The Element of Surprise in Timed Games*

Luca de Alfaro!, Marco Faella''?, Thomas A. Henzinger?, Rupak Majumdar3,
and Mariélle Stoelingal

! Department of Computer Engineering, UC Santa Cruz, USA
2 Dipartimento di Informatica ed Applicazioni, Universita di Salerno, Italy
% Department of Electrical Engineering and Computer Sciences, UC Berkeley, USA

Abstract. We consider concurrent two-person games played in real
time, in which the players decide both which action to play, and when
to play it. Such timed games differ from untimed games in two essential
ways. First, players can take each other by surprise, because actions are
played with delays that cannot be anticipated by the opponent. Second,
a player should not be able to win the game by preventing time from
diverging. We present a model of timed games that preserves the ele-
ment of surprise and accounts for time divergence in a way that treats
both players symmetrically and applies to all w-regular winning condi-
tions. We prove that the ability to take each other by surprise adds extra
power to the players. For the case that the games are specified in the
style of timed automata, we provide symbolic algorithms for their so-
lution with respect to all w-regular winning conditions. We also show
that for these timed games, memory strategies are more powerful than
memoryless strategies already in the case of reachability objectives.

1 Introduction

Games have become a central modeling paradigm in computer science. In synthe-
sis and control, it is natural to view a system and its environment as players of a
game that pursue different objectives [Chu63,RW89,PR89]. Similarly, in modu-
lar specification and verification it is often appropriate to model the components
of a system as individual players that may or may not cooperate, depending on
the application [AHK02,AdAHM99]. Such games are played on a state space
and proceed in an infinite sequence of rounds. In each round, the players choose
actions to play, and the chosen actions determine the successor state. For the
synthesis and modular analysis of real-time systems, we need to use games where
time elapses between actions [MPS95]. In such ¢imed games, each player chooses
both which action to play, and when to play it. Timed games differ from their
untimed counterparts in two essential ways. First, players can take each other by
surprise, because actions are played with delays that cannot be anticipated by

* Supported in part by the AFOSR MURI grant F49620-00-1-0327, the DARPA grant
F33615-C-98-3614, the MARCO grant 98-DT-660, the ONR grant N00014-02-1-0671,
the NSF grants CCR-9988172, CCR-0225610, and CCR-0234690, the NSF CAREER
award CCR-0132780, and the MIUR grant MEFISTO.

the opponent. Second, a player should not be able to win the game by preventing
time from diverging [SGSAL98,AH97]. We present a model of timed games that
preserves the element of surprise and accounts for the need of time divergence.
We study both the properties of the winning strategies and the algorithms for
their construction.

We consider two-player timed games that are played over a possibly infinite
state space. In each state, each player chooses, simultaneously and independently
of the other player, a move (A, a), indicating that the player wants to play the
action a after a delay of A € IR>¢ time units. A special action, L, signifies the
player’s intention to remain idle for the specified time delay. Of the moves chosen
by the two players, the one with the smaller delay is carried out and determines
the successor state; if the delays are equal, then one of the chosen moves occurs
nondeterministically (this models the fact that, in real-time interaction, true
contemporaneity cannot be achieved). This process, repeated for infinitely many
rounds, gives rise to a run of the game. Our definition of moves preserves the
element of surprise: a player cannot anticipate when the opponent’s action will
occur in the current round. This contrasts with many previous definitions of
timed games (e.g., [AH97,HHM99,dAHMO01b,MPS95,AMPS98]), where players
can only either play immediately an action a, or wait for a delay A. Such for-
mulations may be simpler and more elegant for timed transition systems (i.e.,
one-player games), but in the case of two-player formulations, the element of
surprise is lost, because after each delay both players have the opportunity to
propose a new move. This allows a player to intercept the opponent’s move (A, a)
just before the action a is carried out. We show that the element of surprise gives
a distinct advantage to a player. In particular, we prove that there are simple
reachability games that can be won under our formulation of moves, but not
under the previous “no-surprise” versions.

The objective for a player is given by a set @ of desired game outcomes. A
player achieves this goal if all game outcomes belong to @. For a timed game
to be physically meaningful, a player should not be able to achieve a goal by
stopping the progress of time. For instance, if @ consists of the set of runs that
stay forever in a certain set U of states, and if player 2 has an action to leave
U only after a delay of 4, then player 1 should not be able to win by always
playing (0, L). Therefore, several conditions WC;(®) have been proposed in the
literature to express when player ¢ € {1,2} wins a timed game with goal &.

In [SGSAL98,AH97] the winning condition WC1(®) is defined to be & N
(td U Blamelessy), where td is the set of runs along which time diverges, and
Blameless, is the set of runs along which player 1 proposes the shorter delay
only finitely often. Clearly, player 1 is not responsible if time converges along a
run in Blameless,. Informally, the condition states that player 1 must achieve
the goal @, and moreover, either time diverges or player 1 is blameless for its
convergence. This definition works if the goal @ is a safety property, but not if
it is a reachability or, more general, a w-regular property. To see this, observe
that player 1 must achieve the goal even if player 2 stops the progress of time.
Consider a game where the goal consists of reaching a set U of states, and where

player 1 has an action leading to U which is always available once time advances
beyond 1. Then, player 1 cannot win: player 2 can stop time, preventing the
action from ever becoming enabled, and ensuring that no run is in @.

In [MPS95], the winning condition #Ntd is proposed. This condition requires
player 1 to guarantee time divergence, which is not possible in models where
player 2 can block the progress of time. In [dAHS02], this condition is modified to
WC7 (®) = (&Ntd)U Blameless; for player i € {1,2}. While this is appropriate in
the asymmetric setting considered there, the problem in our setting, where both
players are treated completely symmetrically, is that the two conditions WC7 (®)
and WC5(—®) are not disjoint (here —® is the complementary language of &).
This means that there are games in which both players can win: for instance,
player 1 can ensure @ N td, and player 2 can ensure Blamelesss. Other works on
timed games (e.g., [AMPS98 FLMO02]) have avoided the issue of time divergence
altogether by putting syntactic constraints on the game structures.

We define timed games and their winning conditions in a completely sym-
metric fashion, and in a way that works for all goals (in particular for all w-
regular goals) and ensures that players can win only by playing in a phys-
ically meaningful way. The winning conditions we propose are WC;(®) =
(@ N td) U (Blameless; \ td), for i € {1,2}. These winning conditions imply
that WC(®) N WC5(—P) is empty, ensuring that at most one player can win.
Note that there are runs that belong neither to WC(®) nor to WCy(—=®): this
contrasts with the traditional formulation of untimed games, where runs are ei-
ther winning for a player with respect to a goal, or winning for the opponent
with respect to the complementary goal. We argue that the lack of run-level
determinacy is unavoidable in timed games. To see this, consider a run 7 along
which both players take turns in proposing moves with delay 0, thus stopping
the progress of time. If we somehow assign this run to be winning for a player,
say player 1, then it would be possible to construct games in which the moves
with delay 0 are the only moves available, and in which player 1 could never-
theless win. This would go against our intention that a player can win only in a
physically meaningful way. The lack of run-level determinacy also implies that
there are states from which neither player can win.

The form of the winning conditions for timed games have other important
implications. We show that to win with respect to a reachability goal, in contrast
to the untimed case, strategies with memory may be required. For safety goals,
however, memoryless strategies suffice also in the timed case. We prove several
additional structural properties of the winning strategies for timed games. For
instance, we define a class of persistent strategies, in which players do not change
their mind about the time of future moves when interrupted by a (A, L) move
of the opponent. We show that persistent strategies always suffice to win games,
for all possible goals.

While we define timed games at first semantically, we also offer a timed-
automaton-style [AD94] syntax for a specific class of timed games. We show
that for these timed automaton games the winning states with respect to any
w-regular goal can be computed by a symbolic algorithm that iterates a control-

lable predecessor operator on clock regions. In particular, we prove that timed
automaton games can be won using region strategies, where the players need only
remember the history of the game as a sequence of regions, rather than more pre-
cisely, as a sequence of states. Furthermore, the problem of solving these games
is shown to be, as expected [AH97], complete for EXPTIME.

2 Timed Games

2.1 Timed Game Structures
A timed game structure is a tuple G = (S, Actsq, Actsa, I't, I, 6), where

— S is a set of states.

— Actsy and Actss; are two disjoint sets of actions for player 1 and player 2,
respectively. We assume that 1 ¢ Acts; and write Acts; = Acts; U{L}. The
set of moves of player i is given by M; = IR>q X Actsil.

— For i = 1,2, the function I : S ~ 2%\ § is an enabling condition, which
assigns to each state s a set I';(s) of moves available to player i in that state.

—0:8 % (M UM,) — S is a destination function that, given a state and a
move of either player, determines the next state in the game.

We require that the move (0, L) is always enabled and does not leave the state:
(0,1) € I'i(s) and d(s, (0, L)) = s for all s € S. Similarly to [Yi90], we require
for all 0 < A’ < A and a € Actsi, that (1) (A,a) € Ii(s) if and only if
(A", L) € I(s) and (A — A’ a) € I;(0(s, (A", 1)), and (2) if §(s, (A", L)) =&,
and §(s', (A — A',a)) = s", then (s, (4, a)) = s".

Intuitively, at each state s € S, player 1 chooses a move (A, a;) € I1(s), and
simultaneously and independently, player 2 chooses a move (As, az) € In(s). If
Ay < Ay, then the move (A, aq) is taken; if Ay < Ay, then the move (As, as)
is taken. If Ay = A,, then the game takes nondeterministically one of the two
moves (Aq,a1) or (A, a2). Formally, we define the joint destination function

6:SXM1XM2|—>28by

{6(5,(A1,a1))} if Al < AQ,

5(57<A17a1>7<A27a2>) = {6(87<A2:a2>)} if Al > AQ’
{6(57<A1=a1)):5(5;(A2,(12))} if Al = A2.

The time elapsed when moves m; = (Ay,a1) and ms = (As, as) are played
is given by delay(mi, m2) = min(Ay, As). For i € {1,2}, the boolean predi-
cate bl;(s,mi,ma,s") holds if player 4 is responsible for the state change from
s to s'. Formally, denoting with ~i = 3 — i the opponent of player i, we de-
fine bl;(s,my,mo,s") iff both A; < A.; and s’ = §(s,m;). Note that both
bli(s,m1, ma,s") and bla(s,m1,ma,s’) may hold at the same time.

An infinite run (or simply a run) of the timed game structure G is a se-
quence so, (mi,m7),s1,(my, m3),s2,... such that s, € S, my,, € I'(sp),

miﬂ € Iy(sg), and sgy1 € g(sk,mk_i_l,m%H) for all k > 0. A finite run r

is a finite prefix of a run that terminates at a state s; we then set last(7) = s.
We denote by FRuns the set of all finite runs of the game structure, and by Runs
the set of its infinite runs. A finite or infinite run 7 = sg, (m!, m?), sy, ... induces
a trace states(f) = sg, s1, ... of states occurring in 7. A state s’ is reachable from
another state s if there exist a finite run sg, (mi, m?2), s;,..., s, such that sq = s
and s, = s'.

A strategy w; for player ¢ € {1,2} is a mapping m; : FRuns —
M; that associates with each finite run sg,(mi,m?),s;,...,s; the move
mi(80, (mi,m2),s1,...,5;) to be played at sx. We require that the strategy
only selects enabled moves, that is, m;(F) € I;(last(F)) for all # € FRuns. For
i € {1,2}, let II; denote the set of all player i strategies, and II = II; U II,
the set of all strategies. For all states s € S and strategies m; € II; and
7o € IIy, we define the set of outcomes Outcomes(s,m1,m2) as the set of all
runs sg, (mi, m?), s1,... such that sp = s, and for all K > 0 and i = 1,2, we have
mi(s0, (mi,m3),s1,...,s;) = mj_,. Note that in our timed games, two strate-
gies and a start state yield a set of outcomes, because if the players propose
moves with the same delay, a nondeterministic choice between the two moves is
made. According to this definition, strategies can base their choices on the entire
history of the game, consisting of both past states and moves. In Proposition 1

we show that, to win the game, strategies need only consider past states.

2.2 Timed Goals and Timed Winning Conditions

We consider winning conditions given by sets of infinite traces. A goal ® is a
subset of S¥; we write [®], = {F € Runs | states(F) € ®}. We write =& for the
set S¥ \ #. We often use linear-time temporal logic formulas to specify goals; the
propositional symbols of the formula consist of sets of states of the timed game
[MP91]. We distinguish between the goal of a player and the corresponding
winning condition. The goal represents the control objective that the player
must attain; for instance, staying forever in a region of “safe” states. To win
the game, however, a player must not only attain this goal, but also make sure
that this is done in a physically meaningful way: this is encoded by the winning
condition. To this end, we define the set of time divergent runs td as the set
of all runs sg, (mi,m?),s1,(my, m3), ss,... such that Y ;7 delay(mj,mi) =
oo. For i € {1,2}, we define the set of player i blameless runs Blameless; as
the set of all runs in which player 7 plays first (proposes a shorter delay) only
finitely many times. Formally, Blameless; consists of all runs sq, (m}, m?), sy, ...
such that there exists an n € N with —bl;(sg, m} ,m; ;. skt1) for all k& > n.
Corresponding to the goal @, we define the following winning condition:

WC;(®) : (td N [P],) U (Blameless; \ td).

Informally, this condition states that if time diverges, the goal must be met, and
if time does not diverge, the player must be blameless.

Given a goal @ and a state s € S, we say that player i wins from s the
game with goal &, or equivalently, wins from s the game with winning condition

WC;(®), if there exists a player 7 strategy m; € II; such that for all opposing
strategies m~; € II.;, we have Outcomes(s,m1,m) C WC;(®). In that case,
7; € II; is called a winning strategy. Given a goal @, we let (i)® be the states from
which player i can win the game with goal @. A state s is well-formed if for every
state s’ reachable from s, and each player i € {1,2}, we have s’ € (i)S“. States
that are not well-formed are “pathological”: if a player cannot win the goal S¥,
then he cannot ensure that the game outcomes are physically meaningful.

3 Timed Automaton Games

In this section, we introduce timed automaton games, a syntax derived from
timed automata [AD94] for representing timed games. As in timed automata, a
finitely specified timed automaton game usually represents a timed game with
infinitely many states. A clock condition over a set C' of clocks is a boolean
combination of formulas of the form z < ¢ or x — y < ¢, where ¢ is an integer,
x,y € C, and < is either < or <. We denote the set of all clock conditions over
C by ClkConds(C). A clock valuation is a function : C'— IR>q, and we denote
by K(C) the set of all clock valuations for C.

A timed automaton game is a tuple A = (Q,C, Actsy, Actsa, E, 6, p, Invy,
Invy), where:

— (is a finite set of locations.

— (' is a finite set of clocks which includes the unresettable clock z, which
measures the time since the start of the game.

— Acts; and Actsy are two disjoint, finite sets of actions for player 1 and
player 2, respectively.

— EC Q@ x (Acts; U Actss) x @ is an edge relation.

— 0 : E — ClkConds(C) is a mapping that associates with each edge a clock
condition that specifies when the edge can be traversed. We require that for
all (g,a,q1),(q,a,q2) € E with ¢ # ¢, the conjunction 6(q,a,q1)A0(q, a,q2)
is unsatisfiable. In other words, the game move and clock values determine
uniquely the successor location.

— p: Ew 29\ is a mapping that associates with each edge the set of clocks
to be reset when the edge is traversed.

— Invy, Invy : Q — ClkConds(C) are two functions that associate with each
location an invariant for player 1 and 2, respectively.

Given a clock valuation £ : C' = IR>o and A € IR>o, we denote by k + A the
valuation defined by (k + A)(z) = k(z) + A for all clocks z € C. The clock
valuation k : C' — IR>¢ satisfies the clock constraint a € ClkConds(C), written
k = a, if the condition a holds when the clocks have the values specified by
k. For a subset D C C of clocks, k[D := 0] denotes the valuation defined by
k[D :=0](z) =0if 2 € D, and by [D := 0](z) = k(z) otherwise.

The timed automaton game A induces a timed game structure [A], whose
states consist of a location of A and a clock valuation over C'. The idea is the
following. A player 1 move (A, L) is enabled in state (g,) if either A = 0 or

the invariant Inwv;(g) holds continuously when we let A time units pass, that
is, kK + A" = Invy;(q) for all A’ < A. Taking the move (A, L) leads to the
state (q,k + A). For a € Acts;, the move (A, a) is enabled in (g, &) if (1) the
invariant Inv;(q) holds continuously when we let A time units pass, (2) there is
a transition (g, a,q’) in E which is enabled in the state (q,x + A), and (3) the
invariant Inv;(q") holds when the game enters location ¢'. The move (A, a) leads
to the state (¢', k'), where ' is obtained from k + A by resetting all clocks in
p(q,a,q").

Formally, the timed automaton game A = (Q, C, Actsy, Actss, E, 6, p, Invy,
Invy) induces the timed game structure [A] = (S, Actsy, Actsa, I, [, 0). Here,
S =@ x K(C) and for each state (q,x) € S, the set I;({g, x)) is given by:

I;({g, k) = {{A,a) € M; |[VA" € [0,4] .k + A" E Invi(q) A
(a#L=3¢€Q.((q,a,¢) € EAN(k+A)EbO(qa,q)A
(k+ A)[p(g.a,¢') == 0] = Inwi(¢))} U {(0, 1)}

The destination function § is defined by §({q, k), (A, L)) = {q,x + A), and for
a € Actsy U Actsa, by 6({q, k), (A,a)) = (¢', k'), where ¢' is the unique location
such that (¢,a,q') € E and (k+A4) | 6(g,a,¢'), and " = (k+24)[p(g, a,q") := 0].
A state, a run, and a player i strategy of A are, respectively, a state, a run, and
a player i strategy of [.A]. We say that player ¢ wins the goal & C S“ from state
s € Sin A if he wins @ from s in [A]. We say that s is well-formed in A if it is

so in [A].

Regions. Timed automaton games, similarly to timed automata, can be analyzed
with the help of an equivalence relation of finite index on the set of states. Given
a timed automaton game A, for each clock z € C, let ¢, be the largest constant
in the guards and invariants of A that involve z, where ¢, = 0 if z does not
occur in any guard or invariant of 4. Two clock valuations ki,ks are clock
equivalent if (1) for all z € C, either |k1(x)] = |ka(z)] or both |k1(z)] > ¢,
and |k2(z)] > ¢z, (2) the ordering of the fractional parts of the clock variables
in the set {z} U {z € C | k1(z) < ¢} is the same in k; and k2, and (3) for all
z e ({2} U{y e C|ki(y) <cy}), the clock value kq(z) is an integer if and only
if ka(z) is an integer. A clock region is a clock equivalence class, and we write
[£] for the clock equivalence class of the clock valuation k. Two states {(qi, K1)
and (go, ko) are region equivalent, written (g1, k1) = (g2, k2), if (1) ¢1 = ¢» and
(2) k1 and ko are clock equivalent. A region is an equivalence class with respect
to =; we write [s] for the region containing state s.

4 Structural Properties of Winning Strategies

We now consider structure theorems for strategies in timed automaton games.
Throughout this section, a; is an action for player 1, and as one for player 2.
For a location p in a timed automaton game A with clock set C, we let Op =

O{(p,k) | k€ K(C)} and Op = O{(p, k) | k € K(C)}.* Moreover, 0 denotes the
valuation that assigns 0 to all clocks in C.

Determinacy. A class C of timed game structures is strongly determined (re-
spectively, weakly determined) for a class F of goals if the following holds for
every structure G € C, every goal & € F, all well-formed states s, and each
player i € {1,2}: if player i cannot win WC;(®) from s, then there exists a
player ~i strategy m.; € Il.; such that for all player i strategies m; € II;, we
have Outcomes(s,m1,ma) N WC ;(—~®) # ((respectively, Outcomes(s, w1, m)
WC;(®)). Note that this condition is trivially false for non-well-formed states,
because one player cannot win the goal S, and the other player surely cannot
win the goal (). We let the class of reachability goals be all goals of the form ¢©T.

Theorem 1 The timed automaton games (and hence, the timed game struc-
tures) are neither weakly, nor strongly, determined for the class of reachability
goals.

The following example exhibits a timed automaton game and a goal ¢ such
that player 1 cannot win (1)@, but player 2 does not have a strategy to enforce
WC4(—®) (strong) or = WC1(P) (weak), even if player 2 can use the nondeter-
ministic choices to his advantage.

Example 1 Consider Figure 1(a). It is clear that player 1 does not have a
winning strategy for WC'1(<q) from state (p, 0). To prove that this game is not
strongly determined, we show that no matter which strategy m» is played by
player 2, player 1 always has a strategy m; such that OQutcomes((p,0), w1, 72) N
WC5(=<0q) = 0. If mo proposes a delay Ay > 1, then m; plays the move (Aq,a;)
for Ay =1+ (Ay —1)/2; if w5 proposes a delay Ay < 1, then 7; proposes move
(1, L). Let 7 € Outcomes({p,0), 71, 7). Then, either 7 contains a player 2 move
with a positive delay, in which case ¢ is reached, or player 2 plays (0, L) moves
forever and is not blameless, i.e., 7 ¢ Blamelesss. In either case, 7 ¢ WC5(—<q).
In a similar way, one shows that the game is not weakly determined.

Memoryless Strategies. Memoryless strategies are strategies that only depend
on the last state of a run. Formally, a strategy « € II is memoryless if, for all
7,7 € FRuns, we have that last(7F) = last(F') implies 7 (7) = 7 (7). For i € {1, 2},
we often treat a memoryless strategy w; for player i as a function in S — M; by
writing m;(last(7)) instead of m;(7). In the untimed case, memoryless strategies
are sufficient to win safety and reachability games. In timed games, memoryless
strategies suffice to win safety games, i.e., goals of the form WC,;(OT'); however,
winning strategies in reachability games (goals of the form WC;(¢T)) in general
do require memory.

* We use the standard LTL operators T and OT to denote, respectively, the set of
traces that eventually reach some state in T', and the set of traces that always stay
in T [MP91].

a a
Q 5'31>1 a =0 a1 0<;<1
‘ p (eI z<0)y ()

az,z>1,z:=0 r=0 a as,x:=0
(a) Undetermined. (b) Memory needed. (c) Surprise needed.

Fig. 1. Games with winning condition WC'1(<¢q), where a1 € Acts1 and as € Actss.

Theorem 2

1. For every well-formed state s of a timed game structure G, and every set
T of states of G, if player i has a strategy to win WC;(QT) from s, then
player i has a memoryless strategy for winning WC;(OT') from s.

2. There exists a timed automaton game A, a state s of A, and a set T of
states of A such that player i has a strategy to win WC;(OT) from s, but no
memoryless strategy for winning WC;(OT') from s.

The following example proves part 2.

Example 2 Consider the game in Figure 1(b). Player 1 has a winning strat-
egy for WC1(<¢q) from (p,0), but not a memoryless one: to win, he needs to
remember whether ¢ has been visited already. If so, then he has to let time pass,
and if not, a visit to ¢ has to be made before letting time pass. Let 7 : S — M,
be a memoryless strategy for player 1. It is easy to see that, if #({(p, 0)) = (4, L),
then ¢ will never be reached, and otherwise, if 7({p,0)) = (0, a1), then time will
not progress, while 7 does not ensure that player 1 is blameless. Hence, player
1 cannot win WC'(<¢q) with a memoryless strategy.

No-Surprise Strategies. A no-surprise strategy is a strategy that plays only two
kinds of moves: either time steps (action L1, with any delay), or actions with
delay 0. Formally, a strategy m € II is no-surprise if for all # € FRuns either
n(r) = (0,a) with a € Acts, or w(7) = (A, L) with A € R>(. The following
theorem shows that there are cases where surprise is necessary to win, even
when the goal is a reachability property, and player 2 is restricted to no-surprise

strategies as well.

Theorem 3 There is a timed automaton game A, a state s of A, and a goal
& such that player 1 has a strategy to win WCi(®) from s, but there is no no-
surprise strateqy my € IIy such that for all no-surprise strategies mo € Iy, we
have Outcomes(s, 1, m) C WCL (D).

The proof is given by the following example.

Example 3 Consider Figure 1(c). Player 1 has a strategy to win WC1(<q)
from state (p, 0). For instance, he can play 71 (7) = (=5, a1) if 7 contains n visits

to p and it ends in (p, k) with k(z) + 5251 < 1; and play m(r) = (1, L) in all
other cases. Let my € IT5 and 7 be a run in Outcomes({p, 0), w1, m2). If one of his
moves (-, a;) is taken in 7, then player 1 clearly wins, that is, 7 € WC'(<Oq).
Otherwise, if none of these moves is ever carried out in 7, then player 1 is
blameless and, as Y ., o = 1, time does not diverge, so ¥ € WC'1(<q) as well.

However, player 1 does not have a no-surprise strategy to win WC4(<$q)
from (p,0). All no-surprise player-1 strategies 7 lose against player 2 playing
the no-surprise strategy w2 defined by 7o(7) = (0,as) if 7 = 7 {m1,m2)s and
my = (A, 1); and 7o (F) = (1, L) otherwise. This is because, in order to enable
a1, player 1 has to increase z by taking some move (A, 1) first. However, imme-
diately after he does so, player 2 plays (0, as), thus resetting z. As a result, ¢ is
never reached, and both players play infinitely often, so 7 cannot ensure that
player 1 is blameless.

Move Independence. A strategy m € II is move independent if, for all 7,7 €
FRuns, we have that states(F) = states(7') implies w(7) = (7). We show that
move independent strategies suffice to win a timed automaton game. Note that,
for w-regular goals, this result follows immediately from the strategies derived
from the p-calculus solution for these games; see Section 5.

Proposition 1. Let A be a timed automaton game and s be a state of A. For
every goal @, if player i has a strategy to win WC;(®) from s, then player i has
a move independent strategy for winning WC;(®) from s.

Persistence. Persistent strategies are strategies that stick with their choices, even
if they are interrupted by a move (A, 1) (or another move with the same effect)
of the opponent. Formally, a persistent player 1 strategy is a strategy = € II; such
that for all finite runs 7 = 7 s(m1, ma)s’ with m; = (A1, a1), ma = (As, as), and
s’ =6(s,(Aq, L)), we have (1) if Ay < Ay, then 7n(F) = (A; — Ay, aq), and (2) if
a; # L and Ay = Ay, then 7(F) = (0,a1). The persistent player 2 strategies are
defined symmetrically. Consider a finite run 7 = #s(my, ma)s’. Assume that, in
s, player 1 likes to play the move 7(7#'s) = (A1, a), but is interrupted because
player 2 plays a move (Ay, 1) with Ay < Ay. After (As,as) has been taken,
a persistent strategy requires player 1 to play the portion of his previous move
(A1,a1) which was not carried out; that is, player 1 must play (A; — Ay, aq)
unless Ay = Ay and ay = L. Persistent strategies suffice to win timed games.

Theorem 4 Let G be a timed game structure and s be a state of G. For every
goal @, if player i has a strategy to win WC;(®) from s, then player i has a
persistent strategy for winning WC;(®) from s.

5 Solving Timed Automaton Games

In this section, we show how timed automata games can be solved with respect
to w-regular goals via the equational u-calculus. We consider a goal that is spec-
ified by an parity automaton over the set of locations of the timed automaton
game, and based on this, we construct another parity automaton that encodes

the winning condition. Finally, from the automaton that encodes the winning
condition we obtain a u-calculus formula that, evaluated over the timed automa-
ton game, defines the winning states of the game. Since the u-calculus formula
preserves the regions of the timed automaton game, it provides an algorithm for
solving timed automaton games.

5.1 Representing Goals and Winning Conditions

Consider a timed automaton game A with locations @ and clocks C. A goal
¢ C (Q x K(C))“ of A is a location goal if it is independent of clock val-
uations; that is, if (qgo,k0){(q1, k1) -+ € P, then for all kj, K}, ..., we have
(qo, ko){q1, KY) - - - € ®. Since location goals depend only on the sequence of loca-
tions, we view, with abuse of notation, a location goal to be a subset of Q“. We
consider in this section location goals @ that are w-regular subsets of @“ [Tho90].
Such location goals can be specified by means of deterministic parity automata
over the alphabet @ [EJ91]. A parity automaton (also known as Rabin-chain au-
tomaton) of order k over the alphabet X' is a tuple H = (P, Py, X, 7, ¢, {2), where
P is the set of locations of the automaton, Py C P is the set of initial locations,
7 : P 2F is the transition relation, £ : P — X assigns to each location p € P
a symbol £(p) of the alphabet X, and 2 : P — {0,...,2k — 1} assigns to each
location p € P an index 2(p).

An ezecution of H from a source location py € P is an infinite sequence
Po,P1,P2,... of automaton locations such that p;y1 € 7(p;) for all j > 0; if
po € Py, then the execution is initialized. The execution a = pg, p1, p2, - - - gener-
ates the trace £(a) = €(po), £(p1), £(p2), - .. of symbols of X. Given an execution
a = pg,P1,P2, .- -, we denote by MazIndex((2,a) the largest j € {0,...,2k — 1}
such that (2(p;) = j for infinitely many i. The execution « is accepting if
MazIndex(£2, o) is even. The language L(H) is the set of traces p € X such
that H has an initialized accepting execution a that generates p. The automa-
ton H is deterministic and total if (1a) for all locations p1,p2 € Py, if p1 # pa,
then £(p1) # £(p2); (1b) for all symbols o € X, there is a location p € Py such
that £(p) = o; (2a) for all locations p; € P and po,ps € 7(p1), if po # p3, then
£(p2) # L(p3); (2b) for all locations p; € P and all symbols o € X, there is a
location po € 7(p1) such that £(ps) = o. If H is deterministic and total, then
we write 7(p1,0) for the unique location py with £(ps) = o. Deterministic and
total parity automata suffice for recognizing all w-regular languages [Tho90].
We denote by |H| = |P| the size of the automaton, measured as its number of
locations, and by |H]|, its order k.

Let A be a timed automaton game with the set @) of locations, and let ¢ be
a goal that is specified by means of a deterministic and total parity automaton
Hg = (P, Py,Q,7,¢,12) over the alphabet @ such that L(Hg) = &. The first
step towards deriving a p-calculus formula for computing the winning states of
A with respect to & represents the conditions ¢d and Blameless; as w-regular
conditions. To this end, we consider an enlarged state space S = S x {T,F}?,

and an augmented transition relation 58 x M, x M, — 25, Intuitively, in
an augmented state (s, tick,bl) € S, the component s € S is a state of the

original game structure [A], tick is true if in the last transition the global clock
z has crossed an integer boundary, and bl is true if player 1 is to blame for the
last transition. Precisely, we let ({¢', '), tick', bl') € 6({{q, &), tick, bl), my, m>)
iff (¢', k") € 6({q, k), m1,ms), tick'" = T iff there is n € IN such that x(z) < n <
k'(z), and bl' = T iff bly({(g, k), m1,ma, (¢, k')). The set td corresponds to the
runs along which tick is true infinitely often, and the set Blameless, corresponds
to the runs along which bl is true only finitely often. Once time divergence and
blame are thus encoded, the winning condition WC'1(®) can be specified by a
parity automaton H ¢, (g) with the alphabet S=0Qx {1,¥}? and language

(qg, ticky, blo>, (qg,ql, ... € E(H@) AVYEeN.Jj > k. tickj)

E(chl(é)) = < (q1, tickq, bly), V

dk € NVj > k. (=bl; A —ticky)

o (1)
The automaton Hyc, @) = (P, Py, X,7,¢,{2) is derived from the automa-
ton Hg as follows. Let k be the order of Hg. We have P = P x {T,F}? x
{0,...,2k — 1}; intuitively, a location (p, tick, bl,h) € P is composed of a lo-
cation p € P, of two boolean symbols representing the value of tick and bl
at the location, and of an integer h that keeps track of the maximum in-
dex of the locations of Hg thatAhave been viﬁited between two occurrences of
tick = T. For (p, tick,bl,h) € P, we define £({p, tick, bl,h)) = (L(p), tick, bl),
and we let (p, tick,bl,h) € Py iff p € Py. For all p € P, bl € {T,F}, and
h € {0,...,2k — 1}, we have (p', tick',bl',h') € 7((p,F,bl,h)) iff p' € 7(p)
and h' = max{h, 2(p')}, and we have (p',tick’,bl',h') € 7((p,T,bl, h)) iff
p' € 7(p) and ' = 2(p'). The index function Q:P {0,...,2k + 1}
is defined, for all p € P, all bl € {T1,F}, and all h € {0,...,2k — 1}, by
ﬁ((p,F,F, h)) =0, f)((p,F,T, h)) =1, and ﬁ((p,T, bl,h)) = h+ 2. For all execu-
tions a = <p0, ticko, blo, ho), <p1, tickl, bl1, h1>, <p2, tickQ, le, hQ), A OfHWC1(¢),
let @ = po,p1,p2, ... be the corresponding execution in Hg. We can show that
(a) if there are infinitely many j such that tick; = T, then MazIndex(£2,a) =
MoazIndex (12, o)) +2; (b) if there is £ € IN such that tick; = bl; = F for all j > k,
then MazIndez(£2,a) = 0; and (c) in all other cases (i.e., when tick; holds for
only finitely many values of j, but bl; holds for infinitely many values of j), we

have Ma:v]nde:v(f), a) = 1. Together, these facts lead to (1).

Lemma 1 Given Hg, we can construct a deterministic and total parity au-
tomaton Hyc, (@) satisfying (1) such that |Hwe, @) = 4 - |Hg| - |Hp|« and
|Hwe,(@)ls = [Hals + 1.

5.2 A p-calculus Formula for the Winning States

For all (p,tick,bl,h) € P, we let lo((p tick,bl,h)) = (p) € Q,
Zt((p, tick, bl, h)) = tick, and Zb((p, tick, bl,h)) = bl. The fixpoint formula g
that solves the game with goal & is constructed as follows [dAHMO1la]. The
formula g is composed of blocks By,...,Bag41, where By is the innermost

block and Bagy1 the outermost block. The formula uses the set of variables
{x? |pe P,je{0,...,2k+1}} U {y}, which take values in 25, where S is the
set of states of the game structure 4. The block By is a v-block which consists
of all equations of the form

7 =<ZQ<ﬁ>xK<c>>m0Prel< V w%@)xzt(ﬁ)”b(ﬁ))

p'e7(p)

for p € 13, where C' is the set of clocks of A. For 0 < j < 2k + 1, the block B;
is a p-block if j is odd, and a v-block if j is even; in either case it consists of
the set of equations {«¥ = 2 , | p € P}. The block Ba4; consists of the set of
equations {mng =ub, |pe PYU{y= 5By wng}- The output variable is y.

The operator CPre; : S S is the controllable predecessor operator, defined
by d3mq € I1(s).Vmg € Iy(s).d(s,m1,m2) € X. Intuitively, for s € S and
X C §, we have that s € CPrel()?) if player 1 can force the augmented game to
X in one move. As an example, consider the set X = (X; x {F} x {T}) U (X x
{F} x {F}) for some X C S. Then, s € CPre;(X) if player 1 has a move such
that, whatever the move played by player 2: either (a) the game proceeds to X7,
the global clock z does not advance beyond an integer boundary (tick = F), and
player 1 is blamed (bl = T); or (b) the game proceeds to X, the global clock z
does not advance beyond an integer boundary, and player 1 is not blamed. The
implementation and properties of operator CPre; are discussed below. Note that
the formula ¢ depends only on Hg, but not on the timed game structure over
which it is evaluated (except trivially via the product with K (C'), which is simply
the set of all clock valuations). Denote by [[y]]ﬁq’ C S the fixpoint valuation of
y over the timed game structure [A]. Lemma 2 enables the computation of the
winning states of the game with respect to player 1; the winning states with

respect to player 2 can be computed in a symmetrical fashion.

Lemma 2 We have (1)$ = [[y]]ﬁ“IB

5.3 The Controllable Predecessor Operator

The operator CPre; can be computed as follows. For X C §, write X = (X7 x
{THU(XF x {F}), for X7, Xr C Sx{T, F}. Intuitively, Xt (resp. Xy) represents
the portion of X that corresponds to the case where bl is T (resp. F). Then,
s € CPrey(X) if and only if:

E! <A1,a1> S Fl(S) .
YV (As, as) € Ta(s). (A2 < Ay = (8(s, (s,), tick(s, Ay)) € XF)/\
((5(5, (A1, a1)), tick(s, A1) € X1V (Ay, a2) € Ta(s). Ay < Al),

where tick({g, k), A) is T iff k(2) < n < k(z) + A, for some integer n. In words,
the above formula states that there is a player 1 action that, played with delay

Ay, leads to X; moreover, all actions of player 2, if played with delay up to
Ay, lead to Xg. The following lemma states that the controllable predecessor
operator preserves regions for timed automaton games.

Lemma 3 Forn > 0, consider X = U?:l(Xj x {tick;} x {bl;}), where for
1 < j < n, the set X; is a region, and tick;,bl; € {T,¥}. Then, CPre,(X) is a
union of regions.

5.4 Putting It All Together

From the constructions of the previous subsections, we obtain the following de-
cidability result for timed automaton games with w-regular location goals.

Theorem 5 Consider a timed automaton game A with the set Q of locations,
and a parity automaton Hg that specifies a location goal & C Q¥. Let C be the
set of clocks of A, let m = |C|, and let ¢ = max{c, | x € C}. Then, the set of
winning states (1)@ can be computed in time O((|Q| - m!-2™ - (2¢+ 1)™ - |Hg| -
|Hg|,) ([Hel-+1)),

Corollary 1. The problem of solving a timed automaton game for a location
goal specified by a parity automaton is EXPTIME-complete.

EXPTIME-hardness follows from the EXPTIME-hardness for alternating reach-
ability on timed automata [HK99]. Membership in EXPTIME is shown by the
exponential-time algorithm outlined above. The algorithm for solving timed au-
tomaton games can also be used to simultaneously construct a winning strategy
for player 1, as in [d{AHMO1b]. The winning strategies thus constructed have

the following finitary structure. Two finite runs ¥ = sq, (m}, m?), s1, ..., s, and
7= si, (m,m?), s},..., s} of the same length are region equivalent, written
=7, if for all 0 < j < k, we have [s;] = [s}]. A strategy is a region strat-

egy if, for region equivalent finite runs, it prescribes moves to the same region.
Formally, a strategy = € IT is a region strategy if for all 7,7 € FRuns, we have
that 7 = 7 implies 0(last(7), 7 (7)) = 6(last(F), n(7")). Since the CPre; opera-
tor preserves regions, we can show that the strategy constructed by the above
algorithm does not distinguish between region equivalent runs, and hence, the
constructed strategy is a region strategy.

Theorem 6 Let A be a timed automaton game and s a state of A. For every
w-regular location goal @, if player i has a strategy to win WC;(®) from s, then
player i has a region strategy for winning WC;(®) from s.

References

[AD94] R. Alur and D.L. Dill. A theory of timed automata. Theor. Comp. Sci.,
126:183-235, 1994.

[AdJAHM99] R. Alur, L. de Alfaro, T.A. Henzinger, and F.Y.C. Mang. Automating
modular verification. In Concurrency Theory, Lect. Notes in Comp. Sci. 1664, pages
82-97. Springer, 1999.

[AH97] R. Alur and T.A. Henzinger. Modularity for timed and hybrid systems. In
Concurrency Theory, Lect. Notes in Comp. Sci. 1243, pages 74-88. Springer, 1997.

[AHKO02] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. J. ACM, 49:672-713, 2002.

[AMPS98] E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for
timed automata. In Proc. IFAC Symp. System Structure and Control, pages 469—
474. Elsevier, 1998.

[Chu63] A. Church. Logic, arithmetics, and automata. In Proc. Int. Congress of
Mathematicians, 1962, pages 23-35. Institut Mittag-Leffler, 1963.

[IAHMO1la] L. de Alfaro, T.A. Henzinger, and R. Majumdar. From verification to
control: Dynamic programs for omega-regular objectives. In Proc. Symp. Logic in
Comp. Sci., pages 279-290. IEEE, 2001.

[IAHMO1b] L. de Alfaro, T.A. Henzinger, and R. Majumdar. Symbolic algorithms for
infinite-state games. In Concurrency Theory, Lect. Notes in Comp. Sci. 2154, pages
536-550. Springer, 2001.

[dAHS02] L. de Alfaro, T.A. Henzinger, and M.L.A. Stoelinga. Timed interfaces. In
Embedded Software, Lect. Notes in Comp. Sci. 2491, pages 108-122. Springer, 2002.

[EJ91] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus, and determinacy.
In Proc. Symp. Foundations of Comp. Sci., pages 368-377. IEEE, 1991.

[FLM02] M. Faella, S. La Torre, and A. Murano. Dense real-time games. In Proc.
Symp. Logic in Comp. Sci., pages 167-176. IEEE, 2002.

[HHM99] T.A. Henzinger, B. Horowitz, and R. Majumdar. Rectangular hybrid games.
In Concurrency Theory, Lect. Notes in Comp. Sci. 1664, pages 320-335. Springer,
1999.

[HK99] T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid
automata. Theor. Comp. Sci., 221:369-392, 1999.

[MP91] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent
Systems: Specification. Springer, 1991.

[MPS95] O. Maler, A. Pnueli, and J. Sifakis. On the synthesis of discrete controllers
for timed systems. In Theor. Aspects of Comp. Sci., Lect. Notes in Comp. Sci. 900,
pages 220-242. Springer, 1995.

[PR89] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proc.
Symp. Principles of Programming Languages, pages 179-190. ACM, 1989.

[RW89] P.J.G. Ramadge and W.M. Wonham. The control of discrete-event systems.
IEEE Transactions on Control Theory, 77:81-98, 1989.

[SGSAL98] R. Segala, G. Gawlick, J. Sggaard-Andersen, and N. Lynch. Liveness in
timed and untimed systems. Info. and Comput., 141:119-171, 1998.

[Tho90] W. Thomas. Automata on infinite objects. In J. van Leeuwen, ed., Handbook
Theor. Comp. Sci., vol. B, pages 135-191. Elsevier, 1990.

[Yi90] W. Yi. Real-time behaviour of asynchronous agents. In Concurrency Theory,
Lect. Notes in Comp. Sci. 458, pages 502-520. Springer, 1990.

