Resource Interfaces*

Arindam Chakrabarti!, Luca de Alfaro?, Thomas A. Henzinger!, and
Mariélle Stoelinga?

! Electrical Engineering and Computer Sciences, UC Berkeley
2 Computer Engineering, UC Santa Cruz

Abstract. We present a formalism for specifying component interfaces
that expose component requirements on limited resources. The formal-
ism permits an algorithmic check if two or more components, when put
together, exceed the available resources. Moreover, the formalism can be
used to compute the quantity of resources necessary for satisfying the
requirements of a collection of components. The formalism can be in-
stantiated in several ways. For example, several components may draw
power from the same source. Then, the formalism supports compatibility
checks such as: can two components, when put together, achieve their
tasks without ever exceeding the available amount of peak power? or,
can they achieve their tasks by using no more than the initially available
amount of energy (i.e., power accumulated over time)? The correspond-
ing quantitative questions that our algorithms answer are the following;:
what is the amount of peak power needed for two components to be put
together? what is the corresponding amount of initial energy? To solve
these questions, we model interfaces with resource requirements as games
with quantitative objectives. The games are played on state spaces where
each state is labeled by a number (representing, e.g., power consump-
tion), and a play produces an infinite path of labels. The objective may
be, for example, to minimize the largest label that occurs during a play.
We illustrate our approach by modeling compatibility questions for the
components of robot control software, and of wireless sensor networks.

1 Introduction

In component-based design, a central notion is that of interfaces: an interface
should capture those facts about a component that are necessary and sufficient
for determining if a collection of components fits together. The formal notion
of interface, then, depends on what “fitting together” means. In a simple case,
an interface exposes only type information about the component’s inputs and
outputs, and “fitting together” is determined by type checking. In a more ambi-
tious case, an interface may expose also temporal information about inputs and
outputs. For example, the temporal interface of a file server may specify that the

* This research was supported in part by the DARPA grant F33615-00-C-1693, the
MARCO grant 98-DT-660, the ONR grant N00014-02-1-0671, and the NSF grants
CCR-0085949, CCR-0132780, CCR-0234690, and CCR-9988172.

open_file method must be called before the read_file method is invoked. If a
client, instead, calls read_file before open_file, then an interface violation oc-
curs. In [2], we argued that temporal interfaces are games. There are two players,
Input and Output, and an objective, namely, the absence of interface violations.
Then, an interface is well-formed if the corresponding component can be used in
some environment; that is, player Input has a strategy to achieve the objective.
Moreover, two interfaces are compatible if the corresponding components can be
used together in some environment; that is, the composition of the two games is
well-formed, and specifies the composite interface.

Here, we develop the theory of interfaces as games further, by introducing
interfaces that expose resource information. Consider, for example, components
whose power consumption varies. We model the interface of such a component as
a control flow graph whose states are labeled with integers, which represent the
power consumption while control is at that state. For instance, in the thread-
based programming model for robot motor control presented in Section 5, the
power consumption of a program region depends on how many motors and other
devices are active. Now suppose that we want to put together two threads, each
of which consumes power, but the overall amount of available peak power is
limited to a fixed amount A. The threads are controlled by a scheduler, which
at all times determines the thread that may progress. Then the two threads are
A-compatible if the scheduler has a strategy to let them progress in a way so that
their combined power consumption never exceeds A. In more detail, the game
is set up as follows: player Input is the scheduler, and player Output is the com-
position of the two threads. At each round of the game, player Input determines
which thread may proceed, and player Output determines the successor state in
the control flow graph of the scheduled thread. In this game, in order to avoid a
safety violation (power consumption greater than A), player Input may not let
any thread progress. To rule out such trivial schedules, one may augment the
safety objective with a secondary, liveness objective, say, in the form of a Biichi
condition, which specifies that the scheduler must allow each thread to progress
infinitely often. The resulting compatibility check, then, requires the solution of
a Biichi game: the two threads are A-compatible iff player Input has a strategy
to satisfy the Biichi condition without exceeding the power threshold A.

The basic idea of formalizing interfaces as such Bichi threshold games on
integer-labeled graphs has many applications besides power consumption. For
example, access to a mutex resource can be modeled by state labels 0 and 1,
where 1 represents usage of the resource. Then, if we choose A = 1, two or more
threads are A-compatible if at any time at most one of the threads uses the
resource. In Section 5, we will also present an interface model for the clients
of a wireless network, where each state label represents the number of active
messages at a node of the network, and A represents the buffer size. In this
example, the A-compatibility check synthesizes not a scheduling strategy but a
routing protocol that keeps the message buffers from overflowing.

A wide variety of other formalisms for the modeling and analysis of resource
constraints have been proposed in the literature (e.g., [7-9, 11]). The essential

difference between these papers and our work is that we pursue a compositional
approach, in which the models and analysis techniques are based on games.
Once resource interfaces are modeled as games on graphs with integer labels,
in addition to the boolean question of A-compatibility, for fixed A, we can also
ask a corresponding quantitative question about resource requirements: What is
the minimal resource level (peak power, buffer size, etc.) A necessary for two or
more given interfaces to be compatible? To formalize the quantitative question,
we need to define the value of an outcome of the game, which is the infinite
sequence of states that results from playing the game for an infinite number of
rounds. For Biichi threshold games, the value of an outcome is the supremum
of the power consumption over all states of the outcome. The player Input (the
scheduler) tries to minimize the value, while the player Output (the thread set)
tries to maximize. The quantitative question, then, asks for the inf-sup of the
value over all player Input and Output strategies.

The threshold interfaces, where an interface violation occurs if a power
threshold is exceeded at any one time, provide but one example of how the
compatibility of resource interfaces may be defined. We also present a second
use of resource interfaces, where a violation occurs when an initially available
amount A of energy (given, say, by the capacity of a battery) is exhausted. In
this case, the value u of a finite outcome is defined as the sum (rather than
maximum) over all labels of the states of the outcome, and player Input (the
scheduler) wins if it can keep A — u nonnegative forever, or until a certain task
is achieved. Note that in this game, negative state labels can be used to model
a recharging of the energy source. Achieving a task might be modeled again by
a Biichi objective, but for variety’s sake, we use a quantitative reward objec-
tive in our formalization of such energy interfaces. For this purpose, we label
each state with a second number, which represents a reward, and the objective
of player Input is to obtain a total accumulated reward of A. The boolean A-
compatibility question, then, asks if A can be obtained from the composition of
two interfaces without exceeding the initial energy supply A. The corresponding
quantitative resource-requirement question asks for the minimum initial energy
supply A necessary to achieve the fixed reward A. Dually, a similar algorithm
can be used to determine the maximal achievable reward A given a fixed initial
energy supply A. In particular, if every state offers reward 1, this asks for the
maximum runtime of a system (in number of state transitions) that a scheduler
can achieve with a given battery capacity.

The paper is organized as follows. Section 2 reviews the definitions needed
for modeling temporal (resourceless) interfaces as games and Section 3 adds re-
sources to these games: we introduce integer labels on states to model resource
usage, and we define boolean as well as quantitative objective functions on the
outcomes of a game. As examples, we define four specific resource-interface the-
ories: threshold games without and with Bichi objectives, and energy games
without and with reward objectives. For these four theories, Section 4 gives al-
gorithms for solving the boolean A-compatibility and the quantitative resource-
requirement questions. These interface theories are also used in the two case

studies of Section 5, one on scheduling embedded threads for robot control, and
the other on routing messages across wireless networks.

2 Preliminaries

An interface is a system model that represents both the behavior of a com-
ponent, and the behavior the component expects from its environment [2]. An
interface communicates with its environment through input and output vari-
ables. The interface consists of a set of states. Associated with each state is
an input assumption, which specifies the input values that the component is
ready to accept from the environment, and an output guarantee, which speci-
fies the output values that the component can generate. Once the input values
are received and the output values are generated, these values cause a transi-
tion to a new state. In this way, both input assumptions and output guarantees
can change dynamically. Formally, an assume-guarantee (A/G) interface [3] is a
tuple M = (V¢,V°,Q, 4, ¢%, ¢°, p) consisting of:

— Two finite sets V¢ and V° of boolean input and output variables. We require
that VN Ve =

— A finite set @ of states, including an initial state § € Q.

— Two functions ¢’ and ¢° which assign to each state ¢ € @Q a satisfiable
predicate ¢¢(q) on V', called input assumption, and a satisfiable predicate
#°(q) on V°, called output guarantee.

— A function p which assigns to each pair ¢, ¢’ € Q of states a predicate p(q, q’)
on ViUV, called the tmnsition guard. We require that for every state ¢ € Q,
we have (1) (¢'(a) A 4°(2)) = Vyeq p(0:@) and (2) Ay grco((p(a:d) A
(g, d") = (¢ = ¢")). Condltlon 1 ensures nonblocking; condition (2)
ensures determinism.

We refer to the states of M as Qys, etc. Given a set V of boolean variables,
a valuation v for V is a function that maps each variable € V to a boolean
value v(z). A valuation for V* (resp. V°) is called an input (resp. output) valu-
ation. We write V* and V° for the sets of input and output valuations.

Interfaces as games. An interface is best viewed as a game between two
players, Input and Output. The game Gy = (Q, §,~*,~v°,6) associated with
the interface M is played on the set @ of states of the interface. At each state
q € Q, player Input chooses an input valuation v that satisfies the input assump-
tion, and simultaneously and independently, player Output chooses an output
valuation v° that satisfies the output guarantee; that is, at state ¢ the moves
available to player Input are v'(q) = {v € V' | v = ¢%(q)}, and the moves
available to player Output are v°(q) = {v € V° | v |= ¢°(q)}. Then the game
proceeds to the state ¢’ = &(g,v*,v°), which is the unique state in @ such that
(v' Wv°) |= p(g,q'). The result of the game is a run. A run of M is an infinite
sequence ™ = o, (Uo,vo) q1, (v8,v9), g2, . .. of alternating states gx € Q, input
valuations vk € Vi, and output valuations vy € V°, such that for all k£ > 0, we
have (1) v}, € v (qk) and v2 € v°(gx), and (2) gx+1 = 8(gx,vi,v2). The run = is

iniatialized if qg = ¢. A run prefiz is a finite prefix of a run which ends in a state.
Given a run prefix m, we write last(m) for the last state of 7.

In a game, the players choose moves according to strategies. An input strategy
is a function that assigns to every run prefix 7 an input valuation in v¢(last(r)),
and an output strategy is a function that assigns to every run prefix 7 an output
valuation in v°(last(m)). We write X and X° for the sets of input and output
strategies. Given a state ¢ € Q, and a pair 0! € X% and 0° € X° of strategies, the
outcome of the game from g is the run out(q, o, 0°) = qq, (v, v3), g1, (v, v%),. ..
such that (1) go = g and (2) for all k¥ > 0, we have vi = o%(qo,...,qx) and
7};; = Uo(qoa (1)8,1)8), g1, -, Qk)‘

The size of the A/G interface M is taken to be the size of the associated
game G: define M| =37, [7*(9)] - [v°(q)|. Since the interface M is specified
by predicates on boolean variables, the size |M| may be exponentially larger
than the syntactic description of M, which uses formulas for ¢?, ¢°.

Compatibility and composition. The basic principle is that two interfaces
are compatible if they can be made to work together correctly. When two in-
terfaces are composed, the outputs of one interface may be fed as inputs to the
other interface. Thus, the possibility arises that the output behavior of one in-
terface violates the input assumptions of the other. The two interfaces are called
compatible if the environment can ensure that no such I/O violations occur. The
assurance that the environment behaves in a way that avoids all I/O violations
is, then, the input assumption of the composite interface. Formally, given two
A/G interfaces M and N, define V° = V& U VG and V* = (Vi UVE) \ Ve
Let Q = Qum x Qn and § = (Gm,gn)- For all (p,q),(r',¢') € Qm x Qn, let

¢°(p,q0) = (¢%(p) A ¢3,(q)) and p((p,q), (¢, ¢')) = (pm(p,P’) A pn(a,¢')). The
interfaces M and N are compatible if (1) VNV = 0 and (2) there is a function
7' that assigns to all states (p, q) € @ a satisfiable predicate on V* such that:

For all initialized runs (po,qo), (v, v3), (p1,4q1), (vi,v?),... of the A/G

interface (V4,V°,Q, 4, ¢°,p) and all k > 0, we have (vi W) =

(¢ (Pr) A Dy (ak))- (1)
If M and N are compatible, then the composition M||N = (V*,V°,Q, 4, ¢*, ¢°, p)
is the A/G interface with the function ¢' that maps each state (p,q) € Q to a
satisfiable predicate on V* such that for all functions 1 that satisfy the condi-
tion (1), and all (p,q) € @, we have ¥%(p, q) = ¢'(p, q); i.e., the input assump-
tions ¢* are the weakest conditions on the environment of the composite interface
M]||N which guarantee the input assumptions of both components. Algorithms
for checking compatibility and computing the composition of A/G interfaces are
given in [3]. These algorithms use the game representation of interfaces.

3 Resource Interfaces

Let Zoo = Z U {Fo00}. A resource algebra is a tuple A = (L, ®, ©) consisting of:

— A set L of resource labels, each signifying a level of consumption or produc-
tion for a set of resources.

— A binary composition operator @: 12 — L on resource labels.
— A wvalue function ©: LY — Z,, which assigns an integer value (or infinity)
to every infinite sequence of resource labels.

A resource interface over A is a pair R = (M, A) consisting of an A/G interface
M={(,,Q,q,-,,) and a labeling function A: @ — L, which maps every state
of the interface to a resource label. The size of the resource interface is |R| =
|M| + 3 ,co |Mg)|, where [¢] is the space required to represent the label £ € L.
The runs of R are the runs of M, etc. Given a run m = qo, (v§,v3), q1, (v}, v%), - . .,
we write A(m) = A(go), A(q1),... for the induced infinite sequence of resource
labels. Given a state ¢ € Q, the value at g is the minimum value that player
Input can achieve for the outcome of the game from g, irrespective of the moves
chosen by player Output: val(q) = infyicx: Supyocseo O(A(out(g,0%,0°))). The
state ¢ is A-compliant, for A € Zy, if val(q) < A. We write Q% C Q for the
set of A-compliant states. The resource interface R is A-compliant if the initial
state § is A-compliant, and the value of R is val(§).

Given two resource interfaces R = (Mg, A\g) and S = (Mg, As) over the
same resource algebra A, define A\: Qg X Qs — L such that A(p,q) = Ar(p) ®
As(q). The resource interfaces R and S are A-compatible, for A € Z, if (1) the
underlying A/G interfaces Mg and Mg are compatible, and (2) the resource
interface (Mg||Ms,) over A is A-compliant. Note that A-compatibility does not
require that both component interfaces R and S are A-compliant. Indeed, if R
consumes a resource produced by S, it may be the case that R is not A-compliant
on its own, but is A-compliant when composed with .S. This shows that different
applications call for different definitions of composition for resource interfaces,
and we refrain from a generic definition. We use, however, the abbreviation
R||S = (Mg||Ms, \).

The class of resource interfaces over a resource algebra A is denoted R[A].
We present four examples of resource algebras and the corresponding interfaces.

Pure threshold interfaces. The resource labels of a threshold interface spec-
ify, for each state g, an amount A(q) € N of resource usage in ¢ (say, power
consumption). When the states of two interfaces are composed, their resource
usage is additive. The number A > 0 provides an upper bound on the amount
of resource available at every state. A state ¢ is A-compliant if player Input can
ensure that, when starting from ¢, the resource usage never exceeds A. The value
at ¢ is the minimum amount A of resource that must be available at all states
for ¢ to be A-compliant. Formally, the pure threshold algebra A' is the resource
algebra with L' = N and ®* = + and ©%(ng,n1,...) = supg>q ng. The resource
interfaces in R[A!] are called pure threshold interfaces. Throughout the paper,
we assume that all numbers, including the state labels A(g) of pure threshold
interfaces as well as A, can be stored in space of a fixed size. It follows that the
size of a pure threshold interface R = (M, A) is equal to the size of the underlying
A/G interface M.

Example 1 Figure 1(a) shows the game associated with a pure threshold
interface. For simplicity, the example is a turn-based game in which player Input

Fig. 1. Games illustrating the four classes of resource interfaces.

makes moves in circle states, and player Output makes moves in square states.
The numbers inside the states represent their resource labels. The solid arrows
show the moves available to the players, and the dashed arrows indicate the
optimal strategies for the two players. Note that at the initial state A, state E
is a better choice than ¢ for player Input in spite of having a greater resource
label. It is easy to see that the value of the game (at A) is 15.]

Biichi threshold interfaces. While pure threshold interfaces ensure the safe
usage of a threshold resource, they may allow some systems to never use the
resource by not doing anything useful. To rule out this possibility, we may aug-
ment the pure threshold algebra with a generalized Bichi objective, which re-
quires that certain state labels be visited infinitely often. A state ¢, then, is
A-compliant if player Input can ensure that, when starting from ¢, the Biichi
conditions are satisfied and resource usage never exceeds A. The formal defini-
tion of Biichi conditions within a resource algebra is somewhat technical. The
Biichi threshold algebra A% is defined as follows, for a fixed set of labels L:

— 1% consists of triples (n,a,8) € N x 2¢ x 2%, where n € N indicates the
current level of resource usage, o C L is a set of state labels that each need
to be repeated infinitely often, and 8 C L is the set of state labels that are
satisfied in the current state.

— (n,a, B) B (0,0, B) = (n+ ', a W, B).

— We distinguish two cases, depending on whether or not the generalized Biichi
objective is violated: ©% ({ng, ag, Bo), (n1,01,51),...) = +oo if there is an
£ € ap and a k > 0 such that for all j > k, we have £ ¢ (3;; otherwise,
6% ((no, a0, Bo), (n1,01,B1), - - -) = SUPg>0 Nk-

The resource interfaces in R[A%] are called Biichi threshold interfaces. The num-
ber of Biichi conditions of a Biichi threshold interface R = (M, A) is |&|, where
& is the second component of the label A(§) for the initial state § of M.

Example 2 Figure 1(b) shows a Biichi threshold game with a single Biichi
condition. The graph is the same as in Example 1. The states with double borders
are Biichi states, i.e., one of them needs to be repeated infinitely often. Note that
the optimal output strategy at E has changed, because C is a Biichi state but H
is not. This forces player Input to prefer at A state F over E in order to satisfy
the Buchi condition. The value of the game is now 19. O

Pure energy interfaces. The resource labels of an energy interface specify, for
each state ¢, the amount of energy A(q) € Z that is produced (if A(q) > 0) or con-
sumed (if A(g) < 0) at g. When the states of two interfaces are composed, their
energy expenditures are added. The number A > 0 provides the initial amount of
energy available. A state ¢ is A-compliant if player Input can ensure that, when
starting from g, the system can run forever without the available energy dropping
below 0. The value at ¢ is the minimum amount A of initial energy necessary
for ¢ to be A-compliant. Formally, the pure energy algebra A€ is the resource
algebra with L® = Z and @° = + and ©°(dy,d1,...) = —infg>g Zo<j<k d;. The
resource interfaces in R[A€] are called pure energy interfaces. To characterize
the complexity of the algorithms, we let the mazimal energy consumption of a
pure energy interface R = (M,) be 1 if A(g) > 0 for all states ¢ € @, and
—mingeg A(g) otherwise.

Example 3 Figure 1(c) shows a pure energy game. Player Input has a strategy
to run forever when starting from the initial state A with 9 units of energy, but
8 is not enough initial energy; thus the game has the value 9. O

Reward energy interfaces. Some systems have the possibility of saving en-
ergy by doing nothing useful. To rule out this possibility, we may use a Bichi
objective as in the case of threshold interfaces. For variety’s sake, we provide a
different approach. We label each state g not only with an energy expenditure,
but also with a reward, which represents the amount of useful work performed
by the system when visiting q. A reward energy algebra specifies a minimum
acceptable reward A. A state ¢, then, is A-compliant if player Input can ensure
that, when starting from ¢ with energy A, the reward A can be obtained without
the available energy dropping below 0. For A € N, the A-reward energy algebra
A’ is defined as follows:

— L™ = Zx N. The first component of each resource label represents an energy
expenditure; the second component represents a reward.

—{d,n)y®™ (d,n') =(d+d,n+n').

— There are two cases: OF((do,n0),(d1,m1),...) = +oo if 3 .5on; <
A; otherwise, let k* = minkZO(Eogjgk n; > A) and define
Ox ({(do; no), {d1,m1), . ..) = —infock<r D o<k &-

The resource interfaces in R[A’f] are called A-reward energy interfaces. The
mazximal energy consumption of a reward energy interface is defined as for pure
energy interfaces, with the proviso that only the energy (i.e., first) components
of resource labels are considered.

Example 4 Figure 1(d) shows a A-reward energy game with 4 = 1. The num-
bers in parentheses represent rewards; states that are not labeled with paren-
thesized numbers have reward 0. The optimal choice of player Input at state A
is E, precisely the opposite of the pure energy case. If player Output chooses G
at E, then the reward 1 is won, and player Input’s objective is accomplished. If
player Output instead chooses H at E, then 4 units of energy are gained in the

cycle A E,H,A. By pumping this cycle, player Input can gain sufficient energy to
eventually choose the path A,C,D and win the reward 1. Hence the game has the
value 5. Note that this example shows that reward energy games may not have
memoryless winning strategies. O

4 Algorithms

Let A be a resource algebra. We are interested in the following questions:

Verification Given two resource interfaces R,S € R[A], and A € Zy, are R
and S A-compatible?

Design Given two resource interfaces R,S € R[A], for which values A € Zoo
are R and S A-compatible?

To answer these questions, we first need to check the compatibility of the under-
lying A /G interfaces Mg and Mg. Then, for the qualitative verification question,
we need to check if the resource interface R||S € R[A] is A-compliant, and for
the quantitative design question, we need to compute the value of R||S. Below,
for A € {AY, Abt Ae A"}, we provide algorithms for checking if a given resource
interface R € R[A] is A-compliant, and for computing the value of R. We present
the algorithms in terms of the game representation Gg = (@, §,v¢,7°,d) of the
interface. The algorithms have been implemented in our tool CHIC [12].

Pure threshold interfaces. For n € N, let Q<, = {¢ € Q | A(¢) < n}.
For A > 0, a pure threshold interface R is A-compliant iff player Input can
win a game with the safety objective of staying forever in QQ<a. Such safety
games can be solved as usual using a controllable predecessor operator CPre:
2@ — 29, defined for all X C Q by CPre(X) = {g € Q | I € 4i(q).Vv° €
7v°(q)- (g, v*,v°) € X}. The set of A-compliant states can then be written as the
limit Q' = limy_, X}, of the sequence defined by X¢ = @ and, for £ > 0, by
Xk+1 = Q<a N CPre(Xy). This algorithm can be written in p-calculus notation
as Q% = vX.(Q<a N CPre(X)), where v is the greatest fixpoint operator.

To compute the value of R, we propose the following algorithm. We introduce
two mappings lmaz: 22 — N and below: 29 — 29, For X C @, let lmaz(X) =
max{A(q) | ¢ € X} be the maximum label of a state in X, and let below(X) =
{g € X | Mgq) < lmaz(X)} be the set of states with labels below the maximum.
Then, define Xy = Q and, for k > 0, define Xy11 = vX. (below(Xy) N CPre(X)).
For k> 0 and g € Xy, \ Xk+1, we have val(q) = Imaz(Xy).

While it may appear that computing the fixpoint vX.(Q<a N CPre(X))
requires quadratic time (computing CPre is linear in |R|, and we need at most
|Q| iterations), this can be accomplished in linear time. The trick is to use a
refined version of the algorithm, where each move pair (v,v°) is considered at
most once. First, we remove from the fixpoint all states ¢’ such that A(q") > A.
Whenever a state ¢’ € Q is removed from the fixpoint, we propagate the removal
backward, removing for all ¢ € @ any move pair (v%,v°) € (v%(q),7°(q)) such
that §(g,v¢,v°) = ¢’ and, whenever (v, v°) is removed, removing also (v¢, %°) for
all 9° € v°(q). The state q is itself removed if all its move pairs are removed. Once

the removal propagation terminates, the states that have not been removed are
precisely the A-compliant states. In order to implement efficiently the algorithm
for computing the value of a threshold interface, we compute X from Xj
by removing the states having the largest label, and then back-propagating the
removal. In order to compute below(X}) efficiently for all k, we construct a list
of states sorted according to their label.

Theorem 1 Given a pure threshold interface R of size n, and A € Zy,, we
can check the A-compliance of R in time O(n), and we can compute the value
of R in time O(n -logn).

Biichi threshold interfaces. Given a Biichi threshold interface R, let A(§) =
<ﬁ,€y,[§‘), |&| = m, and & = {a1,az,...,an}. Let B' = {g € Q | A(q) =
(n9,04,B89) and a; € B9} be the i-th set in the generalized Biichi objective, for
1 <4 < m. We can compute the set of A-compliant states of R by adapting the
fixpoint algorithm for solving Biichi games [5] as follows. Given two sets Z,T C Q
of states, we define Reach(Z,T) C Q as the set of states from which player Input
can force the game to T while staying in Z. Formally, define Reach(Z,T) =
limg 00 Wi, where Wy = 0 and Wiy1 = Z N (T'U CPre(Wy)) for k > 0. Then,
for Z C Q and 1 < i < m, we compute the sets Y? C Q as follows. Let
¢ = (¢ mod m)+1 be the successor of ¢ in the cyclic order 1,2,...,m,1,...
Let Y§ = Q, and for j > 0, let Y}',; = Reach(Z, B* N CPre(Yj’")). Intuitively,
the set Y]z .1 consists of the states from which Input can, while staying in Z,
first reach B® and then go to in'. For 1 < i < m, let the fixpoint be Y* =
limj 00 in: from Y?, Input can reach B while staying in Z; moreover, once at B,
Input can proceed to Y . Hence, Input can visit the sets B!, B2,..., B™ B!, ...
cyclically, satisfying the generalized Biichi acceptance condition. Denoting by
GBiichi(Z, BY,...,B™) = YUY 2U...UY™, we can write the set of A-compliant
states of the interface as Q7% = GBichi(Q<a,B*,...,B™).

The algorithm for computing the value of a Biichi threshold interface can
be obtained by adapting the algorithm for A-compliance, similarly to the
case for pure threshold interfaces. Let Xo = @, and for & > 1, let Xg41 =
GBiichi(below(Xy), BY,...,B™). Then, for a state ¢ € X; \ Xy1, we have
val(q) = Imaz(Xy).

Since the set Reach(Z,T) can be computed in time O(m - |R|), using again
a backward propagation procedure, the computation of the set of A-compliant
states of the interface requires time O(m - |R|?), in line with the complexity for
solving Biichi games. The value of Biichi threshold games can also be computed
in the same time. In fact, Y* for iteration k + 1 (denoted Y(k + 1)) can be
obtained from Y for k (denoted Y’(k)) by Yi(k + 1) = Y'i(k) and, for j > 0,
by Yialk+1) = Readz(Xk NY*'(k), B* N CPre(Y} (k + 1))). We then have
Yi(k+1) = limj 00 Y/ (k + 1). Hence, for 1 <1 < m, the sets Y*(0), Y"*(1),
Y#(2), ... can be computed by progressively removing states. As each removal
(which requires the computation of Reach) is linear-time, the overall algorithm
is quadratic.

Theorem 2 Given a Biichi threshold interface R of size n with m Biichi con-
ditions, and A € Zo,, we can check the A-compliance of R and compute its value
in time O(n? - m).

Pure energy interfaces. Given a pure energy interface R, the value at state
g € Q is given by val(g) = inf,ic 5i SUPyoe 550 {O(A(0ut(g, o,5°)))}. To compute
this value, we define an energy predecessor operator EPre: (Q — Zs) — (Q —
Zwo), defined for all f: Q — Zo, and q € Q by

EPre(f)(q) = —A(¢) + max{0, min max f(é(g,v",v°))}.
vievri(q) voer°(q)

Intuitively, EPre(f)(q) represents the minimum energy Input needs for perform-
ing one step from g without exhausting the energy, and then continuing with
energy requirement f. Consider the sequence of functions fo, f1,...: @ = Zy,
where fo is the constant function such that fo(¢) = —oo for all ¢ € @, and
where fr11 = EPre(fi) for k > 0. The functions in the sequence are pointwise
increasing: for all ¢ € Q and k > 0, we have fr(q) < fr+1(g). Hence the limit
[« = limg_ oo fr (defined pointwise) always exists. From the definition of EPre,
it can be shown by induction that f.(q) = wal(q). The problem is that the se-
quence fo, f1,... may not converge to f, in a finite number of iterations. For
example, if the game has a state ¢ with A(q) < 0 and whose only transitions
are self-loops, then f,(g) = 400, but the sequence fo(q), f1(q),. .. never reaches
+00. To compute the limit in finitely many iterations, we need a stopping cri-
terion that allows us to distinguish between divergence to +00 and convergence
to a finite value. The following lemma provides such a stopping criterion.

Lemma 1. For all states q of a pure energy interface, either val(q) = +oo or
val(q) < — ZpeQ min{0, A\(p)}.

This lemma is proved in a fashion similar to a theorem in [4], by relating the
value of the energy interface to the value along a loop in the game. Let v =
=2 peq min{0, A(p)}. If fir(g) > v* for some k > 0, we know that f.(g) = +oo.
This suggests the definition of a modified operator ETPre: (Q — Zoo) — (@ —

Zso), defined for all f: Q — Zy, and g € Q by
EPre(f)(q) if EPre(f)(q) < v,

400 otherwise.

BIPre(f)a) = {

We have f. = limg_,c0 fr, where fo(q) = —oo for all ¢ € Q, and fr41 =
ETPre(fy) for k > 0. Moreover, there is k € N such that fy = fxy1, indi-
cating that the limit can be computed in finitely many iterations. Once f, has
been computed, we have val(q) = f.(¢) and Q% = {q € Q| f«(q) < A}.

Let ¢ be the maximal energy consumption of R. We have vt < |Q|-£. Consider
now the sequence fy, f1,... converging to f.: for all k > 0, either fx11 = f (in
which case f. = fi and the computation terminates), or there must be ¢ € Q
such that fx(q) < fr+1(q). Thus, the limit is reached in at most v*-|Q| < |Q|*-£
iterations. Each iteration involves the evaluation of the ETPre operator, which
requires time linear in |R|.

Theorem 3 Given a pure energy interface R of size n with maximal energy
consumption £, and A € Zo,, we can check the A-compliance of R and compute
its value in time O(n® - {).

Reward energy interfaces. Given a A-reward energy interface R and A € Z,
to compute Q% and wal, we use a dynamic programming approach reminiscent
of that used in the solution of shortest-path games [6]. We iterate over a set of
reward-energy allocations £: Q@ — ({0,...,4} — Z). Intuitively, for f € €,
q € Q, and r € {0,...,A4}, the value f(g)(r) indicates the amount of energy
necessary to achieve reward r before running out of energy. For ej,eq € Z,
let Mxe(e1,e2) = max{er,es} if max{er,e2} < v', and Mxe(er,e2) = +o0
otherwise. For r € N, let Mxr(r) = max{0,r}. For ¢ € Q, use A(¢q) = (d(g),n(q)).
We define an operator ERPre: £€ — £ on energy-reward allocations by letting
g = ERPre(f), where g € £ is such that for all ¢ € Q we have g(q)(0) =0, and
forallr € {0,...,4 — 1},

9(q)(r) = Mxe(—d(q),—d(q) + min max f((qg, vi,vo))(Mxr(r —n(q)))).

vieyi(q) voer°(a)

Intuitively, given an energy-reward allocation f, a state ¢, and a reward r,
ERPre(f)(q)(r) represents the minimum energy to achieve reward r from state
q given that the next-state energy-reward allocation is f. Let fy € & be de-
fined by fo(q)(r) = 400, for ¢ € Q and r € {0,...,A4}, and for &k > 0, let
ft+1 = ERPre(fi). The limit f, = limg_, o fx (defined pointwise) exists; in fact,
forall g € Q and r € {0,..., A}, we have fr11(q)(r) < fr(q)(r). For all ¢ € Q,
we then have val(q) = f«(¢)(4), and ¢ € Q% if f.(g)(4) < A.

The complexity of this algorithm can be characterized as follows. For all
qg € Q,r € {0,...,4}, and f € &, the energy f(g)(r) can assume at most
1+ vt <1+ £-|Q| values, where / is the maximal energy consumption in R.
Since each of these values is monotonically decreasing, the limit f, is computed
in at most O(|Q|? - £- A) iterations. Each iteration has cost |R| - A.

Theorem 4 Given a A-reward energy interface R of size n with mazximal
energy consumption £, and A € Zy,, we can check the A-compliance of R and
compute its value in time O(n3 - £ - A2%).

5 Examples

We sketch two small case studies that illustrate how resource interfaces can be
used to analyze resource-constrained systems.

5.1 Distribution of resources in a Lego robot system

We use resource interfaces to analyze the schedulability of a Lego robot control
program comprising several parallel threads. In this setup, player Input is a
“resource broker” who distributes the resources among the threads. The system
is compatible if Input can ensure that all resource constraints are met.

The Lego robot. We have programmed a Lego robot that must execute various
commands received from a base station through infrared (ir) communication, as
well as recover from bumping into obstacles. Its software is organized in 5 parallel
threads, interacting via a central repository. The thread Scan Sensors (.S) scans
the values of the sensors and puts these into the repository, Motion (M) executes
the tasks from the base station, Bump Recovery (B) is executed when the robot
bumps into an object, Telemetry (T') is responsible for communication with the
base station and the Goal Manager (G) manages the various goals. There are 3
mutex resources: the motor (m), the ir sensor (s) and the central repository (c).
Furthermore, energy is consumed by the motor and ir sensor. We model each
thread as a resource interface; our model is open, as more threads can be added
later.

Checking schedulability using pure threshold interfaces. First, we dis-
regard the energy consumption and consider the question whether all the mutex
requirements can be met. To this end, we model each thread ¢ € {S, M, B,T,G}
as a threshold interface (M?, *) with threshold value A = 1. The resource la-
beling A* = (AL, AL %) is such that A% (q) indicates whether, in state g, thread
1 owns resource R. The underlying A/G interface M; has, for each resource
R € {m,c, s}, a boolean input variable gr%, (abbreviated R in the figures) indi-
cating whether Input grants R to i. We also model a resource interface (M Z A\F)
for the environment, expressing that bumps do not occur too often. This inter-
face does not use any resources, i.e. AZ(q) = 0 for all states ¢ and all resources R.
These resource interfaces are 1-compatible iff all mutex requirements are met.!

Due to space limitations, Figure 2 only presents the A/G interfaces for Mo-
tion and Goal Manager; the others be modeled in a similar fashion. Also, rather
than with p(p, q), we label the edges p(p,q) A ¢*(p) A ¢°(q). The tread Motion
in Figure 2(a) has one boolean output variable fin,, indicating whether it has
finished a command from the base station. Besides the input variables grM, grM
and grM discussed above, Motion has an input variable fr controlled by Scan
Sensors that counts the steps since the last scanning of the sensors. In the initial
location My, Motion waits for a command go from the Goal Manager. Its in-
put assumption is —m A —¢, indicating that Motion needs neither the motor nor
the repository. When receiving a command, Motion moves to the location wasit,
where it tries to get hold of the motor and of the repository. Since Motion needs
fresh sensor values, it requires fr < 2 to move on the next location; otherwise it
does not need either resource. In the locations go;, go, and gos, Motion executes
the command. It needs the motor and repository in go;, and the motor only in
905 and gos. If, in locations go; or goy, the motor is retrieved from Motion (input
—m A —c, typically if Bump Recovery needs the motor), the thread goes back
to location wait. When leaving location gos;, Motion sets finy; = T, indicating
the completion of a command. We let fin;; = F on all other transitions. The
labeling AM for » € R is given by: AM(go;) = AM(go,) = AM(go;) = AM(go,).

! Note that the resource compliance of (Biichi) threshold games with multiple resource
labelings can be checked along the same lines as the resource compliance of threshold
games with single resource labelings.

-mA-cAfing =T
mAcAfr<2

mA-cA-go —mA-cAfr>2

(a) Motion. (b) Goal manager.

Fig. 2. A/G interfaces modeling a Lego robot.

AM(g) = 0 in all other cases. (Note that A%(g) is derivable from gr%, by con-
sidering edges leading to g.) The interface for Goal Manager (Figure 2(b)) has
output variables go and snd through which it starts up the threads Motion and
Telemetry in location Gy and then waits for them to be finished. It does not use
any resources.

Checking schedulability using Biichi threshold interfaces. The threshold
interfaces before express safety, but not liveness: the resource broker is not forced
to ever grant the motor to Motion or Telemetry, in which case they stay forever in
the locations wait or wait; respectively. To enforce the progress of the threads,
we add a Biichi condition expressing that the locations Gy should be visited
infinitely often. Thus, each state is a state label and we define the location
labeling of thread G by k%(q) = (A\%(q),{Go},{q}) and for i € {S,M, B, T, E}
by ki(q) = (A\i(q),0,), where ! is as before. Then all mutex requirements can
be met, with the state Gy being visited infinitely often, iff the resource interfaces
are 1-compatible.

Analyzing energy consumption using reward energy interfaces. Energy
is consumed by the motor and the ir sensor. We define the energy expense for
thread i at state g as A\{(g) = 5A¢,(g) + 2)Ai(q), expressing that the motor uses
5 energy units and the ir sensor 2. Currently, the system will always run out of
energy because it is never recharged, but it is easy to add an interface for that.
To prevent the system from saving energy by doing nothing at all, we specify
a reward. A naive attempt would be to assign the reward to each location in
each thread and sum the rewards upon composition. However, suppose that the
reward acquired per energy unit is higher when executing Motion than when
executing Telemetry. Then, the highest reward is obtained by always executing
Motion and never doing Telemetry. This phenomenon is not a deficit of the
theory, it is inherent when managing various goals. Since the latter is exactly
the task of the goal manager, we reward the completion of a round of the goal
manager. That is, we put A%(Go) = 1 and A\i(g) = 0 in all other cases. Then all
mutex requirements can be met, while the system never runs out of power, iff
the threshold interfaces interfaces (as defined before) are 1-compatible and their
composition is 0-compliant as an energy reward interface.

5.2 Resource accounting for the PicoRadio network layer

The PicoRadio [1] project aims to create large-scale, self-organizing sensor net-
works using very low-power, battery-operated piconodes that communicate over

wireless links. In these networks, it is not feasible to connect each node individ-
ually to a power line or to periodically change its battery. Energy-aware rout-
ing [10] strategies have been found necessary to optimize use of scarce energy
resources. We show how our methodology can be profitably applied to evaluate
networks and synthesize optimal routing algorithms.

A PicoRadio network. A piconet consists of a set of piconodes that can
create, store, or forward packets using multi-hop routing. The piconet topology
describes the position, maximal packet-creation rate, and packet-buffer capacity
at each piconode, and capacity of each link. Each packet has a destination,
which is a node in the network. A configuration of the network represents the
number of packets of each destination currently stored in the buffer of each
piconode. A configuration that assigns more packets to a node than its buffer
size is not legal. The network moves from one configuration to another in a round.
We assume that a piconode always uses its peak transmission capacity on an
outgoing link as long as it has enough packets to forward on that link. Wireless
transmission costs energy. Each piconode starts with an initial amount of energy,
and can possibly gain energy by scavenging.

We are given a piconet with known topology and initial energy levels at each
piconode. We wish to find a routing algorithm that makes the network satisfy a
certain safety property, e.g., that buffer overflows do not occur (or that when-
ever a node has a packet to forward, it has enough energy to do so). A piconet
together with such a property represents a concurrent finite-state safety game
between player Packet Generator, and player Router. Each legal configuration of
the network is represented by a game state; the state ERROR represents all illegal
configurations. The guarded state transitions reflect the configuration changes
the network undergoes from round to round as the players concurrently make
packet creation and routing choices under the constraints imposed by the net-
work topology. The state ERROR has a self-loop with guard T and no outgoing
transitions. The initial state corresponds to the network configuration that as-
signs 0 packets to each node. The winning condition is derived from the property
the network must satisfy. If player Router has a winning strategy o, a routing al-
gorithm that makes the network satisfy the given property under the constraints
imposed by the topology exists and can be found from ¢; else no such routing
algorithm exists. We present several examples.

Finding a routing strategy to prevent buffer overflows. Let A(q.) = 0
for each state g. that represents a legal configuration ¢, and let A(ERROR) = 1.
If the pure threshold interface thus constructed is A-compliant for A = 0, then
a routing algorithm that prevents buffer overflow exists and can be synthesized
from a winning strategy for player Router.

Finding the optimal buffer size for a given topology. We wish to find
out the smallest buffer capacity (less than a given bound) each piconode must
have so that there exists a routing algorithm that prevents buffer overflows. Let
A(ge) = max; Y. ; cij for all nodes i and packet destinations j, where c;; is the
number of packets with destination j in node i in configuration c. The value of

the pure threshold interface thus constructed gives the required smallest buffer
size.

Checking if the network runs forever using energy interfaces. We wish
to find if there exists a routing algorithm Ay that enables a piconet to run forever,
assuming each piconode starts with energy e. Let ez, be the energy scavenged
by a piconode in each round. Let A(g.) = e5c — max; Z]‘ (p - min(cg5, L (ri(4))))s
where q., ¢, j, and c;; are as above, p is the energy spent to transmit a packet,
l;(x) is the capacity of the link from node ¢ to node z, and 7; is the routing table
at node ¢; and A\(ERROR) = —1. If the pure energy interface thus constructed is
A-compliant for A = e, then Ay exists and is given by the Router strategy.

Finding the minimum energy required to achieve a given lifetime.
We wish to find the minimum initial energy e such that there exists a routing
algorithm A, that makes each piconode run for at least r rounds. Let A(g.) =
(ec, 1), where e is the energy label of configuration g. defined in the pure energy
interface above, and 1 is a reward; and A(ERROR) = (—1,0). For 4 = r, the
value of the A-reward energy interface thus constructed gives e, and the Router
strategy gives A,.

References

1. J.L. da Silva Jr., J. Shamberger, M.J. Ammer, C. Guo, S. Li, R. Shah, T. Tuan,
M. Sheets, J.M. Rabaey, B. Nikolic, A. Sangiovanni-Vincentelli, and P. Wright.
Design methodology for pico-radio networks. In Proc. Design Automation and
Test in FEurope, pp. 314-323. IEEE, 2001.

2. L. de Alfaro and T.A. Henzinger. Interface automata. In Proc. Foundations of
Software Engineering, pp. 109-120. ACM, 2001.

3. L. de Alfaro and T.A. Henzinger. Interface theories for component-based design.
In Embedded Software, LNCS 2211, pp. 148-165. Springer, 2001.

4. A. Ehrenfeucht and J. Mychielski. Positional strategies for mean-payoff games.
Int. J. Game Theory, 8:109-113, 1979.

5. E.A. Emerson and C.S. Jutla. Tree automata, p-calculus, and determinacy. In
Proc. Foundations of Computer Science, pp. 368-377. IEEE, 1991.

6. J. Filar and K. Vrieze. Competitive Markov Decision Processes. Springer, 1997.

7. M. Hennessy and J. Riely. Information flow vs. resource access in the asynchronous
m-calculus. In Proc. Automata, Languages, and Programming, LNCS 1853, pp.
415-427. Springer, 2000.

8. I. Lee, A. Philippou, and O. Sokolsky. Process-algebraic modeling and analysis of
power-aware real-time systems. Computing and Control Engineering J., 13:180—
188, 2002.

9. M. Nuifez and I. Rodrigez. PAMR: a process algebra for the management of re-
sources in concurrent systems. In Proc. Formal Techniques for Networked and
Distributed Systems, pp. 169-184. Kluwer, 2001.

10. R. Shah and J.M. Rabaey. Energy-aware routing for low-energy ad-hoc sensor
networks. In Proc. Wireless Communications and Networking Conference, pp.
812-817. IEEE, 2002.

11. D. Walker, K. Crary, and G. Morrisett. Typed memory management via static
capabilities. ACM Trans. Programming Languages and Systems, 22:701-771, 2000.

12. CHIC: Checker for Interface Compatibility. www.eecs.berkeley.edu/~tah/Chic.

