tion QE : Path�(ÆA) ![0; 1℄ is de�ned indu
tively byQE(s0) = 1;QE(�a�s) = QE(�) �E(�)(a; �) � �(s):De�nition 9. Let E be an adversary of A. The probability spa
e asso
iated toE is the probability spa
e given by1. 
E = Path1(ÆA),2. FE is the smallest �-�eld that 
ontains the set fC� j � 2 Path�(ÆA)g, whereC� = f�0 2 
E j �v�0g,3. PE is the unique measure on FE su
h that PE [C�℄ = QE(�), for all � 2Path�(ÆA).The fa
t that (
E ;FE ;PE) is a probability spa
e follows from standard measuretheory arguments, see for instan
e [Coh80℄. Note that 
E and FE do not dependon E but only on A, and that PE is fully determined by the fun
tion QE. For E 2Adv(A; k), PE is fully determined by QE � Pathk(A), i.e., the weight fun
tionrestri
ted to paths of length k.As for non-probabilisti
 automata, the visible behavior of A is obtained byremoving the non-visible elements (in our 
ase, the states) from an exe
ution(adversary). This yields a tra
e distribution of A, whi
h assigns a probability to(
ertain) sets of tra
es.De�nition 10. The tra
e distribution H of an adversary E, denoted trd(E ),is the probability spa
e given by1. 
H = A
t1,2. FH is the smallest �-�eld that 
ontains the sets fC� j � 2 A
t�g, whereC� = f�0 2 
H j �v�0g,3. PH is the unique measure on FH su
h that PH [X ℄ = PE [tra
e�1(X)℄.Standard measure theory arguments [Coh80℄ ensure again that that trd(E ) iswell-de�ned. Note that 
H and FH do not depend on A. This means that tra
edistributions are fully 
hara
terized by their probability measure. The set of tra
edistributions of adversaries of A is denoted by trd(A). We write A �TD B iftrd(A) = trd(B) and A vTD B if trd(A) � trd(B). The set of tra
e distributionsof that arise from adversaries of A that halt after k steps is denoted trd(A; k).If trd(A; k) � trd(B; k) then we write A vkTD B.Lemma 1. Let X and Y be non-empty sets and f : X ! Distr(Y ) a fun
tion.If X is �nite then Xg:X!Y Yx2X f(x)(g(x)) = 1:10



Proof: By indu
tion on #X = n. Let x0 2 X and write X1 = X n fx0g.{ If n = 1, then Pg:X!Y Qx2X f(x)(g(x)) = Py2Y f(x0)(y) = 1 be
ausef(x0) is a distribution fun
tion.{ Assume that the proposition holds for all X 0 with #X 0 = n and let #X =n+ 1. Then Xg:X!Y Yx2X f(x)(g(x)) =Xg:X!Y f(x0)(g(x0)) � Yx2X1 f(x)(g(x)) =Xg1:X1!Y Xy2Y f(x0)(y) � Yx2X1 f(x)(g(x)) =Xg1:X1!Y 1 � Yx2X1 f(x)(g(x)) = 1:� The following lemma shows that ea
h �nite adversary in a �nitely bran
hingPA 
an be written as a 
onvex 
ombination of deterministi
 adversaries.Lemma 2. Let k 2 N, let A be a �nitely bran
hing PA and let E be an adversaryin Adv(A; k).1. Then E 
an be written as a 
onvex 
ombination of deterministi
 adversariesin Dadv(A; k), i.e., there exists a probability distribution � over Dadv(A; k)su
h that, for all �, a and �,E(�)(a; �) = XD2Dadv(A;k) �(D) �D(�)(a; �):2. If E = PD2Dadv(A;k) �(D) � D(�)(a; �) for some � 2 Distr(Dadv (A; k))then QE(�) = XD2Dadv(A;k) �(D) �QEi(�):Proof:1. First, observe that the set Dadv (A; k) is �nite, be
ause A is �nitely bran
h-ing.The idea in the proof is as follows. Let D 2 Dadv (A; k) be an adversary su
hthat D(�)(a; �) = 1 =) E(�)(a; �) > 0; for all � (*)Then D 
an be seen as an adversary within E: among all the steps that Es
hedules with a positive probability, D s
hedules one with probability one.11



Now, multiply all the probabilities E(�)(a; �) that E assigns to steps (a; �)taken in D, i.e. steps with D(�)(a; �) = 1. This yields a value pD and weshow that E 
an be obtained by sele
ting the adversary D with probabilitypD = �(D). Furthermore, note that pD = 0 if D does not meet (*). Hen
e,de�ne � by �(D) = Y�2Path�(A)E(�)(D(�));where, as before, we write D(�) = (a; �) for D(�)(a; �) = 1. Moreover, writeD for Dadv(A; k) and P for Path�(A). Then � 2 Distr(()DadvA; k) be
auseXD2D �(D) = XD2D Y�2P E(�)(D(�)) = 1:Sin
e D is �nite, the last step is justi�ed by Lemma 1. For the same reasonwe have for all �, a, � thatXD2D �(D) �D(�)(a; �) =XD2D Y�2P E(�)(D(�)) �D(�)(a; �) =XD2D;D(�)=(a;�) Y�2P E(�)(a; �) � 1 =E(�)(a; �):2. By indu
tion on the length of �.{ If � = s0 has length 0, thenQE(s0) = 1 =PD2D �(D) =PD2D �(D) �QD(s0):{ Let � = �0a�t, thenQE(�0a�t) = QE(�0) �E(�0)(a; �) ��(t) == XD2D �(D) �QD(�0) � XD02D �(D0) �D0(�0)(a; �) ��(t) == XD2D �(D) �QD(�0) � XD02D �(D0) �D(�0)(a; �) ��(t) == XD2D �(D) �QD(�0) �D(�0)(a; �) ��(t) == XD2D �(D) �QD(�0a�t) == XD2D �(D) �QD(�):� 12



4 The Approximation Indu
tion Prin
ipleThis se
tion is entirely devoted to a proof of an Approximation Indu
tion Prin-
iple (AIP) (
f. [BK86,BBK87℄) for probabilisti
 pro
esses. We need this resultto 
hara
terize the equivalen
e on probabilisti
 automata indu
ed by the tra
edistribution ma
hine in Se
tion 5.Theorem 2 (Approximation Indu
tion Prin
iple). Let A and B be PAsand let B be �nitely bran
hing. Then8k[A vkTD B℄ =) A vTD B:Proof: Assume that A vkTD B, for all k. In order to prove A vTD B, let H bea tra
e distribution of A and let E be an adversary of A with H = trd(E ). Viaa number of sub
laims, we prove that H 2 trd(B).For ea
h k 2 N, de�ne Ek byEk(�) = (E(�) if j�j < k,f(Æ; f?7! 1g) 7! 1g otherwise.Clearly, Ek 2 Adv(A; k), so trd(Ek ) 2 trd(A; k). By assumption, there is anadversary Fk of B su
h that trd(Ek ) = trd(Fk ). We view Fk as a fun
tion inPath�(ÆB)�A
t �Distr(SÆB)! [0; 1℄:We will 
onstru
t an adversary G of B with trd(G) = H from the sequen
e offun
tions F = F0, F1, F2 : : :. The idea is that, sin
e only the paths of length kmatter, Fk is essentially a �nite fun
tion and we 
an use the Bolzano{Weierstra�Theorem to obtain G as the limit of a 
onvergent subsequen
e of F . However,this theorem 
annot be applied immediately, be
ause the �nite domains of thesefun
tions are growing. Therefore, we will operate in several stages. The basi
idea is to 
onstru
t at stage n+1 a 
onvergent subsequen
e with index fun
tion�n+1 of Fn0 , Fn1 , F ;2n : : :, where Fnk is the restri
tion of Fk to paths of lengthn. This sequen
e 
onsists of �nite fun
tions with the same, �nite domain anda bounded range (viz. [0; 1℄) and has therefore a 
onvergent subsequen
e. Wede�ne Gn as the limit of �n. Thus, we will obtain a sequen
e of in
reasingsubfun
tions G1 � G2 � G3 : : : and we take G to be its limit. We will needseveral te
hni
al lemmas to ensure that everything is as expe
ted and to prove�nally that trd(G) = trd(E ).Throughout this proof, we use the following notations.Pn = [��nPath i(ÆB)Dn = f� 2 Distr(SÆB) j � o

urs in some � 2 Pn+1gP = Path�(ÆB)D = Distr(SÆB) 13



Note that Pn � Pn+1, Dn � Dn+1, P = [nPn and D � [nDn. In fa
t, D may
ontain distributions that are not 
ontained in any Dn. Observe also that � 2 Pnand � a;� s implies � 2 Dn. Sin
e B is �nitely bran
hing, there are only �nitelymany paths of length at most n and hen
e Pn and Dn are both �nite. Re
allthat A
t is �nite by de�nition. Therefore, the following fun
tion Fnk is �nite:Fnk : Pn �A
t �Dn ! [0; 1℄Fnk = Fk � Pn �A
t �Dn:Claim 1 Fnk � Fn+1k for all k; n.Proof: Easy veri�
ation. �For ea
h n, let �n be the sequen
e�n = Fn0 Fn1 Fn2 Fn3 : : :and let �n be the index fun
tion de�ned indu
tively as follows:{ �0 is the identity fun
tion.{ Let � be the index fun
tion of a 
onvergent subsequen
e of �n Æ �n (su
ha subsequen
e exists by the Bolzano{Weierstra� Theorem). Then �n+1 =�n Æ �.We de�ne fun
tion Gn : Pn �A
t �Dn ! [0; 1℄ byGn = lim(�n Æ �n+1);i.e. , Gn is the limit of the 
onvergent subsequen
e just de�ned.Claim 2 Gn � Gn+1.Proof: Clearly, Dom(Gn) � Dom(Gn+1). Let (�; a; �) 2 Dom(Gn). ThenGn(�)(a; �) = limk!1Fn�n+1(k)(�)(a; �) fRan(�n+2) � Ran(�n+1g= limk!1Fn�n+2(k)(�)(a; �) fClaim 1g= limk!1Fn+1�n+2(k)(�)(a; �)= Gn+1(�)(a; �):� Let G0 = [nGn, i.e. for � 2 Pn, a 2 A
t and � 2 Dn, G0(�)(a; �) =Gn(�)(a; �). Then G0 is a fun
tion in [n Pn �A
t �Dn ! [0; 1℄. We extend G0to a fun
tion G in P �A
t �D ! [0; 1℄ as followsG(�)(a; �) = (G0(�)(a; �) if 9n:� 2 Pn ^ � 2 Dn,0 otherwise.14



The rest of this proof is 
on
erned with showing that G is an adversary withtrd(G) = H , whi
h is exa
tly what we are after.Claims 3 and 4 together imply that G is an adversary of B. Claim 3 statesthat G respe
ts the transition relation of ÆB, and Claim 4 establishes that G hasthe required type, i.e.G : Path�(ÆB)! Distr(A
t �Distr(SÆB)):Claim 3 Suppose � 2 P , a 2 A
t, � 2 D and G(�)(a; �) > 0. Then last(�) a�! �is a transition of ÆB.Proof: Sin
eG(�)(a; �) > 0, it follows from the de�nition ofG thatG(�)(a; �) =G0(�)(a; �). Hen
e, by de�nition of G0, there is an n su
h that G0(�)(a; �) =Gn(�)(a; �). Then0 < Gn(�)(a; �) fdef. Gng= limk!1Fn�n+1(k)(�)(a; �) fdef. Fni g= limk!1F�n+1(k)(�)(a; �)This implies that F�n+1(k)(�)(a; �) > 0 for large k. Sin
e F�n+1(k) is an adversaryof B, last(�) a�! � is a transition of B. �Claim 4 For all � 2 P , Pa2A
t;�2D G(�)(a; �) = 1.Proof: Choose � 2 P and let n = j�j. Then � 2 Pn andXa2A
t;�2DG(�)(a; �) fdef. Gg= Xa2A
t;�2DnG0(�)(a; �) fdef. G0g= Xa2A
t;�2DnGn(�)(a; �) fdef. Gng= Xa2A
t;�2Dn limk!1Fn�n+1(k)(�)(a; �) fdef. Fni g= Xa2A
t;�2Dn limk!1F�n+1(k)(�)(a; �) f�nite sumg= limk!1 Xa2A
t;�2Dn F�n+1(k)(�)(a; �) fdef. A
t , Dng= limk!1 Xa2A
t;�2D F�n+1(k)(�)(a; �) fFi adversaryg= limk!1 1= 1� 15



Note that the following 
laim 
on
erns G and Fi, whi
h are adversaries. In
ontrast, Gn and Fnk are just fun
tions, not adversaries.Claim 5 QG(�) = limk!1QF�(n+1)(k) (�) for all � 2 Path�(ÆB) with j�j = n.Proof: By indu
tion on n.{ Then 
ase n = 0 follows immediately from the fa
t that QE(s0) = 1 for alladversaries E.{ Case n + 1. Let �0 be a path of length n + 1 and write �0 = � a;� s. Then� 2 Pn, a 2 A
t , � 2 Dn andQG(�0)= QG(� a;� s) fdef. Qg= QG(�) �G(�)(a; �) � �(s) fIH, j�j = ng= limk!1QF�(n)(k) (�) �Gn(�)(a; �) ��(s) fdef. Gng= limk!1QF�(n)(k) (�) � limk!1F�(n)(k)(�)(a; �) ��(s)= limk!1QF�(n)(k) (�) �F�(n)(k)(�)(a; �) ��(s) fdef. Qg= limk!1QF�(n+1)(k) (� a;� s)= limk!1QF�(n+1)(k) (�0)�Claim 6 QE(�) = limk!1QE�(n)(k) (�) for all n and �.Proof: Sin
e �(n) is an index fun
tion, we have limk!1 �(n)(k) = 1 andtherefore E�(n)(k)[�℄ = E[�℄ for �(n)(k) � j�j. So, limk!1QE�(n)(k) (�) =QE(�). �The following is an immediate 
onsequen
e of the previous 
laim.Claim 7 Ptrd(E)[C�℄ = limk!1Ptrd(E�(n)(k))[C�℄, for all �.Claim 8 trd(G) = trd(E ). 16



Proof: Let H1 = trd(G) and H2 = trd(E ). It suÆ
es to show that PH1 [C�℄ =PH2 [C�℄ for all � 2 A
t�. Let n = j�j.PH1 [C�℄ = X�jtra
e(�)2C�PG[�℄= X�jtra
e(�)=�^j�j=nPG[C�℄ fdef. C�g= X�jtra
e(�)=�^j�j=nQG(�) fClaim 5, j�j = ng= X�jtra
e(�)=�^j�j=n limk!1QF�(n)(k) (�) f�nite sumg= limk!1 X�jtra
e(�)=�^j�j=nQF�(n)(k) (�) fdef. C�, PFig= limk!1PF�(n)(k) [C�℄= limk!1PE�(n)(k) [C�℄ fClaim 7g= PE [C�℄ftrd(Fi) = trd(Ei )gNote that the set f� j tra
e(�) = � ^ j�j = ng is �nite, be
ause A is �nitelybran
hing and hen
e the summations above are all �nite. ��5 Chara
terization of Testing PreorderThe operational behavior of a tra
e distribution ma
hine des
ribed in Se
tion 1 isspe
i�ed a

urately by the notion of a (partial, randomized, history-dependent)adversary, introdu
ed in De�nition 7. Hen
e, when operating, the tra
e distri-bution ma
hine 
hooses an exe
ution path within some probabilisti
 automatonA, using some adversary E.De�ne a sample O of depth k and width m to be an element of (A
tk)m, i.e.,a sequen
e 
onsisting of m sequen
es of a
tions of length k. A sample des
ribeswhat an observer potentially may re
ord when running m times an experimentof length k on the tra
e distribution ma
hine. Note that if, during a run, thema
hine halts before k observable a
tions have been performed, we 
an stillobtain a sequen
e of k a
tions by atta
hing a number of Æ a
tions at the end.We write freq(O) for the fun
tion in A
tk ! Q that assigns to ea
h sequen
e� in A
tk the frequen
y with whi
h � o

urs in O. That is, for O = �1�2; : : : ; �mfreq(O)(�) = # fi j �i = �; 1 � i � mgm :Note that freq(O) is a probability distribution over (A
tk)m. We base our sta-tisti
al analysis on freq(O) rather than just O. This means we ignore some of17



the information 
ontained in samples, whi
h more advan
ed statisti
al methodsmay want to explore. If, for instan
e, we 
onsider the sample O of depth oneand width 2000 that 
onsists of 1000 head a
tions followed by 1000 tail a
tions,then it is quite unlikely that this will be a sample of a tra
e distribution ma
hineimplementing a fair 
oin. However, the frequen
y fun
tion freq(O) 
an very wellbe generated by a fair 
oin.For a tra
e distribution H 2 trd(A; k), we denote by �H : A
tk ! [0; 1℄the probability distribution given by �H(�) = PH [C� ℄. Sin
e H halts after ksteps, �H(�) yields the probability that � is pi
ked when we generate a sequen
ea

ording to H . In other words, �H(�) yields the probability that during a run,the tra
e distribution ma
hine produ
es the a
tion sequen
e �, when it resolvesits nondeterministi
 
hoi
es a

ording to an adversary E with trd(E ) = H .Therefore, the probability that the sample O = �1�2; : : : ; �m is generated whenwe su

essively and independently 
hoose sequen
es �i a

ording to distributionsHi 2 trd(A; k), is given byPH1;:::;Hm [O℄ = mYi=1�Hi(�i):Finally, the probability that an element from a set O � (A
tk)m is pi
ked, equalsPH1;:::;Hm [O℄ = XO2OPH1;:::;Hm [O℄:Given H1; H2; : : : ; Hm, we want to distinguish between out
omes that arelikely to be generated by H1; H2; : : : ; Hm, and those whi
h are not. To do so, we�rst �x an � 2 (0; 1) as the desired level of signi�
an
e. Our goal is to de�ne aset KH1;H2;:::;Hm , the likely out
omes, su
h that1. PH1;:::;Hm [KH1 ;H2;:::;Hm ℄ > 1� �,2. KH1;H2;:::;Hm is, in some sense, minimal.Condition (1) will ensures that the probability that we believe that O is notgenerated by H1; : : : ; Hm while it is so, is at most �. Condition (2) will ensurethat PH01 ;:::;H0m [KH1;H2;:::;Hm ℄ is as small as possible for sequen
es (H 01; : : : ; H 0m)di�erent from (H1; : : : ; Hm). (How small this probability is highly depends onwhi
h H 0i 's we take.) Therefore, the probability that we 
onsider O to be anexe
ution while it is not, is as small as possible. In terminology from hypoth-esis testing: our null hypothesis states that O is generated by H1; : : : ; Hm and
ondition (1) bounds the probability on false reje
tion and (2) minimizes theprobability on false a

eptan
e. The set KH1;H2;:::;Hm is the 
omplement of the
riti
al se
tion. Note that in 
lassi
al hypothesis testing all subsequent experi-ments �1; : : : �m are drawn from the same probability distribution, whereas inour setting, ea
h experiment is governed by a di�erent probability me
hanismgiven by Hi. 18



The idea behind the de�nition of KH1;:::;Hm is as follows. The expe
ted fre-quen
y of a sequen
e � in a sample generated by H1; : : : ; Hm is given byEH1;:::;Hm(�) = 1m mXi=1 �Hi(�):Sin
e 
u
tuations around the expe
ted value are likely, we allow deviations ofat most " from the expe
ted value. Here, we 
hoose " as small as possible, butlarge enough su
h that the probability on a sample whose frequen
y deviates atmost " from EH1;:::;Hm is bigger than �. Then, 
onditions (1) and (2) above aremet. Formally, de�ne the "-sphere B"(�) around � asB"(�) = f� 2 Distr(A
tk) j dist(�; �) � "g;where let dist is the standard distan
e on Distr(A
tk) given by dist(�; �) =qP�2A
tk j�(�) � �(�)j2.De�nition 11. For a sequen
eH1; H2; : : :Hm of tra
e distributions in trd(A; k),we de�ne KH1;:::Hm as the smallest5 sphere B"(EH1;:::Hm) su
h thatPH1;:::;Hm [fO 2 (A
tk)m j freq(O) 2 B"(EH1;:::Hm)g℄ > 1� �:We say that O is an observation of A (of depth k and width m) ifO 2 KH1;:::;Hm :We write Obs(A) for the set of observations of A.Example 1. We take � = 0:05 as the level of signi�
an
e. First, 
onsider theleftmost PA in Figure 4 and samples of depth 2 and width 100. This means thatthe probabilisti
 tra
e ma
hine is run 100 times and ea
h time we get a tra
e oflength 2.Then any sample O1 in whi
h the sequen
e ab o

urs 42 times and a
 58 timesis an observation of A; samples in whi
h ab o

urs 38 times and a
 62 times arenot. Let E be the adversary that, in ea
h state, s
hedules with probability one theunique transition, if available, in that state and otherwise it s
hedules the haltingtransition with probability one. For H = trd(E ), we have �H(ab) = �H(a
) = 12and �H(�) = 0 for all other sequen
es. Let H100 = (H1; : : : H100) be sequen
eof adversaries with Hi = H . Then EH100 = �H and, sin
e �H assigns a positiveprobability only to ab and a
, we have that PH100 [B"(�H)℄ = PH100 [fO1 j 12 �" < freq(O1)(ab) < 12 + "g℄. One 
an show that then smallest sphere su
h thatPH100 [B"(�H)℄ � 0:95 is obtained by taking " = 110 . Sin
e freq(O1) 2 B"(�H ),O1 is an observation.Then, a sample O2 
ontaining with 20 ÆÆ's, 42 ab's and 58 a
's is an obser-vation of depth 2 and width 120. It arises from taking 100 times adversary H asabove and 20 adversaries that halt with probability one on every path.5 This minimum exists, be
ause there �nitely many samples.19



Now, 
onsider the automaton in Figure 5. Consider the s
heduler E3 that inthe initial state, s
hedules both a transitions with probability 12 ; with probabilityone the unique b, 
 or d transition whenever it is avaible and otherwise the haltingtransition with probability one. Let K120 be the sequen
e 
onsisting of 120 timesthe adversary K. The expe
ted frequen
y of K120 is 724 for ab, 824 for a
, and924 for ad and then KK120 = B 111 (EK100), so for instan
e, the sequen
e with 40ab's, 40 a
's and 40 ad's is an observation of the mentioned PA.5.1 The 
hara
terization theoremWe 
an now prove our main 
hara
terization theorem, whi
h states that the pre-order indu
ed by the testing s
enario 
oin
ides with tra
e distribution in
lusion.Theorem 3. Obs(A) � Obs(B) () A vTD B.The following 
orollary is immediate.Corollary 1. Obs(A) = Obs(B) () A �TD B.Before presenting the proof of the main theorem, we introdu
e four auxilliaryresults and some notation.The �rst result states that, in a large number of Bernouilli trials (with dif-ferent parameters), the set of out
omes with large deviations from the expe
tedfrequen
y of the number of 1's has a small probability. In fa
t, by 
hoosing thenumber of trials large enough, we 
an get the probability on deviations of " ormore as small as we want.Proposition 1. Let � 2 (0; 1) and " > 0. Then there exists an m0 2 N su
hthat the following holds. For all m � m0, and all sequen
es X1; X2; : : : ; Xm ofm independent random variables, where Xi has a Bernouilli distribution withparameter pi, for some pi 2 [0; 1℄ (i.e. P[Xi = 1℄ = pi;P[Xi = 0℄ = 1� pi), wehave that P� jZm �E[Zm℄j � " � � �:Here, Zm = 1mPmi=1Xi yields the frequen
y of the number of 1's that have beendrawn in (X1; : : : ; Xm).Proof: Take m � m0 � 14"2� and let X1; X2; : : : ; Xm be a sequen
e of m inde-pendent random variables, whereXi has a Bernouilli distribution with parameterpi 2 [0; 1℄. First note thatVar(Zm) = Var 1m mXi=1 Xi! = 1m2 mXi=1 Var(Xi) = 1m2 mXi=1 pi(1� pi)� 1m2 mXi=1 14 = 14m: 20



Hen
e, by Cheby
hev's Inequality, we haveP�jZm �E[Zm℄j � "� � 1"2Var(Zm) � 1"2 14m � 4"2�4"2 = �:� The se
ond result reformulates the proposition above in terms of tra
e distri-butions rather than random variables: we 
an 
hoose the number of runs of thetra
e distribution ma
hine large enough so that, with high probability (i.e. 1-�),for ea
h sequen
e �, the number of �'s in the sample we draw deviates no morethan " from its expe
ted value.Proposition 2. Let � 2 (0; 1), " > 0 and k 2 N. Then there exists an m0 2 Nsu
h that for all m � m0, all tra
e distributions H1; H2; : : : ; Hm 2 trd(A; k) andall � 2 A
tkPH1;:::;Hm� fO 2 (A
tk)m j jfreq(O)(�) �EH1;:::;Hm(�)j � "g � � �:Proof: This statement is merely a reformulation of Proposition 1. Given asequen
e of tra
e distributionsH1; : : : ; Hm and an sequen
e � 2 A
tk, we de�ne asequen
e of independent randoms variables X�1 ; : : : ; X�m, where X�i : (A
tk)m !f0; 1g indi
ates whether the sequen
e � is drawn byHi. Then,Xi has a Bernouillidistribution with parameter �Hi(�). As before, we put Z�m = 1mPmi=1X�i . Wenote that{ freq(O)(�) = Z�m(O) yields the number of �'s in O.{ EH1;:::Hm(�) = 1mPmi=1 �Hi(�) = E[Z�m℄.{ P[Z�m = q℄ = PH1;:::Hm [fO 2 (A
tk)m j freq(O)(�) = qg℄.Now, the desired result follows easily from Proposition 1. �Then, we 
onsider all sequen
es � 2 A
tk at the same time. Then, the prob-ability that the ve
tor of the frequen
ies freq(O) in a sample O deviates a lotfrom the expe
ted frequen
y ve
tor EH1;:::;Hm is small.Proposition 3. Let � 2 (0; 1), " > 0 and k 2 N. Then there exists an m0 2 Nsu
h that for all m � m0 and all tra
e distributions H1; H2; : : : ; Hm 2 trd(A; k)PH1;:::;Hm [fO 2 (A
tk)m j freq(O) 2 B"(EH1;:::;Hm)℄ � 1� �:Proof: Let n = #A
tk. By Proposition 2, there exists an m0 su
h that for allm � m0 and all �PH1;:::;Hm�fO 2 (A
tk)m j jfreq(O)(�) �EH1;:::;Hm(�)j � "n� � �n : (*)21



But thenPH1;:::;Hm�fO j freq(O) 2 B"(EH1;:::;Hm)g� = fdef B"gPH1;:::;Hm�fO j jfreq(O) �EH1;:::;Hm j < "g� � fsee belowgPH1;:::;Hm�fO j 8�:jfreq(O)(�) �EH1;:::;Hm(�)j < "ng� = fprob. th.g1�PH1;:::;Hm�fO j 9�:jfreq(O)(�) �EH1;:::;Hm(�)j � "ng� � fprob. th.g1� X�2A
tk PH1;:::;Hm�fO j jfreq(O)(�) �EH1;:::;Hm(�)j � "ng� � ffrom (*)g1� n�n = 1� �:The in
lusion fO j jfreq(O)�EH1;:::;Hm j < "g � fO j 8�:jfreq(O)(�)�EH1 ;:::;Hm(�)j <"ng is just another formulation of the fa
t that an n-dimensional sphere with ra-dius r and 
enter � 
ontains the n-diminsional hyper
ube with edge length r2nand 
enter �. �Finally, we need some elementary observations about the fun
tion �H .Proposition 4. 1. For all tra
e distributions H;K 2 trd(A; k), we have H =K () �H = �K .2. For all m and Hi 2 trd(A; k), E(H1;:::Hm) = �K , where K =Pmi=1Hi.Proof: Immediately from the de�nitions. �Proposition 5. For every H 2 trd(A; k), �H 
an be written as a 
onvex 
ombi-nation of distributions �Hi , where Hi is generated by a deterministi
 adversary.That is, there exists a probability distribution � over the set Dadv (A; k) su
hthat, for all � 2 A
tk, �K(�) =PD2D �(D) � �trd(D)(�):Proof: Immediately from Lemma 2. �We 
an now prove the main theorem.Proof: (of Theorem 1) The \(="-dire
tion follows immediately from the def-initions. To prove the \ =) "-dire
tion, assume that A 6vTD B. We show thatObs(A) 6� Obs(B).By Theorem 2, there exists a k su
h that A 6vkTD B, i.e. trd(A; k) 6� trd(B; k).Let H be a tra
e distribution in trd(A; k) that is not a tra
e distribution intrd(B; k). We write Hm for the sequen
e (H1; H2; : : : ; Hm) with Hi = H . Then,Proposition 4(1) 
on
ludes that there is no K 2 trd(B; k) su
h that �H = �K .Moreover, Proposition 5 states that the set f�K j K 2 trd(B; k)g is a polyhedron.Therefore, there is minimal distan
e d > 0 between �H and any �K with K intrd(B; k).Consider the tra
e distribution H . By Proposition 3, we 
an �nd mA su
hthat for all m � mAPHm [fO 2 (A
tk)m j freq(O) 2 B d3 (EHm )g℄ � 1� �:22



This means that for all m � mA, KHm � B d3 (EHm) and sin
e Proposition 4(1)states that EHm = �H , we have KHm � B d3 (�H).Now, 
onsider a sequen
e tra
e distributions in trd(B; k). By Proposition 3,we 
an �ndmB su
h that for allm � mB and all tra
e distributionsK1;K2; : : : ;Kmof B PK1;:::;Km [fO 2 (A
tk)m j freq(O) 2 B d3 (EK1;:::;Km)g℄ � 1� �:Let m � max(mA;mB). Then KK1;:::;Km � B d3 (EK1;:::;Km) and by Proposi-tion 4(2) we have KK1;:::;Km � B d3 (EK1;:::;Km) = B d3 (�K), where K =Pmi=1Ki.Sin
e j�H � �K j � d, we have B d3 (�H)\B d3 (�K) = ;, and therefore, andKHm \KK1;:::;Km = ;. Hen
e, none of the observations generated by Hm is anobservation of B and therefore Obs(A) 6� Obs(B). �A
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