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Abstract. Recently, a large number of equivalences for probabilistic au-
tomata has been proposed in the literature. Except for the probabilistic
bisimulation of Larsen & Skou, none of these equivalences has been char-
acterized in terms of intuitive testing scenarios. In our view, this is an
undesirable situation: in the end, the behavior of an automaton is what
an external observer perceives. In this paper, we propose and study a sim-
ple and intuitive testing scenario for probabilistic automata. We prove
that the equivalence induced by this scenario coincides with the trace
distribution equivalence proposed by Segala. A technical result that we
need to establish on the way is an Approzimation Induction Principle
(AIP) for probabilistic processes.
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1 Introduction

A fundamental idea in concurrency theory is that two systems are deemed to
be equivalent if they cannot be distinguished by observation. Depending on the
power of the observer, different notions of behavioral equivalence arise. For sys-
tems modeled as labeled transition systems, this idea has been thoroughly ex-
plored and a large number of behavioral equivalences has been characterized
operationally, algebraically, denotationally, logically, and via intuitive “testing
scenarios” (also called “button pushing experiments”). We refer to Van Glabbeek
[Gla01] for an excellent overview of results in this area of comparative concur-
rency semantics.

Testing scenarios provide an intuitive understanding of a behavioral equiva-
lence via a machine model. A process is modeled as a black box that contains as
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the PhD thesis of the first author [Sto02a)].



its interface to the outside world (1) a display showing the name of the action
that is currently carried out by the process, and (2) some buttons via which
the observer may attempt to influence the execution of the process. A process
autonomously chooses an execution path that is consistent with its position in
the labeled transition system contained in the black box. Trace semantics, for
instance, is explained in [Gla01] with the trace machine, depicted in Figure 1
on the left. As one can see, this machine has no buttons at all. A slightly less

Fig. 1. The trace machine (left) and the failure trace machine (right).

trivial example is the failure trace machine, depicted in Figure 1 on the right,
which, apart from the display, contains as its interface to the outside world a
switch for each observable action. By means of these switches, an observer may
determine which actions are free and which are blocked. This situation may be
changed at any time during a run of a process. The display becomes empty if
(and only if) a process cannot proceed due to the circumstance that all actions
are blocked. If, in such a situation, the observer changes her mind and allows
one of the actions the process is ready to perform, an action will become visible
again in the display. Figure 2 gives an example of two labeled transition sys-

Fig. 2. Trace equivalent but not failure trace equivalent.

tems that can be distinguished by the failure trace machine but not by the trace
machine. Since both transition systems have the same traces (g, a, ab, ac, af,
acd and ace), no difference can be observed with the trace machine. However,
via the failure trace machine an observer can see a difference by first blocking



actions ¢ and f, and only unblocking action c¢ if the display becomes empty. In
this scenario an observer of the left system may see an e, whereas in the right
system the observer may see a d, but no e. We refer to [Gla01] for an overview
of testing scenarios for labeled transition systems.

Probabilistic automata have become a popular mathematical framework for
the specification and analysis of probabilistic systems. They have been devel-
oped by Segala [Seg95b,SL95,Seg95a] and serve the purpose of modeling and
analyzing asynchronous, concurrent systems with discrete probabilistic choice in
a formal and precise way. We refer to [Sto02b] for an introduction to probabilistic
automata, and a comparison with related models. In this paper, we propose and
study a simple and intuitive testing scenario for probabilistic automata: we just
add a reset button to the trace machine. The resulting trace distribution machine
is depicted in Figure 3. By resetting the machine it returns to its initial state and

Fig. 3. The trace distribution machine.

starts again from scratch. In the non-probabilistic case the presence of a reset
button does not make a difference!, but in the probabilistic case it does: we can
observe probabilistic behavior by repeating experiments and applying methods
from statistics. Consider the two probabilistic automata in Figure 4. Here the

Fig. 4. Probabilistic automata representing a fair and an unfair coin.

arcs indicate probabilistic choice (as opposed to the nondeterministic choice in
Figure 2), and probabilities are indicated next to the edges. These automata
represent a fair and an unfair coin, respectively. We assume that the trace dis-
tribution machine has an “oracle” at its disposal which resolves the probabilistic

! For this reason a reset button does not occur in the testing scenarios of [Gla01]. An
obvious alternative to the reset button would be a on/off button.



choices according to the probability distributions specified in the automaton. As
a result, an observer can distinguish the two systems of Figure 4 by repeatedly
running the machine until the display becomes empty and then restart it using
the reset button. For the left process the number of occurrences of trace ab will
approximately equal the number of occurrences of trace ac, whereas for the right
process the ratio of the occurrence of the two traces will converge to 1 : 2. El-
ementary methods from statistics allow one to come up with precise definitions
of distinguishing tests.

The situation becomes more interesting when both probabilistic and nonde-
terministic choices are present. Consider the probabilistic automaton in Figure
5. If we repeatedly run the trace distribution machine with this automaton in-

Fig. 5. The combination of probabilistic and nondeterministic choice.

side, the ratio between the various traces does not need to converge to a fixed
value. However, if we run the machine sufficiently often we will observe that a
weighted sum of the number of occurrences of traces ac and ad will approxi-
mately equal the number of occurrences of traces ab. Restricting attention to
the cases where the left transition has been chosen, we observe L#[ac] ~ #[ab].
Restricting attention to the cases where the right transition has been chosen,
we observe +#[ad] ~ #[ab]. Since in each execution either the left or the right
transition will be selected, we have:

1 1
Stlacl + S#lad) ~ #[ab)

Even though our testing scenario is simple, the combination of nondeterminis-
tic and probabilistic choice makes it far from easy to characterize the behav-
ioral equivalence on probabilistic automata which it induces. The main tech-
nical contribution of this paper is a proof that the equivalence (preorder) on
probabilistic automata induced by our testing scenario coincides with the trace
distribution equivalence (preorder) proposed by Segala [Seg95a]. A result that
we need to establish on the way is an Approzimation Induction Principle (AIP)
(cf. [BK86,BBK8T]) for probabilistic processes. This principle says that if two
finitely branching processes are equivalent up to any finite depth, then they are
equivalent.

Being a first step, this paper limits itself to a simple class of probabilistic
processes and to observers with limited capabilities. First of all, only sequential



processes are investigated: processes capable of performing at most one action
at a time. Furthermore, we only study concrete processes in which no internal
actions occur. Finally, observers can only interact with machines in an extremely
limited way: apart from observing termination and the occurrence of actions, the
only way in which they can influence the course of events is via the reset button?.
It will be interesting to extend our result to richer classes of processes and more
powerful observers, and to consider for instance a probabilistic version of the
failure trace machine described earlier in this introduction.

Related work Several testing preorders and equivalences for probabilistic pro-
cesses have been proposed in the literature [Chr90,Seg96,GN98,CDSY99,JY01].
All these papers study testing relations (i.e. testing equivalences or preorders)
in the style of De Nicola and Hennesy [DNH84]. That is, they define a test as a
(probabilistic) process that interacts with a system via shared actions and that
reports success or failure in some way, for instance via success states or success
actions. When a test is run on a system, the probability on success is computed,
or if nondeterminism is present in either the test or the system, a set of these. By
comparing the probabilities on success, one can say whether or not two systems
are in the testing equivalence or preorder. For instance, two systems A and B
are in the testing preorder of [JYO01] if and only if for all tests 7' the maximal
probability on success in A || T is less than or equal to the maximal probability
on success in B || T. The different testing relations in the mentioned papers arise
by considering different kinds of probabilistic systems, by studying tests with
different power (purely nondeterministic tests, finite trees or any probabilistic
process) and by using different ways to compare two systems under test (e.g. may
testing versus must testing). All of the mentioned papers provides alternative
characterizations of their testing relation in terms of trace—based relations.
Thus, these testing relations are button pushing experiments in the sense
that a test interacts with a system via synchronization on shared actions. How-
ever, in our opinion these relations are not entirely observational, because it is
not described how the probability on success can be observed. In our view, this is
an undesirable situation: in the end, the behavior of an automaton is what an ex-
ternal observer perceives. Therefore, we believe that any behavioral equivalence
should either be characterized via some plausible testing scenario, or be strictly
finer than such an equivalence and be justified via computational arguments.
The only other paper containing a convincing testing scenario for probabilis-
tic systems is by Larsen & Skou [LS91]. They define a notion of tests for reactive
probabilistic processes, that is, processes in which all outgoing transitions of a
state have different labels. Furthermore, the observer is allowed to make arbitrary
many copies of any state. For those tests, a fully observable characterization of
probabilistic bisimulation based on hypothesis testing is given. (We note that
copies of tests can both serve to discover the branching structure of a system —

2 This ensures that our testing scenario truly is a “button pushing experiment” in the
sense of Milner [Mil80]!



as in the nondeterministic case — and to repeat a certain experiment a number
of times.)

More precisely, each test T in [LS91] gives rise to a set of observations Or.
Tests allow certain properties to be tested with arbitrary confidence a € [0, 1],
the so—called level of significance. More precisely, a property & is said to be
testable if for every level of significance a, there is a test T and a partition of
observations Ot into (Eg, Or \ Eg) such that (1) if ¢ holds in a state s and T is
run in s, then it is likely that we observe an element from Eg, i.e. Pg[Eg] > 1—a
and (2) if @ does not hold, then the probability to observe an element in Eg is
small: P_g[Es] < . Thus, by checking whether the outcome of the test is in Fg
or not, we can find out whether s satisfies & and probability that the judgment
is wrong is less than «a. Using the terminology from hypothesis testing, @ is the
null hypothesis and Eg is the critical section.

Then is it shown that two states in a system that satisfies the minimal deriva-
tion assumption are probabilistically bisimilar if and only if they satisfy exactly
the same testable properties. Here the minimal derivation assumption requires
that any probability occurring in the system is an integer multiple of some value
€. Thus, although not explicitly phrased in these terms, one can say Larsen &
Skou present a button pushing scenario for probabilistic processes.

Our work differs from the approach in [LS91] in the following aspects.

— We present our results in the more general PA model, whereas [LS91] consid-
ers the reactive model. As a consequence, the composition of a system and
a test in [LS91] is purely probabilistic, that is, it does not contain nonde-
terministic choices, and theory from classical hypothesis testing applies. In
contrast to this, the probabilistic automata that we consider do contain non-
deterministic choices. To distinguish between likely and unlikely outcomes in
these automata, we have to extend (some parts of) hypothesis testing with
nondeterminism, which is technically quite involved.

— The main result of this paper, which is the characterization of trace distri-
bution inclusion as a testing scenario, is established for all finitely branching
systems, which is much more general than the minimal derivation assump-
tion needed for the results in [LS91].

— The possibility in the testing scenario of Larsen & Skou to make copies of
processes in any state (at any moment), is justified for instance in the case
of a sequential system where one can make core dumps at any time. But for
many distributed systems, it is not possible to make copies in any but the
initial state. Therefore, it makes sense to study scenarios in which copying
is not possible, as done in this paper.

Overview Even though readers may not expect this after our informal introduc-
tion, the rest of this paper is actually quite technical. We start in Section 2 with
some mathematical preliminaries concerning functions, sequences and probabil-
ity theory. In Section 3 we recall the definitions of probabilistic automata and
their behavior. Section 4 is entirely devoted to the proof of the AIP for proba-
bilistic processes. Section 5, finally, presents the characterization of the testing



preorder induced by the trace distribution machine as trace distribution inclu-
sion.

2 Preliminaries

Functions If f is a function, then we denote the domain of f by Dom(f).
The range of f, notation Ran(f), is the set {f(u) | u € U}. If U is a set,
then the restriction of f to U, notation f [ U, is the function g with Dom(g) =
Dom(f)NU satisfying g(u) = f(u) for each u € Dom/(g). We say that a function
f is a subfunction of a function g, and write f C g, if Dom(f) C Dom(g) and
f =g Dom(f). A function f is called finite if Dom(f) is finite.

Sequences Let U be any set. A sequence over U is a function ¢ from a downward
closed subset of the natural numbers to U. So the domain of a sequence is either
the set N of natural numbers, or of the form {0, ..., k}, for some k € N, or the
empty set. In the first case we say that the sequence is infinite, otherwise we
say it is finite. The sets of finite and infinite sequences over U are denoted by
U* and U, respectively. We will sometimes write o, rather than o(n). The
symbol £ denotes the empty sequence, and the sequence containing one element
u € U is denoted by u. Concatenation of a finite sequence with a finite or infinite
sequence is denoted by juutaposition. We say that a sequence o is a prefirz of
a sequence p, denoted by oCp, if 0 = p| Dom(c). Thus oCp if either o = p,
or ¢ is finite and p = oo’ for some sequence ¢'. If o is a nonempty sequence
then first(c) denotes the first element of o and, if o is also finite, then last(o)
denotes the last element of ¢. Finally, length(o) denotes the length of a finite
sequence o. A subsequence of an infinite sequence o is an infinite sequence p that
is obtained by removing finitely or infinitely many elements from o. Formally, p
is a subsequence of ¢ if there is an index function, that is a function Kk : N - N
such that (a) s is strictly monotone (i.e., n < m implies k(n) < x(m)), and (b)
p=00K.

An elementary (but fundamental) result from Analysis is the following the-
orem from Bolzano—Weierstraf.

Theorem 1 (Bolzano—Weierstrafl). Every bounded infinite sequence in R"
has a convergent subsequence.

Let fo, fi, f2,... be an infinite sequence of functions in U — [0, 1], where U
is a finite set. Then this sequence can be seen as a sequence over [0, 1]", where
n is the cardinality of U. Applying the Bolzano—Weierstrafl Theorem to foy, fi,
fo ... yields that this sequence has a convergent subsequence, i.e. there exists
an index function & such that fy (), fx(1), fr(2),--- has a limit (in [0, 1]").

Probability Theory We recall a few basic notions from probability theory and
introduce some notation.



Definition 1. A probability distribution over a set U is a function u : U —
[0,1] such that ), ., u(u) = 1. We define the support of p by supp(u) = {u €
U | w(u) > 0}. It follows straightforwardly from the definitions that this is
a countable set. We denote the set of all probability distributions over U by
Distr(U).

We denote a probability distribution p on a countable domain by enumerating
it as a set of pairs. So, if Dom(u) = {uy,us...} then denote p by {u; —
p(ur),us — p(us)...}. If the domain of p is known, then we often leave out
elements of probability 0. For instance, the probability distribution assigning
probability 1 to an element u € U is denoted by {u — 1}, irrespective of U.
Such distribution is called the Dirac distribution over u.

Definition 2. A probability space is a triple (2, F,P), where

— (2 is a set, called the sample space,

— F C 29 is o-field, i.e. a collection of subsets of £2 which is closed under
countable® union and complement, and which contains 12,

— P: F — [0,1] is a probability measure on F, which means that P[2] = 1
and for any countable collection {C;}; of pairwise disjoint subsets in F we
have P[UZ Cz] = Zz P[CZ]

3 Probabilistic Automata

Now, we recall the notion of a probabilistic automaton from Segala and Lynch
[Seg95a,SL95]. Basically, a probabilistic automaton is a non-probabilistic au-
tomaton with the only difference that, rather than a single state, the target of
a transition is a probability distribution over next states. We consider systems
with only external actions, taken from a given, finite set Act. For technical rea-
sons, we assume that Act contains a special element &, referred to as the halting
action.

Definition 3. A probabilistic automaton (PA) is a triple A = (S, s°, A) with

— S a set of states,
— 5% € S the initial state, and
— AC S x Act x Distr(S) a transition relation.

We write s — p for (s,a,pu) € A and s~4t if s = p and p(t) > 0. We refer to
the components of A as Sa,s%, Aa.

For the remainder of this section, we fix a PA A = (S,s°, A) and assume
that A contains no transition labeled with 6.

Definition 4. A PA A is finitely branching if for each state s, the set {(a, u,t) |
s<At} is finite.

% In our terminology, countable objects include finite ones.



Thus, each state in a finitely branching PA has finitely many outgoing tran-
sitions and the target distribution of each transition has a finite support. As
in the non-probabilistic case, an execution of A is obtained by resolving the
nondeterministic choices in 4. This choice resolution is described by an adver-
sary, a function which in each state of the system determines the next transition
to be taken. Adversaries can be randomized, i.e. make choices probabilistically,
history-dependent, i.e. make choices depending on on the path leading to the cur-
rent state, and partial, i.e. they may choose to halt the execution at any point
in time. Since we want adversaries to produce infinite sequences only, even when
the execution is halted, we define adversaries of a PA via its halting extention.

Definition 5. A path of A is an alternating, finite or infinite sequence

T = SoQ14151GQ2U252 . . .

of states, actions, and distributions over states such that (1) © starts with the ini-
tial state,* i.e. so = 50, (2) if w is finite, it ends with a state, (3) s; T~ 841,
for each nonfinal i. We set the length of m, notation |r|, to the number of ac-
tions occurring in it and denote the set of all finite paths of A by Path*(A). For
n € NU{oc}, the set of all paths of A of length n by Path™(A). We define the

associated trace of w, notation trace(n), by trace(n) = ajasas....

Definition 6. The halting extension of A is the PA 6A = (SU{L},s% A"),
where A' is the least relation such that

1. Sih;A {L— 1},
2.5 Sap = 5554 (WU{L—0}).

Here we assume that L is fresh. The transitions with label § are referred to as
halting transitions.

Definition 7. A (partial, randomized, history-dependent) adversary E of A is
a function

E : Path*(5A) — Distr(Act x Distr(S5.4))

such that, for each finite path w, if E(m)(a,pu) > 0 then last(m) 5.4 p.
We say that E is deterministic if, for each w, E(x) is a Dirac distribution.
An adversary E halts on a path « if it extends © with the halting transition, i.e.,

E(m) (5, {1 1)) = 1.

For k € N, we say that the adversary E halts after k steps if it halts on all paths
with length greater than or equal to k. We denote by Adv(A,k) the set of all
adversaries of A that halt after k steps and by Dadv(A, k) the set of deterministic
adversaries in Adv(A, k). Finally, we call E finite if E € Adv(A, k), for some
keN

4 Here we deviate from the standard definition, as we do not need paths starting from
non-initial states.



The probabilistic behavior of an adversary is summarized by its associated
probability space. First we introduce the function QF, which yields the proba-
bility that E assigns to finite paths.

Definition 8. Let E be an adversary of A. The function Q¥ : Path*(6A) —
[0,1] is defined inductively by

QE(SO) =1,
QF(raps) = QF(x) - E(m)(a, n) - u(s).

Definition 9. Let E be an adversary of A. The probability space associated to
E is the probability space given by

1. Qg = Path™(4A),

2. Fg is the smallest o-field that contains the set {Cr | m € Path*(6.A)}, where
Cr = {n' € g | nCn'},

3. Pg is the unique measure on Fg such that Pg[C.] = QF(w), for all 7 €
Path* (8 A).

The fact that (2g, Fr,Pg) is a probability space follows from standard measure
theory arguments, see for instance [Coh80]. Note that 2 and Fr do not depend
on E but only on A, and that Pg is fully determined by the function Q¥. For E €
Adv(A, k), Pg is fully determined by QF | Path*(A), i.e., the weight function
restricted to paths of length k.

As for non-probabilistic automata, the visible behavior of A is obtained by
removing the non-visible elements (in our case, the states) from an execution
(adversary). This yields a trace distribution of A, which assigns a probability to
(certain) sets of traces.

Definition 10. The trace distribution H of an adversary E, denoted trd(E),
is the probability space given by

1. .QH = Actoo,

2. Fu is the smallest o-field that contains the sets {Cz | § € Act*}, where
Cs = {8' € 2u | BCA),

3. Py is the unique measure on Fg such that Py[X] = Pgltrace ! (X)].

Standard measure theory arguments [Coh80] ensure again that that trd(E) is
well-defined. Note that 2y and Fg do not depend on A. This means that trace
distributions are fully characterized by their probability measure. The set of trace
distributions of adversaries of A is denoted by trd(A). We write A =rp B if
trd(A) = trd(B) and A Crp B if trd(A) C trd(B). The set of trace distributions
of that arise from adversaries of A that halt after k steps is denoted trd(A, k).
If trd(A, k) C trd(B, k) then we write A CAp B.

Lemma 1. Let X and Y be non-empty sets and f : X — Distr(Y) a function.

If X is finite then
S I @) e@) = 1.

g X—=Y xeX

10



Proof: By induction on # X = n. Let 29 € X and write X; = X \ {z¢}.

—Ifn =1 then 3 y .y ILex f(@)(9(@) = X, cy f(20)(y) = 1 because
f(zo) is a distribution function.

— Assume that the proposition holds for all X' with # X' =n and let # X =
n + 1. Then

> I r@)g@) =

g X—=Y xeX

Y f@o)gwe) - TT f@)(9(a) =
¢ XY zeX;

S S fwo)w) [ f@)e) =
g1: X1 =Y yey z€X,

> 11 r@(g@) = 1.

g1: X1—=Y reXq

The following lemma shows that each finite adversary in a finitely branching
PA can be written as a convex combination of deterministic adversaries.

Lemma 2. Letk € N, let A be a finitely branching PA and let E be an adversary
in Adv(A, k).

1. Then E can be written as a convex combination of deterministic adversaries
in Dadv(A, k), i.e., there exists a probability distribution v over Dadv(A, k)
such that, for all 7, a and u,

E(m(a,m)= Y v(D)-D(m)(a,n).
DeDadv(A,k)

2. If E = 3 pepadvar V(D) D(r)(a,n) for some v € Distr(Dadv(A, k))
then

Q%) = S (D) Q% (o).

DeDadv(A,k)
Proof:
1. First, observe that the set Dadv(A, k) is finite, because A is finitely branch-
ing.
The idea in the proof is as follows. Let D € Dadv (A, k) be an adversary such
that

D(o)(a,n) =1 = E(o)(a,u) >0, for all o (*)

Then D can be seen as an adversary within E: among all the steps that E
schedules with a positive probability, D schedules one with probability one.

11



Now, multiply all the probabilities E(7)(a, ) that E assigns to steps (a, u)
taken in D, i.e. steps with D(w)(a, ) = 1. This yields a value pp and we
show that E can be obtained by selecting the adversary D with probability
pp = v(D). Furthermore, note that pp = 0 if D does not meet (*). Hence,
define v by

viD)= I  E@D©),

g€ Path*(A)

where, as before, we write D(o) = (a, u) for D(o)(a, u) = 1. Moreover, write
D for Dadv(A, k) and P for Path*(A). Then v € Distr(()Dadv A, k) because

> v(D) = > ][] E(e)(D(o)) = 1.

DeD DeDoeP

Since D is finite, the last step is justified by Lemma 1. For the same reason
we have for all p, a, p that

> v(D)-D(p)(a,u) =

DeD

3" I] E(0)(D(0))- D(p)(a,n) =

DeDoeP

> II EG)a,m-1 =

DeD,D(p)=(a,u) c€EP
E(p)a ).

2. By induction on the length of o.
— If o = s” haslength 0, then Q¥ (s%) =1 =3 5. p (D) = 3 pep v(D) - QP (7).
— Let 0 = ¢’aut, then
Q¥ (o' apt) = QP(0") - E(0")(a, 1) - ) =
= 3 UD) QP S D) Do) ) =

DeD D'eD

= 3 D)@ 3 o) DO aws) i) =
= 57 u(D)-QP(o") - D(o)a, ) - nlt) =

DeD

= 5" u(D)-Q"(c"aut) =

DeD

= 3" u(D)-Q"(0).

DeD

12



4 The Approximation Induction Principle

This section is entirely devoted to a proof of an Approzimation Induction Prin-
ciple (AIP) (cf. [BK86,BBK87]) for probabilistic processes. We need this result
to characterize the equivalence on probabilistic automata induced by the trace
distribution machine in Section 5.

Theorem 2 (Approximation Induction Principle). Let A and B be PAs
and let B be finitely branching. Then

VE[A E’I%D Bl = ALCmp B.

Proof: Assume that A Ckp B, for all k. In order to prove A Crp B, let H be
a trace distribution of A and let E be an adversary of A with H = trd(F). Via
a number of subclaims, we prove that H € trd(B).

For each k € N, define Fj, by

_[Em if | < k.
Ey(m) = {{(5’{l,_> 1}) = 1} otherwise.

Clearly, E; € Adv(A, k), so trd(Ey) € trd(A, k). By assumption, there is an
adversary Fy of B such that trd(Ey) = trd(Fy). We view F}, as a function in

Path*(6B) x Act x Distr(Ssg) — [0, 1].

We will construct an adversary G of B with trd(G) = H from the sequence of
functions F' = Fy, Fy, Fy .. .. The idea is that, since only the paths of length &
matter, Fy, is essentially a finite function and we can use the Bolzano—Weierstrafl
Theorem to obtain G as the limit of a convergent subsequence of F. However,
this theorem cannot be applied immediately, because the finite domains of these
functions are growing. Therefore, we will operate in several stages. The basic
idea is to construct at stage n + 1 a convergent subsequence with index function
knt1 of F, F', Fiyn. .., where FJ? is the restriction of Fj to paths of length
n. This sequence consists of finite functions with the same, finite domain and
a bounded range (viz. [0,1]) and has therefore a convergent subsequence. We
define G,, as the limit of k,,. Thus, we will obtain a sequence of increasing
subfunctions G; C G5 C G3... and we take G to be its limit. We will need
several technical lemmas to ensure that everything is as expected and to prove
finally that trd(G) = trd(E).
Throughout this proof, we use the following notations.
P, = U Path'(5B)

1<n

D,, = {p € Distr(Ssg) | u occurs in some m € Pyy1}

P = Path*(6B)
D = Distr(Ssg)

13



Note that P, C Ppy1, Dy € Dypy1, P =U,P, and D D U, D,,. In fact, D may
contain distributions that are not contained in any D,. Observe also that 7 € P,
and 7 “4 s implies p € D,,. Since B is finitely branching, there are only finitely
many paths of length at most n and hence P, and D,, are both finite. Recall
that Act is finite by definition. Therefore, the following function F} is finite:

E}! . P, x Act x D,, = [0,1]
F' =Fy | P, x Act x D,,.
Claim 1 F C " for all k,n.
PRrOOF: Easy verification. X
For each n, let p,, be the sequence
pn = F F' F}' F3'...
and let k, be the index function defined inductively as follows:

— Ko is the identity function.

— Let s be the index function of a convergent subsequence of p, o k, (such
a subsequence exists by the Bolzano—Weierstrafl Theorem). Then xp41 =
Kn O K.

We define function G,, : P, x Act x D,, = [0,1] by

Gn =lim(pp 0 kpt1),
i.e. , Gy, is the limit of the convergent subsequence just defined.
Claim 2 G, C Gpq1-

Proor: Clearly, Dom(G,) C Dom(Gy41). Let (7, a, ) € Dom(G,,). Then

k— o0 tint2(k)

Gn(m)(a, p) = lim FL () (a, p) {Ran(knt2) C Ran(kny1}
= lim F L 0(m)(a n) {Claim 1}
= lim F*0 (7)(a, p)
)

= Gnya(m)(a; n

X

Let G' = U,G,, ie. for m € Py, a € Act and p € D,, G'(7)(a,n) =
Gy (m)(a, p). Then G' is a function in U, P, x Act X D,, — [0,1]. We extend G’
to a function G in P x Act x D — [0, 1] as follows

G'(m)(a,p) if In.m € Py Ap € Dy,
0 otherwise.

G(m)(a,p) = {

14



The rest of this proof is concerned with showing that G is an adversary with
trd(G) = H, which is exactly what we are after.

Claims 3 and 4 together imply that G is an adversary of B. Claim 3 states
that G respects the transition relation of §B, and Claim 4 establishes that G has
the required type, i.e.

G : Path™(6B) — Distr(Act x Distr(Ssz)).

Claim 3 Supposen € P, a € Act, i € D and G(7)(a, ) > 0. Then last(r) = p
is a transition of 6B.

PROOF: Since G()(a, ) > 0, it follows from the definition of G that G(7)(a, u) =
G'(m)(a, p). Hence, by definition of G', there is an n such that G'(7)(a,u) =
Gy (m)(a, p). Then

0 < Gp(m)(a,p) {def. G}
= lim E7, (%) (a.p) {det. F}

= fim Fy, 0 (m) (e p)

This implies that F,, ) (7)(a, 1) > 0 for large k. Since F); ,, (x) is an adversary
of B, last(m) < u is a transition of B. K

Claim 4 For allm € P, 3 a0y ep G(7)(a, ) = 1.
ProoOF: Choose m € P and let n = |r|. Then n € P, and

S G {def. G}

a€Act,u€D

- Y ¢ {def. ')
a€Act,ueD,

= Y Gu®(an {def. G}
a€Act,u€D,

= Y jim R @) faef. 1)
a€Act,u€D,

= Z lim F, . ) (7)(a, p) {finite sum}

k—o00

a€Act,ueD,

= khargo Z an+1(k)(7r)(anu) {def Act, Dn}

a€Act,u€D,
= leH;O Z Fe iy (m)(a, p) {F; adversary}
a€Act,ueD

= lim 1
k—o00

=1
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Note that the following claim concerns G and F;, which are adversaries. In
contrast, G, and F}! are just functions, not adversaries.

Claim 5 QY (7) = limy_, oo QF<+0®) () for all m € Path*(6B) with |7| = n.

ProOF: By induction on n.

— Then case n = 0 follows immediately from the fact that Q¥ (sq) = 1 for all
adversaries E.

— Case n + 1. Let 7' be a path of length n + 1 and write 7' = 7 “¥ s. Then
m € Py, a € Act, p € D,, and

QF (")

— Q%(r) - G(m)(a, ) - u(s) {IH, |r| = n}
= lim Q=% (x) - Gia () (0. 1) - () {def. G}
= kILI& QFK(")“C) (ﬂ-) : kILI& Fn(n)(k) (ﬂ-)(aa :u) : :u(s)

= lim Q) (1) - Fy (i) (m) (@, 1) - pa((s) {def. Q}
= k]‘gn Q) (1 U g)

= kli)m QFn(n+1)(k)(7T’)

Claim 6 QF(7) = limj_,oo QP=t®) (1) for all n and =.

PROOF: Since x(n) is an index function, we have lim;_, o £(n)(k) = oo and
therefore B, [r] = Elr] for k(n)(k) > |x|. So, limj_ee QFrtmt (1) =
Q”(r). B

The following is an immediate consequence of the previous claim.
Claim 7 Py q(p)[Ca] = limg 0 Ptm(EN(")(k))[Ca], for all a.

Claim 8 trd(G) = trd(E).

16



PRrOOF: Let Hy = trd(G) and Hy = trd(E). It suffices to show that P, [C,] =
P, [C,] for all a € Act*. Let n = |af.

Pu[Cl= ) Paln]
w|trace(m)ECq
= Z Pa[Cr] {def. Cr}
w|trace(m)=aA|w|=n
= > Q%(n) {Claim 5, |z| = n}
w|trace(m)=aA|w|=n
= > lim QFxmw (1) {finite sum}
k—o0
w|trace(m)=aA|r|=n
= li Frmy . Ca, Pp,
Jim > Qe (1) {def. C,, Pp,}
w|trace(m)=aA|r|=n
= JH{}O Pr, 0 [Cal
= lim Pp,, [Ca] {Claim 7}

= Py[C,){trd(F;) = trd(E;)}

Note that the set {m | trace(nr) = a A|n| = n} is finite, because A is finitely
branching and hence the summations above are all finite. X

O

5 Characterization of Testing Preorder

The operational behavior of a trace distribution machine described in Section 1 is
specified accurately by the notion of a (partial, randomized, history-dependent)
adversary, introduced in Definition 7. Hence, when operating, the trace distri-
bution machine chooses an execution path within some probabilistic automaton
A, using some adversary E.

Define a sample O of depth k and width m to be an element of (Act®)™, ie.,
a sequence consisting of m sequences of actions of length k. A sample describes
what an observer potentially may record when running m times an experiment
of length k on the trace distribution machine. Note that if, during a run, the
machine halts before k£ observable actions have been performed, we can still
obtain a sequence of k actions by attaching a number of § actions at the end.

We write freq(O) for the function in Act® — Q that assigns to each sequence
Bin Act® the frequency with which 8 occurs in O. That is, for O = 1 6s, ..., fm

:#{Mﬁz’:ﬁ:lfiﬁm}

m

freq(0)(B)

Note that freq(O) is a probability distribution over (Act®)™. We base our sta-
tistical analysis on freq(O) rather than just O. This means we ignore some of
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the information contained in samples, which more advanced statistical methods
may want to explore. If, for instance, we consider the sample O of depth one
and width 2000 that consists of 1000 head actions followed by 1000 tail actions,
then it is quite unlikely that this will be a sample of a trace distribution machine
implementing a fair coin. However, the frequency function freq(O) can very well
be generated by a fair coin.

For a trace distribution H € trd(A, k), we denote by ug : Act® — [0,1]
the probability distribution given by pm(8) = Pg[Cs]. Since H halts after k
steps, ug (B) yields the probability that (3 is picked when we generate a sequence
according to H. In other words, ug(8) yields the probability that during a run,
the trace distribution machine produces the action sequence 3, when it resolves
its nondeterministic choices according to an adversary E with trd(E) = H.
Therefore, the probability that the sample O = 3105, ..., B, is generated when
we successively and independently choose sequences f3; according to distributions
H; € trd(A, k), is given by

PH1,---,Hm [O] = H HH; (ﬂl)
i=1

Finally, the probability that an element from a set @ C (Act®)™ is picked, equals

0oeo

Given Hy, H,,...,H,,, we want to distinguish between outcomes that are
likely to be generated by Hy, Ho, ..., H,,, and those which are not. To do so, we
first fix an @ € (0, 1) as the desired level of significance. Our goal is to define a

set K, Hs.,...,H,,, the likely outcomes, such that

L. Pu,,..w. Koy b, om0 > 1 — @,
2. K, H,,...,H,, is, in some sense, minimal.

Condition (1) will ensures that the probability that we believe that O is not
generated by Hy, ..., Hy, while it is so, is at most a. Condition (2) will ensure
that Py m [KH, Hs,.. H,,] s as small as possible for sequences (Hj, ..., H),)
different from (Hy, ..., Hy,). (How small this probability is highly depends on
which H/’s we take.) Therefore, the probability that we consider O to be an
execution while it is not, is as small as possible. In terminology from hypoth-
esis testing: our null hypothesis states that O is generated by Hy, ..., H,, and
condition (1) bounds the probability on false rejection and (2) minimizes the
probability on false acceptance. The set Kg, f,,... m,, is the complement of the
critical section. Note that in classical hypothesis testing all subsequent experi-
ments 31,...08, are drawn from the same probability distribution, whereas in
our setting, each experiment is governed by a different probability mechanism
given by H;.
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The idea behind the definition of Kg, .. m,, is as follows. The ezpected fre-
quency of a sequence 8 in a sample generated by Hy, ..., H,, is given by

1 m
En,. . m,.8) = ™ Z/’LHi (B).
i=1

Since fluctuations around the expected value are likely, we allow deviations of
at most € from the expected value. Here, we choose € as small as possible, but
large enough such that the probability on a sample whose frequency deviates at
most € from Eg, . m, is bigger than a. Then, conditions (1) and (2) above are
met. Formally, define the e-sphere B:(u) around p as

B. () = {v € Distr(Act") | dist(p,v) < e},

where let dist is the standard distance on Distr(Act®) given by dist(u,v) =

VEseac n(B) —v(B)P.

Definition 11. For a sequence Hy, Hs, ... Hy, of trace distributions in trd (A, k),
we define Kp, .1, as the smallest® sphere B.(Ep, . g, ) such that

Pu,. 1, [{0 € (Act")™ | freq(O) € B.(En,.. m,)} >1—a.
We say that O is an observation of A (of depth k and width m) if

(NS ’CH1,---7H

We write Obs(.A) for the set of observations of A.

Ezample 1. We take a = 0.05 as the level of significance. First, consider the
leftmost PA in Figure 4 and samples of depth 2 and width 100. This means that
the probabilistic trace machine is run 100 times and each time we get a trace of
length 2.

Then any sample O; in which the sequence ab occurs 42 times and ac 58 times
is an observation of A; samples in which ab occurs 38 times and ac 62 times are
not. Let F be the adversary that, in each state, schedules with probability one the
unique transition, if available, in that state and otherwise it schedules the halting
transition with probability one. For H = trd(E), we have pg(ab) = pu(ac) = %
and py(B) = 0 for all other sequences. Let H'° = (Hy,...Hjoo) be sequence
of adversaries with H; = H. Then Egio0 = pg and, since pg assigns a positive
probability only to ab and ac, we have that P oo [B. (up)] = Prioo[{O1 | § —
e < freq(O1)(ab) < % + €}]. One can show that then smallest sphere such that
P pioo[Be (pa)] > 0.95 is obtained by taking ¢ = . Since freq(O1) € B:(um)
O, is an observation.

Then, a sample Os containing with 20 §d’s, 42 ab’s and 58 ac’s is an obser-
vation of depth 2 and width 120. It arises from taking 100 times adversary H as
above and 20 adversaries that halt with probability one on every path.

Y

5 This minimum exists, because there finitely many samples.

19



Now, consider the automaton in Figure 5. Consider the scheduler E3 that in
the initial state, schedules both a transitions with probability %; with probability
one the unique b, ¢ or d transition whenever it is avaible and otherwise the halting
transition with probability one. Let K'2° be the sequence consisting of 120 times
the adversary K. The expected frequency of K'* is - for ab, & for ac, and

51 for ad and then Kg159 = B1 (Eg100), so for 1nstance the sequence with 40

ab s, 40 ac’s and 40 ad’s is an o]bservatlon of the mentioned PA.

5.1 The characterization theorem

We can now prove our main characterization theorem, which states that the pre-
order induced by the testing scenario coincides with trace distribution inclusion.

Theorem 3. Obs(A) C Obs(B) <= ALtp B.
The following corollary is immediate.
Corollary 1. Obs(A) = Obs(B) < A =mp B.

Before presenting the proof of the main theorem, we introduce four auxilliary
results and some notation.

The first result states that, in a large number of Bernouilli trials (with dif-
ferent parameters), the set of outcomes with large deviations from the expected
frequency of the number of 1’s has a small probability. In fact, by choosing the
number of trials large enough, we can get the probability on deviations of € or
more as small as we want.

Proposition 1. Let a € (0,1) and € > 0. Then there exists an m' € N such
that the following holds. For all m > m', and all sequences X1, Xs,..., X of
m independent random variables, where X; has a Bernouilli distribution with
parameter p;, for some p; € [0,1] (i.e. P[X; = 1] =p;,P[X; =0] =1 — p;), we
have that
P[|Zn —E[Zp]| > ] <a.

Here, Z,, = % >t X; yields the frequency of the number of 1’s that have been
drawn in (Xq,..., Xn).

> Xs, ..., X, be a sequence of m inde-
pendent random variables, where X; has a Bernouilli distribution with parameter
€ [0,1]. First note that

'MS

i=1 i=1

1
Var(Z,,) = Var (—
m

1 m
Sm—;

1 & 1 &
Z> = ZVar(Xi) =3 Zpi(l - pi)
i=1

uklr—ﬂ
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Hence, by Chebychev’s Inequality, we have

1
P[‘Zm —E[Zn]| > 5] < E_2V31"(Zm) <

The second result reformulates the proposition above in terms of trace distri-
butions rather than random variables: we can choose the number of runs of the
trace distribution machine large enough so that, with high probability (i.e. 1-a),
for each sequence 8, the number of 8’s in the sample we draw deviates no more
than e from its expected value.

Proposition 2. Let a € (0,1), € > 0 and k € N. Then there exists an m' € N
such that for all m > m’, all trace distributions Hy, Ho, ..., Hy, € trd(A, k) and
all B € Act®

Pu,...m, [ {0 € (Act*)™ | |freq(0)(B) — En,....u,,(B)| > €} ] < a.

Proof: This statement is merely a reformulation of Proposition 1. Given a
sequence of trace distributions Hi, ..., H,, and an sequence 3 € Act®, we define a
sequence of independent randoms variables Xlﬁ, ..., X2, where XZ.6 : (Actk)m —
{0, 1} indicates whether the sequence /3 is drawn by H;. Then, X; has a Bernouilli
distribution with parameter pup, (). As before, we put Z3 = L 37, Xf. We
note that

— freg(O)(B) = Z2 (0) yields the number of 3’s in O.
- En,..0,08) =+ 3", na, (8) = E[Z8)].
- P[Z}, = 4] =Pp,...1,,[{O € (Act")™ | freq(0)(B) = a}].

Now, the desired result follows easily from Proposition 1. O

Then, we consider all sequences 8 € Act® at the same time. Then, the prob-
ability that the vector of the frequencies freq(O) in a sample O deviates a lot
from the expected frequency vector Eg, .. g, is small.

m

Proposition 3. Let a € (0,1), € > 0 and k € N. Then there exists an m' € N
such that for all m > m' and all trace distributions Hy, Ho, ..., Hy, € trd(A, k)

Py, ..m,[{0 € (Act*)™ | freq(O) € B.(En,... .u, )] >1—a.

Proof: Let n = # Act*. By Proposition 2, there exists an m’ such that for all
m > m' and all 8

Pyt [{O € (Act™)™ | |frea(0)(B) — Em, ..., (B)] > £] <

3L

(*)
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But then

Pu,,..1, [{O | freg(0) € Be(En,,..m,.)}] = {def B.}

Pu,...1, [{O | |freq(O) —Ep,,.. 1, | <e}] > {see below}

Pu,...i, [{O | VB.|freq(0)(8) — En,...m,.(B)] < 5}] = {prob. th.}

1—Pu,, .m0, [{O | 3B.|freq(0)(B) — Em,,.m,, (B)] > 5}] > {prob. th.}

1- Z Pr, .m0, {0 | |freq(O)(B) — En,, m,.(B)] > £}] > {from (*)}
BE Actk

1—n%:1—a.

The inclusion {O | |freq(O)=Emn, ... u, | <e} 2 {0 | VB.freq(O)(8)—Em,....n, (8)] <
£} is just another formulation of the fact that an n-dimensional sphere with ra-

dius r and center p contains the n-diminsional hypercube with edge length 5-

and center p. O

Finally, we need some elementary observations about the function ug.

Proposition 4. 1. For all trace distributions H, K € trd(A, k), we have H =
K <— pmg=pxk.
2. For allm and H; € trd(A, k), g, ..u,) = ii, where K =% 1" H;.

Proof: Immediately from the definitions. O

Proposition 5. For every H € trd(A, k), pg can be written as a convex combi-
nation of distributions pg,, where H; is generated by a deterministic adversary.
That is, there exists a probability distribution v over the set Dadv(A, k) such

that, for all o € Act®, pg (o) = Y- pep V(D) - tira(py(0).
Proof: Immediately from Lemma 2. O
We can now prove the main theorem.

Proof: (of Theorem 1) The “<="-direction follows immediately from the def-
initions. To prove the “ = ”-direction, assume that A Zrp B. We show that
Obs(A) € Obs(B).

By Theorem 2, there exists a k such that A ZA, B, ie. trd(A, k) € trd(B, k).
Let H be a trace distribution in trd(A, k) that is not a trace distribution in
trd(B, k). We write H™ for the sequence (Hy, Hs, ..., H,,) with H; = H. Then,
Proposition 4(1) concludes that there is no K € ¢rd(B, k) such that pg = px.
Moreover, Proposition 5 states that the set {ux | K € trd(B, k)} is a polyhedron.
Therefore, there is minimal distance d > 0 between pg and any px with K in
trd(B, k).

Consider the trace distribution H. By Proposition 3, we can find m 4 such
that for all m > my4

Py [{O € (Act®)™ | freq(O) € Ba(Epm)}] > 1 — a.

d
3
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This means that for all m > m 4, Kgm C B%(EHm) and since Proposition 4(1)
states that Egm = pug, we have Kgm C B%(,uH).

Now, consider a sequence trace distributions in ¢rd(5B, k). By Proposition 3,

we can find mg such that for all m > mpg and all trace distributions K, Ks, ..., K,
of B

PKI,---7Km [{O € (Actk)m |f7"eq(0) € B%(EK17...7K,,,)}] > 1-—a.

Let m > max(ma,mp). Then Kk, .k, C Bg(EKl,...7Km) and by Proposi-
tion 4(2) we have Kk, .. Kk, C B%(EK“”,KM) = B%(MK), where K = > 1" | K.
Since |pg — pr| > d, we have B%(uH)ﬂBg(uK) = (), and therefore, and

Kum NKk, .. Kk, = 0. Hence, none of the observations generated by H™ is an
observation of B and therefore Obs(A) € Obs(B). O
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