Exact representations of and computability on real
numbers

Marielle Stoelinga
Master’s thesis 404
in mathematics and computer science
under supervision of dr. Erik Barendsen

Nijmegen, March 1997

Abstract

This master’s thesis explores computability of real functions via representations
of real numbers.

We introduce the notion of representation system, which is a set of numerical
functions representing all reals. A real function is called computable with re-
spect to some representation system if there exists a corresponding computable
functional on that representation system. We investigate two characterizations
of computable functionals. We classify the sets of computable real functions
of different representation systems, using the notions of “recursive translation”
between two systems and “effective approximation by rational numbers.”

We also study the set of computable real numbers of a system and compare the
set of computable functions on all reals and on the computable reals.

We apply the above results to the well-known representation stems, being
Dedekind cuts, B-ary expansions, nested intervals and Cauchy sequences. We
determine the computability of +, sin and <. These systems yield the same set
of computable real numbers.

Contents

0 Introduction 5
0.1 About this master’sthesis 5
0.2 Overview 10
0.3 Preparations L L e 12

1 Representations of real numbers 15
1.1 Real numbers and their representations 16

1.1.1 An axiomatization of real numbers 16
1.1.2 Representations of real numbers 16
1.1.3 Representations of real functions 17
1.1.4 Common representations. 18
1.1.5 Complex numbers 22

2 Computable functionals 23

2.1 Partial recursive functionals L. 24
2.1.1 Normal Form Theorem 29
2.1.2 Monotony and compactness 35
2.1.3 Sequentialityo o 37
2.1.4 Do the partial recursive functionals capture the intuitive

notion of computability on functions? 40

2.2 Effective continuous functionals 41
2.2.1 Compactness and monotony revised 41
2.2.2 Encoding finite functions o000 L. 43
2.2.3 Effective continuous functionals 44

2.3 Survey and generalization of results 0.0 46
2.3.1 Summary 46
2.3.2 Generalizing the results o000 46

2.4 Restricted functionals 0oL Lo 47
2.4.1 Partial recursive restricted functionals 48
2.4.2 FEffective continuous restricted functionals 49
2.4.3 Functionals restricted to total input 52
244 Summary ... e 53

3 Computability on representations 55
3.1 Approximations of real numberso o000 56
3.2 Translations between representation systems 58

CONTENTS

3.2.1 Summary ... e 65
3.3 Computable real functions 65
3.3.1 Summary ... 71
Computable real numbers 73
4.1 Computable real numberso 73

Chapter 0

Introduction

0.1 About this master’s thesis

Although we are not consciously aware of it, real numbers play an important
role in daily life in practical as well as in philosophical sense. The real numbers
are formed according to the way we experience reality note the similarity in
sound. The time continuum is described by R, the space around us to be R,
Classical physics describes reality in terms of real numbers. Apart from time
and space, energy, mass, temperature also take values in R. Many physical
processes, like magnetic flux and orbits of planets, are described by constructs
from real analysis, like differential equations.

Moreover, real numbers are involved in controlling reality. If an airplane takes
off, complex calculations are made to overcome gravity. The computer nowa-
days is indispensable for this.

Therefore it is disturbing to notice that the real numbers have been imple-
mented rather miserably. The REALS, that are representations of real num-
bers implemented in most computers, contain only representations of finitely
many rational numbers. The representation of a real numbers therefore mostly
a rounding of it.

The accumulation of relatively small rounding errors may cause an enormous
deviation of the exact result. Notably, there exist a sequence that converges to 0,
but whose calculation by a computer always diverges, irrespective of the internal
precision of the machine. Physicists being cautious with measure inaccuracies,
a computer that specifies a result with a precision of 64 decimals, gives only
pseudo-security.

The question arises whether or not this situation can be improved. Is a imple-
mentation of all real numbers possible? The problem with the representation
real numbers is that there are so many of them. Tt is not possible to have a finite
description every one. Therefore it is impossible to represent all of them in a
computer, even if we would have an infinite memory at our disposal. However,
two solutions are proposed:

Solution one: We do not represent a real number all at once, but specify it
stepwise; providing more information about the real in each step. The result of
a computation will then also be created in the course of time. Following this

6 CHAPTER 0. INTRODUCTION

solution, all reals can be represented. A set of objects that represent all real
numbers in this way is called a representation system.

Solution two: Within the real numbers a subset exist whose elements all have a
finite description. The set of computable numbers of a representation system is
such a set. The idea is to form the set of computable objects in a representation
system. Then a computable real can be described by an algorithm that yields
a representation of a real number.

Both solutions do not exclude each other; they can be implemented together
within one system. The first one is more general.

A certain data type is implemented to perform operations on. So the following
question should be: ‘Which functions on real numbers are computable?’ In
solution one, real numbers are represented by infinite objects. In order to
study computable functions on real numbers we need higher order recursion
theory, in which we model these functions as functionals.

The computable reals, proposed in solution two, are all finite objects. Com-
putable functions on the computable real numbers can therefore, be modeled
as partial recursive functions.

We compare the set of computable real functions induced by both solutions.
Finally we remark that the strategy set out above to study computability on
real numbers can be applied also to other uncountable sets. Tn the practice
of computer science such objects are infinite graphs, sets of natural numbers,
streams of input in real-time processes, etc.

Research purpose and method

Towards a better implementation of real number arithmetic, this master’s thesis
studies computability on real numbers. Computations take place on concrete
representations of real numbers rather than on abstract mathematical objects.
By the uncountability of R, it follows that is is impossible to represent all real
numbers by a finite description. We explore the following questions:

1. How can the real numbers be represented?
2. Which functions are computable on these representations?

3. Can we indicate a subset of real numbers in which all real numbers have
a finite description?

4. How can we characterize the set of computable functions on this set?

Concerning question one, we introduce the notion of a representation system of
real numbers, being a set in which each real numbers has at least one represen-
tation. We study several standard representation systems, known in literature.
In essence these are all subsets of N — N. We develop a notion of representation
of real function in terms of a representation system. We would like to call a real
function computable if it has a computable representation. Therefore, we de-
velop a notion of computability on representation systems. As a representation
system consists of functions, we have to study computable functionals.

0.1. ABOUT THIS MASTER’S THESIS 7

We compare two notions of computability on functionals. The partial recursive
functionals are an extension of the partial recursive functions. The effectively
continuous functionals are based on an effective version of continuity in the pos-
itive information topology. We focus on functionals that model real functions,
which get only total objects as input.

Using the results concerning computable functionals, we explore the computabil-
ity of three types of operations on representation systems. In particular, we
study their computability in the standard representation systems, Dedekind
cuts, B-ary expansion, nested intervals and Cauchy sequences. We formulate
the effective approxzimation property of a system, stating that, in that system,
real numbers can be approximated with rational numbers up to arbitrary pre-
cision by a computable functional. Moreover, we consider whether there exist
computable translations, that map representations in one system to equivalent
representations in another system. Finally, we investigate the set of real func-
tions that are computable with respect to a certain system. We check whether
the functions +, sin and the predicate < 0 are computable in the standard sys-
tems. We also show the relation between the computability of approximations,
of translations and of real functions.

Concerning subsets of real numbers that have a finite representation, we in-
troduce a notion of computable real numbers with respect to a representation
system. We generalize the various definitions from literature, where this set
is usually defined in an ad hoc manner on a particular representation system.
We compare the sets of computable reals with respect to different systems. As
computable real numbers all have a finite description, computable functions on
the computable real numbers can be modeled as partial recursive functions,
called effective operations. Then two notions of computability exist on this set
one in terms of functionals and another in term of functions. We also compare
these. Finally we prove that computable real numbers with respect to a system
can be obtained via application of computable real functions of that system.

Results

We prove three fundamental results on partial recursive functionals: The Nor-
mal Form Theorem, continuity in the positive information topology and sequen-
tiality. We prove that the effectively continuous functionals are an extension of
the partial recursive ones. As the former need not to be sequential, this is a
proper extension. When restricted to total objects, in particular to representa-
tions of real numbers, partial recursiveness and effective continuity coincide.

Concerning computability on representations of real numbers, we prove that
the standard representation systems satisfy the effective approximation prop-
erty. The effective approximation property is equivalent to the existence of a
translation to interval representations. We show that the notion of computabil-
ity of real functions depends essentially on the representation. The standard
systems yield different classes of computable real functions, which we show by
examining the functions +, sin and the predicate < 0. If two systems can be
effectively translated into another, these yield the same class of computable

8 CHAPTER 0. INTRODUCTION

functions. Therefore not all standard systems can translated recursively into
each other. We also prove that the computable real functions with respect to
interval representations are continuous in the Fuclidean topology.

Concerning computable real numbers, we show that in general the set of com-
putable real numbers depends on the representation; in the standard systems,
these sets coincide and have nice properties. We show that the computable real
numbers in a systems can be generated by the computable real functions in the
same system.

Every computable functional on the computable reals corresponds to an effective
operation. The converse however remains an open problem.

About a system in practical use

We can image a computer implementation based on these ideas working as
follows: The implementation of a real function, like sin, gets a representation of
a real number as input. This representation is a function, say «, in N — N that
is given as a stream, that is, by successively specifying «(0), a(1), a(2),.... The
implementation of sin is lazy and successively produces the output (sin «)(0),
(sin@)(1), Tt waits for more input until it has got enough information
to compute the next element in the output stream. We do not make any
assumptions about the amount of input elements needed to produce a certain
amount of output: In the case of the sinus we have information about the result
even without input as —1 <sinxz < 1 for all z € R. Using the technique of pipe
lining, the stream sin f can be input to another function.

Functions on the computable reals can be implemented in two ways: Given a
Godel number e of a computable real a computer program to compute ¢, is
in fact a Godel index the stream ¢.(0), ¢-(1),... can be computed and thus
be input to the implementation of the sinus described above.

Another way to implement a function on computable numbers is to compute
on indices directly. Given e, compute the index of the result. We will prove
that any function on computable reals that is computable using streams is also
computable on indices; the converse, however, remains an open problem. Given
an index of a computable real number, we can generate the associate stream.
On the other hand, a computable number can be generated by a computable
function on all real numbers.

Related work

A constructive approach to real analysis has been elaborated in various meta-
mathematical settings. Intuitionism, Russian constructivism and classical re-
cursion theory all have worked out their own ideas about the (constructive)
nature of real numbers. An overview can be found in [BR87] and in [Beeson&5].
We start from a classical definition of the real numbers and study which op-
erations are computable on real numbers, relative to the computability of real
numbers. Among all reals, recursive reals have our interest.

Computable reals on higher type have been studied from the 50s by Kleene, in-
troducing schemes S1 S9 [Kleeneh9] and Platek [Platek66]. Computable func-

0.1. ABOUT THIS MASTER’S THESIS 9

tionals, which we use to describe computable real functions, are investigated
by Grzegorczyk [Grzegorezykbb]. Nowadays his treatment is still relevant, but
may seem somewhat old-fashioned. A more modern approach is followed by
Odifreddi [Odifreddi89] en Rogers [Rogers67]. The work of Odifreddi was quite
intuitive. However, the results we needed were only hinted at.

The subject of restricted functionals seems not to have been studied extensively
before. Functionals restricted to total functions are involved in HEQ, which has
been studied by Troelstra [Troelstra73].

Grzegorezyk has also applied computable functionals to functions of real num-
bers, see [Grzegorczykh7]. His work is often taken as a starting point. Most
papers including those of Grzegorczyk himself choose one particular rep-
resentation system and elaborate all theory within that system. Applying and
refining the theory of computable functionals, we have developed the theory of
computability on real numbers in a more general framework, that of a repre-
sentation system. We have compared several concrete representation systems.
Computability on real numbers fits in the framework of Pour-El and Richards
[Pour-El] who axiomatize the notion of a computability structure on a Banach
space.

Early investigations in the field of recursive real numbers have been done by
Turing [Turing36], Rice [Riceb4] and Mazur [Mazur63]. Peter, [Peter51] Robin-
son [Robinson52] and Bridges [Bridges94] also have contributed to this research
topic. Moschovakis presents an axiomatic characterization of the recursive reals
in [Moschovakis6h]. Just as with the computability of real numbers, we have
developed out notions concerning recursive real numbers within a representa-
tion system in general, whereas the literature mostly chooses one system. By
studying computability on all real numbers as well as on the computable real
numbers, we profit from theory developed to describe computability on all real
numbers, when studying the computable real numbers.

Unfortunately, the literature about computable functionals and about com-
putable functionals on real numbers was difficult to access. We have proven
many result by ourselves, probably more than necessary.

Future work

This master’s thesis has left some open problems that could be solved by future
research. We list these here.

e Can every (partial) recursive effective operation be lifted on a represen-
tation system be lifted to an effectively continuous functional?

e Isevery real function that is computable with respect to Rp_ary continuous
in the Fuclidean topology?

e [s it possible to formulate a nice property for a representation system
(v,) to ensure that 7 (V") = R?

Beside the concrete representation systems we have treated, other standard rep-
resentation systems of real numbers, such as continued fraction, can be studied.

10 CHAPTER 0. INTRODUCTION

Toward a realistic implementation of real numbers in the way we described, a
lot. of research has to be done. Firstly efficiency has to be taken into account.
Some research has been done by [BSS85]. Tf it comes upto writing programs, is
there a or less standard way to implement a real function, for instance from a
Taylor series expansion? Can we use approximation techniques from numerical
analysis?

The methods used to describe computability on real functions can also be ap-
plied to other uncountable sets, like those of infinite graphs, infinite lists, sets
of natural numbers, etc.

Therefore we think it is worth developing a more general framework in which
computability on all these objects can be described, Starting from a specifica-
tion, how are the representation systems for these objects related with respect
to their computational properties?

0.2 Overview

This master’s thesis has been divided into four parts. Chapter one is about
real numbers, the topic of chapter two is computability on function spaces, the
third chapter treats computability on real numbers and chapter four at last is
concerned with computable real numbers and computable functions on these.

Chapter one defines the notion of representation system of real numbers, being
a set in which every real number can be represented. Two requirements should
exclude representation systems that are not useful in practice. First of all,
their elements should be easily implementable in a computer. Therefore, we
require representations to be functions from N to N. Furthermore, it should
be possible to approximate a real number effectively up to any given precision
from its representation.

Each real function now can be implemented by a function on a representation
system that respects the equivalence relation =, “represent the same number.”
This is a function with functions as in- and as output a functional. Then,
computability of real functions can be defined in terms of a computable func-
tionals.

Moreover this chapter treats some standard representation systems. We look
at Dedekind cuts, B-ary expansions (if B = 10 this yields the common deci-
mal representations for real numbers), nested intervals and Cauchy sequences.
Chapter three explores computability on these systems.

Chapter two studies computable functionals. Two notions of computability are
defined: partial recursiveness and effective continuity.

A partial recursive functional is a generalization of a partial recursive func-
tion. Three fundamental theorems are proven: The Normal Form Theorem,
continuity in the positive information topology and sequentiality.

The effectively continuous functionals are an extension of the partial recursive
ones.

Functionals that model real functions only get total objects as input. Therefore

0.2. OVERVIEW 11

we pay special attention to computable functionals in both senses with a
restricted domain. We show that a computable restricted functional is just the
restriction of a computable functional. An important result is that, restricted to
total objects, partial recursiveness and effective continuity coincide. Through-
out, this chapter the positive information topology plays a major role.

Chapter three is about computability on real numbers. Being equipped with
a notion of computability on function spaces, we can conclude computability
and non-computability of operations rather easily. Three types of functions on
representation systems are considered.

Firstly, we prove that, in the standard representation systems, real numbers
can be approximated with rational numbers up to arbitrary precision by a
computable functional. Moreover, we consider whether there exist computable
functionals that translate representations in one system to equivalent represen-
tations in another system. Both positive and negative results will be derived
for the standard systems. Finally, the notion of computable real function will
be defined. The set of computable real functions depends on the representation
of real numbers. We check whether the functions 4+, sin and the predicate < 0
are computable in the standard systems. The answers are different in each sys-
tem. We also study under what conditions the computable real functions are
continuous in the Fuclidean topology.

Chapter four deals with the set of computable objects within a given representa-
tion system. These are the computable real numbers in the system. In general,
the set of computable real numbers depends on the representation. However,
in the standard systems, these sets coincide and have nice properties.
Computable functions from computable reals to computable reals can be mod-
eled by partial recursive functions on the set of Godel numbers of the objects.
Such functions should respect the relation “represent the same real number”
on indices. We call them effective operations. We prove that every computable
functional on the computable reals corresponds to an effective operation. How-
ever, the converse problem remains open.

12 CHAPTER 0. INTRODUCTION
0.3 Preparations

Partial functions

A partial function f from a set A to a set B is an object that assign a unique
element from B to each element from its domain, which is a subset of A. The
space of partial functions from A to B is denoted by A — B.

We call f a function if Dom(f) = A. ' The set of functions is denoted by
A= B.

let f,g € A — B and z,y € A. The domain of the function f is denoted
by Dom(f). If 2 € Dom(f), we say “f(x) is defined” and write f(z) |. If
x & Dom(f), then “f(2) is undefined” or f(2)1. Two function applications f(x)
and g(y) are equal, notation f(x) ~ ¢(y) is they are both undefined or both

defined with the same value. Thus f(z) ~ f(y) 4 (f()r & gy)D) Vv (f(z) =

g(y)). The equality of functions is extensional. We have f = ¢ 4 Dom(f) =
Dom(g) & Yo € Dom(f)[f(x) = g(2)]. We write f =, gis f and g agree upto n:

Vo < n[f(x) = g(x)]. A function can be restricted to a subset A" C A. We write
f Tar to indicate the function in A —— B such that Yo € A'[f [4(2) ~ f(2)].

If f: N Nthen px[f(x) = 0] denotes the smallest n € N such that f(z) = 0.
A function is finite if its domain is finite.

A partial function f: A — B can be viewed as a set of pairs {(z, f(2)) | = €
Dom(f)}. Conversely, a set of pairs V' can be considered as a function if it
is single valued, i.e. Va,y1,y2 € V: (2,11) & (2,2) = y1 = y2. In other
words, there exists a bijection between the function space A — B and the
collection of single valued sets. We will make use of this correspondence tacitly.
In particular we will define functions by naming their associated sets. So, the
symbol) denotes the function that is undefined everywhere on its domain;
the set {(x,y)} the function that is defined on z only, having value y. If two
functions f and ¢ coincide on the intersection of their domains, the expression
f Ug makes sense.

Through this isomorphism it is not difficult to see that the function spaces
Ay x Ay — B and Ay — Ay — B are isomorphic also. Remark that a function
in f: Ay X Ay — B has another domain than its equivalent in 4; — Ay — B.

In particular, these conventions hold for functions whose domain consist of
functions, namely functionals.

Sets

Concerning sets, the following symbols are used:

'Such a partial function is often called total. We avoid this word here, because it has
another meaning in the context of functionals.

0.3. PREPARATIONS

N the set of natural numbers

N* the set of natural numbers unequal to 0
/ the set of integers

Q the set, of rational numbers

Q* the set of positive rational numbers

R the set of real numbers

C the set of complex numbers

13

14

CHAPTER 0.

INTRODUCTION

Chapter 1

Representations of real
numbers

Real numbers are inspired by our experience of time and space. We have certain
ideas about properties of time and space and mathematicians like to derive these
formally from a few basic assumptions, called axioms. From the axioms more
complex constructions, like sin,lim and [can be built and general theorems
can be proven, like: If F/ = [and f is continuous then for all a,b € R

b
[oyds = F (1) - o)

On the other hand, if we wish to make statements, like “the length of this path
is V2" or “the distance light travels through in 1 second, is 2,9979246 ...-10°
meters”, we need to denote, to represent the reals. Tn the examples above v/2,
1 and 2,9979246...-10% are denotations or representations of real numbers.
From the axioms of real numbers it follows that it is impossible to give a finite
denotation for every real number.

There are several representation systems for real numbers, just like we can de-
note natural numbers in decimal, binary, etc. notation. But even within one
system, there are often several representations for one single real. Compare this
to Q, where (in decimal notation)%,% and %
These have exactly the same mathematical or extensional properties. However

refer to the same element.

a computer scientist would say they have different properties. Forinstance more
1,000,000
2,000,000
sentations are distinct objects that satisfy the equivalence relation “represent

bits are needed to store than to store 15 Intentionally, different repre-
the same real number.”

The mathematical properties of real numbers are determined by their axioms.
So the set of real numbers is a structure < R, +,-, <,0,1 > that satisfies the
axioms. A denotation of a real number refers to a real number, so a repre-
sentation system of real numbers is a set V together with a function x, map-
ping a representation to the real number it represents. Calculations are about
representations, rather than about abstract properties. A computation takes
representations of x and y and constructs their sum, i.e. a representation of
x 4+ y. Proofs are about abstract properties like » < 2 4+ y.

The following sections work out these ideas more precisely.

15

16 CHAPTER 1. REPRESENTATIONS OF REATL. NUMBERS

1.1 Real numbers and their representations

1.1.1 An axiomatization of real numbers

The properties of real numbers by the second order formula TOFEAS, which
stands for Totally Ordered Field, the axiom of Edoxos and Archimedes and the
Supremum Axiom. A structure < R,+, -, <,0,1 > is a structure of real numbers

if:
1. <R,+,-,<,0,1 > is a totally ordered field.

2. Ve e RYVye Redn € N[z-n > y].

3. Every subset of R that is bounded from above, has a supremum (= lowest
upper bound).

From these axioms all functions and definitions from real analysis, like sin, lim, [
can be constructed and all theorems from real analysis can be derived; in fact
real analysis is all about this. Animportant property of the formula TOFEAS is
that it is categorical, i.e. all structures < R, +,-, <,0,1 > that satisfy TOFEAS
areisomorphic. From now on, if we speak about R, we mean one of these models.
In particular, all models are uncountable, which implies that it is impossible to
represent all real numbers by finite objects.

1.1.2 Representations of real numbers

Definition 1.1.1 A representation system of real numbers is a tuple (V, 7),
where V' C N — N and 7 is a surjective function from V to R. If @« € V and
m(a) = 2, then a is said to be a (V| 7)-representation of x.

We think of elements in V as denotations of real numbers. We have required
its elements to be functions. The sole requirement, that V is a set would leave
open a so many possibilities that comparison, reasoning and defining related
notions is not convenient.

Because R is equinumerous with N — N, this is not a serious restriction. Ele-
ments in P(N), N* — N” Q — Q, sequences of rationals etc. can be encoded
as functions in N — N.

As we are interested in implementation, we wish the object to be easily im-
plementable. In particular we want to be able to specify a real number as
input stepwise. A function fin N — N can be given by an infinite sequence in
f(0), f(1),... course of time, called a stream.

The function # maps each representation to the real number it refers to. As
all numbers should be representable, © should be surjective. Tt needs not to be
injective: A real may have more than one representation. Then 7 induces an
equivalence relation

=y = w(x)=r(y).

We often omit «, if it is clear from V which is meant.

1.1. REAL NUMBFERS AND THFEIR REPRESENTATIONS 17

A property we think is crucial in practical use is what we call the effective
approximation property. A real numbers is often used to express a quantity, like
“the speed of light is 2,9979246...-10% m/s,” as complementary to expressing
properties like 2 > 0 & 22 = 2. The numerical value should be derivable from
the representation. However, representations are infinite objects, so we do not
require that that we can overview the quantity at once note the dots in
the representation of the speed of light. We should be able to approximate
the real number 7(«) with arbitrary precision by rational numbers, of which
we believe we can overview the values. Moreover, this approximation should
be effective in . As computability on functions is treated in section 2, the
exact definition of the effective approximation property is delayed until 3.1.
To avoid going into details of systems that are not suited for implementation,
we anticipate on this definition. We only present representation systems that
satisfy the effective approximation property, i.c. we slightly adapt the definition
of Cauchy sequences.

1.1.3 Representations of real functions

Real functions can be represented in terms of a representation system of real
numbers.

Definition 1.1.2 Let (V,7) be a representation system and let X C R.

1. Tet f: X — R be a partial function. A function F': V — V is called a
representation of f with respect to (V,7), or a (V, 7)-implementation

of f,if for all @ € 7' (X)
T(F(e)) = f(r (o).
In a commuting diagram we have

!
e

R R
A v

2. A (V,7)-representation of a function f : X — N is a functional F :
V — N such that for all @ € 77! for all o € 771 (X)

Fla) = f(r(a)).
In a commuting diagram, we have

RL>N

17

V

The definitions of representations of functions having type R* - R, N —
R, R — @, etc. are now straightforward.

18 CHAPTER 1. REPRESENTATIONS OF REATL. NUMBERS

3. A (V,7)-representation of predicate of a p C R” is a subset P C V¥ such
that

(vy...ap) € P < (w(a)...7(ag)) € p.

Remark 1.1.3 Note that every real function has at least one implementation
with respect to some representation system (V,x). If fis a real function, we
can define I/ : V — V using the Axiom of Choice. If 2 € V choose y € V' with
m(y) = f(x) and take F(x) = y.

On the other hand, every function F' : V™ — V that preserves =, can be
lifted to a function on R. A function that, like F, is defined on functions, is
called a functional. As we wish to study computability on representations of
real numbers, we should study computable functionals.

In every representation system we have representations of 0 and 1in V. Also the
functions + and - and the relation < can be represented. If we examine the set
of equivalence classes, V/ =, = {[z]=, | # € V}, we can lift +, -, < to V. Then
<V/=4,-,<,[0]z,,[1]=, > is a model of TOFEAS. In fact the traditional
models of TOFEAS are constructed this way, i.e. by taking a representation
system and then forming the quotient according to =.

1.1.4 Common representations

This section presents some frequently used representations of real numbers and
some of their elementary properties, namely Dedekind cuts, B-ary expansions,
nested intervals and Cauchy sequences. The representations are all constructed
from the rational numbers.

There is a wide range of equivalent forms of every definition that have the same
computational properties. We mention some of them, without proof.

As a running example, the number e is represented in all systems. In some
representations, the Taylor series expansion is useful. Expansion of the function
e” at () yields

"1
efZH
k=0

so the number e equals

=1
e:ZH.
k=0

We also show a representation of the function + in each system.

1
<«
~ (n+ 1)

Dedekind cuts

Definition 1.1.4 A Dedekind cut is a prefix « C Q,
satisfying

1. o #0, o #Q,

1.1. REAL NUMBFERS AND THFEIR REPRESENTATIONS 19

2.z, y<r = Y€ a,
3. €« = Ty € afr < y| (there is no largest element in).

The set of Dedekind cuts or Dedekind representations is called Rgeq.
The function 7ged : Rged — R is defined by

Tded (@) = sup(a).

In a picture, we have

O

Q

As Dedekind cuts are bounded from above, the supremum exists, so 7. is
well-defined. Furthermore is surjective. As rational numbers can be encoded
by natural numbers, the characteristic function of a subset o C Q,

Xo : Q= {0,1},

1 if g € o,
X(y(q)_{

0 otherwise

can be represented by a function of natural numbers. So indeed (Rged, Tded) i8
a representation system of real numbers.

Note that mgeq is injective, which implies that every real has a unique Dedekind
representation and that

alg) =1 <= g€ a < ¢ < mged(®).

Alternative definitions of Dedekind cuts use suffixes of Q instead of prefixes or
leave out the third requirement above.

Example 1.1.5 The Dedekind representation of e is

1 ifg<e,
n(q)—{

0 ifg>e.
Viewed as sets, addition on Dedekind cuts is performed as
a@f={p+tr|pcakrecp}
In terms of characteristic functions, the function 4+ can be represented by

Dded : Rded X Rded = Red,

1 if3p,r € Qla(p) =1& B(r)=1&p+r=d],

0 otherwise.

(@ Bdea B)(q) = {

Note that we have given @g4eq in applicative style.

20 CHAPTER 1. REPRESENTATIONS OF REATL. NUMBERS

B-ary expansions

Before introducing the B-ary expansion we need some auxiliary notions:
Definition 1.1.6 A number B € N, B > 2 is called a base or radix.

Definition 1.1.7 et B € N, B > 2. A number ¢ € R is a B-ary fraction if
it is a fraction having denominator B”, i.e. there exist n € N and a € 7 such
that

a

q:ﬁ'

Definition 1.1.8 l.et B € N be a base. A B-ary expansion is a sequence
g, 1, ... wWith ag € 7,0 < o, < B, n > 1. Here, ag should be represented as
a B-ary integer. The symbol Rp_,y denotes the set of B-ary expansions.

The real number represented by o € Rp_,py is

TRary(() = -5
=0

In junction with usual practice we also write [a]p in stead of Tp 4y ().
Given & € Rp_,y and k € N, @" is the rational that is represented by the first
k+ 1 digits of a, so

If @ € Rp.ary ends with all zeros, the tail of zeros may be omitted, like in
0.5 € Rp.ary. In that case we speak of a finite B-ary expansion. It is clear
that 2 € R has a finite B-ary expansion if and only if it is a B-ary fraction.
Real numbers, except for B-ary fractions, have a unique B-ary expansion, e.g.
[0.123]10 = [0.122999 .. .]19. If k=0 or a # B — 1, then

5k_|_ Z B}gi

i=k+1

TBary(00, - a(B—1(B—1)(B—1)...) =
1

TB-ary (0, - - - (ap +1),000...)

Example 1.1.9 For B = 10 this yields the familiar decimal expansion of e,
which is 2, 718128185904

1.1. REAL NUMBFERS AND THFEIR REPRESENTATIONS 21

The sum of two B-ary representations is given by

@B—ary : RB—ary — RB—ar}u

X et s Bm) S alk) £ B < B
(' DB-ary B)m) = {(y(n) +50(n)+p1 otherwise.

a+b ifa+b< B,

0 otherwise.

where a +5 b = {

This formula says that addition on two B-ary is pointwise addition, passing
carries to the left.
Nested intervals

Definition 1.1.10 An interval representation is a sequence of tuples (po, o),
{p1,q1), ... such that for all n

1. pn,qn € Q,
2. pn < @y,
3.]]mw_>oo Gn, — Pn = 07

4' Pn S pn+1 a'nd qn+1 S -

A segment r = (p,, q,,) is associated with the closed interval [p,, ¢,]. Tts left end
pn is notated by r’, the right end by r”. The length of r, Ing(r), is the number
r” — ', The set, of interval representations is written as Rin. A sequence of
intervals represents the number in its intersection; so take m;.: : Riny — R:

777777,75(0/') - wh—>moo (y;”

which equals

"
.t

n—+co
then

o=, 3 < Vn[al <8 & B <all.
Other definitions of interval representations make additional demands such as

Py Gn to be B-ary fractions, or restrict the length of the n'" interval, e.g. ¢, —

1
Pn < -

Example 1.1.11 An interval representation « of e is obtained by taking

Zk' 77—|—1
Zk' 77—{—1

22 CHAPTER 1. REPRESENTATIONS OF REATL. NUMBERS

The function + can be represented as
@int : Rint X Rint — Rint
(@ int B)(n) = <a'(n) + 3 (n), " (n) + 5" (n)>.

Cauchy sequences

Definition 1.1.12 A sequence ag, aq,... of rational numbers is a Cauchy
sequence if the differences between the elements become arbitrary small, i.e.
if there is a function ¢: N — N such that for all k € N

1
Vn,m > c(k) [|0zn — | < Q_k])

This function ¢ is called a modulus of convergence. The set of pairs («,)
is called Recauchy. This pair represents the number

ﬂ-cal]chy((yf,(f) = h_}m (a7
n—00

From analysis we know every Cauchy sequence converges. In chapter 3.1 it will
become clear why the modulus is an essential part of a Cauchy representation.

Example 1.1.13 The sequence

"1
a(n) = ; il

converges to e and
1 1

> —an)| < —— < —.
ool < o < 3

So if we define
c(n) = n.

then the pair (a,¢) is a Cauchy representation of e. An implementation of 4+
in Cauchy sequences is

@cauchy : Rcal]chy X Rcal]chy — Rcal]chy
(<(]/'7 C1> @cauchy <ﬁv C?>) (77) - <(]/,(77/) + ﬁ(n)7 & (77) + (52(77/) +]>

The list of representations we presented here is not exhaustive. There exist
many other representations of real numbers, like: continued fractions, nl-ary
expansions, B-ary expansions where negative digits are allowed.

1.1.5 Complex numbers

Another structure analysists are interested in, is that of the complex numbers,
< C,+,-,0,1>. Like for the reals, there exists a categorical axiomatization.
Common models of these axioms are constructed from models of real numbers,
by taking C = R?, then representations of complex numbers are pairs of repre-
sentations of real numbers. From a computational point of view, R and R? do
not, differ essentially. All theory we build to describe computability on R can
easily be adapted to treat computability on C.

Chapter 2

Computable functionals

Functionals, or higher order functions, are functions which have functions as
arguments. Common examples of operations on functions are: integration,
differentiation and also primitive recursion and minimalization.

Having functions on real variables in mind, our first interest goes to second order
functionals. These are functionals with partial functions on natural numbers as
input and as output. Or, equivalently, functionals with partial functions and
natural numbers as input and natural numbers as output.

This chapter explores two notions of computability on type level two functionals:
partial recursiveness in section 2.1 and effective continuity in 2.2.

The former is a generalization of the notion partial recursive function. Values
of the input functions may be used in the computation like those of the initial
functions.

We prove three fundamental properties of partial recursive functionals. The
Normal Form Theorem (2.1.10) is a generalization of the Normal Forms The-
orem in recursion theory. An important consequence of this theorem is the
monotony and compactness of partial recursive functionals (theorem 2.1.14).
The third theorem (2.1.18) also follows by the normal form theorem. It states
that partial recursive functionals are sequential, which means that there exist
a sequential algorithm to evaluate a partial recursive functional on its input.
This implies that a partial recursive functional is determined by its behaviour
on finite functions.

The second notion of computable functional, defined in 2.2, is called effective
continuity, because such a functional is continuous in the positive information
topology (2.2.1). Continuity in this topology is equivalent to monotony and
compactness (theorem 2.2.3). We show in 2.2.12 that effective continuity is a
proper extension of partial recursiveness.

Section 2.4 prepares for the application of functionals in the setting of real
numbers. Functionals that represent real numbers only get total functions as
input. We consider functionals that are restricted to a certain subset P. It
defines equivalents of the both notions of computability for restricted function-
als. Subsection 2.4.3 studies computable functionals restricted to a set of total
functions. In this case, partial recursiveness and effective continuity coincide.

23

24 CHAPTER 2. COMPUTABLE FUNCTIONALS

Preparations

The following notations are used from now on:

P, the set of partial functions from N* to N, P = Py and Py = N
PR the set of partial recursive functions from N to N

R the set, of recursive functions from N to N

T the set of (total) functions from N to N

Concerning variables the conventions are:

F.GG, ... range over functionals,

f.g, ... are used for elements of P,

1,4, k0, m,n,x,y, ... are natural numbers.

A vector of elements (aq,...,a,) is denoted by a.

Section 0.3 has pointed out that the structures Py, x --- x Py, — P, and
Py, x - x Pg, x N* o= N are isomorphic as sets. For sake for simplicity, we
identify them. If F': Py, x---x Py, — P,, wesay that Fis in so-called Curry
style; F/: P, x --- x P — N” 0 Nis in applicative style.

Functionals are usually treated in applicative style. The result of function appli-
cation then is a natural number, which is a “visible” object. We prefer to view
functionals mapping functions to functions for representations of functions on
real numbers map functions, c.q. representations of real numbers, to functions.
By taking n = 0 we get functionals that map functions to natural numbers, for
by definition Py, x --- x Py — Py = Py, X --- x P, — N. In particular
representations of functions in R — N fit in this framework.

We have remarked in section 0.3 that the applicative and the Curry versions do
have different domains. In both the cases above, the set Py, x---x Py, which
strictly spoken is the domain of the curried functional, is called the function
domain of F. It is denoted by Fdom(F).

If fe Fdom(F), then F(f) is a partial function. Tn particular, the object F’(}F)
always exists. On the contrary, F(f) (#) may be undefined. Tt is obvious that
it F(f)(F)] then F(f)(#) € N. The set {(f, %) € Fdom(F) x N* | F(f)(%)|} is
called the domain of F. It is the domain of the applicative version.

As functionals are a special kind of functions, everything that is defined in 0.3
is also applicable to functionals.

Definition 2.0.14 A functional /7 is called total if it maps all total functions
from Fdom (F') to total functions.

We use the convention that a functional is strict in its number arguments,

— — —

H(H(GH(f)(x),... ,Gm(f)(F)) is undefined whenever G (f)(¥) is undefined

for some 1.

2.1 Partial recursive functionals

In order to give a definition of partial recursive functionals, we wish to develop
an intuitive idea of computability on functions: Given a partial function f and

2.1. PARTIAL RECURSIVE FUNCTIONALS 25

a number n, which actions on f and n would we call computable? Tn order to
answer this question we first consider what information we may assume to be
available of a function if it is input to a functional. Then we investigate how
this information can be used in a computation.

The essential property of a function is that it assigns a unique output to each
input in its domain. A function is its input-output behaviour. The usage
of f is independent from its generation, because f is generated outside the
computation, for instance by following a function presciption or by throwing a
dice. Besides, we do not need to calculate f ourselves and therefore there is no
reason to require f to be computable; f may be any partial function.

Now we have an idea how f can be used in a computation: Just like » and the
result of function application (like §(n)), values of f can be input for further
computation. As a calculation is performed step by step a terminating compu-
tation will use only finitely many values of f. Theorem 2.1.14 shows our notion
of computability indeed has this property.

These considerations lead to the idea to use relative recursiveness to define the
partial recursive functionals, i.e. recursiveness with the input functions as extra
initial functions. An immediate translation into a definition is: [Odifreddi®9]

A functional F(fi,..., fo,®1,...,2,) is partial recursive if it can
be obtained from fi,..., f, and the initial functions S, 7, P? by
composition, primitive recursion and minimalization.

The following definition provides a more explicit formulation. Tt is a modifica-
tion of the definition in [Grzegorczyk55).

Definition 2.1.1 (partial recursive functionals) For all m, ky,... k, €
N* the partial recursive functionals with function domain Py, X ... x Py, are
inductively defined by:

1. For all n € N, the followoing initial functionals are partial recursive:

e the zero functional

Z:Pk1><---><Pk — P

m

—

7.(f)(x) ~ 0,
e the successor functional

S:Pg xX---xPp, —P

S (F)a)~ o+ 1,
e the projection functionals: For all 72,2 <mn

PPy

m,n 1

X--xPp —P,

—

Pl (F(E) ~ =,

26 CHAPTER 2. COMPUTABLE FUNCTIONALS

e the application functionals: For all ¢ with k;, = n

A;n,n : Pk1 X -+ X Pkm — Pn

2. The following operations build partial recursive functionals from partial
recursive functionals:

e If Gy, ---(G,, and H are partial recursive functionals,

G Pp, x---x Py — P, and
H:Py, x---xPp, xN"—=N

then

Comp[H,G,...Gp]: P, x---xPp — P,
Comp[H, Gy, ...Goul(H(#) ~ H(H(GH(H(E),...,Cu()

is a partial recursive functional.

e If (G and H are partial recursive functionals,

G:Pp, x---xPg, — P,
H:Pk1 X---XPkm—>Pn+1

then Primrec[(Z, H] is partial recursive. Let, for the moment, F =
Primrec[(G, H], then

e If the functional
G:Pp, x---x Py, — P,y
is partial recursive, then also is:

Py, X x P —P,

1

1(/) () =~

Min|[G
pylG(F)(F,y) = 0] if 31/[(“(7?)(1)=0&
Vi < ylG(f)(F,i) L & G(f)(F, i) # 0]]

T otherwise.
3. The rules mentioned under 1. and 2. yield all partial recursive functionals.

Definition 2.1.2 A functional F is recursive if it is partial recursive and
total.

Recall that totality means that F maps total functions to total functions.

2.1. PARTIAL RECURSIVE FUNCTIONALS 27

Example 2.1.3 A well-known operation on functions is iteration. The nth
iteration of f, notation f(") is defined as:

SN @) = F(F(. f(z)..0).

n times

Iteration is recursive in f, for
F") (2) = Primrec[Comp[f, P3], P3](n, 2)
As a functional, iteration of f equals:

— Primrec[Comp[A} 4, P! 3], P31(/)(n,).

1

Addition of functions is recursive:

Add :P? 5 P
Add(f,g)(n) = f(n) +g(n).

It is easy to see that this functional is partial recursive using the characterization
based on relative recursiveness. An exact proof is not difficult using proposition
2.1.5.

The following four propositions state some elementary properties of partial
recursive functionals:

Proposition 2.1.4 [[Odifreddi89], ch I1.3] For all partial recursive functionals
Frand all f € Fdom(F):

fh---fn € PR —]*—7(]017 an) € PR.
PRrROOF: An easy induction on the generation of F. [J

Proposition 2.1.5 [Grzegorczykhb] For all n and all partial recursive func-
tions ¥ : N7 — N, for all m,kq, ..., k., there exists a partial recursive func-
tional F' such that:

F:Pg x---xPg, xN'"—= N,

—

v e Fdom(F) [F(f) = v] .
Proor: By induction on the generation of 3. [

Later, in 2.1.2, we will see that is equivalent to the existence of a recursive F
with F(0) = ¢. The proof of the latter formulation however is not easier.

Proposition 2.1.6 (substitution property) [[Odifreddi89], ch I1.3] For all
mnpki, .. kDo if Ghy oo Gy and Hoare partial recursive function-
als, and

H:P; x---xP; xN"— N,
Gy Py, ><---><Pkp><Nl'7—>N,

28 CHAPTER 2. COMPUTABLE FUNCTIONALS

then also
Fr:Pp x--xPp xN"—= N

F(H)(&) = HG(f),...Go(F))(F)

is a partial recursive functional.

Proor: By induction on the generation of H. [J

Proposition 2.1.7 The partial recursive functionals are closed under bounded

minimalization, definition by cases, iteration and course-of-value recursion.
This means the following:

1. If G is a partial recursive functional of appropriate type, then so is the

functional defined by:

Bmin[G(f)(F) ~ {M n[GIN)(Ey) if HGI(F) <y

Y otherwise

Here Min[(G] is as in definition 2.1.1.

. Let n € N. Suppose GG, ...G,, Fi,...F, are partial recursive functionals
of appropriate type. Assume GGy, ...(5, have pairwise disjoint domains.
We can see Dom(G;) as a recursively enumerable predicate on functions.
Then the functional

~ ()@
Cases(f)(¥) ~ ¢ . (N@)

T otherwise,

is partial recursive.

3. If F : P — P is a partial recursive functional, its iteration, given by

IF)(f) (2, 0) ~ f(x)
TRV, b+ 1) ~ FOHF)(f)) (),
~ F(F*(f)(x)

is again a partial recursive functional.

. Suppose H is a partial recursive functional. The functional defined by

— — ~ =

FUNOE y) ~ H()(E g, FO)(E)

where

P 0) ~ 0

~ — —

F(P)(E y+ 1)~ <F())(F0),..., F(f)(# y)>

is partial recursive as well.

2.1. PARTIAL RECURSIVE FUNCTIONALS 29

Proor: The partial recursive functions are closed under bounded minimal-
ization, definition by cases, iteration and course-of-value recursion. It is not
difficult to show that these constructions are recursive in their function ar-
guments. By the Substitution Property it follows that the partial recursive
functionals are closed under the mentioned operations. We work out the proof
for iteration, leaving the other constructions to the reader.

Example 2.1.3 has shown that iteration of a function is partial recursive. Thus,

It: P — Py,
It(g)(n,z) = g"(x)

is a partial recursive functional. Now by the Substitution Property it follows

that Tt[F] is partial recursive, if F' is so.
O

2.1.1 Normal Form Theorem

In order to be able to reason about computations of partial recursive functionals
a Normal Form Theorem, like for partial recursive functions, is needed. This
theorem, which gives a standard way of computing a functional, is based on
the so-called T-predicate. This predicate verifies whether a computation, en-
coded as a natural number, is a correct computation of the functional under
consideration.

Unfortunately, the situation for functionals is not as smooth as for functions.
Undefined applications of the input functions may cause the verification process
to get stuck. Therefore we do not require the T-predicate to be recursive: Tts
characteristic functional may be undefined for certain values. In 2.1.15 we prove
no recursive predicate can serve as a T- predicate.

In sections 2.1.2 and 2.1.3 we prove two fundamental properties of partial re-
cursive functionals by means of the Normal Form Theorem.

Following the same method as for functions, a T-predicate for partial recursive
functionals is defined:

1. Assign code numbers to partial recursive functionals, from which the re-
cursive structure of a functional can be deduced.

2. Introduce computation trees of partial recursive functionals.
3. Encode the computation tree as a natural number.

4. Define a predicate T which tells whether a number z is an encoded com-
putation tree of the functional having code number e on input f and

—

Encoding sequences of natural numbers

There is an injective function <> : (.5, N* — N, such that the following
functions are computable: N

e Forall k<> e N* — N, the restriction from <> to N*

30 CHAPTER 2. COMPUTABLE FUNCTIONALS

e concatenation % : N2 — N, such that:

XYy ee e B> * <Yty oo Y>> = <Tyee e Ty Y1 o oo s Um >,

e the length function, Ing : N — N, such that:

Ing(<a1,...,2,>) = n,
e selection () : N> — N, such that:

xp if1<k<n,

(0 otherwise,

(<xq...,2,>), = {

Parentheses are omitted in successive selections: (((T)7)7) is written as
i),

('77)7:,,7‘,14

e subsequence (), : N* — N, such that:

<Tpy...,xp> if1<k<]<n,

(<.771 ,.7:n>)k:1 = {

0 otherwise,
For the function <> we can take:
<>=0,
PR R T 1
<m17"'7mn>:pf1+ 'p52+ “'pq:,_l—v

where py is the k™ prime number.

Index numbers of partial recursive functionals

Definition 2.1.8 The set [of index numbers for partial recursive functionals
is defined inductively:

1. The set I contains indices of the initial partial recursive functionals: For
all m,ky, ..., ky,n:

e theindex of 7 : <0, <ky, ... kp>,n> €1

theindex of S : <1, <ky, ..., k>, 1> €1

the index of Pinm <2, <k, k> > e il <n
e the index of Ainm <3, <k, k> ni>elifi<m& k=0

2. Index numbers for functionals that are constructed from other functionals:

e by composition: For all d,n,(e),...,(e), € T with (e1)2 = ... =
(en)2 and (er)3 = ... = (e,)3 = (d)2 and (d)5 = n:

<47 <l{?17 c. 7]‘(?7)71>,77/7 (61)27(17 (6)17 c. 7(@)n> el

2.1. PARTIAL RECURSIVE FUNCTIONALS 31

e by primitive recursion: For all d,e € T with (e)3s = (d)s + 2 and

(€)2 = (d)2:

<h,<ki,... km>,n,(e)2 (e)a+1,d,e> € I.

e by minimalization: For all e € T with (e)y > 2:

<6,<ki,... kn>,n,(e)2 () —1,e> € I.

3. The rules mentioned under 1. and 2. yield all elements in [.

Given an index number e € I, ®, denotes the functional with index number e.
From the definition above it is easy to construct this functional.

The index numbers are constructed in such a way that [is a recursive subset

of N and such that:

(e)y : identification number,

(e)2 = <(€)2,1,--.,(€)2.m> arities of input functions,

(e)s : number of numerical inputs,

(€)i>4 ¢ if ()1 = 4,5,6: code numbers of functionals from which &,

is constructed, if (e); = 2, 3: or additional information.

Computation trees

The computation tree of a functional F on function input fa,nd numerical input
Z can be represented in canonical form by a computation tree. Each node in
the tree corresponds to a step in the computation and sub-results are yielded
by subtrees. The value F’(}F) (¥) is in the root.

As computation trees are used only to make the definition of the T-predicate
more clear, we do not give a very formal definition, it easily follows from the
sketch below. Tf the expression F(f) (¥) = y appears in a note, we intend to
store the objects F, f.#,y where F’(}F) (%) = v.

In the formulas below we assume the function and number input to be of ap-

propriate type.

e The computation tree of an initial functional consists of one node.

7(f)(x)=0
SN =y

Pi, ()(#) =,
Al (N)(E) = f:(7)

e The computation tree of the functional F' = Comp[H, G, ...G,,] is built
from the computation trees of G¢,...G, and H.

32 CHAPTER 2. COMPUTABLE FUNCTIONALS

e The construction of the computation tree of F' = Primrec[(G, H] depends
on its numerical input.

F(f)(#0) =y F()q)(?_’,n%—ﬂ\yz
GH@ =y G (Fn) =y H(H(#.y1) = ya

e The computation the of the functional §[G] is constructed from one or
more computation trees of (7.

where yo, ... yr_1 # 0

We can encode the tree by a natural numbers if
e we represent, the functionals by index numbers.

e we do not encode the input functions, which are infinite objects, in the
tree but their values may appear in application nodes.

2.1. PARTIAL RECURSIVE FUNCTIONALS 33
The T-predicate

The T-predicate tells, given]F,e e I,xs = <wxy,...,7,> and z, whether z
encodes a computation tree of ®.(f)(x1,..., 2,).

Forall m, ky, ... ky apredicate T'="Ty, 1 CPp x---xPyg X N? is defined

fle,as,z) <= ec T & (e)e=k& (e)3 =Ing(xs) &
=0 = z=<(e),250>) &

1 = z=<e,xs, (2s)1+ 1> & Ing(xs) = 1) &
1= 2 = 2= <e, 25, (25)(),>) &

3 = z=<e, 78, flo), ((x8)1 . (78) (),)> &

()s = k), = Ing(xs)) &

((e)1 =4 = Vi, 4 <i<Ing()[T(H(e)i 25, 2)] &
)

T(.f)((e)lng(e)v YS; Zng()
where ys = <(2)43,(2)53- - (2)ing(z)-13> &
(2)3 = 235) &
()1 =5 = Ing(25) =0 = T(F)((€)as 25 1ng(ms) 1+ 24) &
Ing(zs) A0 =

T(.F)((e)ﬁh ms1:]ng(ms)f1 *<(ms)|ng(ms) -]>7 24)) &
(€)1 =6 = Vi, 4 < i <Ing()[T(F((e)s, x5*<i>, z)] &
Vi, 4 <i <lIng(2)[zi3 # 0] & zing(-) = 0 &

(2)3 = Ing(z) = 3]).

—

We define a partial recursive functional K that verifies whether T'(f)(e, x5, 2).
We stress that Kp is not total, because undefined values of the input functions
may cause the verification process to get stuck. To prevent needless nonter-
mination, the case (e); = 3 (application of an input function), is performed
very carefully: We actually compute as few applications as possible. Given
e,rs,z € N, firstly the syntax of a candidate application in z is examined. We
look if z applies the function specified by e to the specified arguments correctly.
If indeed we have to do with an application of the right form, the input function
is evaluated to see if it produces the output specified by z.

The other cases, (e); € {0,1,2,4,5,6} are treated in a straightforward way. We
work out the case (e); = 1, the others are tedious, but easy.

Let m,ky,..., k,n € N. The functional K7 : Py, X ---Pyp, is obtained from the
T-predicate as follows. Let b = <ky,..., k,,>.

34 CHAPTER 2. COMPUTABLE FUNCTIONALS

We focus on the case (e); = 0:

I(T(’]?)(e,ms, z) =
1T if(e)y =0& z=<e,zs, (2s)1 + 1> & Ing(as) =1,
0 if ()1 =0& not:(z=<e,zs, (xs)1+ 1> & Ing(xs) = 1),

We also treat the case (e); = 3:

—

Kr(f)(e,zs,z2) =

0 if (e)y =3 & not:((e)s= keey, = Ing(zs) & (€)1 = (2)1 & (2)2 = x9) ,

Here the “if ... then ... 7 ig lazy: If the condition is not fulfilled, the then-part
will not be evaluated. By proposition 2.1.7 this construction is partial recursive.

The following theorem prepares for the Normal Form Theorem.

Theorem 2.1.9 Let m,ky,... k, € N. Let f_‘e Px---Py, ande, xs,z€ N.

Then for Ky = Kty gs- W€ have

1. Kt is partial recursive.

—

2. Kr(f)(e,as,2) =1 < T(f)(e 8, 2).
(e,

—

3. (I(T(]?)(e,ms, z) =0V KT(]F) e,18,2)1) <= not : T(f)(e, s, 2).
b BT (Ple v,) = Ko(f(e,vs, 2)1).
Proor:
1. The partial recursive functionals are closed under definition by cases.
2. By induction on e.
3. Idem.

4. By induction on e, essential is our treatment of the case (e); = 3.

O
Now we formulate the Normal Form Theorem.

Theorem 2.1.10 (Normal Form Theorem) letm,ky,..., k,,n € N. There
exists a partial recursive functional Ky = Krew s i P X Pp X N—= N
and a partial recursive function U : N — N such that for all e,xq,...2,,2z € N

2.1. PARTIAL RECURSIVE FUNCTIONALS 35

— —

1.0 (f)(<ay,.c.xn>,2)) <= FKr(f)(e, <z, ...2,>,2) =0].

— —

2.0 (f)(<ar,y x>, 2) 2 U(pz[Kr(f)(e,<xyy...a,>,2) = 0]).

Proor: Both parts are proven by induction on e. Define U : N — N by

Consequences of the Normal Form Theorem

We show some consequences of the Normal Form Theorem. For sake of simplic-
ity, these are formulated for functionals in P — P only. Section 2.3 indicates
how to generalize the results.

2.1.2 Monotony and compactness

Definition 2.1.11 [Odifreddi89] The set P can be furnished with a partial
order C. We call f a subfunection of ¢, or ¢ an extension of f, notation
fCyg,if

Pom(f) € Dom(g) & Vi € Dom (f) [£(r) = g(x)].
The functional F : P — P is monotone if for all f,g € P:
fCg = F(f) CFlg),
F is called compact if for all z ¢ N, f € P:
if F(f)(z) ~ z then Ju € P[u finite & F(u)(z) ~ z].

In section 2.2.1 we will give a topological description of the notion compact and
monotone.

Proposition 2.1.12 [Odifreddi89] The condition that F is monotone and com-
pact can be summarized as: For all f € P and z,z € N

F(f)(z) ~ 2 <= Ju,u finitelu C f & F(u)(z) ~ 2.]
Some examples of monotone and compact functionals are:
Example 2.1.13

F(f)(x) = f(f(z+1)),

O

for G(f)(x) ~ G(u)(x), where u = fl45.

Theorem 2.1.14 [Odifreddi89] The partial recursive functionals are monotone
and compact.

36 CHAPTER 2. COMPUTABLE FUNCTIONALS

Proor: let F: P — P be a partial recursive functional.

monotony: Let f, g € P. Suppose F(f)(z)]. By induction on the generation of
F' can be proven that each computation tree 7 of F'(f)(z) is also a computation
tree of F(g)(x), for all applications of f and g used in the tree are the same.
So P(f)(#)) and F(f)(r) = U(2) = F(g)(x)-

compactness: Let f € P. If F(f)(2)] then there is a computation tree z of
F'(f)(x), which contains only finitely many applications of f. Regard the finite
function u that is the same as f on input that is used in z and undefined
everywhere else. For the same reason as above, z is also a computation tree of

F(f)(x). Thus F(f)(2) = F(u)(z). O

Troelstra develops the floating product topology to derive similar results see
[Troelstra73].

We did not introduce a notion of recursive relations. An attempt would be:

A relation R C P x N is recursive if its characteristic functional

if (f.7
XR(f,f)—{] (f.%)€eR

0 otherwise

is recursive.

As xgr is defined everywhere, there are no interesting recursive relations. 1In
particular there is no recursive relation that can serve in the Normal Form
Theorem. The application of theorem 2.1.14 proves this formally.

Theorem 2.1.15 1. Let I : P — P be a monotone and compact. If

Vaz € N, f € PIF(f)(2)]

then F is independent of f, i.e there is a function b : N — N such that
for all f,x

If F' is recursive then v is so.

2. Fvery relation B C P x N whose characteristic functional is compact and
monotone is trivial. This means there is a relation S C N such that for

all f,x
(f,2) € R <— x€ 5.
If R is recursive then S is recursive as well.

Proor:

1. Tf Fis a partial recursive functional and VaVf[F(f)(2){] then F(0)(x)].
By monotony it follows that F(f)(2) ~ F(0)(x) for all f. Now, take
W(x) ~ F(0)(x). Tf Fis recursive, then it follows by proposition that 2.1.4
that ¢ () is partial recursive because (is a partial recursive function.

2.1. PARTIAL RECURSIVE FUNCTIONALS 37

2. The characteristic functional of a relation is defined everywhere. If R is
recursive, yr — 1 for some recursive function @, which is the character-
icstic function of §.

O]

In order to get more recursive predicates we can of course change the defini-
tion of recursive predicate. We should realize that with another definition the
functional F(f)(x) = py[P(f)(2z,y)] may turn out not to be recursive, even if
P is recursive. We conclude that there is no notion of recursive predicate that
makes sense.

2.1.3 Sequentiality

Another important property of partial recursive functionals is sequentiality,
which we define and prove in a weaker formulation than usual [Barendregt&4].

We write F,. for Af.F(f)(x).

Definition 2.1.16 A functional F: P — P is sequential if for all # € N
F, is constant V3In € NVf € P[f(n)t = F.(f)1]-

Sequentiality of a functional F' means that there exists a sequential algorithm
to evaluate F'(f)(x). If F(f)(x) is not constant in f, the algorithm will use
some values of f. Which values, may depend on f and on x, asin f(f(x+1)).
If F'is sequential one of the values of f will be inspected at first; in f(f(x41))
this is f(x 4+ 1). The first input of f, x+1 in the example, can not depend on
any value of f. If f is undefined on this input, the algorithm that calculates
F(f)(x) will get stuck and F(f)(x). will be undefined.

As opposed to parallel computations, it is not possible for sequential functionals
to examine two values of f at the same time and take a decision based on the
combined (termination) behaviour.

Example 2.1.17 1. The functional F(f)(z) = f(f(x 4+ 1)) is sequential:
it f(x 4 1)1 then F(f) ()1
2. The functional

0 if F(4)LV F(5)L,

T otherwise

i~

is not sequential.

Proor: Tlet xz € NIt is clear that (7, is not constant. We have to show
for all n € N thereis an f € P such that f(n)t and G(f)(2)]. Let n € N.

If n =4 then take f = (5,0). If n # 4 then take f = (4,0).
]

Theorem 2.1.18 The partial recursive functionals are sequential.

38 CHAPTER 2. COMPUTABLE FUNCTIONALS

ProoOF: We first give the intuition behind the proof.

Suppose F : P — P is a partial recursive functional, say FF' = ®.. l.et f € P
and z € N. Assume ®.(f)(2)). Examine the computation tree z of ®.(f)(x) by
visiting the nodes in postfix order (that is, first visiting the subtrees of a node
and then the node itself) until the first application of f appears. Say we come
across nq,Na, ...n; and ng represents the application of f to n. This n we are
looking for in the definition of sequentiality.

By taking a compiler-like view on computation trees, we could say that input
in a node is passed by its subtrees and by trees left from it. Therefore the input
of node ny is not influenced by any value of f.

We state: For all g € P with G(f)(2){

e the computation tree visited in postfix order starts with ny, nq,...n5_1.

e the k™ node represents the application g(n).
So, G(f)(z)l = ¢(n){, in other words g(n)t = G(f)(2)1.
The example below illustrates this argument. Instead of encoded trees, we

show plain trees. Take F(f)(x) ~ ,uy[f(P%](m, y)) = 0]. Compare the compu-
tation trees of F(g)(4) and F(h)(4) where g(2) = 0 and h(x) = 5g(2:). The

computation tree of F(g)(4) looks like

nylg(PT4(4,9)] =0

Q(P12,1(470) =0

N

P?J (4,0)=10 g(0)=0

If we flatten the tree and underline the first application of g, we get

<<PT1(4,0) = 0>, <g(0) = 0>, <g(P7;(4,0)) = 0>,
<uylg(PT (4, y))] = 0>>
The computation tree of F(h)(4) is

2.1. PARTIAL RECURSIVE FUNCTIONALS 39

Flattened and the first application of h underlined, we have

<<PT1(4,0) = 0>, <h(0) = 1>, <P7 (4, 1) = 1>, <h(P] (4,1)) = 0>,
<t ylh(P (4,)] = 1>>

Indeed, in both flattened the first application of f occurs at the same place trees,
the flattened trees are equal until the first application of f and the application
is on the same input.

In order to turn this idea into a more precise argument, some auxiliary notions
are introduced:

Recall that

e An encoded computation tree has the form: <e,as, ®.(f) (), t1,. .., t,>,
where n. > 0, so leaves of the encoded tree have length 3.

e For the code of an application holds (e); = 3.

e For all z € N we have (z)g = (2)1.0= 0.

Define
0 ifogl
flf()d 2z ifngz=3&z¢eT
lat(z) =
’ Jlat(z)ax- % flat(2)ing(2) otherwise

*<<(2)1,(2)2, (2)3>>

Then flat(z) is the linear representation of 7 in postfix form. It is well-defined
because z < <z> for all z € N.
Define also

Flattree(f)(e,x) = flat(u[T(f)(e, <z>,2)]).

if ®.(f)(x)] then flattree(f)(e,x) is its flattened computation tree.
Finally, define

,ui[(Z)MJ =3] if A< Ing Z[(Z)MJ = 3],

0 otherwise.

firstapp(z) = {

Then, by induction on the generation of e € I, we can prove: For all 2, for all
ee I, forall fand g€ P

O (f)(w)) = (flattree(f)(e,x)), = (flatiree(g)(e, x))
& (flattree(f) (e,m))k’m = (flattree(g)(e, x))

) k1,1
& (flattree(f)(e, .77))14’1’2 = (flattree(q)(e, .T))]m’2
where k = firstapp(flattree(f)(e,z)).

=3

Now we can prove sequentiality of partial recursive functionals easily. T.et F be
a partial recursive functional, suppose I/ = ®.. Let x be in N.

40 CHAPTER 2. COMPUTABLE FUNCTIONALS

If F,. is not constant, then there is an f € P such that F(f)(2)]. Let

z = flattree(f)(e, x),
k= firstapp(flattree(f)(e,x)),
n = (flattree(f)(e,)1 o-

We claim: Vg € Plg(n)t = F.(9)1]-
Suppose g € P and F(g)(x)]. We prove g(n)]. Then

(flattree(g)(e, =) 4 = 3,

ZRN]

(flattree(g)(e,)1 4 = M,

ZRN]

(flattree(g)(e,2))p 15 = g(n).

1

We see G(f)(2)] = g(n)]. In other words: g(n)t = G(f)(x)1.
]

Application 2.1.19 The functional in example 2.1.17 is not partial recursive.

0 if f(4)~0V f(5)~0

T otherwise

We remark that the restriction if G to T, the set of total functions, is partial
recursive: We can test f(4) and f(5) in any order without risk of nontermina-
tion.
The restriction to PR, the set of partial recursive functions is not partial recur-
sive. However, if the input function had been given as index e of ¢., we would
have been able to write down a partial recursive definition of g: Disposing of
the code e, we can manipulate the computation of ¢.:

Do) = {0 if 32T (e, <d4>, 2) V T(e, <5>, 2)],

T otherwise.

Then the function v is partial recursive and ¥ (e, 2) ~ G(f)(x). Such a function
is called an effective operation. In chapter 4, we will investigate the relation
between computable functionals and effective operations.

2.1.4 Do the partial recursive functionals capture the intuitive
notion of computability on functions?

In the previous paragraph we found out that essentially parallel computations
are not partial recursive. However, we may ask ourselves whether parallelism
is conceptually computable, so whether the partial recursive functionals cover
the intuitively computable functionals. Parallelism occurs in nature and in
hardware: Tt is possible to put gates in parallel and then we can implement the
functional in example 2.1.17 as an electronic circuit.

On the other hand, we may believe that we can overview only one process
at the time. Although parallel evaluation of certain expressions is possible,

2.2. EFFECTIVE CONTINUOUS FUNCTIONALS 41

second order computability implemented in functional programming languages
is in essence partial recursiveness. This notion seems easier to implement than
effective computability, the second notion of computability.

Effective continuity is introduced in the following chapter. According to this
notion, parallelism is computable. On total functions, where no problems with
nontermination of input can arise, it coincides with partial recursiveness. So,
since functions that represent real numbers are total, we do not have to choose.

2.2 Effective continuous functionals

A second attempt to formalize the notion of computable functional is based
on an effective version of compactness and monotony. In 2.1 we argued that
computable functionals should be compact: A terminating computation can
use only finitely many values of the input function. Tt is also reasonable to
require computable functionals to be monotone because an increase of informa-
tion about the input function should yield as least as much information about
the output. Of course, computable functions are computable on finite functions,
that can be encoded as natural numbers.

On the other hand, if a functional meets the three requirements monotony, com-
pactness and computability on finite functions, it can intuitively be computed:
Provide the input function f by successively specifying new values about the
input function and start computing on these finite approximations in parallel.
If the functional is defined on f then, by compactness, this process will stop and
it will produce the correct answer by monotony. As compactness and monotony
can be described by a topology, namly the positive information topology, this
notion of computability is called effective continuity. Because we can model
parallelism, it is a proper extension of partial recursiveness. In order to fo-
cus on the essential ideas, rather than on complex formulation, we introduce
these notions for functionals in P — P. In chapter 2.3.2 we indicate how the
theory can be generalized to functionals of arbitrary types. Before giving the
definition of effective continuous functionals, two preparing sections about the
positive information topology and finite functions respectively, are presented.

2.2.1 Compactness and monotony revised

The set P can be furnished with a topology, determined by the open basic open
sets:

u={feP|uC f} whereuis a finite function.

Proposition 2.2.1 The set B ={u | u € P | u finite} indeed is the basis of a
topology on P.

42 CHAPTER 2. COMPUTABLE FUNCTIONALS

ProoF: P=10¢ B. Suppose #,v € B. Then

unNv=
0 if 37 € Dom(u) N Dom(v)[u(i) # v(i)]
e otherwise.

{fePluC f&ovCf}
So for all p € 4 N @ there is a basic set U with pe U Cunv. [

Then open sets are unions of basic open sets. This topology is called the
positive information topology because basic sets are characterized by a
finite amount of positive information of the form f(z) = y. Now we can speak
about continuous functionals in P — P.

Remark 2.2.2 The positive information topology coincides with the Scott
topology induced by the c.p.o. (P, C), see [Barendregt84] section 1.2 for an
exposure of [Scott]. We use the result that in an algebraic c.p.o., the sets @
where u compact, form a basis of the Scott topology and the observation that
the compact element are just the finite functions. Details cf. [Barendregt&84].
Futhermore, the topology is homeomorphic to {NU {1} }. Here {NU {11} has
the flat topology, where the collection of open sets is P(N) U {NU {1}}. The
topology on {NU {11}, is formed by taking the infinite product. The key to
the homeomorphism is the fact that in the basic open sets of an infinite product
topology only finite products appear and in the basis of the positive information
topology only finite functions.

Theorem 2.2.3 [[Odifreddi89], ch. T1-4] A functional F : P — P is continu-
ous if and only if it is monotone and compact.

Proor: A basic theorem from topology states that a function f is continu-
ous if and only if the preimage f~'(U) is open for all basic open sets U. The
characterization of open sets we will use here is: A is open if and only if for all
x € A there is a basic open set U such that z € U C A.

— : Let F be continuous. Tet 2 € N and f € P. Assume F(f)(2){
and F(f)(x) ~ y. Consider the finite function {(z,y)}. Then % is open and
F(f)(x) € 4, which means f € F~' (7). By continuity F"~' (%) is open. Using
the characterization above, there is a basic open set o with f € § C F~'(i)
which implies:

1. F(v)(2) =~y and v C f. Thus F'is compact.
2. If g C f then g € ¥, s0 F(g)(2) ~ y. Hence F' is monotone.

<—: Assume F is monotone and compact. L.et u be a finite function. We show
F~'(7) is open.

Suppose f € F~'((@)). This means f € F~'(4) or u C F(f) Tn other words,
for each pair (2;,y;) € w one has F(f)(x;) ~ y;. Now from compactness follows
for all z; € Dom(u) there is a function v; with F(v;)(2;) ~ y;. Let w = |J,v;.

2.2. EFFECTIVE CONTINUOUS FUNCTIONALS 43

Being a finite union of finite functions, w is a finite function itself. Because
v; C f for all 7 we also have w C f, which means [€ .

By monotony we have for all (2;,y;) € w and all ¢ D w D v; that F(g)(x;) ~ y;.
Thus u C F(g) for all g € @. Hence F(®) € 1, i.e. @ C F~'(u). Summarizing,
fewCF'(@.O

Corollary 2.2.4 [Odifreddi89] All partial recursive functionals are continuous.

2.2.2 Encoding finite functions

Finite functions are partial recursive, so they have a (z6del index in the sequence
©o, ©1, P2, - - - of all partial recursive functions.

However, the finite functions can be encoded as a natural number in such a
way that we can compute more information from the indexes. Especially, the
domain is computable from this index.

For instance the encoding function can be defined by (see 2.1.1)

{(xr,y0) (22, 02)s - (Tny Un) } = << Y>>y oo oy <Xy Yn>> (02> 0).

The range of this function, that is the set of natural numbers that encode finite
functions, is called Ig,. Its elements are called canonical indexes for finite
functions, in contrast to (Godel) indexes. If e € Iy, then v. denotes the finite
function encoded by e.

Theorem 2.2.5 ([Rogers67], ch. 5) There exists a recursive function t : N —
N that translates special indices to Gaodel indices, i.e. for all e € T4;,

S‘Qt(e) = Ve,

but there is no partial recursive function s : N — N to do the converse, i.e. for
all e € T and @, finite

?)S(ﬁ) - 998‘

Proor: Define

fle,z) = ((€)r)2 where k= pui <lIng(e)[(e)i1 = z].

Recall that (); selects the i*” element from an encoded sequence and (z); = 0 if
v > Inga. Then f is partial recursive and we can obtain ¢ by the S -theorem
with f(e,z) = ¢().

For part two of the theorem, suppose we have a partial recursive function s
such that v,y = ¢, for all e € I and @, finite. Define

z) = {%(e) ife=e

T otherwise.

Then by the S -theorem there is a partial recursive function f such that
Fle,) = ¢se)(w). Besides, @) is finite and s(f(e)) = 0 <= @) =
) < ¢.(e)]l. As s is total on elements of T, we have reduced K to the set
{0}. This contradicts the undecidability of K. [J

44 CHAPTER 2. COMPUTABLE FUNCTIONALS

Proposition 2.2.6 The domain of v, is uniformly decidable in e, which means
that the function f:N? = N

- {1 if € Dom(v.), e € I,

(0 otherwise,

is partial recursive.

Proor: Define

r) = {] i <Ing(e)[(e)in = =],

0 otherwise.

2.2.83 Effective continuous functionals

Using the encoding of finite functions as a natural number, the behaviour of F
on finite functions can be described by a function.

Definition 2.2.7 The compactification of a functional F'is a function h =

hr : N — N defined by

h(e,x) ~ {F(?)e)(m) ife € Itin,

T otherwise.

Note that it is possible to define the compactification as a total function. We
did not do this for the sake of simplicity.

A monotone and compact or, equivalently, continuous functional F is deter-
mined by its behaviour on finite functions:

F(f) :U {F(u) | ufinite & u C f},

so we can describe F'in terms of its compactification.

Proposition 2.2.8 If [': P — P is a compact and monotone functional and
h is its compactification then

F(f)(x) ~ h(pe[ve C f & h(e,2){], z).
Proor: Obvious. [

This shows us that if a continuous functional has a computable compactification,
it can intuitively be computed by means of parallelism.

Let f € P and 2z € N. We write for the moment f(i){* if f(i) produces a
result within & seconds. Let wu,, = {(4, f(¢)) | i < n & f(1)¢k} The 1, 1's

2.2. EFFECTIVE CONTINUOUS FUNCTIONALS 45

are intuitively computable in f: Examine which of the f(0),... f(n) terminates
within & seconds. In order to compute F(f)(x), compute, in parallel,

If some of the F'(u,)(x)l, then by monotony F(f)(x) = F(u,x)(x). As Fis
compact, if FI(f)(x)] then F(u,;)(x)] for some u, j.

Definition 2.2.9 A functional F' : P — P is effectively continuous if it is
continuous and its compactification is partial recursive. Thus we dispose of a
partial recursive function 1 : N> — N such that

e, u) ~ F(ve) ().

From theorem 2.1.15 follows that the natural notion of effective continuous
predicate does not make sense.

Theorem 2.2.10 Fuvery partial recursive functional is effectively continuous.

Proor: let F: P — P be a partial recursive functional and let F = ®,. Tet
t: N — N be a recursive function that translates special indexes to their Godel
numbers. Now define

de(ev T) =~ (](MZ[T1,1 ((bf(e))(dv <ET>, Z)]

Then (e, 2) ~ ®4(v.)(2)) so and the it is the compactification of ®;. By the
Substitution Property (2.1.6) v, is partial recursive. [J

Example 2.2.11 Revising example 2.1.13 we see that the functional G : P —
P with

0 if f(Lv f5),

G(f) (@) = {T otherwise

is effectively continuous.

Proor: From example 2.1.13 we know (7 is continuous. According to propo-
sition 2.2.6 the domain of v, is decidable if we have e € I4;,, so we may take

0 if4 € Domw,,
wle,2)~ <0 if 5 € Domuw,,

T otherwise.
Then 2 is partial recursive and it is the compactification of G. [

Here we see effective continuity is a proper extension of partial recursiveness.

Theorem 2.2.12 There exists a effective continuous functional that is not par-
tial recursive.

46 CHAPTER 2. COMPUTABLE FUNCTIONALS

2.3 Survey and generalization of results

2.3.1 Summary

The diagram below shows the main notions in this chapter and their relations.

notions of partial recursive — effectively continuous

computability: =
\

auxiliary notions: compact & monotone < continuous

2.3.2 Generalizing the results

Most, of the results about computable functionals are formulated for functionals
having type P — P. Generalizing these to functionals of any type, only requires
some natural extensions and somewhat more complex notations; no new ideas
are needed. We give a short overview of the general definitions:

Definition 2.3.1 Let m, kq,...,k,,n € N. Let F: Py, X --- X Py, .

m

The partial order C on P can be extended to Cj on P by:

f Ci g = Dom(f) € Dom(g) & Vi € Dom(f) [f(7) = g(7)].

Then Cron Py x---x Pg,_ can be defined by pointwise C, on Py,.

2. The basis of the positive information topology on Py, is just
u={f€Pr|uC f} whereuis a finite function in Py

and Py, X ---x Py, can be equipped with the product topology.

3. The functional F is monotone if for all f, 7 € Fdom(F)

—

fCcg = F(J)<C; Fg),

and F is called compact if for all 2 € N*, f € Fdom(F)

—

if F(f)(#)~ z then Ju € P [u finite & F(i)(¥) ~ z].

—

4. We write Fz = /\]F.F’(’)(#). Then F is said to be sequential if for all
ie NF

—

Fy is constant v 3i37 € N*f € Fdom (F)[f:(7)t = Fz(f)1].

Encoding finite functions in N¥ — N, is done like encoding unary functions,
namely by encoding k + 1-tuples.

2.4. RESTRICTED FUNCTIONALS 47

Definition 2.3.2 The compactification for a functional in Py, X --- X Py
is I is a function b : N™*+! — N defined by

m

h/(€7 f) ~ F(?)e1 L ?)ﬁm,)(m) if €1y .‘.eTn S [f7777
t otherwise.

A functional I is effectively continuous if it is continuous and its compact-
ification is partial recursive.

Now we can prove generalizations of former theorems by similar, but more
complex in formulation arguments.

Theorem 2.1.14 can be generalized to

Theorem 2.3.3 All partial recursive functionals are monotone and compact.

Theorem 2.1.18 becomes

Theorem 2.3.4 All partial recursive functionals are sequential.

Theorem 2.2.3 is extended to

Theorem 2.3.5 A functional is compact and monotone if and only if it is
continuous.

As an extension of Theorem 2.2.10 we get,

Theorem 2.3.6 Fvery partial recursive functionals is effectively continuous.

We will use these results later, especially the case P¥ — P, which is applicable
to representations of real functions in several variables.

2.4 Restricted functionals

Functionals that model functions on real numbers need not to be applicable
to all elements on P, only on the subset of representations of real numbers.
For instance such functionals have type Rii — Rini. Representations of real
numbers are total functions.

A functional that is applicable only to a subset V' C P is called a restricted
functional." Tn this chapter we explore computability both partial recur-
siveness and effective continuity on restricted functionals. How can these
be defined. Do the properties proven for non-restricted functionals also hold
for restricted functionals? In particular we want to compare their power of
computability.

We will see that the situation for restricted functionals is very much alike that
for to non-restricted functionals. Some adaptations are needed in the treatment
of effective continuity and compactness, since finite functions need not to be in

V.

"Tn the literature the term restricted functional is sometimes used for the case V = 7.

48 CHAPTER 2. COMPUTABLE FUNCTIONALS

Concerning computability, it is clear that every computable functionals that is
computable on P is also computable on a subset of it. Furthermore we will
show the converse: Every computable restricted functional has a computable
extension to P. This means that we are not able to compute more functionals
due to the fact we have more information about the input, for we know we are
in V.

Finally, we will study the case V' C T, V consists of total functionals, which
occurs when describing real functions. Some more elegant formulations of exist-
ing properties are proven. The most important result is that for V' C T partial
recursiveness coincides with effective continuity.

In this entire section V is a subset of P. Just as in the previous section results
can be generalized to functionals other types. This time the extension of the
definitions is left to the reader.

2.4.1 Partial recursive restricted functionals

As an input function is viewed as an object whose values can be used in a
computation, values of any function can be substituted for values of elements
in V. Therefore partial recursive restricted functionals are nothing more than
restrictions of partial recursive non-restricted functionals.

Definition 2.4.1 1. A functional F: V X P,, is partial recursive if F is the
restriction to V' of some partial recursive functional.

2. A predicate P C V is recursive if its characteristic functional is recursive.

Example 2.4.2 The representation of 4+ on interval representation is partial
recursive:

Plus : Ring X Ring — Ring
Plus(a, 8)(n) = <a/(n) + '(n), a" (n) + 3" (n)>.

In contrast to non-restricted predicates, there are non-trivial recursive restricted
predicates. Forinstance, take V = T and let u be the finite function {(4,0), (5,0)}.
Then the predicate

{feT|uC [}

is partial recursive, for the functional

y: T — {07]}7
(=) {] it 704 = 0 & £(5) =0,

0 otherwise

2.4. RESTRICTED FUNCTIONALS 49

2.4.2 Effective continuous restricted functionals

Definition 2.4.3 A functional F' : V — P is compactificable if for all f €
P,z € N there is a finite function u such that forall ge u NV

F(P)(x) =~ F(g) ().

In words: all elements of 4 to which F is applicable are mapped onto the same
element.

Iike compactness and monotony, compactificability can be described topolog-
ically. The topology on V is induced by the positive information topology P.
Open sets in this induced topology are intersections of open sets in P and V.
A basis can be obtained by taking the intersection of basic open sets in P and

V.

Theorem 2.4.4 A functional F : V. — P is continuous if and only if it is
compactificable.

PrROOF: == : Assume F'is continuous. Let f € V 2 € N. Assume F(f)(2)]
and F(f)(z) ~ y. Consider the finite function {(2,y)}. Then u is open in P.
and F(f)(x) € 1. By continuity F~'(7) is open in V. Thus there exists a finite
function v such that

fevnvcrE (),

which means F(v) C 4. So for all g € v NV we have F(g)(2) ~ y.

<—: Assume F is compactificable. We wish to prove for all finite u, F~'(7) is
open in V, in other words F~'(7) NV is open in P.

Let f € V,u € P finite and suppose f € F~' (1) N V. Then v C F(f) which
means for each pair (2;,y;) € u we have F(f)(x;) ~ y;. By F is compactificable
it follows that, for all x;, there is a finite function w; with

Vg € w; NV [F(g) (i) ~ yi (*)

Define w = |J,w;. Then f € w, as w; C f for all i. From (%) follows F'(w N
V)DusownV CF*. O

Although finite functions need not to be in V', the entire behaviour of a com-
pactificable restricted functional can be described using only finite functions.
By encoding them we have a compactification again.

Definition 2.4.5 l.et F : V — P be a compactificable functional. A com-
pactification of F is a partial function h = hr : N> = N such that by for all
x € N, for all e with 0. NV #

Wer)~y <= Ve anVIF(f)(z)~y

Note that h needs not to be recursive since its behaviour is only prescibed on
element in N x V.

50 CHAPTER 2. COMPUTABLE FUNCTIONALS

Proposition 2.4.6 lLet F' : V — P be a compactificable functional and let h
be a compactification of F. Then for all f €'V

F(f)(x) ~ h(pe[ve C f & h(e,2){], z).

Definition 2.4.7 1. A functional F: V — P is effectively continuous if it
is continuous and it has a compactification that is partial recursive.

2. A predicate P C V effectively continuous if its characteristic functional is
effectively continuous.

An elementary lemma from topology states that the restriction of a continu-
ous function is continuous but not its converse. We will prove that even the
restriction of an effectively continuous function is effectively continuous and
conversely.

Proposition 2.4.8 If F': P — P be a compact and monotone functional and
h : N — N is its compactification, then F [y : V. — P is compactificable and
h : N — N is also a compactification of F |y .

Here we see that the definition of restricted effective continuous functional coin-
cides with the definition if we have V' = P. The following corollary shows that
for restricted functionals also, partial recursiveness implies effective continuity.
Remark that, contrary to non-restricted functionals, the compactification hr
of a restricted partial recursive functional F'is not effective in the index of the
functional.

Corollary 2.4.9 Fach partial recursive restricted functional is effectively con-
tinuous.

Proor: 1If F:V — P is partial recursive by definition it is the restriction of
a partial recursive functional G : P — P, which is effectively continuous. Then
also its restriction is effectively continuous. [

Theorem 2.4.10 Any continuous restricted functional has a continuous ex-
tension. If I is effectively continuous it has a effectively continuous extension.

Proor: let F:V — P be a continuous functional and let h be a compactifi-
cation of F, which meets

F(f)(x) ~ h(pe[ve C f & h(e,2){], z).

Now just apply this definition to all elements of P and define G : P — P by

G(f)(x) ~ h(pelve C f & h(e,z)]], 2).

It is not difficult to see that ¢ is compact and monotone and therefore contin-
uous.

If F is effectively continuous, there exists a partial recursive compactification
for F, that is one for G. J

2.4. RESTRICTED FUNCTIONALS 51

Theorem 2.4.11 ([Odifreddi89], ch. 11-4) There is a total effectively con-
tinuous functional that can not be extended to a total effectively continuous
functional.

Proor: (suggested by [Odifreddi89]) Consider the restricted functional

F:PR = P,
F(f)(x) = fpzlf(2) = ¢:(2)]),

which should be read as

= f(pz[T((2)1, <(2)1>, (2)2) & f(2)1 = U(2)2))1,

Then Fis obviously partial recursive and thus effectively continuous. And F is
also total: Let f € PR be total, say f has Godel index e. Then f(e) = ¢.(€).

So F(f)(e)l-

Now assume F’ has a total effectively continuous extension G : P — P.
We derive a contradiction.

l.et z € N and consider the function

Fo) = {cpz(z) +1 ifze K,

0 otherwise.

Because (7 is total G(f)(x)]. Since GG is effectively continuous, there is a
finite function u C f such that for all ¢ € 4 N PR we have F(f)(x) ~
F(g)(x). Let m = max(Dom(u).)

Define
g(z) if z < m,
g9(z) =

@q(a) otherwise,

where a = pala € K & ¢, (a) # G(f)(2)].

Then u C g and ¢ is a partial recursive, because ¢ is constant except
for finitely many values. Say ¢ = ¢4. Summarizing ¢ € 4 N PR, so

Glo)(r) = GU)).
On the other hand, G(g)(z) = F(g)(z) = g(uzlg(z) = ¢.(2)]). Let
20 = g(pzlg(2) = ¢:(2)]).

Suppose zg < m. then g(z0) = ¢.,(z0), but g(z0) = f(z0) =
@2 (20) + 1. contradiction.

So zg > m. Thus g(z9) = ¢au(a) # G(f)(x). However, we also have
G(f)(xz) =G(g)(x)F(g)(z) = g(20). Contradiction.

We conclude there is no total effectively continuous extension of F' to P. [J

52 CHAPTER 2. COMPUTABLE FUNCTIONALS

2.4.3 Functionals restricted to total input

Now we look closer at the case V' C T, where V contains only total functions. In
this case a different formulation for the property “compactificable” is possible,
which the intuitionists know as the General Principle of Continuity.

Proposition 2.4.12 [et V C T. let F : V — P be a restricted functional.
The following formulations are equivalent:

1. F is compactificable,
2. VfYxImVg[f = g = F(f)(z) = F(g)(2)],

3. VANV = g = F(f) =n F(g)]-

Proor:

1 = 2: Let f € V,z € N. Because F' has a compactification there is a finite
function u such that for all f € Dom(u) NV

F(P)(x) =~ F(g) ().

Let m = max(Dom(u)). Then for all g, f =,, g we have ¢ € u, so

F(P)(x) =~ F(g) ().

2 = 1: Supose 2. l.et f € P and 2 € N. Then we have an m such that

Yolf =m 9 = F(f)(x) = F(g)(x)] Take u = { (0, £(0)), (1, f(1)),...(m, f(m))}.
Thus for all g € 4 we have F (f)(x) = F (g)(x)]. This is exactly 1.

2 <— 3: easy.

O]

Definition 2.4.13 l.et F be a compactificable functional. Tet f e V,z € N.
An m such that

Volf =m g = F(f)(x) = Flg)(2)]
is called a modulus of continuity of F at (f,2), an m such that

VQ[f “m § = F(f) —n, F(Q)]

is called a n-modulus of continuity at f.

Theorem 2.4.14 et V C T and F :V — P. Then F is partial recursive if
and only if it is effectively continuous.

Proor: <«=: let F be a restricted effectively continuous functional. Then it
has a partial recursive compactification, say h = ¢4, such that (by Proposition
2.4.6) one has

F(f)(x) ~ h(pe[ve C f & h(e,2){], z).

2.4. RESTRICTED FUNCTIONALS 53

As C is decidable on T, we can compute F' by means of the T-predicate for
functions:

F(f)(x) ~
wa(pk[Ve < max Dom(v)[ve(z) = f(2)] & T(d, <(k)1, 2>, (k)2)], x).

Recall that (k) and (k), select the constituents of the ordered pair k. [

2.4.4 Summary

We give an overview of the properties of functionals we have defined until now
and their relations.

In the diagram below the first line is about non-restricted functionals; the sec-
ond about restricted. The “implication” A = B means If F [v : V — P has
property A then there is an extension of F to P with property B.

P: partial = effectively <= continunous <= compact &
recursive continuous monotone
44 44 44 44
V : partial — effectively <= continuous <= compactificable
recursive continuous

The “implications” = do not hold if exclusively total functionals are consid-
ered.

54

CHAPTER 2. COMPUTABLE FUNCTIONALS

Chapter 3

Computability on
representations of real
numbers

Being equipped with a notion of computability on functions, we wish to explore
which operations on representations of real numbers can be computed. This
chapter is concerned with three kinds of operations on representation systems.
Firstly, computable approximations are considered. We argued in 1.1.2 that
a representation that is suited for implementation should have the effective
approximation property: (Given a representation « there must be an effective
way to approximate 7(«) upto any precision.

This means that there is a computable functional A4 : V x QT — Q that maps
a representation and a positive distance ¢ to a rational that is not more than ¢
away from 7 (o).

Moreover we study translations between representation systems. Does a com-
putable functional exist that translates an element in one system into a repre-
sentation of the same real number in the other system? We prove that a system
has the effective approximation property if and only if there is a computable
translation to Ri,;. Two system that can effectively be translated into each
other will be called recursively equivalent.

Finally, we define a notion of computable real functions on a representation
system. Unfortunately, the class of computable real functions depends on the
representation. So there is no absolute notion of computable real function.
We work out the computability of 4+, sin and <. Two recursively equivalent
representations determine the class of computable real functions.

We treat the relations between the mentioned operations and explore the com-
putability of these in the standard representation systems from 1.1.4, which
will appear to be different from computational point of view. An important
result is that in R;,; all computable functions are continuous in the Euclidean

topology.

This chapter is organized as follows. Section 3.1 defines the effective approxi-
mation properties and proves this property for the systems presented in 1.1.4

55

56 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

We work out the notions of computable translations and formulate all positive
results in subsection 3.2.

Section 3.3 introduces computable real functions in R™ — R and negative results
concerning translations are proved.

The reader is referred to 3.2.1 and to 3.3.1 respectively for a summary of the
computable translations and functions.

Note that representations of real numbers are total functions, so the notions of
partial recursiveness and effective continuity coincide by 2.4.14.

3.1 Approximations of real numbers

Definition 3.1.1 A representation system (V,7) has the effective approxi-

mation property if there exists a partial recursive functional, called an ap-
proximator of (V,7), A:V x QT — Q such that for all @ € V. g€ QF

[A(a)(q) — m(a)] < .

In words: The distance between A(«)(g) and «(«) is less than ¢; Physicists also
use the notation 7(a) = A(a)(q) + ¢.

In a picture:

As announced in chapter 1.1.2 real numbers can effectively be approximated in
the systems we consider.

Theorem 3.1.2 The systems Rint, Reauchy: RBoary, and Raeq satisfy the finite
approzimation property.

Proor: We define an approximator for each system. The correctness is easily
seen in most cases. Only Rgeq is treated more elaborately.

o R;i: Define A : Rgeg X QT — Q
Aine (@) (q) = o (un[Ing(a(n)) < q]).
Note that Ing(a(n)) = o’(n) — o/(n) is partial recursive in o and n.

e Riauchy: Anapproximator for Cauchy-sequences Acanchy : RcauchyXQ+ —
Q is defined by

Acal]chy((y’v C) (q) = (]/,c(p71)7
where p € N is such that 27 < g.

3.1. APPROXIMATIONS OF REAILL NUMBERS 57

e Ry oy Define A oyt Rpoary X Qt—=0Q

oy

B’

NgE

Ap-ary(@)(q) =

— O

here ng = un < }
whnere ng ,u77 |:]077 q:|

e Rj.q: The key to the algorithm for Dedekind cuts is to “take samples of
o” with steps of length ¢: If we find a k € Z such that

k-geaand (k+1)-¢g¢ «
we know kg < Taed(e) < (k4 1) -¢, so
|k-q — Taea()] < q.

Quite arbitrarily, we start looking at 0. If 0 € «, we look for k& > 0, if
0 ¢ o, we search among negative k’s.

Now define Ageq : Rgeq X QT — Q by

q-pk(k+1)-g¢a] 0€a,
—q-pk[-k-q € al 0¢a.

Adea(@)(q) = {

O

It is more common to define a Cauchy sequence without mentioning the modulus
of convergence. Then we get: A Cauchy sequence is a sequence aq, vy, ... such
that

1
vk € NINVn,m > N [|ozn — | < Q_k])

We have not used this definition because it does not have the effectively approx-
imation property. Although we know a Cauchy sequence has a limit, a prefix
of a Cauchy sequence tells nothing about value of the limit.

l.et S be the set of Cauchy sequences as meant above; then wg takes the limit
of a sequence.

Theorem 3.1.3 The representation system (S, 7g) does not have the effective
approzimation property.

Proor: Assume A : SxQF — Qs a partial recursive approximator. Consider

the zero function 0. Then 75(0) = 0, so A(Q)(%) < 15 Because A is partial
0,3

recursive, it has a modulus of continuity at (0, 5), say m. Define

a(n) =

{0 if n <m,

1 otherwise.

Then o =,, 0, so A(Q)(%) = A(oz)(%) < 15 Then
A@(5) -~ mso)| = |4(oz) 1| > 5

This contradicts the assumption that A is an approximator. [J

58 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

We may also wonder whether it is necessary to represent a Dedekind cut by its
characteristic function, rather than by its “semi-characteristic function” v,

1 if g € o,
X(y(q)_{

T otherwise.

The answer is, again, no because it is not possible to approximate a “semi-
recursive” Dedekind cut effectively. The argument is the same as above: An
approximator is not continuous. Remark that we have to do with partial func-
tions.

3.2 Translations between representation systems

Definition 3.2.1 Let (V,7) and (W,) be representation systems of real num-
bers.

1. A translation from (V,x) to (W,) is a functional F': V — W such that
forall @ € V

T(F(a)) = 7 ().
So a translation translates representations of a number in V to a repre-
sentation of the same number in W.

In a commuting diagram, we have

v —"ew

|7

R

2. If there exists a partial recursive translation from V to W, we write:

(V,m) <, (W,).
3. Ifboth (V,7) %, (W, r)and (W, 1) <, (V,7), wesay that (V,x)and (W, 1)

are recursively equivalent, which is denoted by (V,7) ~,. (W,).

Remark 3.2.2 e The relation ~, is clearly an equivalence relation The
relation <, is a preorder; V <, W can be interpreted as “representations
in V contain as least as much information as elements in W” because
information in W can be computed from V.

(V,m) ~. (W, 7)
& (V) <, (S, U)} = (W,7) <, (5,0)
and
(V,m) ~, (W, 1)

& (S,0) <, (V, ﬂ)} = (S,0) <, (W,m).

3.2. TRANSLATIONS BETWEEN REPRESENTATION SYSTEMS 59

e A translation induces an isomorphism between the quotient structures
<V/=,4+v, v,<v,0v,1v > and < W/ =, 4w, w, <w, 0w, lw >.
Here +v, v, <y, Oy, 1y and +w, -w, <w are representations of +, -, <
L0, 1in (W, T) resp. (W, 7).

Theorem 3.2.3 Let (V. 7) be a representation system. Then (V,x) has the
effectively approzimation property if and only if (V,7) <, (Rint, Fint)-

Proor:

= : L.et A be a recursive approximator of V. The idea is to approximate a
[

19 4

whose lengths converge to 0 and whose intersection is nonempty. The only

thing to do is to indicate subintervals that are nested. Now define I and G by

real number successively with 1 ..Then we get a sequence of segments

F:V 3P,

1 1 1 1

57%‘(“)(5) - §>

and

GV = Ry,

G(a)(0) = F(a)(0),

G(a)(n+ 1) = (max(G(a) (), F(a)(n + 1)),
min(G(a) ()", F(a)(n +1)")).

Then indeed G() € Rine and 7(a) = mint (G()).
—=: let F : V — Ri be translation from V to Rin;. Then A:V x QT = Q
defined by F(a)(q) = o' (un[lng(a(n)) < ¢]) is an approximator. [

Corollary 3.2.4 e Reauchy <r Rint,
e Rp ay <r Rint for all bases B,

® Ryed < Rint,
Theorem 3.2.5 Rin; ~, Reauchy-
Proowr: We must show Rine <, Recauchy. The partial recursive functional
I Rint = Reauchy,

F(0)(n) = (a(n)/.ik{a(k) < 1)

translates an interval representation a into a Cauchy representation, for 7(a) =
iMoo @' (n) = 7 (F(a)(n)). O

Theorem 3.2.6 Let A and B be bases. ff% has a finite A-ary expansion, then
RA—ary < RB—ar‘y-

60 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

Proor: We start with an example. Take A =2, B = 10. Then 15 has a finite
decimal expansion for [0.5]19 = 2. We write e = [2.71828105904 .. .];¢ in binary
notation.

e step 1: Translate the part before the dot to binary representation, using
the known algorithm: [2]ig = [10],.

e step 2: Translate the part behind the dot in the following way:

2 =10.5/0.71828 .. \1

0.5
= 0.25/8.21828 A\0
1 =10.125/0.21828 .. .\1
0.125
-+ =0.0625/0.10328 ...\ 1
0.0625
/0.041... \

Then each division needs only a finite part of the input [0.71828...]. Indeed in
the nM one we need the same number of digits as [%]10- Furthermore, we have

= [10]-1+1 L]—[101101]
€= 2 5 1 8— 2

We stress that we work purely syntactical. If @ = 0.999... Then [a]io =1 =
2-0.5. However we proceed as follows:

0.5/0.999...\1

.t

0.25/0.499 .. \1
0.25

Thus the algorithm will yield 0.111... and indeed [0.999...]10 = [0.111...]5.
In general, if in the 21—,7 has k decimal digits n'™" division, we do not consider
more than k digits of the input.
Now, let. A, B be arbitrary bases and let a € R gay. Find digits dg,dy, ... by
successive long division such that

n—1 (17' 1

[O‘]A*' ?;;:dn'ﬁ‘l-rn

1
with rngﬁa,ndogdn<%\f1.

ol = 3 = o]

The correctness of the long division algorithm ensures the existence of d,,,r,
with r,, < %. By induction follows 0 < d, < A — 1.0

3.2. TRANSLATIONS BETWEEN REPRESENTATION SYSTEMS 61

We remark that, in fact, step 1 and step 2 can be combined into a single
one. The traditional algorithm used in step 1 that transforms integers in B-ary
representation into their A — ary equivalents, starts finding the least significant
digit. In step 2 we give the most significant one at first. This also works
for integers: Search for the largest power of B that fits in the number to be
transformed and subtract as many times as possible. For instance:

21 = 2048 /2718\1
2048

210 = 1024 /0670\0
0

However, the traditional algorithm is more efficient.

Theorem 3.2.7 Let A, B be bases. ff% does not have a finite A-ary expansion,
then RA—ar‘y 7%7* RB—ary-

PrROOF: Suppose « is a A-ary expansion of % and F : Ryary = Rpary is a
translation of R ary to Rp_ary.

Assume F'is partial recursive. Then it is continuous. Examine F(a)(1),
the first digit of @ behind the dot. Then F has a 2-modulus of continuity
at (o, 1), say m. Define ag, 1 € R ary by

ag(n) =
o(n) 0 otherwise

{(y(n) if n < m,
and

a(n) ifn <m,
ay(n) = :
A —1 otherwise.
Then oy =, a1 =, @, S0
F(a)(0) = F(a)(0) =0 and F(ag)(1) = F(aq)(1).
On the other hand, because 7 4.ary (@) is not a A-ary fraction,

1
71-A—ar‘y((]‘ﬂ) < 71-A—ar‘y((]‘) = =< 71-A—ar‘y((]q) < 1.

B
Thus
F(ag)(1) = 0.
Since F(ay)(0) =0,
Flag)(1) > 1.

Contradiction.

62 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

O]

In order to formulate a simple condition equivalent to R4y <, Rpary, we
need an elementary number theoretic result.

Lemma 3.2.8 lLet A, B be bases.
[. .
i B-ary fraction <= Yp,prime[p|A — p|B].

PrRoOOF: == : Suppose % is B-ary fraction, say ;7 = —’,, with ¢t € Z,n € N.

Then A-B" =t € Z,s0 A|B” and therefore, for all primes p, if p|A then p|B.

<—: For all primes p, if p|B and p-t = B then 15 = % is a B-ary fraction. If

p1 - Py is a prime factorization of A, then % = ;—1 e 7;—. Thus ;7 is a product

of B-ary fractions and therefore a B-ary fraction. [J

Corollary 3.2.9 For all bases A, B
1. Rp.ary v Raary if and only if Vp, prime [p|A — p|B].

2. RB.ary ~ Racary if and only if Vp, prime[p|A < p|B].

Proor:
1. Use that ¢ is a B-ary fraction if and only if it has a finite B-ary expansion.
2. from 1.

O
Theorem 3.2.10 let B be a base. Then Rgea <r Rpoary-

ProoOF: Given o € Ryeq we inductively construct the nth digit of its B-ary
equivalent.

e Hirstly, we look for the part before the dot. Like in the approximator
Adeda in the proof of theorem 3.1.2, we search a k € 7 such that

keaand (k4+1) ¢ a,
Then k-BY =k < ngea(e) < k+1=(k+1)-B
e Suppose we have k, with
kp-B" < w(a) < (k,+1)-B

Now we look for k, ¢ with 0 < k,;1 < B and

- k?, kw+1 77—{—1 +]
Z R + RBr+1 € a and Z BW-H € @

=0

3.2. TRANSLATIONS BETWEEN REPRESENTATION SYSTEMS 63

Such k,1q exists, because

' k., (B—1)41 k, + 1
ﬁ E(l/and ﬁ_l_ Bn—H e B

By induction we can prove that for all n € N

¢«

T

77-ded E

=0
So
Z Tded (@),
=0
thus [ko, kiks .. .]B = Taea(@).
Now define

F(0)(0) pklk+1€al if0€ a,
o =
—uk[—k € o] otherwise.

—n k —n k41
F(@)(n+1) = k[T + iy € 0 & Tl + 307 # o
Recall that 5" A B’g,), so F'in fact is defined by course-of-value recursion,
cf. 2.1.7. 0

We have seen that not all translations between the representation systems we
consider are recursive. The next chapter provides some more examples. Surpris-
ingly, the translations between the standard systems appear all to be recursive
when restricted to representations of irrational number. However, the transla-
tions of representations of rationals is not always recursive. Before giving the
proofs of these two statements, we introduce some notation.

Definition 3.2.11 The representations of rational and irrational numbers re-
spectively are denoted by

th mt (Q)7
(R\ Q)ini = i (R\ Q).

Similarly for Rged, Rp.ary and Reanchy-
The notions connected to recursive translation <, and ~,. naturally extend to
subsystems (V/, 7 [v/) of a representation system (V, x).

Lemma 3.2.12 (R\ Q)int < (R\ Q)ded-

Proor: The translation to Dedekind cuts is given by
Faea : (R\ Q)int = (R\ Q)ded

o if3ng < /()]
Faea(@)(q) = {] if Anfg > o/'(n)].

64 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

Since for 7(a) ¢ Q we have, for all ¢ € Q)
Anfg < o' (n) v o’ (n) < ql,
Fyed is partial recursive. Since for all z € R

> n(a) < Infz > a”’(n)] and
< mla) < Inz < o' (n)]

we have Tged(F (@) = mine(a). O

Corollary 3.2.13 (R \ Q)cauchy % (R\ Q)int = (R\ Q) Bary = (R\ Q)ded-
Proor:

o (R\ Q)canchy ~r (R\ Q)int follows by Reauchy ~r Ring.

e (R\Q)int =< (R\ Q)ded is proven 3.2.12 in above.

e (R\ Q)ged <+ (R\ Q)B-ary follows by Ryed < RB ary, theorem 3.2.10.

e (R\Q)Bary <r (R\ Q)int follows by Rp_ary < Ring, theorem 3.1.2.

O]

Theorem 3.2.14 1. Qint 4, QB-ary

2. Qint 4, Qded-

Proor:

1. (sketch) Let F': Qint <» QB.arybe a translation. Assume that F'is recur-

sive. Consider the input function a(n) = (-1 1—> Let m be a modulus

n'mn
of F' at . Derive a contradiction using the functions
11,1 .
*;7ﬁ+;> lfngm/
1 1 .
— fraclm, 5 — —) otherwise,
and

;—) ifn<m

2. Suppose Qint <r Qded- BY Rged = Rpary it follows that Qine — Qged-
Contradiction.

3.3. COMPUTABLE REAIL FUNCTIONS 65

3.2.1 Summary

This diagram shows the recursive translations that were given in this section.
The following chapter will show that other translations are not recursive.

Raed 3.2.10 Rp.ary 3.2.4 Rine 3.2.5 Reauchy
Vp,prime[p|A = p|B]
RB—ar‘y RA—ary

3.2.9

3.3 Computable real functions via representation sys-
tems

Recall the definition 1.1.2: If (V, 7) is a representation system for real numbers,
and X C R, then a (V,7)-representation of real function f : X — R is a
functional F:V — V such that 7(F(a) ~ f(r(a)) for all @ € 771 (X).

A (V,m)-representation of a partial real function f:R” — R is a partial func-
tional F': V" — V such that #(F(aq,...,a,)) ~ F(r(ay),...7(ev,)). Possess-
ing of a notion of computability on functionals we can speak of computable real
functions on a representation.

Definition 3.3.1 Let (V,7) be a representation system of real numbers.

1. A real function f : X — R is partial recursive with respect to (V,x)
if there exists a partial recursive functional F : V* — V that is a
(V,7)-representation of f. The set of partial recursive real functions
w.r. t. (V,7)is denoted by R =y) R.

2. A predicate p C R”™ is recursive if the characteristic functional of its
(V, 7)-implementation is recursive.

The definitions of recursive functions having type f : R — Q, etc. are now
straightforward.

The set of partial recursive sets depends on its representation. Recursively
equivalent representation systems determine the same set of partial recursive
functions.

Theorem 3.3.2 For all representation systems (V.), (W, 1) of real numbers
(V7 ﬂ') ~, (VV7 T) — R _>(V,7r) R=R _>(W,7—) R.

Proor: G :V — W and H : W — V are recursive translations, and
F:V — V is a partial recursive V representation of a real function f,
then Ho Fo(7 is a partial recursive W-representation of f. So R —y) R C
R —w,-) R. Now D follows by symmetry. [

Corollary 3.3.3 R >,) R=R %(R R.

t. «canchy)

66 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

Theorem 3.3.4 The function + is partial recursive on R and on Rgeq, but
not on Rp_ary, for any base B.

Proor:

e Example 2.4.2 has shown that addition is partial recursive on interval
representation.

e We stated in example 1.1.5 that the functional

1 i Ip,rlap)=1& B(r)=1&p+r =q],

0 otherwise.

Addgeq(ev, 3)(q) = {

is a Dedekind representation of 4. It equals

R ifdp,rlpea&re & p+r=yq,
o ifIprpda&ré B&ptr=q.

Since the clauses on the right hand side are mutually exclusive, and de-
cidable Addgeq is recursive.

e The problem with 4+ on Rp_,., is that carries come from the right. From
a finite prefix we are unable to predict whether one will eventually show
up. Now, let B be a base.

Suppose we have a recursive B-ary representation F' of 4. Consider
a=0.000...and 5 =0.(B—=1)(B—1)(B—1).... Then mp_ary()+
TR.ary(#) = 1 and F has a modulus at («, 3,0), say m. Define

B —1 otherwise

a(n if n < m,
mﬁ_{ (n) <

and

By = {ﬂ(w) if n < m,

0 otherwise.
then ap_1 =, a and Gy =,, 5. However mp ay(ap_1 4+ 5) < 1 <
TRary(+ o) < 2,80 0 = F(a,) (0) = F(ap_1,5)(0). Contradic-
tion.
O
Corollary 3.3.5 For all bases B, Rine 4, Rp-ary and Rp_ary £, Ried.

Proor: From theorem 3.3.2 follows Rine %, Rp.ary. We have seen Rp_ary <
Rin¢ in 3.2.3. So we conclude: Rine 4, Rp.ary. O

Theorem 3.3.6 The function sin is partial recursive on R, but neither on
R ary, for any base B, nor on Ryeq.

3.3. COMPUTABLE REAIL FUNCTIONS 67

Proor:

e R;i: Our interval implementation of sin makes use of the Taylor series
expansion of the sinus. For all x € Rand n € N

= 1
i f§ A -
sinx k_otn rVkY < TRk

where t, — Sin(N)(())7 the n'" derivative of the sinus at 0. The sequence

to,t1, ... equals 0,1,0,-1,

On the other hand, as its derivative is bounded, sin is a Lipschitz function:
Forall z,y ¢ R

|sin 2 —siny| < |z —y].

These facts enable us to approximate sin z, using only an approximation
of z. Let z € R. Suppose we have an a € R with

[z —al <q

for some ¢ € Q. Then for all n € N

sinz — Ztn caF k<
k=0
|sin & — sin a| + |sina — Ztn caF k<
k=0
o+ <
T —a
) S
L
Ty
Now define

I Rcal]chy — Rcal]chy7

F((ay) (n) = (3 1 - (@(e(n)) 'k, 0+ 3).
k=0

Since

(AN

|Teanchy (@) — a(c(n))]

we have

S0 Tenney (@) — F({,) ()] < o+

CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

e Rg.q: The sinus does not have a recursive Dedekind representation: Here
our notation is somewhat unfortunate. One should not confuse the real
number 7 and the function 7geq. Suppose F : Rged — Rgeq of a rep-
resentation of sin. Let a be a Dedekind representation of 1/6x. For

sin1/6m=1/2, F(a)(1/2) = 0.

Assume F' is partial recursive. We derive a contradiction. This time
we work with finite functions instead of a modulus of continuity. As
Fis continuous, there is a finite function u such that

V5 € u N Raeal F(B)(1/2) = F(a)(1/2) = 0].
There exists a p € Q with
x 1/6m < p<1/2m,
x p < q, forall ¢ € Dom(u) with ¢ € a.

Such a p exists because if ¢ ¢ o then ¢ > 1/67.
Construct a function 6 € Rg.q with

ﬂ(q)—{] if ¢ < p,

0 otherwise.

Then u C 3, so F(8)(1/2) = 0. However sin mqeqa(3) > 1/2, thus
F(p)(1/2) =

So sin is not partial recursive on Rgeq.

1. Contradiction.

L RB—ar‘y:

Assume there is a recursive implementation ' : Rp.ary — RpBoary
of the sinus. Tet a be a representation of arcsin 1/B. Because sin
maps rational numbers unequal to 0, to irrational numbers[Siegel],
arcsin 1/B is not a B-ary fraction. Say m is a modulus of F at

(v, 1/B). Define

ao(n) = {0‘(") ifn < m,

0 otherwise.

and

o (n) = {(y(n) if n < m,

B —1 otherwise.

Then ag =, @1 =, @, 80 Fag)(1) = F(ay)(1) = 0. Furthermore
TRary(@v) is irrational so

0< 71-B—ar‘y((]‘ﬂ) < 71-B—ar‘y((]‘) < 71-B—ar‘y((]q) <1
and therefore

0 < Sin TR ary((p) < sin TR ary(r) =] < sin TR ary() < 1.

Then F(ag)(=)0 and F(ay)(1) > 1

3.3. COMPUTABLE REAIL FUNCTIONS 69

Thus sin is not recursive.

O]

Remark 3.3.7 Examining the first item of the proof, we observe that it can
be mimicked to prove that other functions are computable on R;.. FEvery
function that has a computable Taylor series expansion , which means that the
sequence of coefficients in the expansion is computable, and that has a bounded
derivative, like the cosinus and the arctangent, is R i-computable.

A closer look may reveal more computable functions. FEvery function has a
bounded derivative on a closed interval. If we can compute a bound from a
given rational interval, we know up to which precision the input should be
approximated. Then, if the function is computable on rational numbers, it
is computable on all real numbers. Thus the tangent, log, e-power, etc. are
computable. We do not go into details.

Corollary 3.3.8 Rint £, Rded-

Theorem 3.3.9 1. The restriction of the entier function

| | R—Z
2| <2< |z]+1.

to R\ Q is computable on Ring, Rp_ary and Ryed.
2. Its restriction to Q is not computable on any of these systems.
Proor:

1. We treat the system Rp_ary, leavings the other cases to the reader. The
functional F': Rp_ary — N defined by

is a B-ary representation of | |. Indeed, as o ¢ Q we have
a(0) < m(a) < a(0)+ 1,
so |7 (a) = «(0).

2. Suppose | | is partial recursive on Q. Examine a modulus m of an imple-
mentation of | | at «, which is given by

o(n) = {0 ifm =0,

B — 1 otherwise.

a(n) ifn>m,

0 otherwise,

Then a4 (n) = {

leads to problems.

70

O]

CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

Theorem 3.3.10 et p € Q. Then the real predicate {x € R | x < p} is
recursive on Ryged.

Proor: The functional F : Rgeq — {0, 1}

1 otherwise

0 if /
F((y)—{ itpe€a,

is a Dedekind representation of {# e R |2 < p}. O

The theorem below show that the mentioned predicate is not recursive on Rj;.

Theorem 3.3.11 The set Rint/ =, with the quotient of the positive infor-
mation topology according to =, is homeomorphic to R with the Fuclidean

topology.

Proor: We show that 1. every open set in the quotient topology is also open

in the Fuclidean topology and 2. the converse. The homeomorphism then is
the identity, for (R/=,,,) is R.

. The set of open intervals with rational ends, is a basis of the Fuclidean

topology. We prove that these are all open in the quotient of the positive
information topology. This means that their m,- pre-image is open in
the positive information topology. We write it as a union of open set in
the positive information topology.

let p,g e Q,p< ¢q. Then

Tint ' (P, q) = {a € Ring | @ represents a number between p and ¢}
— {0 € Riw | 30 € Np < a/(n) & 0"(n) <)
={acRiy|IneNa,beQp<a&<qg&ad(n)=a

& o' (n) = b}
=Upne0,a,b€0 imab N Ring

where 1,5, is the singleton function that maps n to the pair {(a,b), so

gy = {(a,b)}.

. Suppose that /' C R is open in the quotient topology. This means that

7~ '(U) is open in the positive information topology. Write it as a union
of basic p.i.-open sets: There are finite functions u; such that:

Uy =u; NV

let x € U. We indicate a basic element I in the Euclidean topology, not
necessarily one with rational ends, with z € T C U.

Choose a representation o € Rj,; of # which does not coincide with
any of its ends. In other words, take o € Ry¢ with () = 2 and

3.3. COMPUTABLE REAIL FUNCTIONS 71

x # o'(n) and x £ o”(n) for all n € N. Then for all n € N we have
» < mil0) € (o/(n), 0/ (1))

Because o € mine (U) =U; #; NV, we have a finite function u with o € 7.
Let m = maxDom(u). Then 7m(2) = [v/(n),n"(n)] = [a/(n),a”(n)].

Thus we have
z € (a/(n),a”(n)) C o/ (n),a"(n)] = mn () C U.
So take I = (o/(n),a”(n)).

O]

Corollary 3.3.12 Fvery Ri.i-recursive real function is continuous in the Fu-
clidean topology.

Corollary 3.3.13 1. Fvery Rini-recursive function F : R — N is constant.
2. Fvery Rini-recursive predicate P C R”™ is trivial.

It is open whether real functions that are Rp_,.y-recursive, are also Fuclidean
continuous.

3.3.1 Summary

This diagram indicates on which representation systems the functions +, sin
and the relation < () are partial recursive. It also tells whether all partial re-
cursive functions are continuous in the Fuclidean topology.

+ sin < 0 continuous
Rint:Rcauchy + + +
Req + + ?
RB—ar‘y

72

CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

Chapter 4

computable real numbers and
effective operations

Although it is not possible to represent all real numbers by a finite description,
we can describe the elements of certain subsets by means of natural numbers.
The fuctions in some representation system that are recursive can be represented
by their Gddel indices. The real numbers we get this way are called recursive
real numbers or computable real numbers.

Then we have a second manner besides in terms of of functionals to model
functions on computable real numbers. That is as functions on natural num-
bers that respect the relation “represent the same computable real”. If such a
function is recursive we speak of an effective operation.

The sequel defines the notion of recursive real numbers relative to a represen-
tation system. Tt also shows that the sets of recursive real numbers coincide in
the systems we consider. We will list some properties known from literature.
Concerning effective operations, it is easy to prove that every partial recur-
sive functional on recursive real numbers corresponds to an effective operation.
However we do not give a definitive answer to the converse problem.

Recall sequences, rational functions, etc. are all encoded as functionsin N — N,
so it makes sense to speak of partial recursiveness.

Iike before, PR is the set of partial recursive functions and R of the recursive
functions. Furthermore the following notation is used. If V. C P then V¢
denotes the set of computable elements in V, thus V¢ = V N PR and V*
denotes the set of Gddel numbers in V° ie. V' ={e e N| . € V°} ={e €
N| eV}

4.1 Computable real numbers

Definition 4.1.1 The set of recursive elements in a system (V,7) is just
the V°. We define the set of recursive real numbers with respect to (V,7),
as the set 7(V°), which are is real numbers that have a recursive representation

in V.
Applying this definition is the system Rcauchy we get the following.

73

74 CHAPTER 4. COMPUTABLE REAT. NUMBERS

Example 4.1.2 The computabibity of a Cauchy sequence boils down to the
computability of both the sequence and the modulus of convergence. We write
R(‘

canchy for the set of computable Cauchy sequences.

Example 4.1.3 We show a computable representation of the number e in each
system, by reconsidering the representations given in examples 1.1.5, 1.1.9,
1.1.11 and 1.1.13.

e Ryea:

We have seen that the function

1 ifg<e,
n(q)—{ .

0 otherwise

is a Dedekind representation of e. Using the Taylor series expansion of e,
this function equals

- Tif 377/[22:0 % - (77+1)! < q]
0 if In[> o+ —(n+1)! > q].
Since e € Q, either the first or the last clause holds, so 7 is recursive.

L RB—ar‘y:

The digits of the B-ary representation of e can be computed by

1n(0) =2
B(n—l—1) 1 B(w+1) 1
e =1a Y Loy LB
k=0 k=0

We take the sum over the first B-n element, so ensure that we have
enough information to determine the first n B-ary digits, which are given

by | B" ESO 4]. Then we retrieve the n'™" one.

[] Rint:

The interval representation of e we gave in example 1.1.11,

Tini (7 Zk'i 77—|—1'7Zk' 77—{—1 >

is clearly recursive.

L Rcal]chy:

And so is the Cauchy representation in example 1.1.13,

nvallchy = E]{" y 3

4.1. COMPUTABLFE REAIL NUMBFERS 75
Theorem 4.1.4 Let (V,x) and (W, T) be representation systems of real num-
bers. Then

1. If(Vom) %, (W,) then (V) C 7(W°).

2. If (Vym) ~,. (W, T) then m(V°) = 7(W°).
Proor:

1. The condition (V,7) <, (W, 7) expresses the existence of a recursive trans-
lation F: V — W. By Proposition 2.1.4 it follows that F' maps recursive
functions to recursive functions. Therefore

FRNV)CRNW.
Because F'is a translation we have

a(VNR)y=x(V)=7r(F(VNR)) Cr(WnNR)=r1(W).

2. from 1.

O

Corollary 4.1.5 IR = R ey
2. R,y C Ry, CRE,.

3. If a representation system of real numbers has the finite approximation
property, then ©(V°) C R

nt-
PROOF:
1. and 2. are immediate

3. Theorem 3.2.3 states that the effective approximation property is equiv-
alent to V <, Rint.

O]

The following trivial example shows that the effective approximation prop-
erty does not ensure that R{ . C V°.

Example 4.1.6 Examine the representation system
(Rint X {H}7 Tint © P12)

Here H is a non-recursive function, for instance the characteristic function of
the halting-problem and PJ selects the second element, from a pair. This system
satisfies the effective approximation property, because the approximation can
be computed using information from R;,;. However,

(Rine x {H})" = 0.

There are no computable elements in this system.

76 CHAPTER 4. COMPUTABLE REAT. NUMBERS

Of course, this is not very satisfactory. We would like to formulate an addi-
tional requirement for a system (V,7), that ensures R{, C w(V°). Requiring
7(Rint) <» V is too strong because, as we will see, Rj_; C R¢, and we know
Rint #, Ryea- Finding this requirement is still an open problem.

Proposition 4.1.7 1. RS, CRG

2. R, CR% .y for all bases B.

nt =

Proor: We prove the first statement in the proposition, the second is obtained
by syntactic replacement(“ded” by “B-ary”). We distinguish between rational
and irrational real numbers in R;,¢. Both are shown to be subsets of Rgaq.

e It is not difficult to show Q C R and Q C Rj_,, i.e. all rational numbers
are computable in both systems.

e Theorem 3.2.14 states (R\ Q)int <r (R\ Q)dea- If F is a recursive
translation, we have So, R\ Q = mint(R\ Q)int) C Tded((R\ Q)ded")-

We have R{ , CRY ;. O

Corollary 4.1.8 All common representation systems determine the same set
of computable real numbers, i.e.

RS

int:

R:]ed = (fauchy = %—ar‘y =
The fact the standard representation systems yield the same set, of computable
reals, which we will denote by is R, may indicate that with this set we have
captured the intuitive notion of computable reals. This set has been studied in
literature [Riceh4][Mazur63][Bridges94]. Tt has nice properties, of which we list
some without proof.

Proposition 4.1.9 (Rice) The structure < R,+,-,<,0,1> is a totally or-
dered, real closed field. A real closed field is a field in which every polynomial
with an odd degree and coefficients in R has a root in R and so has every
polynomial 22 — a with a € R,a > 0.

The recursive equivalent of completeness of R, i.e. every Cauchy sequence of
elements in R converges, has a recursive equivalent in R. However the equivalent
of the Bolzano-Weierstrass theorem does not hold. The notions of recursive
sequence and (recursive) modulus of convergence defined for Q (cf. 1.1.12) can
be extended to R easily.

Proposition 4.1.10 (Rice) 1. Fvery recursive, effectively converging se-
quence in R in has a limit in K.

2. Not every bounded recursive sequence in R converges to a limit in R.

It is evident that R is countable. The proposition below shows that R, is
productive, which is a recursive equivalent of uncountability.

4.2. EFFECTIVE OPERATIONS 7T

Proposition 4.1.11 R}, is productive and T15-complete.

ProoOF: Productivity, is shown in [Bridges]. TIZ-completeness is easy, e.g.
reduce R*, the index set of the (total) recursive functions to R . O

The following theorem formulates a relation beween recusive reals and recursive
real functions with repect to some represention system. In fact it provides a
way to generate the recursive reals: by applying all recursive real functions to
a, fixed, recursive real number. This does not contradict proposition 4.1.11 for
the recursive real functions are not recursively enumerable either.

Theorem 4.1.12 TLet (V,7) be a representation system such that V£ 0. Let
c € Ry, Then for all y e R

y ERY = IFf €ER = R[f(c) =yl

PRrROOF: — : Let y € RY,. Then 7(8) = y for some 3 € PR. Define a
real function by f(x) = y for all . Then f(¢) = y and f is partial recursive
with respect to (V,7). Indeed that functional F : V — V with F(a) = 8
is an implementation of F' and its is partial recursive by proposition 2.1.5.
<= Let f € R—=(v. R with f(c) = y. Both f and y have a computable
representation, which means that there exists a § € PR with n(8) = y and a
recursive functional F' such that #(F(«)) = 7(«) for all @ € V. By proposition
2.1.4 the functional F maps PR to PR, so n(F(§)) =y € R{. O

4.2 Effective operations

We like to compare the two ways of representing functions on computable real
numbers, by recursive functions and by recursive functionals that both preserve
a notion of “represent the same real number.”

Therefore, we wish to adapt an important result in the theory of recursive
functions sec, not representing real numbers of Kreisel, T.acombe and
Schoenfield. Tt states that the recursive ffuctions on GGodel numbers that pre-
serve ~ (represent the same recursive function) correspond to the recursive
functionals on R. Unfortunately, we did not succeed in this adaption. We have
reformulated the theorem in our terminology.

Definition 4.2.1 The equivalence relation ~ on R is defined by e ~ ¢/ <—
/
S‘Qﬁ = S‘Qe‘

Theorem 4.2.2 ([KLS59] in [Rogers67], ch 5.) et F : R — R be a re-
stricted functional. Then F is effectively continuous if and only if there erists
a recursive function ¢ : R* — R* that preserves ~ such that F(p.) = ©ye)-

Now we wonder under what conditions this theorem can be generalized to other
equivalence relations =, than ~ and other sets than R. We are particularly
interested in the case (V,=,) where (V,7) is a representation system.

78 CHAPTER 4. COMPUTABLE REAT. NUMBERS

Definition 4.2.3 Tet V C R and let =C V2 be an equivalence relation. An
associate equivalence relation =, on V* is defined by:

e=, ¢ &= p.=. 0.

Note that is the relation =, a refinement of ~ and, like every equivalence
relation, = is one of —.

A effective operation with respect to =, is a recursive function ¢ : N — N
that respects =, i.e.:

e=, e = (e) =, ().
Now the generalization of the theorem above can be formulated as:

1. Does every effective operation with respect to =, induce an effectively
continuous functional that respects =7

2. Is every effectively continuous functional that preserves = the lifting of a
effective operation with respect to =.7

The point of question 1. is the following: The effective operation 1 gets an
index e as input. This is a finite object that describes . as a whole. An
effectively continuous functional may use only finitely many values of @.. Tt is
therefore conceivable that a partial recursive functional has less computational
power than an effective operation. However, the theorem of Kreisel, .acombe
and Schoenfield states that this is not the case if V = R and =, is ~; then o
does not use more than finitely many values of ¢.. The proof of the converse

if I is partial recursive, there is recursive function f : R* — R” such
that F(p.) = i) s easy and immediately generalizes to other equivalence
relations, providing an affirmative answer to question 2.

Theorem 4.2.4 Let V C P and let = be an equivalence relation on V. Let
F:V =V be a effectively continuous functional that preserves =. Then there
exists an effective operation 1 : N — N with respect =, such that, for alle € V*:

F(ee) = @y(e)-

Proor: [Odifreddi®9] et F': P — P be effectively continuous. Define
wle,) = F(te, x).

let h be the compactification of F. Then
Flpe,2) ~z <= Fdlvg C p. & h(d,z) ~ z].

This the graph of ¢ is recursively enumerable, so ¢ is recursive. By the S -
theorem, we can find a recursive function f: N — N such that

@f(e)(m) = (e, z) = Flge,).
]

The converse of this theorem, question 1, remains an open problem. We hope
the proof of the theorem of Kreisel, .acombe and Schoenfield can be adapted
to our situation. Another open problem is the generalization to partial effective
operations.

Bibliography

[Barendregt84]

[Beeson85]

[BSS85]

[Bridges94]

[BR87]

[Grzegorezykh5]

[Grzegorezy k57

[Kleeneh9]

[KT.S59]

[Mazur63]

[Moschovakis65]

[Moschovakis69]

H.P. BARENDREGT The Lamda Calculus: [Its Syntax and
Semantics. North Holland, 1984.

M. BersoON Foundations of Constructive Mathematics.
Springer, 1985.

I.. Brum, M. Snup, S.SMALE On a theory of computation
and complexity over the real numbers and univeral machines.

Bull. Amer. Math. Soc.

D.S. BrinGgrs Computability: a mathematical sketchbook.
Springer, 1994, pp 49 74.

D.S. Bringrs ann F. RicumaN Varieties of Constructive
Mathematics. Cambridge University Press, 1987.

A. GrZEGORCZYK Computable functionals. In: Fund. Math.,
Vol 42, 1955, pp. 168 202.

A. GRZEGORCZYK On the definition of continuous com-
putable real functions. In: Fund. Math., Vol 44, 1957, pp. 61
71.

S.C. KLErNE Recursive functionals and quantifiers of finite
type. Tn: Trans. Am. Soc., Vol 91, 1959, pp 1 52.

G. Krrisker, D. L.acoMBE, J.R. SCHORNFIELD Recursive
functionals and effective operations. In: A. Heyting, Con-
structivity in mathematics, North Holland 1959.

Mazur Computable Analysis A. Grzegorczyk en H. Ra-
siowa, eds. Instytut Matematyczny Polskiej Akademii
Nauk, Rozprawy Matematyczne 33 Warszawa : Panstwowe
Wydawnictwo Naukowe, 1963

Y.N.MoscHOVAKIS Notation systems and recursive ordered
fields. Tn: Comp. Math., Vol 17, 1965, pp 40 T1.

Y.N.MoscHOVAKIS Abstract higher order computability I.
In: Trans. Am. Soc., Vol 138 1969, pp 427 464.

79

80

[Odifreddi89)]

[Peter51]

[Platek66]

[Pour-FEl]

[Riceh4]

[Robinson52]

[Rogers67]

[Scott]

[Siegel]

[Troelstra73]

[Turing36]

BIBLIOGRAPHY

P. OnirreDDI Classical Recursion Theory. North Holland
1989

R. PETER Recursive Funktionen Akadémia Kiadd 1951,
transl. American Press 1967.

R.A. PLATEK Foundations of Recursion Theory. Ph.D. The-
sis, Stanford, 1966

MariaN B. Pour-Ern, JonaTHan . RicHarDs Com-
putability in Analysis and Physics. Springer-Verlag 1989

H.G. RickE Recursive Real Numbers. Proc. Am. Soc., Vol 5,
1954, pp 784 790.

ROBINSON Bespreking van het artikel van R. Peter: ‘Rekur-
sive Funktionen Akad Kiadp, Budapest 1952 In: The Journal
of Symbolic Logic Vol 16, 1951 pp 280 ev

HarTiry RocErs, Jr Classical Recursion Theory of Recur-
sive Functions and Effective Computability. The MIT press
1967

D.S. ScorT Continuous lattices. In F,.W. Lawvere, Toposes,
Algebraic geometry and lLogic, 274 Lecture Notes in Mathe-
matics, Springer-Verlag.

CarL LLupwia SIEGEL Trancedental numbers. Princeton uni-
versity press 1949, §11, final remark.

A.S. TROELSTRA (ED.) Metamathematical investigations of
intuitionistic arithmetic and analysis. second, corrected edi-
tion, 1993, first edition 1973 TL.LLC Prepublication series X-
93-05, University of Amsterdam pp. 147 e.v.

A.M. TurING On computable real numbers with an applica-
tion to the Entscheidungsproblem. London Math. Soc., Vol
42,1936, pp 230 265, also in: Davis, M, The Undecidable,
Raven Press, 1965.

