
Exact representations of and computability on realnumbersMari�elle StoelingaMaster's thesis 404in mathematics and computer scienceunder supervision of dr. Erik BarendsenNijmegen, March 1997

2AbstractThis master's thesis explores computability of real functions via representationsof real numbers.We introduce the notion of representation system, which is a set of numericalfunctions representing all reals. A real function is called computable with re-spect to some representation system if there exists a corresponding computablefunctional on that representation system. We investigate two characterizationsof computable functionals. We classify the sets of computable real functionsof di�erent representation systems, using the notions of \recursive translation"between two systems and \e�ective approximation by rational numbers."We also study the set of computable real numbers of a system and compare theset of computable functions on all reals and on the computable reals.We apply the above results to the well-known representation stems, beingDedekind cuts, B-ary expansions, nested intervals and Cauchy sequences. Wedetermine the computability of +, sin and <. These systems yield the same setof computable real numbers.

Contents0 Introduction 50.1 About this master's thesis : 50.2 Overview : 100.3 Preparations : 121 Representations of real numbers 151.1 Real numbers and their representations : : : : : : : : : : : : : : 161.1.1 An axiomatization of real numbers : : : : : : : : : : : : : 161.1.2 Representations of real numbers : : : : : : : : : : : : : : 161.1.3 Representations of real functions : : : : : : : : : : : : : : 171.1.4 Common representations : : : : : : : : : : : : : : : : : : : 181.1.5 Complex numbers : 222 Computable functionals 232.1 Partial recursive functionals : 242.1.1 Normal Form Theorem : 292.1.2 Monotony and compactness : : : : : : : : : : : : : : : : : 352.1.3 Sequentiality : 372.1.4 Do the partial recursive functionals capture the intuitivenotion of computability on functions? : : : : : : : : : : : 402.2 E�ective continuous functionals : : : : : : : : : : : : : : : : : : : 412.2.1 Compactness and monotony revised : : : : : : : : : : : : 412.2.2 Encoding �nite functions : : : : : : : : : : : : : : : : : : 432.2.3 E�ective continuous functionals : : : : : : : : : : : : : : : 442.3 Survey and generalization of results : : : : : : : : : : : : : : : : : 462.3.1 Summary : 462.3.2 Generalizing the results : : : : : : : : : : : : : : : : : : : 462.4 Restricted functionals : 472.4.1 Partial recursive restricted functionals : : : : : : : : : : : 482.4.2 E�ective continuous restricted functionals : : : : : : : : : 492.4.3 Functionals restricted to total input : : : : : : : : : : : : 522.4.4 Summary : 533 Computability on representations 553.1 Approximations of real numbers : : : : : : : : : : : : : : : : : : 563.2 Translations between representation systems : : : : : : : : : : : : 583

4 CONTENTS3.2.1 Summary : 653.3 Computable real functions : 653.3.1 Summary : 714 Computable real numbers 734.1 Computable real numbers : 734.2 E�ective operations : 77

Chapter 0Introduction0.1 About this master's thesisAlthough we are not consciously aware of it, real numbers play an importantrole in daily life in practical as well as in philosophical sense. The real numbersare formed according to the way we experience reality { note the similarity insound. { The time continuum is described by R, the space around us to be R3.Classical physics describes reality in terms of real numbers. Apart from timeand space, energy, mass, temperature also take values in R. Many physicalprocesses, like magnetic
ux and orbits of planets, are described by constructsfrom real analysis, like di�erential equations.Moreover, real numbers are involved in controlling reality. If an airplane takeso�, complex calculations are made to overcome gravity. The computer nowa-days is indispensable for this.Therefore it is disturbing to notice that the real numbers have been imple-mented rather miserably. The REALS, that are representations of real num-bers implemented in most computers, contain only representations of �nitelymany rational numbers. The representation of a real numbers therefore mostlya rounding of it.The accumulation of relatively small rounding errors may cause an enormousdeviation of the exact result. Notably, there exist a sequence that converges to 0,but whose calculation by a computer always diverges, irrespective of the internalprecision of the machine. Physicists being cautious with measure inaccuracies,a computer that speci�es a result with a precision of 64 decimals, gives onlypseudo-security.The question arises whether or not this situation can be improved. Is a imple-mentation of all real numbers possible? The problem with the representationreal numbers is that there are so many of them. It is not possible to have a �nitedescription every one. Therefore it is impossible to represent all of them in acomputer, even if we would have an in�nite memory at our disposal. However,two solutions are proposed:Solution one: We do not represent a real number all at once, but specify itstepwise; providing more information about the real in each step. The result ofa computation will then also be created in the course of time. Following this5

6 CHAPTER 0. INTRODUCTIONsolution, all reals can be represented. A set of objects that represent all realnumbers in this way is called a representation system.Solution two: Within the real numbers a subset exist whose elements all have a�nite description. The set of computable numbers of a representation system issuch a set. The idea is to form the set of computable objects in a representationsystem. Then a computable real can be described by an algorithm that yieldsa representation of a real number.Both solutions do not exclude each other; they can be implemented togetherwithin one system. The �rst one is more general.A certain data type is implemented to perform operations on. So the followingquestion should be: `Which functions on real numbers are computable?' Insolution one, real numbers are represented by in�nite objects. In order tostudy computable functions on real numbers we need higher order recursiontheory, in which we model these functions as functionals.The computable reals, proposed in solution two, are all �nite objects. Com-putable functions on the computable real numbers can therefore, be modeledas partial recursive functions.We compare the set of computable real functions induced by both solutions.Finally we remark that the strategy set out above to study computability onreal numbers can be applied also to other uncountable sets. In the practiceof computer science such objects are in�nite graphs, sets of natural numbers,streams of input in real-time processes, etc.Research purpose and methodTowards a better implementation of real number arithmetic, this master's thesisstudies computability on real numbers. Computations take place on concreterepresentations of real numbers rather than on abstract mathematical objects.By the uncountability of R, it follows that is is impossible to represent all realnumbers by a �nite description. We explore the following questions:1. How can the real numbers be represented?2. Which functions are computable on these representations?3. Can we indicate a subset of real numbers in which all real numbers havea �nite description?4. How can we characterize the set of computable functions on this set?Concerning question one, we introduce the notion of a representation system ofreal numbers, being a set in which each real numbers has at least one represen-tation. We study several standard representation systems, known in literature.In essence these are all subsets of N! N. We develop a notion of representationof real function in terms of a representation system. We would like to call a realfunction computable if it has a computable representation. Therefore, we de-velop a notion of computability on representation systems. As a representationsystem consists of functions, we have to study computable functionals.

0.1. ABOUT THIS MASTER'S THESIS 7We compare two notions of computability on functionals. The partial recursivefunctionals are an extension of the partial recursive functions. The e�ectivelycontinuous functionals are based on an e�ective version of continuity in the pos-itive information topology. We focus on functionals that model real functions,which get only total objects as input.Using the results concerning computable functionals, we explore the computabil-ity of three types of operations on representation systems. In particular, westudy their computability in the standard representation systems, Dedekindcuts, B-ary expansion, nested intervals and Cauchy sequences. We formulatethe e�ective approximation property of a system, stating that, in that system,real numbers can be approximated with rational numbers up to arbitrary pre-cision by a computable functional. Moreover, we consider whether there existcomputable translations, that map representations in one system to equivalentrepresentations in another system. Finally, we investigate the set of real func-tions that are computable with respect to a certain system. We check whetherthe functions +, sin and the predicate < 0 are computable in the standard sys-tems. We also show the relation between the computability of approximations,of translations and of real functions.Concerning subsets of real numbers that have a �nite representation, we in-troduce a notion of computable real numbers with respect to a representationsystem. We generalize the various de�nitions from literature, where this setis usually de�ned in an ad hoc manner on a particular representation system.We compare the sets of computable reals with respect to di�erent systems. Ascomputable real numbers all have a �nite description, computable functions onthe computable real numbers can be modeled as partial recursive functions,called e�ective operations. Then two notions of computability exist on this setone in terms of functionals and another in term of functions. We also comparethese. Finally we prove that computable real numbers with respect to a systemcan be obtained via application of computable real functions of that system.ResultsWe prove three fundamental results on partial recursive functionals: The Nor-mal Form Theorem, continuity in the positive information topology and sequen-tiality. We prove that the e�ectively continuous functionals are an extension ofthe partial recursive ones. As the former need not to be sequential, this is aproper extension. When restricted to total objects, in particular to representa-tions of real numbers, partial recursiveness and e�ective continuity coincide.Concerning computability on representations of real numbers, we prove thatthe standard representation systems satisfy the e�ective approximation prop-erty. The e�ective approximation property is equivalent to the existence of atranslation to interval representations. We show that the notion of computabil-ity of real functions depends essentially on the representation. The standardsystems yield di�erent classes of computable real functions, which we show byexamining the functions +, sin and the predicate < 0. If two systems can bee�ectively translated into another, these yield the same class of computable

8 CHAPTER 0. INTRODUCTIONfunctions. Therefore not all standard systems can translated recursively intoeach other. We also prove that the computable real functions with respect tointerval representations are continuous in the Euclidean topology.Concerning computable real numbers, we show that in general the set of com-putable real numbers depends on the representation; in the standard systems,these sets coincide and have nice properties. We show that the computable realnumbers in a systems can be generated by the computable real functions in thesame system.Every computable functional on the computable reals corresponds to an e�ectiveoperation. The converse however remains an open problem.About a system in practical useWe can image a computer implementation based on these ideas working asfollows: The implementation of a real function, like sin, gets a representation ofa real number as input. This representation is a function, say �, in N! N thatis given as a stream, that is, by successively specifying �(0); �(1); �(2); : : : . Theimplementation of sin is lazy and successively produces the output (sin�)(0),(sin�)(1), : : : . It waits for more input until it has got enough informationto compute the next element in the output stream. We do not make anyassumptions about the amount of input elements needed to produce a certainamount of output: In the case of the sinus we have information about the resulteven without input as �1 � sin x � 1 for all x 2 R. Using the technique of pipelining, the stream sin f can be input to another function.Functions on the computable reals can be implemented in two ways: Given aG�odel number e of a computable real | a computer program to compute �e isin fact a G�odel index | the stream �e(0); �e(1); : : : can be computed and thusbe input to the implementation of the sinus described above.Another way to implement a function on computable numbers is to computeon indices directly. Given e, compute the index of the result. We will provethat any function on computable reals that is computable using streams is alsocomputable on indices; the converse, however, remains an open problem. Givenan index of a computable real number, we can generate the associate stream.On the other hand, a computable number can be generated by a computablefunction on all real numbers.Related workA constructive approach to real analysis has been elaborated in various meta-mathematical settings. Intuitionism, Russian constructivism and classical re-cursion theory all have worked out their own ideas about the (constructive)nature of real numbers. An overview can be found in [BR87] and in [Beeson85].We start from a classical de�nition of the real numbers and study which op-erations are computable on real numbers, relative to the computability of realnumbers. Among all reals, recursive reals have our interest.Computable reals on higher type have been studied from the 50s by Kleene, in-troducing schemes S1{S9 [Kleene59] and Platek [Platek66]. Computable func-

0.1. ABOUT THIS MASTER'S THESIS 9tionals, which we use to describe computable real functions, are investigatedby Grzegorczyk [Grzegorczyk55]. Nowadays his treatment is still relevant, butmay seem somewhat old-fashioned. A more modern approach is followed byOdifreddi [Odifreddi89] en Rogers [Rogers67]. The work of Odifreddi was quiteintuitive. However, the results we needed were only hinted at.The subject of restricted functionals seems not to have been studied extensivelybefore. Functionals restricted to total functions are involved in HEO, which hasbeen studied by Troelstra [Troelstra73].Grzegorczyk has also applied computable functionals to functions of real num-bers, see [Grzegorczyk57]. His work is often taken as a starting point. Mostpapers | including those of Grzegorczyk himself | choose one particular rep-resentation system and elaborate all theory within that system. Applying andre�ning the theory of computable functionals, we have developed the theory ofcomputability on real numbers in a more general framework, that of a repre-sentation system. We have compared several concrete representation systems.Computability on real numbers �ts in the framework of Pour-El and Richards[Pour-El] who axiomatize the notion of a computability structure on a Banachspace.Early investigations in the �eld of recursive real numbers have been done byTuring [Turing36], Rice [Rice54] and Mazur [Mazur63]. Pet�er, [Peter51] Robin-son [Robinson52] and Bridges [Bridges94] also have contributed to this researchtopic. Moschovakis presents an axiomatic characterization of the recursive realsin [Moschovakis65]. Just as with the computability of real numbers, we havedeveloped out notions concerning recursive real numbers within a representa-tion system in general, whereas the literature mostly chooses one system. Bystudying computability on all real numbers as well as on the computable realnumbers, we pro�t from theory developed to describe computability on all realnumbers, when studying the computable real numbers.Unfortunately, the literature about computable functionals and about com-putable functionals on real numbers was di�cult to access. We have provenmany result by ourselves, probably more than necessary.Future workThis master's thesis has left some open problems that could be solved by futureresearch. We list these here.� Can every (partial) recursive e�ective operation be lifted on a represen-tation system be lifted to an e�ectively continuous functional?� Is every real function that is computable with respect toRB-ary continuousin the Euclidean topology?� Is it possible to formulate a nice property for a representation system(v; �) to ensure that �(V c) = R?Beside the concrete representation systems we have treated, other standard rep-resentation systems of real numbers, such as continued fraction, can be studied.

10 CHAPTER 0. INTRODUCTIONToward a realistic implementation of real numbers in the way we described, alot of research has to be done. Firstly e�ciency has to be taken into account.Some research has been done by [BSS85]. If it comes upto writing programs, isthere a or less standard way to implement a real function, for instance from aTaylor series expansion? Can we use approximation techniques from numericalanalysis?The methods used to describe computability on real functions can also be ap-plied to other uncountable sets, like those of in�nite graphs, in�nite lists, setsof natural numbers, etc.Therefore we think it is worth developing a more general framework in whichcomputability on all these objects can be described, Starting from a speci�ca-tion, how are the representation systems for these objects related with respectto their computational properties?0.2 OverviewThis master's thesis has been divided into four parts. Chapter one is aboutreal numbers, the topic of chapter two is computability on function spaces, thethird chapter treats computability on real numbers and chapter four at last isconcerned with computable real numbers and computable functions on these.Chapter one de�nes the notion of representation system of real numbers, beinga set in which every real number can be represented. Two requirements shouldexclude representation systems that are not useful in practice. First of all,their elements should be easily implementable in a computer. Therefore, werequire representations to be functions from N to N. Furthermore, it shouldbe possible to approximate a real number e�ectively up to any given precisionfrom its representation.Each real function now can be implemented by a function on a representationsystem that respects the equivalence relation �, \represent the same number."This is a function with functions as in- and as output | a functional. Then,computability of real functions can be de�ned in terms of a computable func-tionals.Moreover this chapter treats some standard representation systems. We lookat Dedekind cuts, B-ary expansions (if B = 10 this yields the common deci-mal representations for real numbers), nested intervals and Cauchy sequences.Chapter three explores computability on these systems.Chapter two studies computable functionals. Two notions of computability arede�ned: partial recursiveness and e�ective continuity.A partial recursive functional is a generalization of a partial recursive func-tion. Three fundamental theorems are proven: The Normal Form Theorem,continuity in the positive information topology and sequentiality.The e�ectively continuous functionals are an extension of the partial recursiveones.Functionals that model real functions only get total objects as input. Therefore

0.2. OVERVIEW 11we pay special attention to computable functionals { in both senses { with arestricted domain. We show that a computable restricted functional is just therestriction of a computable functional. An important result is that, restricted tototal objects, partial recursiveness and e�ective continuity coincide. Through-out this chapter the positive information topology plays a major role.Chapter three is about computability on real numbers. Being equipped witha notion of computability on function spaces, we can conclude computabilityand non-computability of operations rather easily. Three types of functions onrepresentation systems are considered.Firstly, we prove that, in the standard representation systems, real numberscan be approximated with rational numbers up to arbitrary precision by acomputable functional. Moreover, we consider whether there exist computablefunctionals that translate representations in one system to equivalent represen-tations in another system. Both positive and negative results will be derivedfor the standard systems. Finally, the notion of computable real function willbe de�ned. The set of computable real functions depends on the representationof real numbers. We check whether the functions +, sin and the predicate < 0are computable in the standard systems. The answers are di�erent in each sys-tem. We also study under what conditions the computable real functions arecontinuous in the Euclidean topology.Chapter four deals with the set of computable objects within a given representa-tion system. These are the computable real numbers in the system. In general,the set of computable real numbers depends on the representation. However,in the standard systems, these sets coincide and have nice properties.Computable functions from computable reals to computable reals can be mod-eled by partial recursive functions on the set of G�odel numbers of the objects.Such functions should respect the relation \represent the same real number"on indices. We call them e�ective operations. We prove that every computablefunctional on the computable reals corresponds to an e�ective operation. How-ever, the converse problem remains open.

12 CHAPTER 0. INTRODUCTION0.3 PreparationsPartial functionsA partial function f from a set A to a set B is an object that assign a uniqueelement from B to each element from its domain, which is a subset of A. Thespace of partial functions from A to B is denoted by A �! B.We call f a function if Dom(f) = A. 1 The set of functions is denoted byA! B.Let f; g 2 A �! B and x; y 2 A. The domain of the function f is denotedby Dom(f). If x 2 Dom(f), we say \f(x) is de�ned" and write f(x) #. Ifx 62 Dom(f), then \f(x) is unde�ned" or f(x)". Two function applications f(x)and g(y) are equal, notation f(x) ' g(y) is they are both unde�ned or bothde�ned with the same value. Thus f(x) ' f(y) d= (f(x)" & g(y)") _ (f(x) =g(y)). The equality of functions is extensional. We have f = g d= Dom(f) =Dom(g) & 8x 2 Dom(f)[f(x) = g(x)]. We write f =n g is f and g agree upto n:8x < n[f(x) = g(x)]. A function can be restricted to a subset A0 � A. We writef �A0 to indicate the function in A �! B such that 8x 2 A0[f �A0(x) ' f(x)].If f : N �!N then �x[f(x) = 0] denotes the smallest n 2 N such that f(x) = 0.A function is �nite if its domain is �nite.A partial function f : A ! B can be viewed as a set of pairs f(x; f(x)) j x 2Dom(f)g. Conversely, a set of pairs V can be considered as a function if itis single valued, i.e. 8x; y1; y2 2 V : (x; y1) & (x; y2) =) y1 = y2. In otherwords, there exists a bijection between the function space A ! B and thecollection of single valued sets. We will make use of this correspondence tacitly.In particular we will de�ne functions by naming their associated sets. So, thesymbol ; denotes the function that is unde�ned everywhere on its domain;the set f(x; y)g the function that is de�ned on x only, having value y. If twofunctions f and g coincide on the intersection of their domains, the expressionf [g makes sense.Through this isomorphism it is not di�cult to see that the function spacesA1 �A2 ! B and A1 ! A2 ! B are isomorphic also. Remark that a functionin f : A1 �A2 ! B has another domain than its equivalent in A1 ! A2 ! B.In particular, these conventions hold for functions whose domain consist offunctions, namely functionals.SetsConcerning sets, the following symbols are used:1Such a partial function is often called total. We avoid this word here, because it hasanother meaning in the context of functionals.

0.3. PREPARATIONS 13N the set of natural numbersN� the set of natural numbers unequal to 0Z the set of integersQ the set of rational numbersQ+ the set of positive rational numbersR the set of real numbersC the set of complex numbers

14 CHAPTER 0. INTRODUCTION

Chapter 1Representations of realnumbersReal numbers are inspired by our experience of time and space. We have certainideas about properties of time and space and mathematicians like to derive theseformally from a few basic assumptions, called axioms. From the axioms morecomplex constructions, like sin,lim and R can be built and general theoremscan be proven, like: If F 0 = f and f is continuous then for all a; b 2 RZ ba f(x)dx = F (b)� F (a):On the other hand, if we wish to make statements, like \the length of this pathis p2" or \the distance light travels through in 1 second, is 2; 9979246 : : : � 108meters", we need to denote, to represent the reals. In the examples above p2,1 and 2; 9979246 : : : � 108 are denotations or representations of real numbers.From the axioms of real numbers it follows that it is impossible to give a �nitedenotation for every real number.There are several representation systems for real numbers, just like we can de-note natural numbers in decimal, binary, etc. notation. But even within onesystem, there are often several representations for one single real. Compare thisto Q, where (in decimal notation)12,24 and 1;000;0002;000;000 refer to the same element.These have exactly the same mathematical or extensional properties. Howevera computer scientist would say they have di�erent properties. For instance morebits are needed to store 1;000;0002;000;000 than to store 12 . Intentionally, di�erent repre-sentations are distinct objects that satisfy the equivalence relation \representthe same real number."The mathematical properties of real numbers are determined by their axioms.So the set of real numbers is a structure < R;+; �;�; 0; 1> that satis�es theaxioms. A denotation of a real number refers to a real number, so a repre-sentation system of real numbers is a set V together with a function �, map-ping a representation to the real number it represents. Calculations are aboutrepresentations, rather than about abstract properties. A computation takesrepresentations of x and y and constructs their sum, i.e. a representation ofx+ y. Proofs are about abstract properties like x � x+ y.The following sections work out these ideas more precisely.15

16 CHAPTER 1. REPRESENTATIONS OF REAL NUMBERS1.1 Real numbers and their representations1.1.1 An axiomatization of real numbersThe properties of real numbers by the second order formula TOFEAS, whichstands for Totally Ordered Field, the axiom of Edoxos and Archimedes and theSupremum Axiom. A structure< R;+; �;�; 0; 1> is a structure of real numbersif: 1. < R;+; �;�; 0; 1> is a totally ordered �eld.2. 8x 2 R8y 2 R2 9n 2 N[x �n > y]:3. Every subset of R that is bounded from above, has a supremum (= lowestupper bound).From these axioms all functions and de�nitions from real analysis, like sin; lim; Rcan be constructed and all theorems from real analysis can be derived; in factreal analysis is all about this. An important property of the formula TOFEAS isthat it is categorical, i.e. all structures < R;+; �;�; 0; 1> that satisfy TOFEASare isomorphic. From now on, if we speak aboutR, we mean one of these models.In particular, all models are uncountable, which implies that it is impossible torepresent all real numbers by �nite objects.1.1.2 Representations of real numbersDe�nition 1.1.1 A representation system of real numbers is a tuple (V; �),where V � N! N and � is a surjective function from V to R. If � 2 V and�(�) = x, then � is said to be a (V; �)-representation of x.We think of elements in V as denotations of real numbers. We have requiredits elements to be functions. The sole requirement that V is a set would leaveopen a so many possibilities that comparison, reasoning and de�ning relatednotions is not convenient.Because R is equinumerous with N! N, this is not a serious restriction. Ele-ments in P(N), Nn ! Nm, Q! Q, sequences of rationals etc. can be encodedas functions in N! N.As we are interested in implementation, we wish the object to be easily im-plementable. In particular we want to be able to specify a real number asinput stepwise. A function f in N! N can be given by an in�nite sequence inf(0); f(1); : : : course of time, called a stream.The function � maps each representation to the real number it refers to. Asall numbers should be representable, � should be surjective. It needs not to beinjective: A real may have more than one representation. Then � induces anequivalence relationx �� y () �(x) = �(y):We often omit �, if it is clear from V which is meant.

1.1. REAL NUMBERS AND THEIR REPRESENTATIONS 17A property we think is crucial in practical use is what we call the e�ectiveapproximation property. A real numbers is often used to express a quantity, like\the speed of light is 2; 9979246 : : : � 108 m/s," as complementary to expressingproperties like x > 0 & x2 = 2. The numerical value should be derivable fromthe representation. However, representations are in�nite objects, so we do notrequire that that we can overview the quantity at once | note the dots inthe representation of the speed of light. We should be able to approximatethe real number �(�) with arbitrary precision by rational numbers, of whichwe believe we can overview the values. Moreover, this approximation shouldbe e�ective in �. As computability on functions is treated in section 2, theexact de�nition of the e�ective approximation property is delayed until 3.1.To avoid going into details of systems that are not suited for implementation,we anticipate on this de�nition. We only present representation systems thatsatisfy the e�ective approximation property, i.c. we slightly adapt the de�nitionof Cauchy sequences.1.1.3 Representations of real functionsReal functions can be represented in terms of a representation system of realnumbers.De�nition 1.1.2 Let (V; �) be a representation system and let X � R.1. Let f : X ! R be a partial function. A function F : V ! V is called arepresentation of f with respect to (V; �), or a (V; �)-implementationof f , if for all � 2 ��1(X)�(F (�)) = f(�(�)):In a commuting diagram we haveR f RV F� V�2. A (V; �)-representation of a function f : X ! N is a functional F :V ! N such that for all � 2 ��1 for all � 2 ��1(X)F (�) = f(�(�)):In a commuting diagram, we haveR f NV� FThe de�nitions of representations of functions having type Rk ! R, N!R, R! Q, etc. are now straightforward.

18 CHAPTER 1. REPRESENTATIONS OF REAL NUMBERS3. A (V; �)-representation of predicate of a p � Rk is a subset P � V k suchthat (�1 : : :�k) 2 P () (�(�1) : : :�(�k)) 2 p:Remark 1.1.3 Note that every real function has at least one implementationwith respect to some representation system (V; �). If f is a real function, wecan de�ne F : V ! V using the Axiom of Choice. If x 2 V choose y 2 V with�(y) = f(x) and take F (x) = y.On the other hand, every function F : V n ! V that preserves �� , can belifted to a function on R. A function that, like F , is de�ned on functions, iscalled a functional. As we wish to study computability on representations ofreal numbers, we should study computable functionals.In every representation system we have representations of 0 and 1 in V . Also thefunctions + and � and the relation � can be represented. If we examine the setof equivalence classes, V= �� = f[x]�� j x 2 V g, we can lift +, �, � to V . Then< V= �� ;+; �;�; [0]��; [1]�� > is a model of TOFEAS. In fact the traditionalmodels of TOFEAS are constructed this way, i.e. by taking a representationsystem and then forming the quotient according to ��.1.1.4 Common representationsThis section presents some frequently used representations of real numbers andsome of their elementary properties, namely Dedekind cuts, B-ary expansions,nested intervals and Cauchy sequences. The representations are all constructedfrom the rational numbers.There is a wide range of equivalent forms of every de�nition that have the samecomputational properties. We mention some of them, without proof.As a running example, the number e is represented in all systems. In somerepresentations, the Taylor series expansion is useful. Expansion of the functionex at 0 yields�����e � nXk=0 1k! ����� � 1(n+ 1)! ;so the number e equalse = 1Xk=0 1k! :We also show a representation of the function + in each system.Dedekind cutsDe�nition 1.1.4 A Dedekind cut is a pre�x � � Q,satisfying1. � 6= ;, � 6= Q,

1.1. REAL NUMBERS AND THEIR REPRESENTATIONS 192. x 2 �; y � x =) y 2 �,3. x 2 � =) 9y 2 �[x < y] (there is no largest element in �).The set of Dedekind cuts { or Dedekind representations { is called Rded.The function �ded : Rded ! R is de�ned by�ded(�) = sup(�):In a picture, we have)� QAs Dedekind cuts are bounded from above, the supremum exists, so �ded iswell-de�ned. Furthermore is surjective. As rational numbers can be encodedby natural numbers, the characteristic function of a subset � � Q,�� : Q! f0; 1g;��(q) = (1 if q 2 �;0 otherwisecan be represented by a function of natural numbers. So indeed (Rded; �ded) isa representation system of real numbers.Note that �ded is injective, which implies that every real has a unique Dedekindrepresentation and that�(q) = 1 () q 2 � () q < �ded(�):Alternative de�nitions of Dedekind cuts use su�xes of Q instead of pre�xes orleave out the third requirement above.Example 1.1.5 The Dedekind representation of e is�(q) = (1 if q < e;0 if q > e:Viewed as sets, addition on Dedekind cuts is performed as�� � = fp+ r j p 2 � & r 2 �g:In terms of characteristic functions, the function + can be represented by�ded : Rded �Rded ! Rded;(��ded �)(q) = (1 if 9p; r 2 Q[�(p) = 1 & �(r) = 1 & p+ r = q];0 otherwise:Note that we have given �ded in applicative style.

20 CHAPTER 1. REPRESENTATIONS OF REAL NUMBERSB-ary expansionsBefore introducing the B-ary expansion we need some auxiliary notions:De�nition 1.1.6 A number B 2 N, B � 2 is called a base or radix.De�nition 1.1.7 Let B 2 N; B � 2. A number q 2 R is a B-ary fraction ifit is a fraction having denominator Bn, i.e. there exist n 2 N and a 2 Zsuchthat q = aBn :De�nition 1.1.8 Let B 2 N be a base. A B-ary expansion is a sequence�0; �1; : : : with �0 2Z, 0 � �n < B, n � 1. Here, �0 should be represented asa B-ary integer. The symbol RB-ary denotes the set of B-ary expansions.The real number represented by � 2 RB-ary is�B-ary(�) = 1Xi=0 �iBi :In junction with usual practice we also write [�]B in stead of �B-ary(�).Given � 2 RB-ary and k 2 N, �k is the rational that is represented by the �rstk + 1 digits of �, so�k = kXi=0 �iBi ;then for all k����B-ary(�)� �k��� � 1Bk :If � 2 RB-ary ends with all zeros, the tail of zeros may be omitted, like in0:5 2 RB-ary. In that case we speak of a �nite B-ary expansion. It is clearthat x 2 R has a �nite B-ary expansion if and only if it is a B-ary fraction.Real numbers, except for B-ary fractions, have a unique B-ary expansion, e.g.[0:123]10 = [0:122999 : : :]10. If k = 0 or �k 6= B � 1, then�B-ary(�0; : : :�k(B � 1)(B � 1)(B � 1) : : :) =�k + 1Xi=k+1 B � 1Bi =�k + 1Bk =�B-ary(�0; : : :(�k + 1); 000 : : :)Example 1.1.9 For B = 10 this yields the familiar decimal expansion of e,which is 2; 718128185904 : : : .

1.1. REAL NUMBERS AND THEIR REPRESENTATIONS 21The sum of two B-ary representations is given by�B-ary : RB-ary ! RB-ary;(��B-ary �)(n) = (�(n) +B �(n) if P1k=n+1 �(k) + �(k) < Bn ;�(n) +B �(n) +B 1 otherwise:where a+B b = (a+ b if a+ b < B;0 otherwise:This formula says that addition on two B-ary is pointwise addition, passingcarries to the left.Nested intervalsDe�nition 1.1.10 An interval representation is a sequence of tuples hp0; q0i,hp1; q1i; : : : such that for all n1. pn; qn 2 Q,2. pn � qn,3. limn!1 qn � pn = 0,4. pn � pn+1 and qn+1 � qn.A segment r = hpn; qni is associated with the closed interval [pn; qn]. Its left endpn is notated by r0, the right end by r00. The length of r, lng(r), is the numberr00 � r0. The set of interval representations is written as Rint. A sequence ofintervals represents the number in its intersection; so take �int : Rint ! R:�int(�) = limn!1 �0n;which equals = limn!1 �00n;then � ��int � () 8n[�00n � �0n & �00n � �0n]:Other de�nitions of interval representations make additional demands such aspn; qn to be B-ary fractions, or restrict the length of the nth interval, e.g. qn �pn < 12n .Example 1.1.11 An interval representation � of e is obtained by taking�0(n) = nXk=0 1k! � 1(n+ 1)! ;�00(n) = nXk=0 1k! + 1(n+ 1)! :

22 CHAPTER 1. REPRESENTATIONS OF REAL NUMBERSThe function + can be represented as�int : Rint �Rint ! Rint(��int �)(n) = <�0(n) + �0(n); �00(n) + �00(n)>:Cauchy sequencesDe�nition 1.1.12 A sequence �0; �1; : : : of rational numbers is a Cauchysequence if the di�erences between the elements become arbitrary small, i.e.if there is a function c : N! N such that for all k 2 N8n;m � c(k) �j�n � �mj < 12k � :This function c is called a modulus of convergence. The set of pairs (�; c)is called Rcauchy. This pair represents the number�cauchy(�; c) = limn!1�n:From analysis we know every Cauchy sequence converges. In chapter 3.1 it willbecome clear why the modulus is an essential part of a Cauchy representation.Example 1.1.13 The sequence�(n) = nXk=0 1k!converges to e andje� �(n)j � 1(n+ 1)! � 12n :So if we de�nec(n) = n:then the pair (�; c) is a Cauchy representation of e. An implementation of +in Cauchy sequences is�cauchy : Rcauchy�Rcauchy ! Rcauchy(h�; c1i �cauchy h�; c2i)(n) = h�(n) + �(n); c1(n) + c2(n) + 1i:The list of representations we presented here is not exhaustive. There existmany other representations of real numbers, like: continued fractions, n!-aryexpansions, B-ary expansions where negative digits are allowed.1.1.5 Complex numbersAnother structure analysists are interested in, is that of the complex numbers,< C ;+; �; 0; 1 >. Like for the reals, there exists a categorical axiomatization.Common models of these axioms are constructed from models of real numbers,by taking C = R2, then representations of complex numbers are pairs of repre-sentations of real numbers. From a computational point of view, R and R2 donot di�er essentially. All theory we build to describe computability on R caneasily be adapted to treat computability on C .

Chapter 2Computable functionalsFunctionals, or higher order functions, are functions which have functions asarguments. Common examples of operations on functions are: integration,di�erentiation and also primitive recursion and minimalization.Having functions on real variables in mind, our �rst interest goes to second orderfunctionals. These are functionals with partial functions on natural numbers asinput and as output. Or, equivalently, functionals with partial functions andnatural numbers as input and natural numbers as output.This chapter explores two notions of computability on type level two functionals:partial recursiveness in section 2.1 and e�ective continuity in 2.2.The former is a generalization of the notion partial recursive function. Valuesof the input functions may be used in the computation like those of the initialfunctions.We prove three fundamental properties of partial recursive functionals. TheNormal Form Theorem (2.1.10) is a generalization of the Normal Forms The-orem in recursion theory. An important consequence of this theorem is themonotony and compactness of partial recursive functionals (theorem 2.1.14).The third theorem (2.1.18) also follows by the normal form theorem. It statesthat partial recursive functionals are sequential, which means that there exista sequential algorithm to evaluate a partial recursive functional on its input.This implies that a partial recursive functional is determined by its behaviouron �nite functions.The second notion of computable functional, de�ned in 2.2, is called e�ectivecontinuity, because such a functional is continuous in the positive informationtopology (2.2.1). Continuity in this topology is equivalent to monotony andcompactness (theorem 2.2.3). We show in 2.2.12 that e�ective continuity is aproper extension of partial recursiveness.Section 2.4 prepares for the application of functionals in the setting of realnumbers. Functionals that represent real numbers only get total functions asinput. We consider functionals that are restricted to a certain subset P . Itde�nes equivalents of the both notions of computability for restricted function-als. Subsection 2.4.3 studies computable functionals restricted to a set of totalfunctions. In this case, partial recursiveness and e�ective continuity coincide.23

24 CHAPTER 2. COMPUTABLE FUNCTIONALSPreparationsThe following notations are used from now on:Pk the set of partial functions from Nk to N, P = P1 and P0 = NPR the set of partial recursive functions from N to NR the set of recursive functions from N to NT the set of (total) functions from N to NConcerning variables the conventions are:F ,G, : : : range over functionals,f ,g, : : : are used for elements of P,i; j; k; l;m;n; x; y; : : : are natural numbers.A vector of elements (a1; : : : ; an) is denoted by ~a.Section 0.3 has pointed out that the structures Pk1 � � � � � Pkm ! Pn andPk1 � � � � � Pkm � Nn �! N are isomorphic as sets. For sake for simplicity, weidentify them. If F : Pk1�� � ��Pkm ! Pn, we say that F is in so-called Currystyle; F : Pk1 � � � � �Pkm ! Nn �! N is in applicative style.Functionals are usually treated in applicative style. The result of function appli-cation then is a natural number, which is a \visible" object. We prefer to viewfunctionals mapping functions to functions for representations of functions onreal numbers map functions, c.q. representations of real numbers, to functions.By taking n = 0 we get functionals that map functions to natural numbers, forby de�nition Pk1 � � � � � Pkm ! P0 = Pk1 � � � � � Pkm ! N. In particularrepresentations of functions in R! N �t in this framework.We have remarked in section 0.3 that the applicative and the Curry versions dohave di�erent domains. In both the cases above, the set Pk1 �� � ��Pkm , whichstrictly spoken is the domain of the curried functional, is called the functiondomain of F . It is denoted by Fdom(F).If ~f 2 Fdom(F), then F (~f) is a partial function. In particular, the object F (~f)always exists. On the contrary, F (~f)(~x) may be unde�ned. It is obvious thatif F (~f)(~x)# then F (~f)(~x) 2 N. The set f(~f; ~x) 2 Fdom(F)�Nk j F (~f)(~x)#g iscalled the domain of F . It is the domain of the applicative version.As functionals are a special kind of functions, everything that is de�ned in 0.3is also applicable to functionals.De�nition 2.0.14 A functional F is called total if it maps all total functionsfrom Fdom(F) to total functions.We use the convention that a functional is strict in its number arguments,H(~f)(G1(~f)(~x); : : : ; Gm(~f)(~x)) is unde�ned whenever G1(~f)(~x) is unde�nedfor some i.2.1 Partial recursive functionalsIn order to give a de�nition of partial recursive functionals, we wish to developan intuitive idea of computability on functions: Given a partial function f and

2.1. PARTIAL RECURSIVE FUNCTIONALS 25a number n, which actions on f and n would we call computable? In order toanswer this question we �rst consider what information we may assume to beavailable of a function if it is input to a functional. Then we investigate howthis information can be used in a computation.The essential property of a function is that it assigns a unique output to eachinput in its domain. A function is its input-output behaviour. The usageof f is independent from its generation, because f is generated outside thecomputation, for instance by following a function presciption or by throwing adice. Besides, we do not need to calculate f ourselves and therefore there is noreason to require f to be computable; f may be any partial function.Now we have an idea how f can be used in a computation: Just like n and theresult of function application (like S(n)), values of f can be input for furthercomputation. As a calculation is performed step by step a terminating compu-tation will use only �nitely many values of f . Theorem 2.1.14 shows our notionof computability indeed has this property.These considerations lead to the idea to use relative recursiveness to de�ne thepartial recursive functionals, i.e. recursiveness with the input functions as extrainitial functions. An immediate translation into a de�nition is: [Odifreddi89]A functional F (f1; : : : ; fn; x1; : : : ; xm) is partial recursive if it canbe obtained from f1; : : : ; fn and the initial functions S, Z, Pni bycomposition, primitive recursion and minimalization.The following de�nition provides a more explicit formulation. It is a modi�ca-tion of the de�nition in [Grzegorczyk55].De�nition 2.1.1 (partial recursive functionals) For all m; k1; : : : ; km 2N� the partial recursive functionals with function domain Pk1 � : : :�Pkm areinductively de�ned by:1. For all n 2 N, the followoing initial functionals are partial recursive:� the zero functionalZ : Pk1 � � � � �Pkm ! PZ (~f)(x) ' 0;� the successor functionalS : Pk1 � � � � � Pkm ! PS (~f)(x) ' x+ 1;� the projection functionals: For all i; i � nPim;n : Pk1 � � � � �Pkm ! PnPim;n(~f)(~x) ' xi;

26 CHAPTER 2. COMPUTABLE FUNCTIONALS� the application functionals: For all i with ki = nAim;n : Pk1 � � � � �Pkm ! PnAim;n(~f)(~x) ' fi(~x):2. The following operations build partial recursive functionals from partialrecursive functionals:� If G1; � � �Gm and H are partial recursive functionals,Gi : Pk1 � � � � � Pkm ! Pn andH : Pk1 � � � � � Pkm � Nm ! Nthen Comp[H;G1; : : :Gm] : Pk1 � � � � � Pkm ! PnComp[H;G1; : : :Gm](~f)(~x) ' H(~f)(G1(~f)(~x); : : : ; Gm(~f)(~x))is a partial recursive functional.� If G and H are partial recursive functionals,G : Pk1 � � � � � Pkm ! PnH : Pk1 � � � � �Pkm ! Pn+1then Primrec[G;H] is partial recursive. Let, for the moment, F =Primrec[G;H], thenF (~f)(~x; 0) ' G(~f)(~x)F (~f)(~x; y + 1) ' H(~f)(F (~f)(~x; y); ~x; y):� If the functionalG : Pk1 � � � � � Pkm ! Pn+1is partial recursive, then also is:Min[G] : Pk1 � � � � � Pkm ! PnMin[G](~f)(~x) '8><>:�y[G(~f)(~x; y) = 0] if 9y[G(~f)(~x; y) = 0 &8i < y[G(~f)(~x; i) # & G(~f)(~x; i) 6= 0]]" otherwise:3. The rules mentioned under 1. and 2. yield all partial recursive functionals.De�nition 2.1.2 A functional F is recursive if it is partial recursive andtotal.Recall that totality means that F maps total functions to total functions.

2.1. PARTIAL RECURSIVE FUNCTIONALS 27Example 2.1.3 A well-known operation on functions is iteration. The nthiteration of f , notation f (n), is de�ned as:f (n)(x) = f(f(: : :f| {z }n times (x) : : :)):Iteration is recursive in f , forf (n)(x) = Primrec[Comp[f;P13];P22](n; x)As a functional, iteration of f equals:= Primrec[Comp[A11;3;P11;3];P22](f)(n; x):Addition of functions is recursive:Add : P2 ! PAdd(f; g)(n) = f(n) + g(n):It is easy to see that this functional is partial recursive using the characterizationbased on relative recursiveness. An exact proof is not di�cult using proposition2.1.5.The following four propositions state some elementary properties of partialrecursive functionals:Proposition 2.1.4 [[Odifreddi89], ch II.3] For all partial recursive functionalsF and all ~f 2 Fdom(F):f1; : : :fn 2 PR =) F (f1; : : : ; fn) 2 PR:Proof: An easy induction on the generation of F . �Proposition 2.1.5 [Grzegorczyk55] For all n and all partial recursive func-tions : Nn ! N, for all m; k1; : : : ; km, there exists a partial recursive func-tional F such that:F : Pk1 � � � � � Pkm � Nn ! N;8~f 2 Fdom(F) hF (~f) = i :Proof: By induction on the generation of . �Later, in 2.1.2, we will see that is equivalent to the existence of a recursive Fwith F (;) = . The proof of the latter formulation however is not easier.Proposition 2.1.6 (substitution property) [[Odifreddi89], ch II.3] For allm,n,p,k1; : : : ; km,l1; : : : ; lp; if G1; : : : ; Gp and H are partial recursive function-als, andH : Pl1 � � � � � Plm �Nn ! N;Gi : Pk1 � � � � �Pkp � Nli ! N;

28 CHAPTER 2. COMPUTABLE FUNCTIONALSthen alsoF : Pk1 � � � � � Pkp �Nn ! NF (~f)(~x) = H(G1(~f); : : :Gp(~f))(~x)is a partial recursive functional.Proof: By induction on the generation of H. �Proposition 2.1.7 The partial recursive functionals are closed under boundedminimalization, de�nition by cases, iteration and course-of-value recursion.This means the following:1. If G is a partial recursive functional of appropriate type, then so is thefunctional de�ned by:Bmin[G](~f)(~x) ' (Min[G](~f)(~x; y) if �[G](~f)(~x) < yy otherwiseHere Min[G] is as in de�nition 2.1.1.2. Let n 2 N. Suppose G1; : : :Gn; F1; : : :Fn are partial recursive functionalsof appropriate type. Assume G1; : : :Gn have pairwise disjoint domains.We can see Dom(Gi) as a recursively enumerable predicate on functions.Then the functionalCases(~f)(~x) ' 8>>>><>>>>:F1(~f)(~x) (~f; ~x) 2 Dom(G1);F2(~f)(~x) (~f; ~x) 2 Dom(G2);... ..." otherwise;is partial recursive.3. If F : P! P is a partial recursive functional, its iteration, given byIt[F](f)(x; 0) ' f(x)It[F](f)(x; k+ 1) ' F (It[F](f))(x);' F (F k(f))(x)is again a partial recursive functional.4. Suppose H is a partial recursive functional. The functional de�ned byF (~f)(~x; y) ' H(~f)(~x; y; ~F(~f)(~x; y))where~F (~f)(~x; 0) ' 0~F (~f)(~x; y + 1) ' <F (~f)(~x; 0); : : : ; F (~f)(~x; y)>is partial recursive as well.

2.1. PARTIAL RECURSIVE FUNCTIONALS 29Proof: The partial recursive functions are closed under bounded minimal-ization, de�nition by cases, iteration and course-of-value recursion. It is notdi�cult to show that these constructions are recursive in their function ar-guments. By the Substitution Property it follows that the partial recursivefunctionals are closed under the mentioned operations. We work out the prooffor iteration, leaving the other constructions to the reader.Example 2.1.3 has shown that iteration of a function is partial recursive. Thus,It : P! P2;It(g)(n; x) = gn(x)is a partial recursive functional. Now by the Substitution Property it followsthat It[F] is partial recursive, if F is so.�2.1.1 Normal Form TheoremIn order to be able to reason about computations of partial recursive functionalsa Normal Form Theorem, like for partial recursive functions, is needed. Thistheorem, which gives a standard way of computing a functional, is based onthe so-called T -predicate. This predicate veri�es whether a computation, en-coded as a natural number, is a correct computation of the functional underconsideration.Unfortunately, the situation for functionals is not as smooth as for functions.Unde�ned applications of the input functions may cause the veri�cation processto get stuck. Therefore we do not require the T -predicate to be recursive: Itscharacteristic functional may be unde�ned for certain values. In 2.1.15 we proveno recursive predicate can serve as a T - predicate.In sections 2.1.2 and 2.1.3 we prove two fundamental properties of partial re-cursive functionals by means of the Normal Form Theorem.Following the same method as for functions, a T -predicate for partial recursivefunctionals is de�ned:1. Assign code numbers to partial recursive functionals, from which the re-cursive structure of a functional can be deduced.2. Introduce computation trees of partial recursive functionals.3. Encode the computation tree as a natural number.4. De�ne a predicate T which tells whether a number z is an encoded com-putation tree of the functional having code number e on input ~f and~x.Encoding sequences of natural numbersThere is an injective function <> : Sk�0Nk ! N, such that the followingfunctions are computable:� For all k : <> �Nk : Nk ! N, the restriction from <> to Nk

30 CHAPTER 2. COMPUTABLE FUNCTIONALS� concatenation ? : N2 ! N, such that:<x1; : : : ; xn>?<y1; : : : ; ym> = <x1; : : : ; xn; y1 : : : ; ym>;� the length function, lng : N! N, such that:lng(<x1; : : : ; xn>) = n;� selection () : N2 ! N, such that:(<x1 : : : ; xn>)k = (xk if 1 � k � n,0 otherwise,Parentheses are omitted in successive selections: �((x)i)j�k is written as(x)i;j;k� subsequence (): : N3 ! N, such that:(<x1 : : : ; xn>)k:l = (<xk; : : : ; xl> if 1 � k � l � n,0 otherwise,For the function <> we can take:<> = 0;<x1; : : : ; xn> = px1+11 � px2+12 � � �pxn+1n ;where pk is the kth prime number.Index numbers of partial recursive functionalsDe�nition 2.1.8 The set I of index numbers for partial recursive functionalsis de�ned inductively:1. The set I contains indices of the initial partial recursive functionals: Forall m; k1; : : : ; km; n:� the index of Z : <0; <k1; : : : ; km>; n> 2 I� the index of S : <1; <k1; : : : ; km>; 1> 2 I� the index of Pim;n : <2; <k1; : : : ; km>; n; i> 2 I , if i � n� the index of Aim;n : <3; <k1; : : : ; km>; n; i> 2 I , if i � m & ki = n2. Index numbers for functionals that are constructed from other functionals:� by composition: For all d; n; (e)1; : : : ; (e)n 2 I with (e1)2 = : : : =(en)2 and (e1)3 = : : : = (en)3 = (d)2 and (d)3 = n:<4; <k1; : : : ; km>; n; (e1)2; d; (e)1; : : : ; (e)n> 2 I:

2.1. PARTIAL RECURSIVE FUNCTIONALS 31� by primitive recursion: For all d; e 2 I with (e)3 = (d)3 + 2 and(e)2 = (d)2:<5; <k1; : : : ; km>; n; (e)2; (e)3 + 1; d; e> 2 I:� by minimalization: For all e 2 I with (e)2 � 2:<6; <k1; : : : ; km>; n; (e)2; (e)3 � 1; e> 2 I:3. The rules mentioned under 1. and 2. yield all elements in I .Given an index number e 2 I , �e denotes the functional with index number e.From the de�nition above it is easy to construct this functional.The index numbers are constructed in such a way that I is a recursive subsetof N and such that:(e)1 : identi�cation number,(e)2 = <(e)2;1; : : : ; (e)2;m> arities of input functions,(e)3 : number of numerical inputs,(e)i�4 : if (e)1 = 4; 5; 6: code numbers of functionals from which �eis constructed, if (e)1 = 2; 3: or additional information.Computation treesThe computation tree of a functional F on function input ~f and numerical input~x can be represented in canonical form by a computation tree. Each node inthe tree corresponds to a step in the computation and sub-results are yieldedby subtrees. The value F (~f)(~x) is in the root.As computation trees are used only to make the de�nition of the T -predicatemore clear, we do not give a very formal de�nition, it easily follows from thesketch below. If the expression F (~f)(~x) = y appears in a note, we intend tostore the objects F; ~f; ~x; y where F (~f)(~x) = y.In the formulas below we assume the function and number input to be of ap-propriate type.� The computation tree of an initial functional consists of one node.Z (~f)(x) = 0S (~f)(x) = yPimn(~f)(~x) = xiAimn(~f)(~x) = fi(~x)� The computation tree of the functional F = Comp[H;G1; : : :Gm] is builtfrom the computation trees of G1; : : :Gm and H .

32 CHAPTER 2. COMPUTABLE FUNCTIONALSF (~f)(~x) = yG1(~f)(~x) = y1 G2(~f)(~x) = y2 : : : Gn(~f)(~x) = yn H(~f)(y1; : : : ; yn) = y� The construction of the computation tree of F = Primrec[G;H] dependson its numerical input.F (~f)(~x; 0) = y F (~f)(~x; n+ 1) = y2G(~f)(~x) = y G(~f)(~x; n) = y1 H(~f)(~x; y1) = y2� The computation the of the functional �[G] is constructed from one ormore computation trees of G.F (~f)(~x; 0) = kG(~f)(~x; 0) = y0 G(~f)(~x; 1) = y1 : : : G(~f)(~x; k) = ykwhere y0; : : :yk�1 6= 0We can encode the tree by a natural numbers if� we represent the functionals by index numbers.� we do not encode the input functions, which are in�nite objects, in thetree but their values may appear in application nodes.

2.1. PARTIAL RECURSIVE FUNCTIONALS 33The T-predicateThe T-predicate tells, given ~f; e 2 I; xs = <x1; : : : ; xn> and z, whether zencodes a computation tree of �e(~f)(x1; : : : ; xn).For all m; k1; : : : ; km a predicate T = Tk1;::: ;km � Pk1�� � ��Pkm�N3 is de�nedby: T (~f)(e; xs; z) () e 2 I & (e)2 = k & (e)3 = lng(xs) &((e)1 = 0 =) z = <(e)1; xs; 0>) &((e)1 = 1 =) z = <e; xs; (xs)1+ 1> & lng(xs) = 1) &((e)1 = 2 =) z = <e; xs; (xs)(e)4>) &((e)1 = 3 =) z = <e; xs; f(e)4((xs)1 : : : (xs)(e)4)> &(e)3 = k(e)4 = lng(xs)) &((e)1 = 4 =) 8i; 4 � i < lng(z)[T (~f)((e)i; xs; zi)] &T (~f)((e)lng(e); ys; zlng(z))where ys = <(z)4;3; (z)5;3 : : : (z)lng(z)�1;3> &(z)3 = z3;5) &((e)1 = 5 =) lng(xs) = 0 =) T (~f)((e)4; xs1:lng(xs)�1; z4) &lng(xs) 6= 0 =)T (~f)((e)4; xs1:lng(xs)�1 ?<(xs)lng(xs) � 1>; z4)) &((e)1 = 6 =) 8i; 4 � i � lng(z)[T (~f)((e)4; xs ?<i>; zi)] &8i; 4 � i � lng(z)[zi;3 6= 0] & zlng(z) = 0 &(z)3 = lng(z)� 3]):We de�ne a partial recursive functional KT that veri�es whether T (~f)(e; xs; z).We stress that KT is not total, because unde�ned values of the input functionsmay cause the veri�cation process to get stuck. To prevent needless nonter-mination, the case (e)1 = 3 (application of an input function), is performedvery carefully: We actually compute as few applications as possible. Givene; xs; z 2 N, �rstly the syntax of a candidate application in z is examined. Welook if z applies the function speci�ed by e to the speci�ed arguments correctly.If indeed we have to do with an application of the right form, the input functionis evaluated to see if it produces the output speci�ed by z.The other cases, (e)1 2 f0; 1; 2; 4; 5; 6g are treated in a straightforward way. Wework out the case (e)1 = 1, the others are tedious, but easy.Let m; k1; : : : ; km 2 N. The functional KT : Pk1 �� � �Pkm is obtained from theT -predicate as follows. Let k = <k1; : : : ; km>.

34 CHAPTER 2. COMPUTABLE FUNCTIONALSWe focus on the case (e)1 = 0:KT (~f)(e; xs; z) =8>><>>:1 if (e)1 = 0 & z = <e; xs; (xs)1+ 1> & lng(xs) = 1;0 if (e)1 = 0 & not : (z = <e; xs; (xs)1+ 1> & lng(xs) = 1);...We also treat the case (e)1 = 3:KT (~f)(e; xs; z) =8>>>>>>>>>><>>>>>>>>>>:...1 if (e)1 = 3 &if (e)3 = k(e)4 = lng(xs) & (e)1 = (z)1 & (z)2 = xsthen (z)4 = f(e)4((xs)1; : : :(xs)lngxs),0 if (e)1 = 3 & not : ((e)3 = k(e)4 = lng(xs) & (e)1 = (z)1 & (z)2 = xs) ;...Here the \if : : : then : : : " is lazy: If the condition is not ful�lled, the then-partwill not be evaluated. By proposition 2.1.7 this construction is partial recursive.The following theorem prepares for the Normal Form Theorem.Theorem 2.1.9 Let m; k1; : : : ; km 2 N. Let ~f 2 P� � � �Pkm and e; xs; z 2 N.Then for KT = KT<k1 ;::: ;km>. we have1. KT is partial recursive.2. KT (~f)(e; xs; z) = 1 () T (~f)(e; xs; z).3. (KT(~f)(e; xs; z) = 0 _KT (~f)(e; xs; z)") () not : T (~f)(e; xs; z).4. 9z[T (~f)(e; xs; z)] =) KT (~f)(e; xs; z)").Proof:1. The partial recursive functionals are closed under de�nition by cases.2. By induction on e.3. Idem.4. By induction on e, essential is our treatment of the case (e)1 = 3.�Now we formulate the Normal Form Theorem.Theorem 2.1.10 (Normal Form Theorem) Letm; k1; : : : ; km; n 2 N. Thereexists a partial recursive functional KT = KT<k1;::: ;km> : P� � � �Pkm � N! Nand a partial recursive function U : N! N such that for all e; x1; : : :xn; z 2 N

2.1. PARTIAL RECURSIVE FUNCTIONALS 351. �e(~f)(<x1; : : :xn>; z)# () 9z[KT (~f)(e; <x1; : : :xn>; z) = 0].2. �e(~f)(<x1; : : :xn>; z) ' U(�z[KT (~f)(e; <x1; : : :xn>; z) = 0]).Proof: Both parts are proven by induction on e. De�ne U : N ! N byU(z) = (z)4. �Consequences of the Normal Form TheoremWe show some consequences of the Normal Form Theorem. For sake of simplic-ity, these are formulated for functionals in P ! P only. Section 2.3 indicateshow to generalize the results.2.1.2 Monotony and compactnessDe�nition 2.1.11 [Odifreddi89] The set P can be furnished with a partialorder �. We call f a subfunction of g, or g an extension of f , notationf � g, ifDom(f) � Dom(g) & 8x 2 Dom(f) [f(x) = g(x)] :The functional F : P! P is monotone if for all f; g 2 P:f � g =) F (f) � F (g);F is called compact if for all x 2 N; f 2 P:if F (f)(x) ' z then 9u 2 P [u �nite & F (u)(x) ' z] :In section 2.2.1 we will give a topological description of the notion compact andmonotone.Proposition 2.1.12 [Odifreddi89] The condition that F is monotone and com-pact can be summarized as: For all f 2 P and x; z 2 NF (f)(x) ' z () 9u; u �nite[u � f & F (u)(x) ' z:]Some examples of monotone and compact functionals are:Example 2.1.13F (f)(x) = f(f(x+ 1));G(f)(x) = (0 if f(4)# _ f(5)#;" otherwise,for G(f)(x) ' G(u)(x); where u = f �f4;5g :Theorem 2.1.14 [Odifreddi89] The partial recursive functionals are monotoneand compact.

36 CHAPTER 2. COMPUTABLE FUNCTIONALSProof: Let F : P! P be a partial recursive functional.monotony: Let f; g 2 P. Suppose F (f)(x)#. By induction on the generation ofF can be proven that each computation tree z of F (f)(x) is also a computationtree of F (g)(x), for all applications of f and g used in the tree are the same.So F (f)(x)# and F (f)(x) = U(z) = F (g)(x).compactness: Let f 2 P. If F (f)(x)# then there is a computation tree z ofF (f)(x), which contains only �nitely many applications of f . Regard the �nitefunction u that is the same as f on input that is used in z and unde�nedeverywhere else. For the same reason as above, z is also a computation tree ofF (f)(x). Thus F (f)(x) = F (u)(x). �Troelstra develops the
oating product topology to derive similar results see[Troelstra73].We did not introduce a notion of recursive relations. An attempt would be:A relation R � P� Nn is recursive if its characteristic functional�R(f; ~x) = (1 if (f; ~x) 2 R0 otherwiseis recursive.As �R is de�ned everywhere, there are no interesting recursive relations. Inparticular there is no recursive relation that can serve in the Normal FormTheorem. The application of theorem 2.1.14 proves this formally.Theorem 2.1.15 1. Let F : P! P be a monotone and compact. If8x 2 N; f 2 P[F (f)(x)#]then F is independent of f , i.e there is a function : N ! N such thatfor all f; x (x) = F (f)(x):If F is recursive then is so.2. Every relation R � P�N whose characteristic functional is compact andmonotone is trivial. This means there is a relation S � N such that forall f; x(f; x) 2 R () x 2 S:If R is recursive then S is recursive as well.Proof:1. If F is a partial recursive functional and 8x8f [F (f)(x)#] then F (;)(x)#.By monotony it follows that F (f)(x) ' F (;)(x) for all f . Now, take (x) ' F (;)(x): If F is recursive, then it follows by proposition that 2.1.4that (x) is partial recursive because ; is a partial recursive function.

2.1. PARTIAL RECURSIVE FUNCTIONALS 372. The characteristic functional of a relation is de�ned everywhere. If R isrecursive, �R = for some recursive function , which is the character-icstic function of S.�In order to get more recursive predicates we can of course change the de�ni-tion of recursive predicate. We should realize that with another de�nition thefunctional F (f)(x) = �y[P (f)(x; y)] may turn out not to be recursive, even ifP is recursive. We conclude that there is no notion of recursive predicate thatmakes sense.2.1.3 SequentialityAnother important property of partial recursive functionals is sequentiality,which we de�ne and prove in a weaker formulation than usual [Barendregt84].We write Fx for �f:F (f)(x).De�nition 2.1.16 A functional F : P! P is sequential if for all x 2 NFx is constant _ 9n 2 N8f 2 P[f(n)" =) Fx(f)"]:Sequentiality of a functional F means that there exists a sequential algorithmto evaluate F (f)(x). If F (f)(x) is not constant in f , the algorithm will usesome values of f . Which values, may depend on f and on x, as in f(f(x+ 1)).If F is sequential one of the values of f will be inspected at �rst; in f(f(x+1))this is f(x+ 1). The �rst input of f , x+1 in the example, can not depend onany value of f . If f is unde�ned on this input, the algorithm that calculatesF (f)(x) will get stuck and F (f)(x). will be unde�ned.As opposed to parallel computations, it is not possible for sequential functionalsto examine two values of f at the same time and take a decision based on thecombined (termination) behaviour.Example 2.1.17 1. The functional F (f)(x) = f(f(x+ 1)) is sequential:if f(x+ 1)" then F (f)(x)".2. The functionalG(f)(x) ' (0 if f(4)# _ f(5)#;" otherwiseis not sequential.Proof: Let x 2 N It is clear that Gx is not constant. We have to showfor all n 2 N there is an f 2 P such that f(n)" and G(f)(x)#. Let n 2 N.If n = 4 then take f = (5; 0). If n 6= 4 then take f = (4; 0).�Theorem 2.1.18 The partial recursive functionals are sequential.

38 CHAPTER 2. COMPUTABLE FUNCTIONALSProof: We �rst give the intuition behind the proof.Suppose F : P ! P is a partial recursive functional, say F = �e: Let f 2 Pand x 2 N: Assume �e(f)(x)#. Examine the computation tree z of �e(f)(x) byvisiting the nodes in post�x order (that is, �rst visiting the subtrees of a nodeand then the node itself) until the �rst application of f appears. Say we comeacross n1; n2; : : :nk and nk represents the application of f to n. This n we arelooking for in the de�nition of sequentiality.By taking a compiler-like view on computation trees, we could say that inputin a node is passed by its subtrees and by trees left from it. Therefore the inputof node nk is not in
uenced by any value of f .We state: For all g 2 P with G(f)(x)#� the computation tree visited in post�x order starts with n1; n2; : : :nk�1.� the kth node represents the application g(n).So, G(f)(x)# =) g(n)#, in other words g(n)" =) G(f)(x)".The example below illustrates this argument. Instead of encoded trees, weshow plain trees. Take F (f)(x) ' � y[f(P21;1(x; y)) = 0]: Compare the compu-tation trees of F (g)(4) and F (h)(4) where g(x) = 0 and h(x) = sg(x). Thecomputation tree of F (g)(4) looks like�y[g(P21;1(4; y))] = 0g(P21;1(4; 0)) = 0P21;1(4; 0) = 0 g(0) = 0If we
atten the tree and underline the �rst application of g, we get<<P21;1(4; 0) = 0>;<g(0) = 0>;<g(P21;1(4; 0)) = 0>;<� y[g(P21;1(4; y))] = 0>>The computation tree of F (h)(4) is�y[h(P21;1(4; y))] = 1h(P21;1(4; 0)) = 1 h(P21;1(4; 1)) = 0P21;1(4; 0) = 0 h(0) = 1 P21;1(4; 1) = 1 h(1) = 1

2.1. PARTIAL RECURSIVE FUNCTIONALS 39Flattened and the �rst application of h underlined, we have<<P21;1(4; 0) = 0>;<h(0) = 1>;<P21;1(4; 1) = 1>;<h(P21;1(4; 1)) = 0>;<� y[h(P21;1(4; y))] = 1>>Indeed, in both
attened the �rst application of f occurs at the same place trees,the
attened trees are equal until the �rst application of f and the applicationis on the same input.In order to turn this idea into a more precise argument, some auxiliary notionsare introduced:Recall that� An encoded computation tree has the form: <e; xs;�e(f)(x); t1; : : : ; tn>,where n � 0, so leaves of the encoded tree have length 3.� For the code of an application holds (e)1 = 3.� For all z 2 N we have (z)0 = (z)1:0 = 0.De�neflat(z) d= 8>>>><>>>>:0 if z =2 Iz if lng z = 3 & z 2 Iflat(z)4 ? � � �? flat(z)lng(z) otherwise?<<(z)1; (z)2; (z)3>>Then flat(z) is the linear representation of z in post�x form. It is well-de�nedbecause z < <z> for all z 2 N.De�ne alsoflattree(f)(e; x) d= flat(�[T (f)(e; <x>; z)]):if �e(f)(x)# then flattree(f)(e; x) is its
attened computation tree.Finally, de�nefirstapp(z) = (�i[(z)i;1;1 = 3] if 9i[� lng z[(z)i;1;1 = 3];0 otherwise:Then, by induction on the generation of e 2 I , we can prove: For all x, for alle 2 I , for all f and g 2 P�e(f)(x)# =) (flattree(f)(e; x))1:k = (flattree(g)(e; x))1:k& (flattree(f)(e; x))k;1;1 = (flattree(g)(e; x))k;1;1 = 3& (flattree(f)(e; x))k;1;2 = (flattree(g)(e; x))k;1;2where k = firstapp(flattree(f)(e; x)):Now we can prove sequentiality of partial recursive functionals easily. Let F bea partial recursive functional, suppose F = �e. Let x be in N.

40 CHAPTER 2. COMPUTABLE FUNCTIONALSIf Fx is not constant, then there is an f 2 P such that F (f)(x)#: Letz = flattree(f)(e; x);k = firstapp(flattree(f)(e; x));n = (flattree(f)(e; x))k;1;2:We claim: 8g 2 P[g(n)" =) Fx(g)"].Suppose g 2 P and F (g)(x)#. We prove g(n)#: Then(flattree(g)(e; x))k;1;1 = 3;(flattree(g)(e; x))k;1;2 = n;(flattree(g)(e; x))k;1;3 = g(n):We see G(f)(x)# =) g(n)#. In other words: g(n)" =) G(f)(x)".�Application 2.1.19 The functional in example 2.1.17 is not partial recursive.G(f)(x) ' (0 if f(4) ' 0 _ f(5) ' 0" otherwiseWe remark that the restriction if G to T, the set of total functions, is partialrecursive: We can test f(4) and f(5) in any order without risk of nontermina-tion.The restriction to PR, the set of partial recursive functions is not partial recur-sive. However, if the input function had been given as index e of 'e, we wouldhave been able to write down a partial recursive de�nition of g: Disposing ofthe code e, we can manipulate the computation of 'e: (e; x)' (0 if 9z[T (e; <4>; z)_ T (e; <5>; z)];" otherwise:Then the function is partial recursive and (e; x) ' G(f)(x). Such a functionis called an e�ective operation. In chapter 4, we will investigate the relationbetween computable functionals and e�ective operations.2.1.4 Do the partial recursive functionals capture the intuitivenotion of computability on functions?In the previous paragraph we found out that essentially parallel computationsare not partial recursive. However, we may ask ourselves whether parallelismis conceptually computable, so whether the partial recursive functionals coverthe intuitively computable functionals. Parallelism occurs in nature and inhardware: It is possible to put gates in parallel and then we can implement thefunctional in example 2.1.17 as an electronic circuit.On the other hand, we may believe that we can overview only one processat the time. Although parallel evaluation of certain expressions is possible,

2.2. EFFECTIVE CONTINUOUS FUNCTIONALS 41second order computability implemented in functional programming languagesis in essence partial recursiveness. This notion seems easier to implement thane�ective computability, the second notion of computability.E�ective continuity is introduced in the following chapter. According to thisnotion, parallelism is computable. On total functions, where no problems withnontermination of input can arise, it coincides with partial recursiveness. So,since functions that represent real numbers are total, we do not have to choose.2.2 E�ective continuous functionalsA second attempt to formalize the notion of computable functional is basedon an e�ective version of compactness and monotony. In 2.1 we argued thatcomputable functionals should be compact: A terminating computation canuse only �nitely many values of the input function. It is also reasonable torequire computable functionals to be monotone because an increase of informa-tion about the input function should yield as least as much information aboutthe output. Of course, computable functions are computable on �nite functions,that can be encoded as natural numbers.On the other hand, if a functional meets the three requirements monotony, com-pactness and computability on �nite functions, it can intuitively be computed:Provide the input function f by successively specifying new values about theinput function and start computing on these �nite approximations in parallel.If the functional is de�ned on f then, by compactness, this process will stop andit will produce the correct answer by monotony. As compactness and monotonycan be described by a topology, namly the positive information topology, thisnotion of computability is called e�ective continuity. Because we can modelparallelism, it is a proper extension of partial recursiveness. In order to fo-cus on the essential ideas, rather than on complex formulation, we introducethese notions for functionals in P ! P. In chapter 2.3.2 we indicate how thetheory can be generalized to functionals of arbitrary types. Before giving thede�nition of e�ective continuous functionals, two preparing sections about thepositive information topology and �nite functions respectively, are presented.2.2.1 Compactness and monotony revisedThe set P can be furnished with a topology, determined by the open basic opensets: bu = ff 2 P j u � fg where u is a �nite function:Proposition 2.2.1 The set B = fbu j u 2 P j u �niteg indeed is the basis of atopology on P.

42 CHAPTER 2. COMPUTABLE FUNCTIONALSProof: P = b; 2 B. Suppose bu; bv 2 B. Thenbu \ bv =8><>:; if 9i 2 Dom(u) \ Dom(v)[u(i) 6= v(i)][u [v = otherwise.ff 2 P j u � f & v � fgSo for all p 2 bu \ bv there is a basic set U with p 2 U � bu \ bv. �Then open sets are unions of basic open sets. This topology is called thepositive information topology because basic sets are characterized by a�nite amount of positive information of the form f(x) = y. Now we can speakabout continuous functionals in P! P.Remark 2.2.2 The positive information topology coincides with the Scotttopology induced by the c.p.o. (P;�), see [Barendregt84] section 1.2 for anexposure of [Scott]. We use the result that in an algebraic c.p.o., the sets buwhere u compact, form a basis of the Scott topology and the observation thatthe compact element are just the �nite functions. Details cf. [Barendregt84].Futhermore, the topology is homeomorphic to fN[f"ggN. Here fN[f"gg hasthe
at topology, where the collection of open sets is P(N) [fN[f"gg. Thetopology on fN[f"ggN. is formed by taking the in�nite product. The key tothe homeomorphism is the fact that in the basic open sets of an in�nite producttopology only �nite products appear and in the basis of the positive informationtopology only �nite functions.Theorem 2.2.3 [[Odifreddi89], ch. II-4] A functional F : P ! P is continu-ous if and only if it is monotone and compact.Proof: A basic theorem from topology states that a function f is continu-ous if and only if the preimage f�1(U) is open for all basic open sets U. Thecharacterization of open sets we will use here is: A is open if and only if for allx 2 A there is a basic open set U such that x 2 U � A.=) : Let F be continuous. Let x 2 N and f 2 P. Assume F (f)(x)#and F (f)(x) ' y. Consider the �nite function f(x; y)g: Then bu is open andF (f)(x) 2 bu, which means f 2 F�1(bu). By continuity F�1(bu) is open. Usingthe characterization above, there is a basic open set bv with f 2 bv � F�1(~u)which implies:1. F (v)(x) ' y and v � f . Thus F is compact.2. If g � f then g 2 bv, so F (g)(x) ' y. Hence F is monotone.(=: Assume F is monotone and compact. Let u be a �nite function. We showF�1(bu) is open.Suppose f 2 F�1((bu)). This means f 2 F�1(bu) or u � F (f) In other words,for each pair (xi; yi) 2 u one has F (f)(xi) ' yi. Now from compactness followsfor all xi 2 Dom(u) there is a function vi with F (vi)(xi) ' yi. Let w = Sivi.

2.2. EFFECTIVE CONTINUOUS FUNCTIONALS 43Being a �nite union of �nite functions, w is a �nite function itself. Becausevi � f for all i we also have w � f , which means f 2 bw.By monotony we have for all (xi; yi) 2 u and all g � w � vi that F (g)(xi) ' yi.Thus u � F (g) for all g 2 bw. Hence F (bw) 2 bu, i.e. bw � F�1(bu). Summarizing,f 2 bw � F�1(bu). �Corollary 2.2.4 [Odifreddi89] All partial recursive functionals are continuous.2.2.2 Encoding �nite functionsFinite functions are partial recursive, so they have a G�odel index in the sequence'0; '1; '2; : : : of all partial recursive functions.However, the �nite functions can be encoded as a natural number in such away that we can compute more information from the indexes. Especially, thedomain is computable from this index.For instance the encoding function can be de�ned by (see 2.1.1)f(x1; y1)(x2; y2); : : :(xn; yn)g 7! <<x1; yn>; : : : ; <xn; yn>> (n � 0):The range of this function, that is the set of natural numbers that encode �nitefunctions, is called I�n. Its elements are called canonical indexes for �nitefunctions, in contrast to (G�odel) indexes. If e 2 Ifin then �e denotes the �nitefunction encoded by e.Theorem 2.2.5 ([Rogers67], ch. 5) There exists a recursive function t : N!N that translates special indices to G�odel indices, i.e. for all e 2 Ifin't(e) = �e;but there is no partial recursive function s : N! N to do the converse, i.e. forall e 2 I and 'e �nite�s(e) = 'e:Proof: De�nef(e; x) = ((e)k)2 where k = �i � lng(e)[(e)i;1 = x]:Recall that ()i selects the ith element from an encoded sequence and (x)i = 0 ifi > lng x. Then f is partial recursive and we can obtain t by the Snm-theoremwith f(e; x) = 't(e).For part two of the theorem, suppose we have a partial recursive function ssuch that �s(e) = 'e for all e 2 I and 'e �nite. De�neF (e; x) = ('e(e) if x = e" otherwise.Then by the Snm-theorem there is a partial recursive function f such thatF (e; x) = 'f(e)(x). Besides, 'f(e) is �nite and s(f(e)) = 0 () 'f(e) =; () 'e(e)#. As s is total on elements of I , we have reduced K to the setf0g. This contradicts the undecidability of K. �

44 CHAPTER 2. COMPUTABLE FUNCTIONALSProposition 2.2.6 The domain of �e is uniformly decidable in e, which meansthat the function f : N2 ! Nf(e; x) = (1 if x 2 Dom(�e); e 2 Ifin;0 otherwise,is partial recursive.Proof: De�nef(e; x) = (1 9i � lng(e)[(e)i;1 = x];0 otherwise.�2.2.3 E�ective continuous functionalsUsing the encoding of �nite functions as a natural number, the behaviour of Fon �nite functions can be described by a function.De�nition 2.2.7 The compacti�cation of a functional F is a function h =hF : N! N de�ned byh(e; x) ' (F (�e)(x) if e 2 Ifin;" otherwise:Note that it is possible to de�ne the compacti�cation as a total function. Wedid not do this for the sake of simplicity.A monotone and compact or, equivalently, continuous functional F is deter-mined by its behaviour on �nite functions:F (f) =[fF (u) j u �nite & u � fg;so we can describe F in terms of its compacti�cation.Proposition 2.2.8 If F : P ! P is a compact and monotone functional andh is its compacti�cation thenF (f)(x) ' h(�e[�e � f & h(e; x)#]; x):Proof: Obvious. �This shows us that if a continuous functional has a computable compacti�cation,it can intuitively be computed by means of parallelism.Let f 2 P and x 2 N. We write for the moment f(i)#k if f(i) produces aresult within k seconds. Let un;k = f(i; f(i)) j i < n & f(i)#kg. The un;k's

2.2. EFFECTIVE CONTINUOUS FUNCTIONALS 45are intuitively computable in f : Examine which of the f(0); : : :f(n) terminateswithin k seconds. In order to compute F (f)(x), compute, in parallel,F (u1;1)(x); F (u1;2)(x); : : :F (u2;1)(x); F (u2;2)(x); : : :...If some of the F (un;k)(x)#, then by monotony F (f)(x) = F (un;k)(x). As F iscompact, if F (f)(x)# then F (un;k)(x)# for some un;k .De�nition 2.2.9 A functional F : P ! P is e�ectively continuous if it iscontinuous and its compacti�cation is partial recursive. Thus we dispose of apartial recursive function : N2 ! N such that (e; u)' F (�e)(x):From theorem 2.1.15 follows that the natural notion of e�ective continuouspredicate does not make sense.Theorem 2.2.10 Every partial recursive functional is e�ectively continuous.Proof: Let F : P! P be a partial recursive functional and let F = �d. Lett : N! N be a recursive function that translates special indexes to their G�odelnumbers. Now de�ne d(e; x) ' U(�z[T1;1(�t(e))(d;<x>; z)]:Then d(e; x) ' �d(�e)(x)) so and the it is the compacti�cation of �d. By theSubstitution Property (2.1.6) d is partial recursive. �Example 2.2.11 Revising example 2.1.13 we see that the functional G : P!P withG(f)(x) = (0 if f(4)# _ f(5)#;" otherwise,is e�ectively continuous.Proof: From example 2.1.13 we know G is continuous. According to propo-sition 2.2.6 the domain of �e is decidable if we have e 2 Ifin, so we may take (e; x)' 8><>:0 if 4 2 Dom�e;0 if 5 2 Dom�e;" otherwise:Then is partial recursive and it is the compacti�cation of G. �Here we see e�ective continuity is a proper extension of partial recursiveness.Theorem 2.2.12 There exists a e�ective continuous functional that is not par-tial recursive.

46 CHAPTER 2. COMPUTABLE FUNCTIONALS2.3 Survey and generalization of results2.3.1 SummaryThe diagram below shows the main notions in this chapter and their relations.notions of partial recursive =) e�ectively continuouscomputability: 6(= +auxiliary notions: compact & monotone () continuous2.3.2 Generalizing the resultsMost of the results about computable functionals are formulated for functionalshaving type P! P. Generalizing these to functionals of any type, only requiressome natural extensions and somewhat more complex notations; no new ideasare needed. We give a short overview of the general de�nitions:De�nition 2.3.1 Let m; k1; : : : ; km; n 2 N. Let F : Pk1 � � � � �Pkm .The partial order � on P can be extended to �k on Pk by:f �k g d= Dom(f) � Dom(g) & 8~x 2 Dom(f) [f(~x) = g(~x)] :Then �~k on Pk1 � � � � � Pkm can be de�ned by pointwise �ki on Pki .1.2. The basis of the positive information topology on Pk is justbu = ff 2 Pk j u � fg where u is a �nite function in Pkand Pk1 � � � � � Pkm can be equipped with the product topology.3. The functional F is monotone if for all ~f;~g 2 Fdom(F)~f � ~g =) F (~f) �~k F (~g);and F is called compact if for all x 2 Nk; f 2 Fdom(F)if F (~f)(~x) ' z then 9u 2 P [u �nite & F (~u)(~x) ' z] :4. We write F~x = �~f:F (~f)(~x). Then F is said to be sequential if for all~x 2 NkF~x is constant _ 9i9~n 2 Nk8f 2 Fdom(F)[fi(~n)" =) F~x(~f)"]:Encoding �nite functions in Nk ! N, is done like encoding unary functions,namely by encoding k + 1-tuples.

2.4. RESTRICTED FUNCTIONALS 47De�nition 2.3.2 The compacti�cation for a functional in Pk1 � � � � � Pkmis F is a function h : Nm+1 ! N de�ned byh(~e; ~x) ' (F (�e1 ; : : : ; �em)(x) if e1; : : :em 2 Ifin;" otherwise:A functional F is e�ectively continuous if it is continuous and its compact-i�cation is partial recursive.Now we can prove generalizations of former theorems by similar, { but morecomplex in formulation { arguments.Theorem 2.1.14 can be generalized toTheorem 2.3.3 All partial recursive functionals are monotone and compact.Theorem 2.1.18 becomesTheorem 2.3.4 All partial recursive functionals are sequential.Theorem 2.2.3 is extended toTheorem 2.3.5 A functional is compact and monotone if and only if it iscontinuous.As an extension of Theorem 2.2.10 we getTheorem 2.3.6 Every partial recursive functionals is e�ectively continuous.We will use these results later, especially the case Pk ! P, which is applicableto representations of real functions in several variables.2.4 Restricted functionalsFunctionals that model functions on real numbers need not to be applicableto all elements on P, only on the subset of representations of real numbers.For instance such functionals have type Rint ! Rint. Representations of realnumbers are total functions.A functional that is applicable only to a subset V � P is called a restrictedfunctional.1 In this chapter we explore computability | both partial recur-siveness and e�ective continuity | on restricted functionals. How can thesebe de�ned. Do the properties proven for non-restricted functionals also holdfor restricted functionals? In particular we want to compare their power ofcomputability.We will see that the situation for restricted functionals is very much alike thatfor to non-restricted functionals. Some adaptations are needed in the treatmentof e�ective continuity and compactness, since �nite functions need not to be inV .1In the literature the term restricted functional is sometimes used for the case V = T .

48 CHAPTER 2. COMPUTABLE FUNCTIONALSConcerning computability, it is clear that every computable functionals that iscomputable on P is also computable on a subset of it. Furthermore we willshow the converse: Every computable restricted functional has a computableextension to P. This means that we are not able to compute more functionalsdue to the fact we have more information about the input, for we know we arein V .Finally, we will study the case V � T , V consists of total functionals, whichoccurs when describing real functions. Some more elegant formulations of exist-ing properties are proven. The most important result is that for V � T partialrecursiveness coincides with e�ective continuity.In this entire section V is a subset of P. Just as in the previous section resultscan be generalized to functionals other types. This time the extension of thede�nitions is left to the reader.2.4.1 Partial recursive restricted functionalsAs an input function is viewed as an object whose values can be used in acomputation, values of any function can be substituted for values of elementsin V . Therefore partial recursive restricted functionals are nothing more thanrestrictions of partial recursive non-restricted functionals.De�nition 2.4.1 1. A functional F : V �Pm is partial recursive if F is therestriction to V of some partial recursive functional.2. A predicate P � V is recursive if its characteristic functional is recursive.Example 2.4.2 The representation of + on interval representation is partialrecursive:Plus : Rint �Rint ! RintPlus(�; �)(n) = <�0(n) + �0(n); �00(n) + �00(n)>:In contrast to non-restricted predicates, there are non-trivial recursive restrictedpredicates. For instance, take V = T and let u be the �nite function f(4; 0); (5; 0)g.Then the predicateff 2 T j u � fgis partial recursive, for the functional� : T! f0; 1g;�(f)(=)(1 if f(4) = 0 & f(5) = 0;0 otherwiseis so.

2.4. RESTRICTED FUNCTIONALS 492.4.2 E�ective continuous restricted functionalsDe�nition 2.4.3 A functional F : V ! P is compacti�cable if for all f 2P; x 2 N there is a �nite function u such that for all g 2 bu \ VF (f)(x) ' F (g)(x):In words: all elements of bu to which F is applicable are mapped onto the sameelement.Like compactness and monotony, compacti�cability can be described topolog-ically. The topology on V is induced by the positive information topology P.Open sets in this induced topology are intersections of open sets in P and V .A basis can be obtained by taking the intersection of basic open sets in P andV .Theorem 2.4.4 A functional F : V ! P is continuous if and only if it iscompacti�cable.Proof: =) : Assume F is continuous. Let f 2 V; x 2 N. Assume F (f)(x)#and F (f)(x) ' y. Consider the �nite function f(x; y)g: Then bu is open in P.and F (f)(x) 2 bu. By continuity F�1(bu) is open in V . Thus there exists a �nitefunction v such thatf 2 bv \ V � F�1(~u);which means F (bv) � bu. So for all g 2 bv \ V we have F (g)(x) ' y.(=: Assume F is compacti�cable. We wish to prove for all �nite u, F�1(bu) isopen in V , in other words F�1(bu) \ V is open in P.Let f 2 V; u 2 P �nite and suppose f 2 F�1(bu) \ V . Then u � F (f) whichmeans for each pair (xi; yi) 2 u we have F (f)(xi) ' yi. By F is compacti�cableit follows that, for all xi, there is a �nite function wi with8g 2cwi \ V [F (g)(xi) ' yi] (*)De�ne w = Siwi. Then f 2 bw, as wi � f for all i. From (�) follows F (bw \V) � u so bw \ V � F u. �Although �nite functions need not to be in V , the entire behaviour of a com-pacti�cable restricted functional can be described using only �nite functions.By encoding them we have a compacti�cation again.De�nition 2.4.5 Let F : V ! P be a compacti�cable functional. A com-pacti�cation of F is a partial function h = hF : N2 ! N such that by for allx 2 N, for all e with b�e \ V 6= ;h(e; x) ' y () 8f 2 b�e \ V [F (f)(x) ' y]Note that h needs not to be recursive since its behaviour is only prescibed onelement in N� V .

50 CHAPTER 2. COMPUTABLE FUNCTIONALSProposition 2.4.6 Let F : V ! P be a compacti�cable functional and let hbe a compacti�cation of F . Then for all f 2 VF (f)(x) ' h(�e[�e � f & h(e; x)#]; x):De�nition 2.4.7 1. A functional F : V ! P is e�ectively continuous if itis continuous and it has a compacti�cation that is partial recursive.2. A predicate P � V e�ectively continuous if its characteristic functional ise�ectively continuous.An elementary lemma from topology states that the restriction of a continu-ous function is continuous but not its converse. We will prove that even therestriction of an e�ectively continuous function is e�ectively continuous andconversely.Proposition 2.4.8 If F : P ! P be a compact and monotone functional andh : N ! N is its compacti�cation, then F �V : V ! P is compacti�cable andh : N! N is also a compacti�cation of F �V .Here we see that the de�nition of restricted e�ective continuous functional coin-cides with the de�nition if we have V = P. The following corollary shows thatfor restricted functionals also, partial recursiveness implies e�ective continuity.Remark that, contrary to non-restricted functionals, the compacti�cation hFof a restricted partial recursive functional F is not e�ective in the index of thefunctional.Corollary 2.4.9 Each partial recursive restricted functional is e�ectively con-tinuous.Proof: If F : V ! P is partial recursive by de�nition it is the restriction ofa partial recursive functional G : P! P, which is e�ectively continuous. Thenalso its restriction is e�ectively continuous. �Theorem 2.4.10 Any continuous restricted functional has a continuous ex-tension. If F is e�ectively continuous it has a e�ectively continuous extension.Proof: Let F : V ! P be a continuous functional and let h be a compacti�-cation of F , which meetsF (f)(x) ' h(�e[�e � f & h(e; x)#]; x):Now just apply this de�nition to all elements of P and de�ne G : P! P byG(f)(x) ' h(�e[�e � f & h(e; x)#]; x):It is not di�cult to see that g is compact and monotone and therefore contin-uous.If F is e�ectively continuous, there exists a partial recursive compacti�cationfor F , that is one for G. �

2.4. RESTRICTED FUNCTIONALS 51Theorem 2.4.11 ([Odifreddi89], ch. II-4) There is a total e�ectively con-tinuous functional that can not be extended to a total e�ectively continuousfunctional.Proof: (suggested by [Odifreddi89]) Consider the restricted functionalF : PR! P;F (f)(x) = f(�z[f(z) = 'z(z)]);which should be read as= f(�z[T ((z)1; <(z)1>; (z)2) & f(z)1 = U(z)2])1;Then F is obviously partial recursive and thus e�ectively continuous. And F isalso total: Let f 2 PR be total, say f has G�odel index e. Then f(e) = 'e(e).So F (f)(c)#.Now assume F has a total e�ectively continuous extension G : P ! P.We derive a contradiction.Let x 2 N and consider the functionf(z) = ('z(z) + 1 if z 2 K;0 otherwise:Because G is total G(f)(x)#. Since G is e�ectively continuous, there is a�nite function u � f such that for all g 2 bu \ PR we have F (f)(x) 'F (g)(x). Let m = max(Dom(u).)De�neg(z) = (g(z) if z � m;'a(a) otherwise;where a = �a[a 2 K & 'a(a) 6= G(f)(x)]:Then u � g and g is a partial recursive, because g is constant exceptfor �nitely many values. Say g = 'd. Summarizing g 2 bu \ PR, soG(g)(x) = G(f)(x).On the other hand, G(g)(x) = F (g)(x) = g(�z[g(z) = 'z(z)]). Letz0 = g(�z[g(z) = 'z(z)]).Suppose z0 � m. then g(z0) = 'z0(z0), but g(z0) = f(z0) ='z0(z0) + 1: contradiction.So z0 > m. Thus g(z0) = 'a(a) 6= G(f)(x). However, we also haveG(f)(x) = G(g)(x)F (g)(x) = g(z0). Contradiction.We conclude there is no total e�ectively continuous extension of F to P. �

52 CHAPTER 2. COMPUTABLE FUNCTIONALS2.4.3 Functionals restricted to total inputNow we look closer at the case V � T, where V contains only total functions. Inthis case a di�erent formulation for the property \compacti�cable" is possible,which the intuitionists know as the General Principle of Continuity.Proposition 2.4.12 Let V � T. Let F : V ! P be a restricted functional.The following formulations are equivalent:1. F is compacti�cable,2. 8f8x9m8g[f =m g =) F (f)(x) = F (g)(x)],3. 8f8n9m8g[f =m g =) F (f) =n F (g)].Proof:1 =) 2 : Let f 2 V ,x 2 N. Because F has a compacti�cation there is a �nitefunction u such that for all f 2 Dom(bu) \ VF (f)(x) ' F (g)(x):Let m = max(Dom(u)). Then for all g; f =m g we have g 2 bu, soF (f)(x) ' F (g)(x).2 =) 1 : Supose 2. Let f 2 P and x 2 N. Then we have an m such that8g[f =m g =) F (f)(x) = F (g)(x)] Take u = f (0; f(0)); (1; f(1)); : : :(m; f(m))g.Thus for all g 2 bu we have F (f)(x) = F (g)(x)]. This is exactly 1.2 () 3: easy.�De�nition 2.4.13 Let F be a compacti�cable functional. Let f 2 V; x 2 N.An m such that8g[f =m g =) F (f)(x) = F (g)(x)]is called a modulus of continuity of F at (f; x), an m such that8g[f =m g =) F (f) =n F (g)]is called a n-modulus of continuity at f .Theorem 2.4.14 Let V � T and F : V ! P. Then F is partial recursive ifand only if it is e�ectively continuous.Proof: (=: Let F be a restricted e�ectively continuous functional. Then ithas a partial recursive compacti�cation, say h = 'd, such that (by Proposition2.4.6) one hasF (f)(x) ' h(�e[�e � f & h(e; x)#]; x):

2.4. RESTRICTED FUNCTIONALS 53As � is decidable on T, we can compute F by means of the T -predicate forfunctions:F (f)(x) ''d(�k[8x � maxDom(�e)[�e(x) = f(x)] & T (d;<(k)1; x>; (k)2)]; x):Recall that (k)1 and (k)2 select the constituents of the ordered pair k. �2.4.4 SummaryWe give an overview of the properties of functionals we have de�ned until nowand their relations.In the diagram below the �rst line is about non-restricted functionals; the sec-ond about restricted. The \implication" A 9=) B means If F �V : V ! P hasproperty A then there is an extension of F to P with property B.P : partial =) e�ectively (= continuous () compact &recursive continuous monotone+ * 9 + * 9 + * 9 + * 9V : partial =) e�ectively (= continuous () compacti�cablerecursive continuousThe \implications" 9=) do not hold if exclusively total functionals are consid-ered.

54 CHAPTER 2. COMPUTABLE FUNCTIONALS

Chapter 3Computability onrepresentations of realnumbersBeing equipped with a notion of computability on functions, we wish to explorewhich operations on representations of real numbers can be computed. Thischapter is concerned with three kinds of operations on representation systems.Firstly, computable approximations are considered. We argued in 1.1.2 thata representation that is suited for implementation should have the e�ectiveapproximation property: Given a representation � there must be an e�ectiveway to approximate �(�) upto any precision.This means that there is a computable functional A : V �Q+ ! Q that mapsa representation and a positive distance q to a rational that is not more than qaway from �(�).Moreover we study translations between representation systems. Does a com-putable functional exist that translates an element in one system into a repre-sentation of the same real number in the other system? We prove that a systemhas the e�ective approximation property if and only if there is a computabletranslation to Rint. Two system that can e�ectively be translated into eachother will be called recursively equivalent.Finally, we de�ne a notion of computable real functions on a representationsystem. Unfortunately, the class of computable real functions depends on therepresentation. So there is no absolute notion of computable real function.We work out the computability of +, sin and <. Two recursively equivalentrepresentations determine the class of computable real functions.We treat the relations between the mentioned operations and explore the com-putability of these in the standard representation systems from 1.1.4, whichwill appear to be di�erent from computational point of view. An importantresult is that in Rint all computable functions are continuous in the Euclideantopology.This chapter is organized as follows. Section 3.1 de�nes the e�ective approxi-mation properties and proves this property for the systems presented in 1.1.455

56 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONSWe work out the notions of computable translations and formulate all positiveresults in subsection 3.2.Section 3.3 introduces computable real functions inRn! Rand negative resultsconcerning translations are proved.The reader is referred to 3.2.1 and to 3.3.1 respectively for a summary of thecomputable translations and functions.Note that representations of real numbers are total functions, so the notions ofpartial recursiveness and e�ective continuity coincide by 2.4.14.3.1 Approximations of real numbersDe�nition 3.1.1 A representation system (V; �) has the e�ective approxi-mation property if there exists a partial recursive functional, called an ap-proximator of (V; �), A : V �Q+ ! Q such that for all � 2 V; q 2 Q+jA(�)(q)� �(�)j < q:In words: The distance between A(�)(q) and �(�) is less than q; Physicists alsouse the notation �(�) = A(�)(q)� q.In a picture: q qA(�)(q)��(�)As announced in chapter 1.1.2 real numbers can e�ectively be approximated inthe systems we consider.Theorem 3.1.2 The systems Rint, Rcauchy, RB-ary, and Rded satisfy the �niteapproximation property.Proof: We de�ne an approximator for each system. The correctness is easilyseen in most cases. Only Rded is treated more elaborately.� Rint: De�ne Aint : Rded �Q+ ! QAint(�)(q) = �0(�n[lng(�(n)) < q]):Note that lng(�(n)) = �00(n)� �0(n) is partial recursive in � and n.� Rcauchy: An approximator for Cauchy-sequences Acauchy : Rcauchy�Q+ !Q is de�ned byAcauchy(�; c)(q) = �c(p�1);where p 2 N is such that 2p < q:

3.1. APPROXIMATIONS OF REAL NUMBERS 57� RB-ary: De�ne AB-ary : RB-ary�Q+ ! QAB-ary(�)(q) = n0Xi=0 �iBi ;where n0 = �n � 110n < q� :� Rded: The key to the algorithm for Dedekind cuts is to \take samples of�" with steps of length q: If we �nd a k 2Zsuch thatk � q 2 � and (k + 1) �q =2 �we know k � q < �ded(�) � (k + 1) �q, sojk � q � �ded(�)j � q:Quite arbitrarily, we start looking at 0. If 0 2 �, we look for k > 0, if0 =2 �, we search among negative k's.Now de�ne Aded : Rded �Q+ ! Q byAded(�)(q) = (q ��k [(k + 1) �q =2 �] 0 2 �;�q ��k [�k � q 2 �] 0 =2 �:�It is more common to de�ne a Cauchy sequence without mentioning the modulusof convergence. Then we get: A Cauchy sequence is a sequence �0; �1; : : : suchthat 8k 2 N9N8n;m� N �j�n � �mj < 12k � :We have not used this de�nition because it does not have the e�ectively approx-imation property. Although we know a Cauchy sequence has a limit, a pre�xof a Cauchy sequence tells nothing about value of the limit.Let S be the set of Cauchy sequences as meant above; then �S takes the limitof a sequence.Theorem 3.1.3 The representation system (S; �S) does not have the e�ectiveapproximation property.Proof: Assume A : S�Q+ ! Q is a partial recursive approximator. Considerthe zero function 0. Then �S(0) = 0, so A(0)(12) � 12 . Because A is partialrecursive, it has a modulus of continuity at (0; 12), say m. De�ne�(n) = (0 if n � m;1 otherwise.Then � =m 0, so A(0)(12) = A(�)(12) � 12 : Then����A(�)(12)� �S(�)���� = ����A(�)(12)� 1���� > 12 :This contradicts the assumption that A is an approximator. �

58 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONSWe may also wonder whether it is necessary to represent a Dedekind cut by itscharacteristic function, rather than by its \semi-characteristic function" ����(q) = (1 if q 2 �;" otherwise.The answer is, again, no because it is not possible to approximate a \semi-recursive" Dedekind cut e�ectively. The argument is the same as above: Anapproximator is not continuous. Remark that we have to do with partial func-tions.3.2 Translations between representation systemsDe�nition 3.2.1 Let (V; �) and (W; �) be representation systems of real num-bers.1. A translation from (V; �) to (W; �) is a functional F : V ! W such thatfor all � 2 V�(F (�)) = �(�):So a translation translates representations of a number in V to a repre-sentation of the same number in W .In a commuting diagram, we haveV F� W�R2. If there exists a partial recursive translation from V to W , we write:(V; �)4r (W; �).3. If both (V; �)4r (W; �) and (W; �) 4r (V; �), we say that (V; �) and (W; �)are recursively equivalent, which is denoted by (V; �)'r (W; �).Remark 3.2.2 � The relation 'r is clearly an equivalence relation Therelation 4r is a preorder; V 4r W can be interpreted as \representationsin V contain as least as much information as elements in W" becauseinformation in W can be computed from V .� (V; �)'r (W; �)& (V; �)4r (S; �)) =) (W;�) 4r (S; �)and(V; �)'r (W; �)& (S; �) 4r (V; �)) =) (S; �) 4r (W;�) :

3.2. TRANSLATIONS BETWEEN REPRESENTATION SYSTEMS 59� A translation induces an isomorphism between the quotient structures< V= �� ;+V ; �V ;�V ; 0V ; 1V > and < W= �� ;+W ; �W ;�W ; 0W ; 1W >.Here +V , �V , �V , 0V , 1V and +W , �W , �W are representations of +; �;�; 0; 1 in (W; �) resp. (W; �).Theorem 3.2.3 Let (V; �) be a representation system. Then (V; �) has thee�ectively approximation property if and only if (V; �)4r (Rint; �int).Proof:=) : Let A be a recursive approximator of V . The idea is to approximate areal number successively with 1; 12 ; 14 ; : : : :Then we get a sequence of segmentswhose lengths converge to 0 and whose intersection is nonempty. The onlything to do is to indicate subintervals that are nested. Now de�ne F and G byF : V ! P;F (�)(n) =hA(�)(12n) + 12n ; A(�)(12n)� 12n iand G : V ! Rint;G(�)(0) = F (�)(0);G(�)(n+ 1) = hmax(G(�)(n)0; F (�)(n+ 1)0);min(G(�)(n)00; F (�)(n+ 1)00)i:Then indeed G(�) 2 Rint and �(�) = �int(G(�)).(=: Let F : V ! Rint be translation from V to Rint. Then A : V �Q+ ! Qde�ned by F (�)(q) = �0(�n[lng(�(n)) < q]) is an approximator. �Corollary 3.2.4 � Rcauchy 4r Rint,� RB-ary 4r Rint for all bases B,� Rded 4r Rint,Theorem 3.2.5 Rint 'r Rcauchy.Proof: We must show Rint 4r Rcauchy. The partial recursive functionalF : Rint ! Rcauchy;F (�)(n) = h�(n)0; �k[�(k) � 12n]i;translates an interval representation � into a Cauchy representation, for �(�) =limn!1 �0(n) = �(F (�)(n)). �Theorem 3.2.6 Let A and B be bases. If 1B has a �nite A-ary expansion, thenRA-ary 4r RB-ary.

60 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONSProof: We start with an example. Take A = 2; B = 10. Then 12 has a �nitedecimal expansion for [0:5]10 = 12 . We write e = [2:71828105904 : : :]10 in binarynotation.� step 1: Translate the part before the dot to binary representation, usingthe known algorithm: [2]10 = [10]2.� step 2: Translate the part behind the dot in the following way:12 = 0:5=0:71828 : : :n10:514 = 0:25=0:21828 : : :n0018 = 0:125=0:21828 : : :n10:125116 = 0:0625=0:10328 : : :n10:0625=0:041 : : : nThen each division needs only a �nite part of the input [0:71828 : : :]. Indeed inthe nth one we need the same number of digits as [12n]10. Furthermore, we havee = [10]2 � 1 + 1 � 12 + 1 � 14 + 0 � 18 = [10:1101 : : :]2We stress that we work purely syntactical. If � = 0:999 : : : Then [�]10 = 1 =2 � 0:5. However we proceed as follows:0:5=0:999 : : :n10:50:25=0:499 : : :n10:25Thus the algorithm will yield 0:111 : : : and indeed [0:999 : : :]10 = [0:111 : : :]2.In general, if in the 12n has k decimal digits nth division, we do not considermore than k digits of the input.Now, let A;B be arbitrary bases and let � 2 RA-ary. Find digits d0; d1; : : : bysuccessive long division such that[�]A � n�1Xi=0 diBi = dn � 1Bn + rnwith rn � 1Bn and 0 � dn < A� 1:Then [�]A = 1Xi=0 diBi = [�]B:The correctness of the long division algorithm ensures the existence of dn; rnwith rn � 1Bn . By induction follows 0 � dn < A� 1. �

3.2. TRANSLATIONS BETWEEN REPRESENTATION SYSTEMS 61We remark that, in fact, step 1 and step 2 can be combined into a singleone. The traditional algorithm used in step 1 that transforms integers in B-aryrepresentation into their A�ary equivalents, starts �nding the least signi�cantdigit. In step 2 we give the most signi�cant one at �rst. This also worksfor integers: Search for the largest power of B that �ts in the number to betransformed and subtract as many times as possible. For instance:211 = 2048=2718n12048210 = 1024=0670n00However, the traditional algorithm is more e�cient.Theorem 3.2.7 Let A,B be bases. If 1B does not have a �nite A-ary expansion,then RA-ary 64r RB-ary.Proof: Suppose � is a A-ary expansion of 1B and F : RA-ary ! RB-ary is atranslation of RA-ary to RB-ary.Assume F is partial recursive. Then it is continuous. Examine F (�)(1),the �rst digit of � behind the dot. Then F has a 2-modulus of continuityat (�; 1), say m. De�ne �0; �1 2 RA-ary by�0(n) = (�(n) if n � m;0 otherwiseand �1(n) = (�(n) if n � m;A� 1 otherwise.Then �0 =m �1 =m �, soF (�1)(0) = F (�)(0) = 0 and F (�0)(1) = F (�1)(1):On the other hand, because �A-ary(�) is not a A-ary fraction,�A-ary(�0) < �A-ary(�) = 1B < �A-ary(�1) � 1:Thus F (�0)(1) = 0:Since F (�1)(0) = 0,F (�1)(1) � 1:Contradiction.

62 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS�In order to formulate a simple condition equivalent to RA-ary 4r RB-ary, weneed an elementary number theoretic result.Lemma 3.2.8 Let A,B be bases.1A is B-ary fraction () 8p; prime[pjA =) pjB]:Proof: =) : Suppose 1A is B-ary fraction, say 1A = tBn with t 2 Z; n 2 N.Then A �Bn = t 2Z, so AjBn and therefore, for all primes p, if pjA then pjB.(=: For all primes p, if pjB and p � t = B then 1p = tB is a B-ary fraction. Ifp1 � � �pn is a prime factorization of A, then 1A = 1p1 � � � 1pn . Thus 1A is a productof B-ary fractions and therefore a B-ary fraction. �Corollary 3.2.9 For all bases A;B1. RB-ary 4r RA-ary if and only if 8p; prime [pjA =) pjB] :2. RB-ary 'r RA-ary if and only if 8p; prime[pjA () pjB]:Proof:1. Use that q is a B-ary fraction if and only if it has a �nite B-ary expansion.2. from 1.�Theorem 3.2.10 Let B be a base. Then Rded 4r RB-ary.Proof: Given � 2 Rded we inductively construct the nth digit of its B-aryequivalent.� Firstly, we look for the part before the dot. Like in the approximatorAded in the proof of theorem 3.1.2, we search a k 2Zsuch thatk 2 � and (k + 1) =2 �;Then k �B0 = k < �ded(�) � k + 1 = (k + 1) �B0.� Suppose we have kn withkn �Bn < �(�) � (kn + 1) �Bn :Now we look for kn+1 with 0 � kn+1 < B andnXi=0 kiBi + kn+1Bn+1 2 � and nXi=0 kiBi + kn+1 + 1Bn+1 62 �:

3.2. TRANSLATIONS BETWEEN REPRESENTATION SYSTEMS 63Such kn+1 exists, becauseknBn 2 � and knBn + (B � 1) + 1Bn+1 = kn + 1B 62 �:By induction we can prove that for all n 2 N������ded(�)� nXi=0 kiBi ����� � 1Bn ;So 1Xi=0 kiBi = �ded(�);thus [k0; k1k2 : : :]B = �ded(�).Now de�neF (�)(0) = (�k[k + 1 2 �] if 0 2 �;��k[�k 2 �] otherwise:F (�)(n+ 1) = �k �F (�)(n)n + kBn+1 2 � & F (�)(n)n + k + 1Bn+1 62 �� :Recall that �n =Pni=0 �(i)Bi , so F in fact is de�ned by course-of-value recursion,cf. 2.1.7. �We have seen that not all translations between the representation systems weconsider are recursive. The next chapter provides some more examples. Surpris-ingly, the translations between the standard systems appear all to be recursivewhen restricted to representations of irrational number. However, the transla-tions of representations of rationals is not always recursive. Before giving theproofs of these two statements, we introduce some notation.De�nition 3.2.11 The representations of rational and irrational numbers re-spectively are denoted byQint = ��1int(Q);(R nQ)int = ��1int (RnQ):Similarly for Rded, RB-ary and Rcauchy.The notions connected to recursive translation 4r and 'r naturally extend tosubsystems (V 0; � �V 0) of a representation system (V; �).Lemma 3.2.12 (R nQ)int 4r (R nQ)ded.Proof: The translation to Dedekind cuts is given byFded : (R nQ)int ! (R nQ)dedFded(�)(q) = (0 if 9n[q < �0(n)],1 if 9n[q > �00(n)].

64 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONSSince for �(�) 62 Q we have, for all q 2 Q9n[q < �0(n) _ �00(n) < q];Fded is partial recursive. Since for all x 2 Rx > �(�) () 9n[x > �00(n)] andx < �(�) () 9n[x < �0(n)]we have �ded(F (�)) = �int(�). �Corollary 3.2.13 (R nQ)cauchy 'r (R nQ)int 'r (R nQ)B-ary 'r (R nQ)ded.Proof:� (R nQ)cauchy 'r (R nQ)int follows by Rcauchy 'r Rint.� (R nQ)int 4r (R nQ)ded is proven 3.2.12 in above.� (R nQ)ded 4r (R nQ)B-ary follows by Rded 4r RB-ary, theorem 3.2.10.� (R nQ)B-ary 4r (R nQ)int follows by RB-ary 4r Rint, theorem 3.1.2.�Theorem 3.2.14 1. Qint 64r QB-ary,2. Qint 64r Qded.Proof:1. (sketch) Let F : Qint 4r QB-arybe a translation. Assume that F is recur-sive. Consider the input function �(n) = h� 1n ; 1ni. Let m be a modulusof F at �. Derive a contradiction using the functions�0(n) = (h 1B � 1n ; 1B + 1ni if n � mh 1B � frac1m; 1B � 1mi otherwise;and�1(n) = (h 1B � 1n ; 1B + 1ni if n � mh 1B + 1m ; 1B + 1m i otherwise;2. Suppose Qint 4r Qded. By Rded ! RB-ary it follows that Qint ! Qded.Contradiction.�

3.3. COMPUTABLE REAL FUNCTIONS 653.2.1 SummaryThis diagram shows the recursive translations that were given in this section.The following chapter will show that other translations are not recursive.Rded 3:2:10RB-ary 3:2:4 Rint 3:2:5RcauchyRB-ary 8p;prime[pjA=) pjB]3:2:9 RA-ary3.3 Computable real functions via representation sys-temsRecall the de�nition 1.1.2: If (V; �) is a representation system for real numbers,and X � R, then a (V; �)-representation of real function f : X ! R is afunctional F : V ! V such that �(F (�) ' f(�(�)) for all � 2 ��1(X).A (V; �)-representation of a partial real function f : Rn ! R is a partial func-tional F : V n ! V such that �(F (�1; : : : ; �n)) ' F (�(�1); : : :�(�n)). Possess-ing of a notion of computability on functionals we can speak of computable realfunctions on a representation.De�nition 3.3.1 Let (V; �) be a representation system of real numbers.1. A real function f : X ! R is partial recursive with respect to (V; �)if there exists a partial recursive functional F : V n ! V that is a(V; �)-representation of f . The set of partial recursive real functionsw. r. t. (V; �) is denoted by R!(V;�) R.2. A predicate p � Rn is recursive if the characteristic functional of its(V; �)-implementation is recursive.The de�nitions of recursive functions having type f : R ! Q, etc. are nowstraightforward.The set of partial recursive sets depends on its representation. Recursivelyequivalent representation systems determine the same set of partial recursivefunctions.Theorem 3.3.2 For all representation systems (V; �) ; (W; �) of real numbers(V; �)'r (W; �) =) R!(V;�) R= R!(W;�) R:Proof: If G : V ! W and H : W ! V are recursive translations, andF : V ! V is a partial recursive V representation of a real function f ,then H �F �G is a partial recursive W -representation of f . So R!(V;�) R �R!(W;�) R. Now � follows by symmetry. �Corollary 3.3.3 R!(Rint) R= R!(Rcauchy) R.

66 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONSTheorem 3.3.4 The function + is partial recursive on Rint and on Rded, butnot on RB-ary, for any base B.Proof:� Example 2.4.2 has shown that addition is partial recursive on intervalrepresentation.� We stated in example 1.1.5 that the functionalAddded(�; �)(q) = (1 if 9p; r[�(p) = 1 & �(r) = 1 & p+ r = q];0 otherwise:is a Dedekind representation of +. It equals= (1 if 9p; r[p 2 � & r 2 � & p+ r = q];0 if 9p; r[p =2 � & r =2 � & p+ r = q]:Since the clauses on the right hand side are mutually exclusive, and de-cidable Addded is recursive.� The problem with + on RB-ary is that carries come from the right. Froma �nite pre�x we are unable to predict whether one will eventually showup. Now, let B be a base.Suppose we have a recursive B-ary representation F of +. Consider� = 0:000 : : : and � = 0:(B�1)(B�1)(B�1) : : : . Then �B-ary(�)+�B-ary(�) = 1 and F has a modulus at (�; �; 0), say m. De�ne�B�1 = (�(n) if n � m;B � 1 otherwiseand �0 = (�(n) if n � m;0 otherwise:then �B�1 =m � and �0 =m �. However �B-ary(�B�1 + �) < 1 <�B-ary(�+ �0) < 2, so 0 = F (�; �0)(0) = F (�B�1; �)(0). Contradic-tion.�Corollary 3.3.5 For all bases B, Rint 64r RB-ary and RB-ary 64r Rded.Proof: From theorem 3.3.2 follows Rint 6'r RB-ary. We have seen RB-ary 4rRint in 3.2.3. So we conclude: Rint 64r RB-ary. �Theorem 3.3.6 The function sin is partial recursive on Rint but neither onRB-ary, for any base B, nor on Rded.

3.3. COMPUTABLE REAL FUNCTIONS 67Proof:� Rint: Our interval implementation of sin makes use of the Taylor seriesexpansion of the sinus. For all x 2 R and n 2 N�����sin x� 1Xk=0 tn �xkk!����� � 1(n+ 1)! ;where tn = sin(N)(o), the nth derivative of the sinus at 0. The sequencet0; t1; : : : equals 0,1,0,-1, : : : .On the other hand, as its derivative is bounded, sin is a Lipschitz function:For all x; y 2 Rjsin x� sin yj � jx� yj :These facts enable us to approximate sin x, using only an approximationof x. Let x 2 R. Suppose we have an a 2 R withjx � aj � qfor some q 2 Q. Then for all n 2 N�����sin x� 1Xk=0 tn �akk!����� �jsin x� sin aj+ �����sin a� 1Xk=0 tn �akk!����� �jx � aj+ 1(n+ 1) �q + 1(n+ 1) :Now de�neF : Rcauchy ! Rcauchy;F (h�; ci)(n) = h 1Xk=0 tn � (�(c(n)))kk!; n+ 3i:Since j�cauchy(�)� �(c(n))j � 12n ;we havejsin �cauchy(�)� F (h�; ci)(n))j � 12n + 1(n + 1) � 12n+3

68 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS� Rded: The sinus does not have a recursive Dedekind representation: Hereour notation is somewhat unfortunate. One should not confuse the realnumber � and the function �ded. Suppose F : Rded ! Rded of a rep-resentation of sin. Let � be a Dedekind representation of 1=6�. Forsin 1=6� = 1=2, F (�)(1=2) = 0:Assume F is partial recursive. We derive a contradiction. This timewe work with �nite functions instead of a modulus of continuity. AsF is continuous, there is a �nite function u such that8� 2 bu \ Rded[F (�)(1=2) = F (�)(1=2) = 0]:There exists a p 2 Q with� 1=6� < p < 1=2�,� p < q, for all q 2 Dom(u) with q 2 �.Such a p exists because if q =2 � then q > 1=6�.Construct a function � 2 Rded with�(q) = (1 if q < p;0 otherwise.Then u � �, so F (�)(1=2) = 0. However sin �ded(�) > 1=2, thusF (�)(1=2) = 1. Contradiction.So sin is not partial recursive on Rded.� RB-ary:Assume there is a recursive implementation F : RB-ary ! RB-aryof the sinus. Let � be a representation of arcsin 1=B. Because sinmaps rational numbers unequal to 0, to irrational numbers[Siegel],arcsin 1=B is not a B-ary fraction. Say m is a modulus of F at(�; 1=B). De�ne�0(n) = (�(n) if n � m;0 otherwise:and �1(n) = (�(n) if n � m;B � 1 otherwise:Then �0 =m �1 =m �, so F (�0)(1) = F (�1)(1) = 0. Furthermore�B-ary(�) is irrational so0 � �B-ary(�0) < �B-ary(�) < �B-ary(�1) � 1:and therefore0 � sin �B-ary(�0) < sin �B-ary(�) = 1B < sin �B-ary(�1) � 1:Then F (�0)(=)0 and F (�1)(1) � 1

3.3. COMPUTABLE REAL FUNCTIONS 69Thus sin is not recursive.�Remark 3.3.7 Examining the �rst item of the proof, we observe that it canbe mimicked to prove that other functions are computable on Rint. Everyfunction that has a computable Taylor series expansion , which means that thesequence of coe�cients in the expansion is computable, and that has a boundedderivative, like the cosinus and the arctangent, is Rint-computable.A closer look may reveal more computable functions. Every function has abounded derivative on a closed interval. If we can compute a bound from agiven rational interval, we know up to which precision the input should beapproximated. Then, if the function is computable on rational numbers, itis computable on all real numbers. Thus the tangent, log, e-power, etc. arecomputable. We do not go into details.Corollary 3.3.8 Rint 64r Rded.Theorem 3.3.9 1. The restriction of the entier functionb c : R!Zbxc � x < bxc+ 1:to RnQ is computable on Rint, RB-ary and Rded.2. Its restriction to Q is not computable on any of these systems.Proof:1. We treat the system RB-ary, leavings the other cases to the reader. Thefunctional F : RB-ary ! N de�ned byF (�) = b�(0)cis a B-ary representation of b c. Indeed, as � 62 Q we have�(0) < �(�) < �(0) + 1;so b�(�) = �(0).2. Suppose b c is partial recursive on Q. Examine a modulus m of an imple-mentation of b c at �, which is given by�(n) = (0 if n = 0;B � 1 otherwise.Then �1(n) = (�(n) if n � m,0 otherwise,leads to problems.

70 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS�Theorem 3.3.10 Let p 2 Q. Then the real predicate fx 2 R j x < pg isrecursive on Rded.Proof: The functional F : Rded ! f0; 1gF (�) = (0 if p 2 �;1 otherwiseis a Dedekind representation of fx 2 R j x < pg. �The theorem below show that the mentioned predicate is not recursive on Rint.Theorem 3.3.11 The set Rint= ��int with the quotient of the positive infor-mation topology according to ��int is homeomorphic to R with the Euclideantopology.Proof: We show that 1. every open set in the quotient topology is also openin the Euclidean topology and 2. the converse. The homeomorphism then isthe identity, for (R=��int) is R.1. The set of open intervals with rational ends, is a basis of the Euclideantopology. We prove that these are all open in the quotient of the positiveinformation topology. This means that their �int- pre-image is open inthe positive information topology. We write it as a union of open set inthe positive information topology.Let p; q 2 Q; p < q. Then�int�1(p; q) = f� 2 Rint j � represents a number between p and qg= f� 2 Rint j 9n 2 N[p < �0(n) & �00(n) < q]g= f� 2 Rint j 9n 2 Na; b 2 Q[p < a &< q & �0(n) = a& �00(n) = b]g=[n2Q;a;b2Qdunab \ Rintwhere unab is the singleton function that maps n to the pair ha; bi, sounab = fha; big.2. Suppose that U � R is open in the quotient topology. This means that��1(U) is open in the positive information topology. Write it as a unionof basic p.i.-open sets: There are �nite functions ui such that:��1(U) =[i bui \ VLet x 2 U . We indicate a basic element I in the Euclidean topology, notnecessarily one with rational ends, with x 2 I � U .Choose a representation � 2 Rint of x which does not coincide withany of its ends. In other words, take � 2 Rint with �int(�) = x and

3.3. COMPUTABLE REAL FUNCTIONS 71x 6= �0(n) and x 6= �00(n) for all n 2 N. Then for all n 2 N we havex = �int(�) 2 (�0(n); �00(n)).Because � 2 �int�1(U) =[i bui \ V , we have a �nite function u with � 2 bu.Let m = maxDom(u). Then �int(bu) = [u0(n); u00(n)] = [�0(n); �00(n)].Thus we havex 2 (�0(n); �00(n)) � [�0(n); �00(n)] = �int(bu) � U:So take I = (�0(n); �00(n)).�Corollary 3.3.12 Every Rint-recursive real function is continuous in the Eu-clidean topology.Corollary 3.3.13 1. Every Rint-recursive function F : R! N is constant.2. Every Rint-recursive predicate P � Rn is trivial.It is open whether real functions that are RB-ary-recursive, are also Euclideancontinuous.3.3.1 SummaryThis diagram indicates on which representation systems the functions +, sinand the relation < 0 are partial recursive. It also tells whether all partial re-cursive functions are continuous in the Euclidean topology.+ sin < 0 continuousRint=Rcauchy + + { +Rded + { + ?RB-ary { { { {

72 CHAPTER 3. COMPUTABILITY ON REPRESENTATIONS

Chapter 4computable real numbers ande�ective operationsAlthough it is not possible to represent all real numbers by a �nite description,we can describe the elements of certain subsets by means of natural numbers.The fuctions in some representation system that are recursive can be representedby their G�odel indices. The real numbers we get this way are called recursivereal numbers or computable real numbers.Then we have a second manner { besides in terms of of functionals { to modelfunctions on computable real numbers. That is as functions on natural num-bers that respect the relation \represent the same computable real". If such afunction is recursive we speak of an e�ective operation.The sequel de�nes the notion of recursive real numbers relative to a represen-tation system. It also shows that the sets of recursive real numbers coincide inthe systems we consider. We will list some properties known from literature.Concerning e�ective operations, it is easy to prove that every partial recur-sive functional on recursive real numbers corresponds to an e�ective operation.However we do not give a de�nitive answer to the converse problem.Recall sequences, rational functions, etc. are all encoded as functions in N! N,so it makes sense to speak of partial recursiveness.Like before, PR is the set of partial recursive functions and R of the recursivefunctions. Furthermore the following notation is used. If V � P then V cdenotes the set of computable elements in V , thus V c = V \ PR and V �denotes the set of G�odel numbers in V c, i.e. V � = fe 2 N j 'e 2 V cg = fe 2N j 'e 2 V g.4.1 Computable real numbersDe�nition 4.1.1 The set of recursive elements in a system (V; �) is justthe V c. We de�ne the set of recursive real numbers with respect to (V; �),as the set �(V c), which are is real numbers that have a recursive representationin V .Applying this de�nition is the system Rcauchy we get the following.73

74 CHAPTER 4. COMPUTABLE REAL NUMBERSExample 4.1.2 The computabibity of a Cauchy sequence boils down to thecomputability of both the sequence and the modulus of convergence. We writeRccauchy for the set of computable Cauchy sequences.Example 4.1.3 We show a computable representation of the number e in eachsystem, by reconsidering the representations given in examples 1.1.5, 1.1.9,1.1.11 and 1.1.13.� Rded:We have seen that the function�(q) = (1 if q < e,0 otherwiseis a Dedekind representation of e. Using the Taylor series expansion of e,this function equals= (1 if 9n[Pnk=0 1k! � 1(n+1)! < q]0 if 9n[Pnk=0 1k! + 1(n+1)! > q].Since e 62 Q, either the �rst or the last clause holds, so � is recursive.� RB-ary:The digits of the B-ary representation of e can be computed by�(0) = 2�(n+ 1) = bBn B(n+1)Xk=0 1k!c � bBn B(n+1)Xk=0 1k!cB:We take the sum over the �rst B �n element, so ensure that we haveenough information to determine the �rst n B-ary digits, which are givenby bBnPBnk=0 1k!c. Then we retrieve the nth one.� Rint:The interval representation of e we gave in example 1.1.11,�int(n) = h nXk=0 1k! � 1(n+ 1)! ; nXk=0 1k! + 1(n+ 1)!i;is clearly recursive.� Rcauchy:And so is the Cauchy representation in example 1.1.13,�cauchy(n) = h nXk=0 1k! ; n+ 3i:

4.1. COMPUTABLE REAL NUMBERS 75Theorem 4.1.4 Let (V; �) and (W; �) be representation systems of real num-bers. Then1. If (V; �)4r (W; �) then �(V c) � �(W c).2. If (V; �)'r (W; �) then �(V c) = �(W c).Proof:1. The condition (V; �)4r (W; �) expresses the existence of a recursive trans-lation F : V ! W . By Proposition 2.1.4 it follows that F maps recursivefunctions to recursive functions. ThereforeF (R \ V) � R \ W:Because F is a translation we have�(V \ R) = �(V c) = �(F (V \ R)) � �(W \ R) = �(W c):2. from 1.�Corollary 4.1.5 1. Rcint = Rccauchy.2. Rcded � RcB-ary � Rcint.3. If a representation system of real numbers has the �nite approximationproperty, then �(V c) � Rcint:Proof:1. and 2. are immediate3. Theorem 3.2.3 states that the e�ective approximation property is equiv-alent to V 4r Rint.�The following { trivial { example shows that the e�ective approximation prop-erty does not ensure that Rcint � V c.Example 4.1.6 Examine the representation system(Rint � fHg; �int �P12):Here H is a non-recursive function, for instance the characteristic function ofthe halting-problem and P12 selects the second element from a pair. This systemsatis�es the e�ective approximation property, because the approximation canbe computed using information from Rint. However,(Rint � fHg)c = ;:There are no computable elements in this system.

76 CHAPTER 4. COMPUTABLE REAL NUMBERSOf course, this is not very satisfactory. We would like to formulate an addi-tional requirement for a system (V; �), that ensures Rcint � �(V c). Requiring�(Rint) 4r V is too strong because, as we will see, Rcded � Rcint and we knowRint 64r Rded. Finding this requirement is still an open problem.Proposition 4.1.7 1. Rcint � Rcded,2. Rcint � RcB-ary for all bases B.Proof: We prove the �rst statement in the proposition, the second is obtainedby syntactic replacement(\ded" by \B-ary"). We distinguish between rationaland irrational real numbers in Rint. Both are shown to be subsets of Rded.� It is not di�cult to showQ � Rcint and Q � Rcded, i.e. all rational numbersare computable in both systems.� Theorem 3.2.14 states ((R nQ)int 4r (R nQ)ded. If F is a recursivetranslation, we have So, RnQ = �int((R nQ)intc) � �ded((R nQ)dedc).We have Rcint � Rcded. �Corollary 4.1.8 All common representation systems determine the same setof computable real numbers, i.e.Rcded = Rccauchy = RcB-ary = Rcint:The fact the standard representation systems yield the same set of computablereals, which we will denote by is R, may indicate that with this set we havecaptured the intuitive notion of computable reals. This set has been studied inliterature [Rice54][Mazur63][Bridges94]. It has nice properties, of which we listsome without proof.Proposition 4.1.9 (Rice) The structure < R;+; �;�; 0; 1> is a totally or-dered, real closed �eld. A real closed �eld is a �eld in which every polynomialwith an odd degree and coe�cients in R has a root in R and so has everypolynomial x2 � a with a 2 R; a � 0.The recursive equivalent of completeness of R, i.e. every Cauchy sequence ofelements inRconverges, has a recursive equivalent inR. However the equivalentof the Bolzano-Weierstrass theorem does not hold. The notions of recursivesequence and (recursive) modulus of convergence de�ned for Q (cf. 1.1.12) canbe extended to R easily.Proposition 4.1.10 (Rice) 1. Every recursive, e�ectively converging se-quence in R in has a limit in R.2. Not every bounded recursive sequence in R converges to a limit in R.It is evident that R is countable. The proposition below shows that R�int isproductive, which is a recursive equivalent of uncountability.

4.2. EFFECTIVE OPERATIONS 77Proposition 4.1.11 R�int is productive and �02-complete.Proof: Productivity, is shown in [Bridges]. �20-completeness is easy, e.g.reduce R�, the index set of the (total) recursive functions to R�int. �The following theorem formulates a relation beween recusive reals and recursivereal functions with repect to some represention system. In fact it provides away to generate the recursive reals: by applying all recursive real functions toa, �xed, recursive real number. This does not contradict proposition 4.1.11 forthe recursive real functions are not recursively enumerable either.Theorem 4.1.12 Let (V; �) be a representation system such that V c 6= ;. Letc 2 RcV . Then for all y 2 Ry 2 RcV () 9f 2 R!(V;�) R[f(c) = y]:Proof: =) : Let y 2 RcV . Then �(�) = y for some � 2 PR. De�ne areal function by f(x) = y for all x. Then f(c) = y and f is partial recursivewith respect to (V; �). Indeed that functional F : V ! V with F (�) = �is an implementation of F and its is partial recursive by proposition 2.1.5.(=: Let f 2 R!(V;�) R with f(c) = y. Both f and y have a computablerepresentation, which means that there exists a � 2 PR with �(�) = y and arecursive functional F such that �(F (�)) = �(�) for all � 2 V . By proposition2.1.4 the functional F maps PR to PR, so �(F (�)) = y 2 RcV . �4.2 E�ective operationsWe like to compare the two ways of representing functions on computable realnumbers, by recursive functions and by recursive functionals that both preservea notion of \represent the same real number."Therefore, we wish to adapt an important result in the theory of recursivefunctions | sec, not representing real numbers | of Kreisel, Lacombe andSchoen�eld. It states that the recursive �uctions on G�odel numbers that pre-serve � (represent the same recursive function) correspond to the recursivefunctionals on R. Unfortunately, we did not succeed in this adaption. We havereformulated the theorem in our terminology.De�nition 4.2.1 The equivalence relation � on R is de�ned by e � e0 ()'e = '0e.Theorem 4.2.2 ([KLS59] in [Rogers67], ch 5.) Let F : R ! R be a re-stricted functional. Then F is e�ectively continuous if and only if there existsa recursive function : R� ! R� that preserves � such that F ('e) = ' (e).Now we wonder under what conditions this theorem can be generalized to otherequivalence relations �� than � and other sets than R. We are particularlyinterested in the case (V;��) where (V; �) is a representation system.

78 CHAPTER 4. COMPUTABLE REAL NUMBERSDe�nition 4.2.3 Let V � R and let �� V 2 be an equivalence relation. Anassociate equivalence relation �� on V � is de�ned by:e �� e0 () 'e �� '0e:Note that is the relation �� a re�nement of � and, like every equivalencerelation, � is one of =.A e�ective operation with respect to �� is a recursive function : N ! Nthat respects ��, i.e.:e �� e0 =) (e) �� (e0):Now the generalization of the theorem above can be formulated as:1. Does every e�ective operation with respect to �� induce an e�ectivelycontinuous functional that respects �?2. Is every e�ectively continuous functional that preserves � the lifting of ae�ective operation with respect to ��?The point of question 1. is the following: The e�ective operation gets anindex e as input. This is a �nite object that describes 'e as a whole. Ane�ectively continuous functional may use only �nitely many values of 'e. It istherefore conceivable that a partial recursive functional has less computationalpower than an e�ective operation. However, the theorem of Kreisel, Lacombeand Schoen�eld states that this is not the case if V = R and �� is �; then does not use more than �nitely many values of 'e. The proof of the converse| if F is partial recursive, there is recursive function f : R� ! R� suchthat F ('e) = 'f(e) | is easy and immediately generalizes to other equivalencerelations, providing an a�rmative answer to question 2.Theorem 4.2.4 Let V � P and let � be an equivalence relation on V . LetF : V ! V be a e�ectively continuous functional that preserves �. Then thereexists an e�ective operation : N! N with respect �� such that, for all e 2 V �:F ('e) = ' (e):Proof: [Odifreddi89] Let F : P ! P be e�ectively continuous. De�ne'(e; x) = F (e; x):Let h be the compacti�cation of F . ThenF ('e; x) ' z () 9d[�d � 'e & h(d; x) ' z]:This the graph of ' is recursively enumerable, so ' is recursive. By the Snm-theorem, we can �nd a recursive function f : N! N such that'f(e)(x) = '(e; x) = F ('e; x):�The converse of this theorem, question 1, remains an open problem. We hopethe proof of the theorem of Kreisel, Lacombe and Schoen�eld can be adaptedto our situation. Another open problem is the generalization to partial e�ectiveoperations.

Bibliography[Barendregt84] H.P. Barendregt The Lamda Calculus: Its Syntax andSemantics. North Holland, 1984.[Beeson85] M. Beeson Foundations of Constructive Mathematics.Springer, 1985.[BSS85] L. Blum, M. Shup, S.Smale On a theory of computationand complexity over the real numbers and univeral machines.Bull. Amer. Math. Soc.[Bridges94] D.S. Bridges Computability: a mathematical sketchbook.Springer, 1994, pp 49 { 74.[BR87] D.S. Bridges and F. Richman Varieties of ConstructiveMathematics. Cambridge University Press, 1987.[Grzegorczyk55] A. Grzegorczyk Computable functionals. In: Fund. Math.,Vol 42, 1955, pp. 168{202.[Grzegorczyk57] A. Grzegorczyk On the de�nition of continuous com-putable real functions. In: Fund. Math., Vol 44, 1957, pp. 61{71.[Kleene59] S.C. Kleene Recursive functionals and quanti�ers of �nitetype. In: Trans. Am. Soc., Vol 91, 1959, pp 1{52.[KLS59] G. Kreisel, D. Lacombe, J.R. Schoenfield Recursivefunctionals and e�ective operations. In: A. Heyting, Con-structivity in mathematics, North Holland 1959.[Mazur63] Mazur Computable Analysis A. Grzegorczyk en H. Ra-siowa, eds. Instytut Matematyczny Polskiej AkademiiNauk, Rozprawy Matematyczne 33 Warszawa : PanstwoweWydawnictwo Naukowe, 1963[Moschovakis65] Y.N.Moschovakis Notation systems and recursive ordered�elds. In: Comp. Math., Vol 17, 1965, pp 40{71.[Moschovakis69] Y.N.Moschovakis Abstract higher order computability I.In: Trans. Am. Soc., Vol 138 1969, pp 427{464.79

80 BIBLIOGRAPHY[Odifreddi89] P. Odifreddi Classical Recursion Theory. North Holland1989[Peter51] R. Pet�er Recursive Funktionen Akad�emia Kiad�o 1951,transl. American Press 1967.[Platek66] R.A. Platek Foundations of Recursion Theory. Ph.D. The-sis, Stanford, 1966[Pour-El] Marian B. Pour-El, Jonathan I. Richards Com-putability in Analysis and Physics. Springer-Verlag 1989[Rice54] H.G. Rice Recursive Real Numbers. Proc. Am. Soc., Vol 5,1954, pp 784{790.[Robinson52] Robinson Bespreking van het artikel van R. Pet�er: `Rekur-sive Funktionen Akad Kiadp, Budapest 1952' In: The Journalof Symbolic Logic Vol 16, 1951 pp 280 ev[Rogers67] Hartley Rogers, Jr Classical Recursion Theory of Recur-sive Functions and E�ective Computability. The MIT press1967[Scott] D.S. Scott Continuous lattices. In F,.W. Lawvere, Toposes,Algebraic geometry and Logic, 274 Lecture Notes in Mathe-matics, Springer-Verlag.[Siegel] Carl Ludwig Siegel Trancedental numbers. Princeton uni-versity press 1949, x11, �nal remark.[Troelstra73] A.S. Troelstra (ed.) Metamathematical investigations ofintuitionistic arithmetic and analysis. second, corrected edi-tion, 1993, �rst edition 1973 ILLC Prepublication series X-93-05, University of Amsterdam pp. 147 e.v.[Turing36] A.M. Turing On computable real numbers with an applica-tion to the Entscheidungsproblem. London Math. Soc., Vol42, 1936, pp 230 {265, also in: Davis, M, The Undecidable,Raven Press, 1965.

