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t. We 
onsider 
on
urrent two-person games played in realtime, in whi
h the players de
ide both whi
h a
tion to play, and whento play it. Su
h timed games di�er from untimed games in two essentialways. First, players 
an take ea
h other by surprise, be
ause a
tions areplayed with delays that 
annot be anti
ipated by the opponent. Se
ond,a player should not be able to win the game by preventing time fromdiverging. We present a model of timed games that preserves the ele-ment of surprise and a

ounts for time divergen
e in a way that treatsboth players symmetri
ally and applies to all !-regular winning 
ondi-tions. We prove that the ability to take ea
h other by surprise adds extrapower to the players. For the 
ase that the games are spe
i�ed in thestyle of timed automata, we provide symboli
 algorithms for their so-lution with respe
t to all !-regular winning 
onditions. We also showthat for these timed games, memory strategies are more powerful thanmemoryless strategies already in the 
ase of rea
hability obje
tives.1 Introdu
tionGames have be
ome a 
entral modeling paradigm in 
omputer s
ien
e. In synthe-sis and 
ontrol, it is natural to view a system and its environment as players of agame that pursue di�erent obje
tives [Chu63,RW89,PR89℄. Similarly, in modu-lar spe
i�
ation and veri�
ation it is often appropriate to model the 
omponentsof a system as individual players that may or may not 
ooperate, depending onthe appli
ation [AHK02,AdAHM99℄. Su
h games are played on a state spa
eand pro
eed in an in�nite sequen
e of rounds. In ea
h round, the players 
hoosea
tions to play, and the 
hosen a
tions determine the su

essor state. For thesynthesis and modular analysis of real-time systems, we need to use games wheretime elapses between a
tions [MPS95℄. In su
h timed games, ea
h player 
hoosesboth whi
h a
tion to play, and when to play it. Timed games di�er from theiruntimed 
ounterparts in two essential ways. First, players 
an take ea
h other bysurprise, be
ause a
tions are played with delays that 
annot be anti
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the opponent. Se
ond, a player should not be able to win the game by preventingtime from diverging [SGSAL98,AH97℄. We present a model of timed games thatpreserves the element of surprise and a

ounts for the need of time divergen
e.We study both the properties of the winning strategies and the algorithms fortheir 
onstru
tion.We 
onsider two-player timed games that are played over a possibly in�nitestate spa
e. In ea
h state, ea
h player 
hooses, simultaneously and independentlyof the other player, a move h�; ai, indi
ating that the player wants to play thea
tion a after a delay of � 2 IR�0 time units. A spe
ial a
tion, ?, signi�es theplayer's intention to remain idle for the spe
i�ed time delay. Of the moves 
hosenby the two players, the one with the smaller delay is 
arried out and determinesthe su

essor state; if the delays are equal, then one of the 
hosen moves o

ursnondeterministi
ally (this models the fa
t that, in real-time intera
tion, true
ontemporaneity 
annot be a
hieved). This pro
ess, repeated for in�nitely manyrounds, gives rise to a run of the game. Our de�nition of moves preserves theelement of surprise: a player 
annot anti
ipate when the opponent's a
tion willo

ur in the 
urrent round. This 
ontrasts with many previous de�nitions oftimed games (e.g., [AH97,HHM99,dAHM01b,MPS95,AMPS98℄), where players
an only either play immediately an a
tion a, or wait for a delay �. Su
h for-mulations may be simpler and more elegant for timed transition systems (i.e.,one-player games), but in the 
ase of two-player formulations, the element ofsurprise is lost, be
ause after ea
h delay both players have the opportunity topropose a new move. This allows a player to inter
ept the opponent's move h�; aijust before the a
tion a is 
arried out. We show that the element of surprise givesa distin
t advantage to a player. In parti
ular, we prove that there are simplerea
hability games that 
an be won under our formulation of moves, but notunder the previous \no-surprise" versions.The obje
tive for a player is given by a set � of desired game out
omes. Aplayer a
hieves this goal if all game out
omes belong to �. For a timed gameto be physi
ally meaningful, a player should not be able to a
hieve a goal bystopping the progress of time. For instan
e, if � 
onsists of the set of runs thatstay forever in a 
ertain set U of states, and if player 2 has an a
tion to leaveU only after a delay of 4, then player 1 should not be able to win by alwaysplaying h0;?i. Therefore, several 
onditions WC i(�) have been proposed in theliterature to express when player i 2 f1; 2g wins a timed game with goal �.In [SGSAL98,AH97℄ the winning 
ondition WC 1(�) is de�ned to be � \(td [ Blameless1), where td is the set of runs along whi
h time diverges, andBlameless1 is the set of runs along whi
h player 1 proposes the shorter delayonly �nitely often. Clearly, player 1 is not responsible if time 
onverges along arun in Blameless1. Informally, the 
ondition states that player 1 must a
hievethe goal �, and moreover, either time diverges or player 1 is blameless for its
onvergen
e. This de�nition works if the goal � is a safety property, but not ifit is a rea
hability or, more general, a !-regular property. To see this, observethat player 1 must a
hieve the goal even if player 2 stops the progress of time.Consider a game where the goal 
onsists of rea
hing a set U of states, and where



player 1 has an a
tion leading to U whi
h is always available on
e time advan
esbeyond 1. Then, player 1 
annot win: player 2 
an stop time, preventing thea
tion from ever be
oming enabled, and ensuring that no run is in �.In [MPS95℄, the winning 
ondition �\td is proposed. This 
ondition requiresplayer 1 to guarantee time divergen
e, whi
h is not possible in models whereplayer 2 
an blo
k the progress of time. In [dAHS02℄, this 
ondition is modi�ed toWC �i (�) = (�\td )[Blameless i for player i 2 f1; 2g. While this is appropriate inthe asymmetri
 setting 
onsidered there, the problem in our setting, where bothplayers are treated 
ompletely symmetri
ally, is that the two 
onditionsWC �1(�)and WC �2(:�) are not disjoint (here :� is the 
omplementary language of �).This means that there are games in whi
h both players 
an win: for instan
e,player 1 
an ensure �\ td , and player 2 
an ensure Blameless2. Other works ontimed games (e.g., [AMPS98,FLM02℄) have avoided the issue of time divergen
ealtogether by putting synta
ti
 
onstraints on the game stru
tures.We de�ne timed games and their winning 
onditions in a 
ompletely sym-metri
 fashion, and in a way that works for all goals (in parti
ular for all !-regular goals) and ensures that players 
an win only by playing in a phys-i
ally meaningful way. The winning 
onditions we propose are WC i(�) =(� \ td) [ (Blameless i n td), for i 2 f1; 2g. These winning 
onditions implythat WC 1(�) \WC 2(:�) is empty, ensuring that at most one player 
an win.Note that there are runs that belong neither to WC 1(�) nor to WC 2(:�): this
ontrasts with the traditional formulation of untimed games, where runs are ei-ther winning for a player with respe
t to a goal, or winning for the opponentwith respe
t to the 
omplementary goal. We argue that the la
k of run-leveldetermina
y is unavoidable in timed games. To see this, 
onsider a run �r alongwhi
h both players take turns in proposing moves with delay 0, thus stoppingthe progress of time. If we somehow assign this run to be winning for a player,say player 1, then it would be possible to 
onstru
t games in whi
h the moveswith delay 0 are the only moves available, and in whi
h player 1 
ould never-theless win. This would go against our intention that a player 
an win only in aphysi
ally meaningful way. The la
k of run-level determina
y also implies thatthere are states from whi
h neither player 
an win.The form of the winning 
onditions for timed games have other importantimpli
ations. We show that to win with respe
t to a rea
hability goal, in 
ontrastto the untimed 
ase, strategies with memory may be required. For safety goals,however, memoryless strategies suÆ
e also in the timed 
ase. We prove severaladditional stru
tural properties of the winning strategies for timed games. Forinstan
e, we de�ne a 
lass of persistent strategies, in whi
h players do not 
hangetheir mind about the time of future moves when interrupted by a h�;?i moveof the opponent. We show that persistent strategies always suÆ
e to win games,for all possible goals.While we de�ne timed games at �rst semanti
ally, we also o�er a timed-automaton-style [AD94℄ syntax for a spe
i�
 
lass of timed games. We showthat for these timed automaton games the winning states with respe
t to any!-regular goal 
an be 
omputed by a symboli
 algorithm that iterates a 
ontrol-



lable prede
essor operator on 
lo
k regions. In parti
ular, we prove that timedautomaton games 
an be won using region strategies, where the players need onlyremember the history of the game as a sequen
e of regions, rather than more pre-
isely, as a sequen
e of states. Furthermore, the problem of solving these gamesis shown to be, as expe
ted [AH97℄, 
omplete for EXPTIME.2 Timed Games2.1 Timed Game Stru
turesA timed game stru
ture is a tuple G = (S;A
ts1;A
ts2; �1; �2; Æ), where{ S is a set of states.{ A
ts1 and A
ts2 are two disjoint sets of a
tions for player 1 and player 2,respe
tively. We assume that ? =2 A
tsi and write A
ts?i = A
tsi[f?g. Theset of moves of player i is given by Mi = IR�0 �A
ts?i .{ For i = 1; 2, the fun
tion �i : S 7! 2Mi n ; is an enabling 
ondition, whi
hassigns to ea
h state s a set �i(s) of moves available to player i in that state.{ Æ : S � (M1 [M2) 7! S is a destination fun
tion that, given a state and amove of either player, determines the next state in the game.We require that the move h0;?i is always enabled and does not leave the state:h0;?i 2 �i(s) and Æ(s; h0;?i) = s for all s 2 S. Similarly to [Yi90℄, we requirefor all 0 � �0 � � and a 2 A
ts?i , that (1) h�; ai 2 �i(s) if and only ifh�0;?i 2 �i(s) and h���0; ai 2 �i(Æ(s; h�0;?i)), and (2) if Æ(s; h�0;?i) = s0,and Æ(s0; h���0; ai) = s00, then Æ(s; h�; ai) = s00.Intuitively, at ea
h state s 2 S, player 1 
hooses a move h�1; a1i 2 �1(s), andsimultaneously and independently, player 2 
hooses a move h�2; a2i 2 �2(s). If�1 < �2, then the move h�1; a1i is taken; if �2 < �1, then the move h�2; a2iis taken. If �1 = �2, then the game takes nondeterministi
ally one of the twomoves h�1; a1i or h�2; a2i. Formally, we de�ne the joint destination fun
tioneÆ : S �M1 �M2 7! 2S byeÆ(s; h�1; a1i; h�2; a2i) = 8><>: fÆ(s; h�1; a1i)g if �1 < �2,fÆ(s; h�2; a2i)g if �1 > �2,fÆ(s; h�1; a1i); Æ(s; (�2; a2))g if �1 = �2.The time elapsed when moves m1 = h�1; a1i and m2 = h�2; a2i are playedis given by delay(m1;m2) = min(�1; �2). For i 2 f1; 2g, the boolean predi-
ate bl i(s;m1;m2; s0) holds if player i is responsible for the state 
hange froms to s0. Formally, denoting with �i = 3 � i the opponent of player i, we de-�ne bl i(s;m1;m2; s0) i� both �i � ��i and s0 = Æ(s;mi). Note that bothbl1(s;m1;m2; s0) and bl2(s;m1;m2; s0) may hold at the same time.An in�nite run (or simply a run) of the timed game stru
ture G is a se-quen
e s0; hm11;m21i; s1; hm12;m22i; s2; : : : su
h that sk 2 S, m1k+1 2 �1(sk),m2k+1 2 �2(sk), and sk+1 2 eÆ(sk;m1k+1;m2k+1) for all k � 0. A �nite run �r



is a �nite pre�x of a run that terminates at a state s; we then set last(�r) = s.We denote by FRuns the set of all �nite runs of the game stru
ture, and by Runsthe set of its in�nite runs. A �nite or in�nite run �r = s0; hm11;m21i; s1; : : : indu
esa tra
e states(�r) = s0; s1; : : : of states o

urring in �r. A state s0 is rea
hable fromanother state s if there exist a �nite run s0; hm11;m21i; s1; : : : ; sn su
h that s0 = sand sn = s0.A strategy �i for player i 2 f1; 2g is a mapping �i : FRuns 7!Mi that asso
iates with ea
h �nite run s0; hm11;m21i; s1; : : : ; sk the move�i(s0; hm11;m21i; s1; : : : ; sk) to be played at sk. We require that the strategyonly sele
ts enabled moves, that is, �i(�r) 2 �i(last(�r)) for all �r 2 FRuns. Fori 2 f1; 2g, let �i denote the set of all player i strategies, and � = �1 [ �2the set of all strategies. For all states s 2 S and strategies �1 2 �1 and�2 2 �2, we de�ne the set of out
omes Out
omes(s; �1; �2) as the set of allruns s0; hm11;m21i; s1; : : : su
h that s0 = s, and for all k � 0 and i = 1; 2, we have�i(s0; hm11;m21i; s1; : : : ; sk) = mik+1. Note that in our timed games, two strate-gies and a start state yield a set of out
omes, be
ause if the players proposemoves with the same delay, a nondeterministi
 
hoi
e between the two moves ismade. A

ording to this de�nition, strategies 
an base their 
hoi
es on the entirehistory of the game, 
onsisting of both past states and moves. In Proposition 1we show that, to win the game, strategies need only 
onsider past states.2.2 Timed Goals and Timed Winning ConditionsWe 
onsider winning 
onditions given by sets of in�nite tra
es. A goal � is asubset of S!; we write [�℄r = f�r 2 Runs j states(�r) 2 �g. We write :� for theset S! n�. We often use linear-time temporal logi
 formulas to spe
ify goals; thepropositional symbols of the formula 
onsist of sets of states of the timed game[MP91℄. We distinguish between the goal of a player and the 
orrespondingwinning 
ondition. The goal represents the 
ontrol obje
tive that the playermust attain; for instan
e, staying forever in a region of \safe" states. To winthe game, however, a player must not only attain this goal, but also make surethat this is done in a physi
ally meaningful way: this is en
oded by the winning
ondition. To this end, we de�ne the set of time divergent runs td as the setof all runs s0; hm11;m21i; s1; hm12;m22i; s2; : : : su
h that P1k=1 delay(m1k;m2k) =1. For i 2 f1; 2g, we de�ne the set of player i blameless runs Blameless i asthe set of all runs in whi
h player i plays �rst (proposes a shorter delay) only�nitely many times. Formally, Blameless i 
onsists of all runs s0; hm11;m21i; s1; : : :su
h that there exists an n 2 N with :bl i(sk;m1k+1;m2k+1; sk+1) for all k � n.Corresponding to the goal �, we de�ne the following winning 
ondition:WC i(�) : (td \ [�℄r) [ (Blameless i n td):Informally, this 
ondition states that if time diverges, the goal must be met, andif time does not diverge, the player must be blameless.Given a goal � and a state s 2 S, we say that player i wins from s thegame with goal �, or equivalently, wins from s the game with winning 
ondition



WC i(�), if there exists a player i strategy �i 2 �i su
h that for all opposingstrategies ��i 2 ��i, we have Out
omes(s; �1; �2) � WC i(�). In that 
ase,�i 2 �i is 
alled a winning strategy. Given a goal �, we let hii� be the states fromwhi
h player i 
an win the game with goal �. A state s is well-formed if for everystate s0 rea
hable from s, and ea
h player i 2 f1; 2g, we have s0 2 hiiS!. Statesthat are not well-formed are \pathologi
al": if a player 
annot win the goal S!,then he 
annot ensure that the game out
omes are physi
ally meaningful.3 Timed Automaton GamesIn this se
tion, we introdu
e timed automaton games, a syntax derived fromtimed automata [AD94℄ for representing timed games. As in timed automata, a�nitely spe
i�ed timed automaton game usually represents a timed game within�nitely many states. A 
lo
k 
ondition over a set C of 
lo
ks is a boolean
ombination of formulas of the form x � 
 or x � y � 
, where 
 is an integer,x; y 2 C, and � is either < or �. We denote the set of all 
lo
k 
onditions overC by ClkConds(C). A 
lo
k valuation is a fun
tion � : C 7! IR�0, and we denoteby K(C) the set of all 
lo
k valuations for C.A timed automaton game is a tuple A = (Q;C;A
ts1;A
ts2; E; �; �; Inv1;Inv2), where:{ Q is a �nite set of lo
ations.{ C is a �nite set of 
lo
ks whi
h in
ludes the unresettable 
lo
k z, whi
hmeasures the time sin
e the start of the game.{ A
ts1 and A
ts2 are two disjoint, �nite sets of a
tions for player 1 andplayer 2, respe
tively.{ E � Q� (A
ts1 [ A
ts2)�Q is an edge relation.{ � : E 7! ClkConds(C) is a mapping that asso
iates with ea
h edge a 
lo
k
ondition that spe
i�es when the edge 
an be traversed. We require that forall (q; a; q1); (q; a; q2) 2 E with q1 6= q2, the 
onjun
tion �(q; a; q1)^�(q; a; q2)is unsatis�able. In other words, the game move and 
lo
k values determineuniquely the su

essor lo
ation.{ � : E 7! 2Cnfzg is a mapping that asso
iates with ea
h edge the set of 
lo
ksto be reset when the edge is traversed.{ Inv1; Inv2 : Q ! ClkConds(C) are two fun
tions that asso
iate with ea
hlo
ation an invariant for player 1 and 2, respe
tively.Given a 
lo
k valuation � : C 7! IR�0 and � 2 IR�0, we denote by � +� thevaluation de�ned by (� + �)(x) = �(x) + � for all 
lo
ks x 2 C. The 
lo
kvaluation � : C 7! IR�0 satis�es the 
lo
k 
onstraint � 2 ClkConds(C), written� j= �, if the 
ondition � holds when the 
lo
ks have the values spe
i�ed by�. For a subset D � C of 
lo
ks, �[D := 0℄ denotes the valuation de�ned by�[D := 0℄(x) = 0 if x 2 D, and by �[D := 0℄(x) = �(x) otherwise.The timed automaton game A indu
es a timed game stru
ture [[A℄℄, whosestates 
onsist of a lo
ation of A and a 
lo
k valuation over C. The idea is thefollowing. A player i move h�;?i is enabled in state hq; �i if either � = 0 or



the invariant Invi(q) holds 
ontinuously when we let � time units pass, thatis, � + �0 j= Invi(q) for all �0 � �. Taking the move h�;?i leads to thestate hq; � + �i. For a 2 A
tsi, the move h�; ai is enabled in hq; �i if (1) theinvariant Invi(q) holds 
ontinuously when we let � time units pass, (2) there isa transition (q; a; q0) in E whi
h is enabled in the state hq; � +�i, and (3) theinvariant Invi(q0) holds when the game enters lo
ation q0. The move h�; ai leadsto the state hq0; �0i, where �0 is obtained from � +� by resetting all 
lo
ks in�(q; a; q0).Formally, the timed automaton game A = (Q;C;A
ts1;A
ts2; E; �; �; Inv1;Inv2) indu
es the timed game stru
ture [[A℄℄ = (S;A
ts1;A
ts2; �1; �2; Æ). Here,S = Q�K(C) and for ea
h state hq; �i 2 S, the set �i(hq; �i) is given by:�i(hq; �i) = fh�; ai 2Mi j 8�0 2 [0; �℄ : �+�0 j= Invi(q) ^(a 6= ? ) 9q0 2 Q : ((q; a; q0) 2 E ^ (�+�) j= �(q; a; q0) ^(�+�)[�(q; a; q0) := 0℄ j= Invi(q0)))g [ fh0;?ig:The destination fun
tion Æ is de�ned by Æ(hq; �i; h�;?i) = hq; � + �i, and fora 2 A
ts1 [ A
ts2, by Æ(hq; �i; h�; ai) = hq0; �0i, where q0 is the unique lo
ationsu
h that (q; a; q0) 2 E and (�+�) j= �(q; a; q0), and �0 = (�+�)[�(q; a; q0) := 0℄.A state, a run, and a player i strategy of A are, respe
tively, a state, a run, anda player i strategy of [[A℄℄. We say that player i wins the goal � � S! from states 2 S in A if he wins � from s in [[A℄℄. We say that s is well-formed in A if it isso in [[A℄℄.Regions. Timed automaton games, similarly to timed automata, 
an be analyzedwith the help of an equivalen
e relation of �nite index on the set of states. Givena timed automaton game A, for ea
h 
lo
k x 2 C, let 
x be the largest 
onstantin the guards and invariants of A that involve x, where 
x = 0 if x does noto

ur in any guard or invariant of A. Two 
lo
k valuations �1; �2 are 
lo
kequivalent if (1) for all x 2 C, either b�1(x)
 = b�2(x)
 or both b�1(x)
 > 
xand b�2(x)
 > 
x, (2) the ordering of the fra
tional parts of the 
lo
k variablesin the set fzg [ fx 2 C j �1(x) < 
xg is the same in �1 and �2, and (3) for allx 2 (fzg [ fy 2 C j �1(y) < 
yg), the 
lo
k value �1(x) is an integer if and onlyif �2(x) is an integer. A 
lo
k region is a 
lo
k equivalen
e 
lass, and we write[�℄ for the 
lo
k equivalen
e 
lass of the 
lo
k valuation �. Two states hq1; �1iand hq2; �2i are region equivalent, written hq1; �1i � hq2; �2i, if (1) q1 = q2 and(2) �1 and �2 are 
lo
k equivalent. A region is an equivalen
e 
lass with respe
tto �; we write [s℄ for the region 
ontaining state s.4 Stru
tural Properties of Winning StrategiesWe now 
onsider stru
ture theorems for strategies in timed automaton games.Throughout this se
tion, a1 is an a
tion for player 1, and a2 one for player 2.For a lo
ation p in a timed automaton game A with 
lo
k set C, we let 3p =



3fhp; �i j � 2 K(C)g and 2p = 2fhp; �i j � 2 K(C)g.4 Moreover, 0 denotes thevaluation that assigns 0 to all 
lo
ks in C.Determina
y. A 
lass C of timed game stru
tures is strongly determined (re-spe
tively, weakly determined) for a 
lass F of goals if the following holds forevery stru
ture G 2 C, every goal � 2 F , all well-formed states s, and ea
hplayer i 2 f1; 2g: if player i 
annot win WC i(�) from s, then there exists aplayer �i strategy ��i 2 ��i su
h that for all player i strategies �i 2 �i, wehave Out
omes(s; �1; �2) \WC�i(:�) 6= ; (respe
tively, Out
omes(s; �1; �2) 6�WC i(�)). Note that this 
ondition is trivially false for non-well-formed states,be
ause one player 
annot win the goal S!, and the other player surely 
annotwin the goal ;. We let the 
lass of rea
hability goals be all goals of the form 3T .Theorem 1 The timed automaton games (and hen
e, the timed game stru
-tures) are neither weakly, nor strongly, determined for the 
lass of rea
habilitygoals.The following example exhibits a timed automaton game and a goal � su
hthat player 1 
annot win h1i�, but player 2 does not have a strategy to enfor
eWC 2(:�) (strong) or :WC 1(�) (weak), even if player 2 
an use the nondeter-ministi
 
hoi
es to his advantage.Example 1 Consider Figure 1(a). It is 
lear that player 1 does not have awinning strategy for WC 1(3q) from state hp;0i. To prove that this game is notstrongly determined, we show that no matter whi
h strategy �2 is played byplayer 2, player 1 always has a strategy �1 su
h that Out
omes(hp;0i; �1; �2) \WC 2(:3q) = ;. If �2 proposes a delay �2 > 1, then �1 plays the move h�1; a1ifor �1 = 1+ (�2 � 1)=2; if �2 proposes a delay �2 � 1, then �1 proposes moveh1;?i. Let �r 2 Out
omes(hp;0i; �1; �2). Then, either �r 
ontains a player 2 movewith a positive delay, in whi
h 
ase q is rea
hed, or player 2 plays h0;?i movesforever and is not blameless, i.e., �r =2 Blameless2. In either 
ase, �r =2WC 2(:3q).In a similar way, one shows that the game is not weakly determined.Memoryless Strategies. Memoryless strategies are strategies that only dependon the last state of a run. Formally, a strategy � 2 � is memoryless if, for all�r; �r0 2 FRuns, we have that last(�r) = last(�r0) implies �(�r) = �(�r0). For i 2 f1; 2g,we often treat a memoryless strategy �i for player i as a fun
tion in S 7!Mi bywriting �i(last(�r)) instead of �i(�r). In the untimed 
ase, memoryless strategiesare suÆ
ient to win safety and rea
hability games. In timed games, memorylessstrategies suÆ
e to win safety games, i.e., goals of the form WC i(2T ); however,winning strategies in rea
hability games (goals of the formWC i(3T )) in generaldo require memory.4 We use the standard LTL operators 3T and 2T to denote, respe
tively, the set oftra
es that eventually rea
h some state in T , and the set of tra
es that always stayin T [MP91℄.



a1p qx > 1a2; x > 1; x := 0(a) Undetermined. x = 0 a1a1x = 0 Inv1 : x � 0 qp (b) Memory needed.
a1a2; x := 00 < x < 1p q(
) Surprise needed.Fig. 1. Games with winning 
ondition WC 1(3q), where a1 2 A
ts1 and a2 2 A
ts2.Theorem 21. For every well-formed state s of a timed game stru
ture G, and every setT of states of G, if player i has a strategy to win WCi(2T ) from s, thenplayer i has a memoryless strategy for winning WCi(2T ) from s.2. There exists a timed automaton game A, a state s of A, and a set T ofstates of A su
h that player i has a strategy to win WCi(3T ) from s, but nomemoryless strategy for winning WCi(3T ) from s.The following example proves part 2.Example 2 Consider the game in Figure 1(b). Player 1 has a winning strat-egy for WC 1(3q) from hp;0i, but not a memoryless one: to win, he needs toremember whether q has been visited already. If so, then he has to let time pass,and if not, a visit to q has to be made before letting time pass. Let � : S 7!M1be a memoryless strategy for player 1. It is easy to see that, if �(hp;0i) = h�;?i,then q will never be rea
hed, and otherwise, if �(hp;0i) = h0; a1i, then time willnot progress, while � does not ensure that player 1 is blameless. Hen
e, player1 
annot win WC 1(3q) with a memoryless strategy.No-Surprise Strategies. A no-surprise strategy is a strategy that plays only twokinds of moves: either time steps (a
tion ?, with any delay), or a
tions withdelay 0. Formally, a strategy � 2 � is no-surprise if for all �r 2 FRuns either�(�r) = h0; ai with a 2 A
ts, or �(�r) = h�;?i with � 2 IR�0. The followingtheorem shows that there are 
ases where surprise is ne
essary to win, evenwhen the goal is a rea
hability property, and player 2 is restri
ted to no-surprisestrategies as well.Theorem 3 There is a timed automaton game A, a state s of A, and a goal� su
h that player 1 has a strategy to win WC1(�) from s, but there is no no-surprise strategy �1 2 �1 su
h that for all no-surprise strategies �2 2 �2, wehave Out
omes(s; �1; �2) �WC1(�).The proof is given by the following example.Example 3 Consider Figure 1(
). Player 1 has a strategy to win WC 1(3q)from state hp;0i. For instan
e, he 
an play �1(�r) = h 12n+1 ; a1i if �r 
ontains n visits



to p and it ends in hp; �i with �(x) + 12n+1 < 1; and play �1(�r) = h1;?i in allother 
ases. Let �2 2 �2 and �r be a run in Out
omes(hp;0i; �1; �2). If one of hismoves h 12n ; a1i is taken in �r, then player 1 
learly wins, that is, �r 2 WC 1(3q).Otherwise, if none of these moves is ever 
arried out in �r, then player 1 isblameless and, as P1i=1 12i = 1, time does not diverge, so �r 2WC 1(3q) as well.However, player 1 does not have a no-surprise strategy to win WC 1(3q)from hp;0i. All no-surprise player-1 strategies �1 lose against player 2 playingthe no-surprise strategy �2 de�ned by �2(�r) = h0; a2i if �r = �r0hm1;m2is andm1 = h�;?i; and �2(�r) = h1;?i otherwise. This is be
ause, in order to enablea1, player 1 has to in
rease x by taking some move h�;?i �rst. However, imme-diately after he does so, player 2 plays h0; a2i, thus resetting x. As a result, q isnever rea
hed, and both players play in�nitely often, so �1 
annot ensure thatplayer 1 is blameless.Move Independen
e. A strategy � 2 � is move independent if, for all �r; �r0 2FRuns, we have that states(�r) = states(�r0) implies �(�r) = �(�r0). We show thatmove independent strategies suÆ
e to win a timed automaton game. Note that,for !-regular goals, this result follows immediately from the strategies derivedfrom the �-
al
ulus solution for these games; see Se
tion 5.Proposition 1. Let A be a timed automaton game and s be a state of A. Forevery goal �, if player i has a strategy to win WCi(�) from s, then player i hasa move independent strategy for winning WCi(�) from s.Persisten
e. Persistent strategies are strategies that sti
k with their 
hoi
es, evenif they are interrupted by a move h�;?i (or another move with the same e�e
t)of the opponent. Formally, a persistent player 1 strategy is a strategy � 2 �1 su
hthat for all �nite runs �r = �r0shm1;m2is0 with m1 = h�1; a1i, m2 = h�2; a2i, ands0 = Æ(s; h�2;?i), we have (1) if �2 < �1, then �(�r) = h�1��2; a1i, and (2) ifa1 6= ? and �1 = �2, then �(�r) = h0; a1i. The persistent player 2 strategies arede�ned symmetri
ally. Consider a �nite run �r = �r0shm1;m2is0. Assume that, in�r0s, player 1 likes to play the move �(�r0s) = h�1; a1i, but is interrupted be
auseplayer 2 plays a move h�2;?i with �2 � �1. After h�2; a2i has been taken,a persistent strategy requires player 1 to play the portion of his previous moveh�1; a1i whi
h was not 
arried out; that is, player 1 must play h�1 � �2; a1i,unless �1 = �2 and a1 = ?. Persistent strategies suÆ
e to win timed games.Theorem 4 Let G be a timed game stru
ture and s be a state of G. For everygoal �, if player i has a strategy to win WCi(�) from s, then player i has apersistent strategy for winning WCi(�) from s.5 Solving Timed Automaton GamesIn this se
tion, we show how timed automata games 
an be solved with respe
tto !-regular goals via the equational �-
al
ulus. We 
onsider a goal that is spe
-i�ed by an parity automaton over the set of lo
ations of the timed automatongame, and based on this, we 
onstru
t another parity automaton that en
odes



the winning 
ondition. Finally, from the automaton that en
odes the winning
ondition we obtain a �-
al
ulus formula that, evaluated over the timed automa-ton game, de�nes the winning states of the game. Sin
e the �-
al
ulus formulapreserves the regions of the timed automaton game, it provides an algorithm forsolving timed automaton games.5.1 Representing Goals and Winning ConditionsConsider a timed automaton game A with lo
ations Q and 
lo
ks C. A goal� � (Q � K(C))! of A is a lo
ation goal if it is independent of 
lo
k val-uations; that is, if hq0; �0ihq1; �1i � � � 2 �, then for all �00, �01, : : :, we havehq0; �00ihq1; �01i � � � 2 �. Sin
e lo
ation goals depend only on the sequen
e of lo
a-tions, we view, with abuse of notation, a lo
ation goal to be a subset of Q!. We
onsider in this se
tion lo
ation goals � that are !-regular subsets of Q! [Tho90℄.Su
h lo
ation goals 
an be spe
i�ed by means of deterministi
 parity automataover the alphabet Q [EJ91℄. A parity automaton (also known as Rabin-
hain au-tomaton) of order k over the alphabet � is a tuple H = (P; P0; �; �; `; 
), whereP is the set of lo
ations of the automaton, P0 � P is the set of initial lo
ations,� : P 7! 2P is the transition relation, ` : P 7! � assigns to ea
h lo
ation p 2 Pa symbol `(p) of the alphabet �, and 
 : P 7! f0; : : : ; 2k � 1g assigns to ea
hlo
ation p 2 P an index 
(p).An exe
ution of H from a sour
e lo
ation p0 2 P is an in�nite sequen
ep0; p1; p2; : : : of automaton lo
ations su
h that pj+1 2 �(pj) for all j � 0; ifp0 2 P0, then the exe
ution is initialized. The exe
ution � = p0; p1; p2; : : : gener-ates the tra
e `(�) = `(p0); `(p1); `(p2); : : : of symbols of �. Given an exe
ution� = p0; p1; p2; : : :, we denote by MaxIndex (
;�) the largest j 2 f0; : : : ; 2k � 1gsu
h that 
(pi) = j for in�nitely many i. The exe
ution � is a

epting ifMaxIndex (
;�) is even. The language L(H) is the set of tra
es � 2 �! su
hthat H has an initialized a

epting exe
ution � that generates �. The automa-ton H is deterministi
 and total if (1a) for all lo
ations p1; p2 2 P0, if p1 6= p2,then `(p1) 6= `(p2); (1b) for all symbols � 2 �, there is a lo
ation p 2 P0 su
hthat `(p) = �; (2a) for all lo
ations p1 2 P and p2; p3 2 �(p1), if p2 6= p3, then`(p2) 6= `(p3); (2b) for all lo
ations p1 2 P and all symbols � 2 �, there is alo
ation p2 2 �(p1) su
h that `(p2) = �. If H is deterministi
 and total, thenwe write �(p1; �) for the unique lo
ation p2 with `(p2) = �. Deterministi
 andtotal parity automata suÆ
e for re
ognizing all !-regular languages [Tho90℄.We denote by jH j = jP j the size of the automaton, measured as its number oflo
ations, and by jH j� its order k.Let A be a timed automaton game with the set Q of lo
ations, and let � bea goal that is spe
i�ed by means of a deterministi
 and total parity automatonH� = (P; P0; Q; �; `; 
) over the alphabet Q su
h that L(H�) = �. The �rststep towards deriving a �-
al
ulus formula for 
omputing the winning states ofA with respe
t to � represents the 
onditions td and Blameless1 as !-regular
onditions. To this end, we 
onsider an enlarged state spa
e bS = S � ft; fg2,and an augmented transition relation bÆ : bS �M1 �M2 7! 2bS. Intuitively, inan augmented state hs; ti
k ; bli 2 bS, the 
omponent s 2 S is a state of the



original game stru
ture [[A℄℄, ti
k is true if in the last transition the global 
lo
kz has 
rossed an integer boundary, and bl is true if player 1 is to blame for thelast transition. Pre
isely, we let hhq0; �0i; ti
k 0; bl 0i 2 bÆ(hhq; �i; ti
k ; bli;m1;m2)i� hq0; �0i 2 Æ(hq; �i;m1;m2), ti
k 0 = t i� there is n 2 IN su
h that �(z) � n <�0(z), and bl 0 = t i� bl1(hq; �i;m1;m2; hq0; �0i). The set td 
orresponds to theruns along whi
h ti
k is true in�nitely often, and the set Blameless1 
orrespondsto the runs along whi
h bl is true only �nitely often. On
e time divergen
e andblame are thus en
oded, the winning 
ondition WC 1(�) 
an be spe
i�ed by aparity automaton HWC 1(�) with the alphabet b� = Q� ft; fg2 and languageL(HWC 1(�)) = 8<: hq0; ti
k0; bl0i;hq1; ti
k1; bl1i;: : : ���� (q0; q1; : : : 2 L(H�) ^ 8k 2 N : 9j � k : ti
k j)_9k 2 N:8j � k : (:bl j ^ :ti
k j) 9=;(1)The automaton HWC 1(�) = ( bP ; bP0; b�; b� ; b̀; b
) is derived from the automa-ton H� as follows. Let k be the order of H�. We have bP = P � ft; fg2 �f0; : : : ; 2k � 1g; intuitively, a lo
ation hp; ti
k ; bl ; hi 2 bP is 
omposed of a lo-
ation p 2 P , of two boolean symbols representing the value of ti
k and blat the lo
ation, and of an integer h that keeps tra
k of the maximum in-dex of the lo
ations of H� that have been visited between two o

urren
es ofti
k = t. For hp; ti
k ; bl ; hi 2 bP , we de�ne b̀(hp; ti
k ; bl ; hi) = h`(p); ti
k ; bli,and we let hp; ti
k ; bl ; hi 2 bP0 i� p 2 P0. For all p 2 P , bl 2 ft; fg, andh 2 f0; : : : ; 2k � 1g, we have hp0; ti
k 0; bl 0; h0i 2 b� (hp; f; bl ; hi) i� p0 2 �(p)and h0 = maxfh;
(p0)g, and we have hp0; ti
k 0; bl 0; h0i 2 b� (hp;t; bl ; hi) i�p0 2 �(p) and h0 = 
(p0). The index fun
tion b
 : bP 7! f0; : : : ; 2k + 1gis de�ned, for all p 2 P , all bl 2 ft; fg, and all h 2 f0; : : : ; 2k � 1g, byb
(hp; f; f; hi) = 0, b
(hp; f;t; hi) = 1, and b
(hp;t; bl ; hi) = h+2. For all exe
u-tions b� = hp0; ti
k 0; bl0; h0i; hp1; ti
k 1; bl1; h1i; hp2; ti
k2; bl2; h2i; : : : ofHWC 1(�),let � = p0; p1; p2; : : : be the 
orresponding exe
ution in H�. We 
an show that(a) if there are in�nitely many j su
h that ti
k j = t, then MaxIndex ( b
;�) =MaxIndex (
;�)+2; (b) if there is k 2 IN su
h that ti
k j = bl j = f for all j � k,then MaxIndex ( b
;�) = 0; and (
) in all other 
ases (i.e., when ti
k j holds foronly �nitely many values of j, but bl j holds for in�nitely many values of j), wehave MaxIndex ( b
;�) = 1. Together, these fa
ts lead to (1).Lemma 1 Given H�, we 
an 
onstru
t a deterministi
 and total parity au-tomaton HWC1(�) satisfying (1) su
h that jHWC1(�)j = 4 � jH�j � jH�j� andjHWC1(�)j� = jH�j� + 1.5.2 A �-
al
ulus Formula for the Winning StatesFor all hp; ti
k ; bl ; hi 2 bP , we let b̀Q(hp; ti
k ; bl ; hi) = `(p) 2 Q,b̀t(hp; ti
k ; bl ; hi) = ti
k , and b̀b(hp; ti
k ; bl ; hi) = bl . The �xpoint formula  �that solves the game with goal � is 
onstru
ted as follows [dAHM01a℄. Theformula  � is 
omposed of blo
ks B0; : : : ;B2k+1, where B0 is the innermost



blo
k and B2k+1 the outermost blo
k. The formula uses the set of variablesfxbpj j bp 2 bP; j 2 f0; : : : ; 2k + 1gg [ fyg, whi
h take values in 2S, where S is theset of states of the game stru
ture A. The blo
k B0 is a �-blo
k whi
h 
onsistsof all equations of the formxbp0 = (b̀Q(bp)�K(C)) \ CPre1 _bp02�(bp)xbp0b
(bp) � b̀t(bp0)� b̀b(bp0)!for bp 2 bP , where C is the set of 
lo
ks of A. For 0 < j < 2k + 1, the blo
k Bjis a �-blo
k if j is odd, and a �-blo
k if j is even; in either 
ase it 
onsists ofthe set of equations fxbpj = xbpj�1 j bp 2 bPg. The blo
k B2k+1 
onsists of the set ofequations fxbp2k+1 = xbp2k j bp 2 bPg[ fy = Wbp2 bP0 xbp2k+1g. The output variable is y.The operator CPre1 : bS 7! S is the 
ontrollable prede
essor operator, de�nedby 9m1 2 �1(s) :8m2 2 �2(s) : eÆ(s;m1;m2) 2 X . Intuitively, for s 2 S andbX � bS, we have that s 2 CPre1( bX) if player 1 
an for
e the augmented game tobX in one move. As an example, 
onsider the set bX = (X1 �ffg � ftg) [ (X2 �ffg � ffg) for some X � S. Then, s 2 CPre1( bX) if player 1 has a move su
hthat, whatever the move played by player 2: either (a) the game pro
eeds to X1,the global 
lo
k z does not advan
e beyond an integer boundary (ti
k = f), andplayer 1 is blamed (bl = t); or (b) the game pro
eeds to X2, the global 
lo
k zdoes not advan
e beyond an integer boundary, and player 1 is not blamed. Theimplementation and properties of operator CPre1 are dis
ussed below. Note thatthe formula  � depends only on H�, but not on the timed game stru
ture overwhi
h it is evaluated (ex
ept trivially via the produ
t withK(C), whi
h is simplythe set of all 
lo
k valuations). Denote by [[y℄℄ �A � S the �xpoint valuation ofy over the timed game stru
ture [[A℄℄. Lemma 2 enables the 
omputation of thewinning states of the game with respe
t to player 1; the winning states withrespe
t to player 2 
an be 
omputed in a symmetri
al fashion.Lemma 2 We have h1i� = [[y℄℄ �A .5.3 The Controllable Prede
essor OperatorThe operator CPre1 
an be 
omputed as follows. For X � bS, write X = (Xt �ftg)[(Xf�ffg), for Xt; Xf � S�ft; fg. Intuitively, Xt (resp. Xf) representsthe portion of X that 
orresponds to the 
ase where bl is t (resp. f). Then,s 2 CPre1(X) if and only if:9 h�1; a1i 2 �1(s) :8 h�2; a2i 2 �2(s) :��2 � �1 =) �Æ(s; h�2; a2i); ti
k(s;�2)� 2 Xf�^��Æ(s; h�1; a1i); ti
k(s;�1)� 2 Xt _ 8 h�2; a2i 2 �2(s) : �2 < �1�;where ti
k (hq; �i; �) is t i� �(z) � n < �(z) +�, for some integer n. In words,the above formula states that there is a player 1 a
tion that, played with delay



�1, leads to Xt; moreover, all a
tions of player 2, if played with delay up to�1, lead to Xf. The following lemma states that the 
ontrollable prede
essoroperator preserves regions for timed automaton games.Lemma 3 For n � 0, 
onsider X = Snj=1(Xj � fti
k jg � fbljg), where for1 � j � n, the set Xj is a region, and ti
k j ; blj 2 ft; fg. Then, CPre1(X) is aunion of regions.5.4 Putting It All TogetherFrom the 
onstru
tions of the previous subse
tions, we obtain the following de-
idability result for timed automaton games with !-regular lo
ation goals.Theorem 5 Consider a timed automaton game A with the set Q of lo
ations,and a parity automaton H� that spe
i�es a lo
ation goal � � Q!. Let C be theset of 
lo
ks of A, let m = jCj, and let 
 = maxf
x j x 2 Cg. Then, the set ofwinning states h1i� 
an be 
omputed in time O((jQj �m! � 2m � (2
+ 1)m � jH�j �jH�j�)(jH�j�+1)).Corollary 1. The problem of solving a timed automaton game for a lo
ationgoal spe
i�ed by a parity automaton is EXPTIME-
omplete.EXPTIME-hardness follows from the EXPTIME-hardness for alternating rea
h-ability on timed automata [HK99℄. Membership in EXPTIME is shown by theexponential-time algorithm outlined above. The algorithm for solving timed au-tomaton games 
an also be used to simultaneously 
onstru
t a winning strategyfor player 1, as in [dAHM01b℄. The winning strategies thus 
onstru
ted havethe following �nitary stru
ture. Two �nite runs �r = s0; hm11;m21i; s1; : : : ; sk and�r0 = s00; hm011 ;m021 i; s01; : : : ; s0k of the same length are region equivalent, written�r � �r0, if for all 0 � j � k, we have [sj ℄ = [s0j ℄. A strategy is a region strat-egy if, for region equivalent �nite runs, it pres
ribes moves to the same region.Formally, a strategy � 2 � is a region strategy if for all �r; �r0 2 FRuns, we havethat �r � �r0 implies Æ(last(�r); �(�r)) � Æ(last(�r); �(�r0)). Sin
e the CPre1 opera-tor preserves regions, we 
an show that the strategy 
onstru
ted by the abovealgorithm does not distinguish between region equivalent runs, and hen
e, the
onstru
ted strategy is a region strategy.Theorem 6 Let A be a timed automaton game and s a state of A. For every!-regular lo
ation goal �, if player i has a strategy to win WCi(�) from s, thenplayer i has a region strategy for winning WCi(�) from s.Referen
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