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1 Introdu
tionModel 
he
king is emerging as a pra
ti
al tool for automated debugging of
omplex rea
tive systems su
h as embedded 
ontrollers and network proto
ols.In model 
he
king, a high-level des
ription of a system is 
ompared againsta logi
al 
orre
tness requirement to dis
over in
onsisten
ies. The �rst te
h-niques for model 
he
king did not admit an expli
it modeling of time, and arethus unsuitable for analysis of real-time systems whose 
orre
tness dependson relative magnitudes of di�erent delays. Consequently, Alur and Dill [AD90℄proposed timed automata as a formal notion to model the behavior of real-time systems. Timed automata are state-transition diagrams annotated withtiming 
onstraints using �nitely many real-valued 
lo
k variables. During thelast de
ade, there has been enormous progress in the area of timed model
he
king. We refer to [Alu98, CGP99, LPY97, Yov98℄ for overviews of the un-derlying theory and referen
es to appli
ations. Timed automata tools su
h asUppaal [LPY97℄, Kronos [BDM+98℄, and PMC [LTA98℄ are now routinelyused for industrial 
ase studies.A disadvantage of the traditional approa
hes is, however, that they 
an onlybe used to verify 
on
rete timing properties: one has to provide the valuesof all timing parameters that o

ur in the system. Typi
al examples of su
hparameters are upper and lower bounds on 
omputation times, message delaysand timeouts. For pra
ti
al purposes, one is often interested in deriving the(symboli
) 
onstraints on the parameters that ensure 
orre
tness. The pro
essof manually �nding and proving su
h results is very time 
onsuming and errorprone (we have dis
overed minor errors in the examples we have been lookingat). Therefore tool support for deriving the 
onstraints automati
ally is veryimportant.In this paper, we study a parametri
 extension of timed automata, 
alledparametri
 timed automata (PTAs), and present an extension to PTAs of the(forward) state spa
e exploration algorithm for timed automata. We show thetheoreti
al 
orre
tness of our approa
h, and its feasibility by appli
ation tothree non-trivial 
ase studies. For this purpose, we have implemented a proto-type extension of Uppaal, an eÆ
ient real-time model 
he
king tool [LPY97℄.The algorithmwe propose and have implemented fundamentally relies on para-metri
 di�eren
e bound matri
es (PDBMs) and operations on these. PDBMs
onstitute a data type that extends the di�eren
e bound matri
es (DBMs,[Dil90℄) in a natural way. The latter are used for re
ording 
lo
k di�eren
eswhen model 
he
king (non-parametri
) timed automata. PDBMs are basi
allyDBMs, where the matrix entries are parameter expressions rather than 
on-stants. Our algorithm is a semi-de
ision algorithm whi
h will not terminate inall 
ases. In [AHV93℄, the problem of synthesizing values for parameters su
hthat a property is satis�ed was shown to be unde
idable, so this is the best2



we 
an hope for.A se
ond 
ontribution of this paper is the identi�
ation of a sub
lass of para-metri
 timed automata, 
alled lower bound/upper bound (L/U) automata,whi
h appears to be suÆ
iently expressive from a pra
ti
al perspe
tive, whileit also has ni
e theoreti
al properties. Most importantly, we show that theemptiness problem, in [AHV93℄ shown to be unde
idable for parametri
 timedautomata, is de
idable for L/U automata. We also establish a number of resultswhi
h allow one to redu
e the number of parameters when ta
kling spe
i�
veri�
ation questions for L/U automata. The appli
ation of these lemmas hasalready redu
ed the veri�
ation e�ort drasti
ally in several of our experiments.Related work There are 
urrently several other tools available that 
an doparametri
 model 
he
king, namely LPMC, HyTe
h and TReX.LPMC [LTA98℄ is a parametri
 extension of the timed model 
he
ker PMC[BLT00℄. The model 
he
king algorithm implemented in LPMC di�ers fromours: it represents the state spa
e of a system as an unstru
tured set of 
on-straints, whereas we use PDBMs. Moreover, LPMC implements a partitionre�nement te
hnique, whereas we use forward rea
hability. Other di�eren
eswith our approa
h are that LPMC also allows for the 
omparison of non-
lo
kvariables to parameter 
onstraints and for more general spe
i�
ation proper-ties (full TCTL with fairness assumptions).The model 
he
ker HyTe
h [HHWT97℄ is a tool for linear hybrid automata.These are more general than parametri
 timed automata, sin
e they allowthe modeling of 
ontinuous behavior via linear di�erential equations. TheHyTe
h implementation uses polyhedra as its basi
 data type. It 
an explorethe state spa
e by using either forward rea
hability, as we do, or partitionre�nement, as in LPMC. The tool has been applied su

essfully to relativelysmall examples su
h as a railway gate 
ontroller. Experien
e so far has shownthat HyTe
h 
annot 
ope with larger examples, su
h as the ones 
onsideredin this paper, see the results in [CS01℄.The tool TReX [AAB00, ABS01℄ is 
urrently the only one that 
an deal withnon-linear parameter 
onstraints. Moreover, TReX has a 
lever method forguessing the e�e
t of 
ontrol loops in a model, based on widening prin
iples,whi
h in
reases 
han
es of termination. Independently, [AAB00℄ developedthe same data stru
ture as we did (PDBMs) and implemented some similaroperations on these. However, the underlying theory was not worked out inthe resear
h literature. Hen
e, we believe that our 
ontribution over [AAB00℄
onsists of the following. Our work presents an extensive elaboration of thetheory behind our implementation. In parti
ular, we present a 
orre
tnessproof of the model 
he
king algorithm we implemented. That is, we provethat the symboli
 semanti
s of a PTA in terms of PDBMs is equivalent to its3




on
rete semanti
s in terms of single states and transitions. These proofs relyon a number of non-trivial generalizations of results for DBMs.Ea
h of the tools above has been applied to the IEEE 1394 Root ContentionProto
ol [CS01, BLT00℄. We refer the reader to [Sto01℄ for a 
omparison ofthe results. An important 
on
lusion was that ea
h of the veri�
ations has itown merits, where our approa
h was the fastest.Overview The remainder of this paper is organized as follows. Se
tion 2 intro-du
es the notion of parametri
 timed automata. Se
tion 3 gives the symboli
semanti
s in terms of PDBMs and is the basis for the model 
he
king algo-rithm presented in Se
tion 3.5. In Se
tion 4, we introdu
e the 
lass of L/Uautomata. Se
tion 5 reports on several experiments with our tool. Finally,Se
tion 6 presents some 
on
lusions.A
knowledgements We thank the reviewers for their reports, in parti
ularReviewer 3 who gave many 
omments that helped us to improve our paperand pointed out the ne
essity of imposing nonegative lower bounds on 
lo
ksin 
onstrained PBDMs.2 Parametri
 Timed AutomataParametri
 timed automata were �rst de�ned in [AHV93℄. They generalizethe timed automata of [AD90℄. The de�nition of parametri
 timed automatathat we present in this se
tion is very similar to the de�nition in [AHV93℄, ex-
ept that progress is ensured via lo
ation invariants rather than via a

eptingstates. This di�eren
e is not essential.2.1 Parameters and ConstraintsThroughout this paper, we assume a �xed set of parameters P = fp1; : : : ; png.De�nition 2.1 (Constraints) A linear expression e is either an expressionof the form t1p1 + � � � + tnpn + t0, where t0; : : : ; tn 2 Z, or 1. We write Eto denote the set of all linear expressions. A 
onstraint is an inequality of theform e � e0, with e; e0 linear expressions and �2 f<;�; >;�g. The negation of
onstraint 
, denoted :
, is obtained by repla
ing relation symbols <, �, >, �by �, >, �, <, respe
tively. A (parameter) valuation is a fun
tion v : P ! R�0assigning a nonnegative real value to ea
h parameter. There is a one-to-one
orresponden
e between valuations and points in (R�0)n. In fa
t we oftenidentify a valuation v with the point (v(p1); : : : ; v(pn)) 2 (R�0)n.4



If e is a linear expression and v is a valuation, then e[v℄ denotes the expressionobtained by repla
ing ea
h parameter p in e with v(p). Likewise, we de�ne
[v℄ for 
 a 
onstraint. Valuation v satis�es 
onstraint 
, denoted v j= 
, if 
[v℄evaluates to true. The semanti
s of a 
onstraint 
, denoted [[
℄℄, is the set ofvaluations that satisfy 
. A �nite set of 
onstraints C is 
alled a 
onstraint set.A valuation satis�es a 
onstraint set if it satis�es ea
h 
onstraint in the set.The semanti
s of a 
onstraint set C is given by [[C℄℄ := T
2C [[
℄℄. We say thatC is satis�able if [[C℄℄ is nonempty.Constraint 
 
overs 
onstraint set C, denoted C j= 
, i� [[C℄℄ � [[
℄℄. Constraintset C is split by 
onstraint 
 i� neither C j= 
 nor C j= :
.During the analysis questions arise of the kind: given a 
onstraint set C anda 
onstraint 
, does 
 hold, i.e., does 
onstraint 
 
over C? There are threepossible answers to this, yes, no, and split. A split o

urs when 
 holds forsome valuations in the semanti
s of C and :
 holds for some other valuations.Here will not dis
uss in detail methods for answering su
h questions: in theremainder of this paper we just assume the presen
e of the following \ora
le"fun
tion.De�nition 2.2 (Ora
le)O(
; C) = 8>><>>:yes if C j= 
no if C j= :
split otherwiseThe ora
le fun
tion 
an be 
omputed in polynomial time using linear pro-gramming (LP) solvers. Suppose we want to 
ompute O(
; C), where 
 takesthe form e � e0. Then we �rst maximize the linear fun
tion e0 � e subje
t tothe set C of linear inequalities. This is a linear programming problem. If theout
ome is negative then O(
; C) = no. Otherwise we maximize e� e0 subje
tto C. If the out
ome is less than or equal to 0 then O(
; C) = yes. OtherwiseO(
; C) = split. In our implementation we use an LP solver that was kindlyprovided to us by the authors of [BLT00℄, who built it for their model 
he
kingtool LPMC. This LP solver is geared to perform well on small, simple sets of
onstraints rather than large, 
ompli
ated ones.Observe that using the ora
le, we 
an easily de
ide semanti
 in
lusion between
onstraint sets: [[C℄℄ � [[C 0℄℄ i� 8
0 2 C 0 : O(
0; C) = yes.5



2.2 Parametri
 Timed AutomataThroughout this paper, we assume a �xed set of 
lo
ks X = fx0; : : : ; xmg anda �xed set of a
tions A = fa1; : : : ; akg. The spe
ial 
lo
k x0, whi
h is 
alledthe zero 
lo
k, always has the value 0 (and hen
e does not in
rease with time).A simple guard is an expression f of the form xi � xj � e, where xi; xj are
lo
ks, �2 f<;�g, and e is a linear expression. We say that f is proper ifi 6= j. We de�ne a guard to be a (�nite) 
onjun
tion of simple guards. We letg range over guards and write G to denote the set of guards. A 
lo
k valuationis a fun
tion w : X ! R�0 assigning a nonnegative real value to ea
h 
lo
ksu
h that w(x0) = 0. We will identify a 
lo
k valuation w with the point(w(x0); : : : ; w(xm)) 2 (R�0)m+1. Let g be a guard, v a parameter valuation,and w a 
lo
k valuation. Then g[v; w℄ denotes the expression obtained byrepla
ing ea
h parameter p with v(p), and ea
h 
lo
k x with w(x). A pair(v; w) of a parameter valuation and a 
lo
k valuation satis�es a guard g,denoted (v; w) j= g, if g[v; w℄ evaluates to true. The semanti
s of a guard g,denoted [[g℄℄, is the set of pairs (v; w) su
h that (v; w) j= g. Given a parametervaluation v, we write [[g℄℄v for the set of 
lo
k valuations fw j (v; w) j= gg.A reset is an expression of the form, xi := b where i 6= 0 and b 2 N. A resetset is a set of resets 
ontaining at most one reset for ea
h 
lo
k. The set ofreset sets is denoted by R.We now de�ne an extension of timed automata [AD94, Yov98℄ 
alled paramet-ri
 timed automata. Similar models have been presented in [AHV93, AAB00,BLT00℄.De�nition 2.3 (PTA) A parametri
 timed automaton (PTA) over set of
lo
ks X, set of a
tions A, and set of parameters P , is a quadruple A =(Q; q0;!; I), where Q is a �nite set of lo
ations, q0 2 Q is the initial lo
ation,!� Q�A�G�R�Q is a �nite transition relation, and fun
tion I : Q! Gassigns an invariant to ea
h lo
ation. We abbreviate a (q; a; g; r; q0) 2! 
on-sisting of a sour
e lo
ation q, an a
tion a, a guard g, a reset set r, and atarget lo
ation q0 as q a;g;r�! q0. For a simple guard xi � xj � e to be used in aninvariant it must be the 
ase that j = 0, that is, the simple guard representsan upper bound on a 
lo
k. 2Example 2.4 A parametri
 timed automaton with 
lo
ks x, y and param-eters p, q 
an be seen in Fig. 1. The initial lo
ation is S0 and has invariant2 There is no fundamental reason to impose this restri
tion on invariants; our wholetheory 
an be developed without it. However, te
hni
ally the restri
tion makes ourlives a bit easier, see for instan
e Proposition 3.17. In pra
ti
e the 
ondition is (asfar as we are aware) always met. 6



x � qS0 S1x � p x := 0x � 5Fig. 1. A parametri
 timed automatonx � p. There is a transition from the initial lo
ation to S1, whi
h has guardy � q and reset set fx := 0g. There are no a
tions on the transitions. Thetransition from S0 to S1 
an only be
ome enabled if p � q, otherwise thesystem will end up in a deadlo
k.To de�ne the semanti
s of PTAs, we require two auxiliary operations on 
lo
kvaluations. For 
lo
k valuation w and nonnegative real number d, w + d isthe 
lo
k valuation that adds to ea
h 
lo
k (ex
ept x0) a delay d. For 
lo
kvaluation w and reset set r, w[r℄ is the 
lo
k valuation that resets 
lo
ksa

ording to r.(w + d)(x) = 8><>: 0 if x = x0w(x) + d otherwise (w[r℄)(x) = 8><>: b if x := b 2 rw(x) otherwise:De�nition 2.5 (LTS) A labeled transition system (LTS) over a set of sym-bols � is a triple L = (S; S0;!), with S a set of states, S0 � S a set ofinitial states, and !� S � � � S a transition relation. We write s a�! s0for (s; a; s0) 2!. A run of L is a �nite alternating sequen
e s0a1s1a2 � � � snof states si 2 S and symbols ai 2 � su
h that s0 2 S0 and, for all i < n,si ai+1�! si+1. A state is rea
hable if it is the last state of some run.De�nition 2.6 (Con
rete semanti
s) LetA = (Q; q0;!; I) be a PTA andv be a parameter valuation. The 
on
rete semanti
s of A under v, denoted[[A℄℄v, is the labeled transition system (LTS) (S; S0;!) over A [ R�0 whereS= f(q; w) 2 Q� (X ! R�0) j w(x0) = 0 ^ (v; w) j= I(q)g;S0= f(q; w) 2 S j q = q0 ^ w = �x:0g;and the transition predi
ate ! is spe
i�ed by the following two rules. For all(q; w), (q0; w0) 2 S, d � 0 and a 2 A,� (q; w) d�! (q0; w0) if q = q0 and w0 = w + d.� (q; w) a�! (q0; w0) if 9g; r : q a;g;r�! q0 and (v; w) j= g and w0 = w[r℄.7



Note that the LTS [[A℄℄v has at most one initial state. It has no initial state ifthe invariant assigned to the initial lo
ation of A is unsatis�able.2.3 The Parametri
 Model Che
king ProblemIn its 
urrent version, Uppaal is able to 
he
k for rea
hability properties,in parti
ular whether 
ertain 
ombinations of lo
ations and 
onstraints on
lo
k variables are rea
hable from the initial 
on�guration. Our parametri
extension of Uppaal handles exa
tly the same properties. However, ratherthan just telling whether a property holds or not, our tool looks for 
onstraintson the parameters whi
h ensure that the property holds.De�nition 2.7 (Properties) Let A = (Q; q0;!; I) be a PTA. The sets ofsystem properties and state formulas for A are de�ned by, respe
tively, ::= 82� j 93� � ::= x� y � b j q j :� j � ^ � j � _ �where x; y 2 X, b 2 N and q 2 Q. Let A be a PTA, v a parameter valuation,s a state of [[A℄℄v, and � a state formula. We write s j=v � if � holds in states of [[A℄℄v, we write [[A℄℄v j= 82� if � holds in all rea
hable states of [[A℄℄v, andwe write [[A℄℄v j= 93� if � holds for some rea
hable state of [[A℄℄v.The problem that we address in this paper 
an now be stated as follows:Given a parametri
 timed automaton A and a system property  ,
ompute the set of parameter valuations v for whi
h [[A℄℄v j=  .Remark 2.8 Timed automata [AD94, Yov98℄ arise as a spe
ial 
ase of PTAsfor whi
h the set P of parameters is empty. If A is a PTA and v is a parametervaluation, then the stru
ture A[v℄ that is obtained by repla
ing all linearexpressions e that o

ur in A by e[v℄ is a timed automaton. 3 It is easy tosee that in general [[A℄℄v = [[A[v℄℄℄. Sin
e the rea
hability problem for timedautomata is de
idable [AD94℄, this implies that, for any A, integer valued vand  , [[A℄℄v j=  is de
idable.2.4 Example: Fis
her's Mutual Ex
lusion AlgorithmFigure 3 shows a PTA model of Fis
her's mutual ex
lusion algorithm [Lam87℄.The purpose of this algorithm is to guarantee mutually ex
lusive a

ess to a3 Stri
tly speaking, A[v℄ is only a timed automaton if v assigns an integer to ea
hparameter. 8




riti
al se
tion among n 
ompeting pro
esses P1, P2; : : : Pn. The algorithm,where ea
h pro
ess Pi (perpetually) runs the 
ode of Figure 2, uses a sharedvariable lo
k for 
ommuni
ation between the pro
esses.Fis
her (Pi)lo
k := 0repeatwhile lo
k 6= 0 do skip odlo
k := idelayuntil lo
k = i
riti
al se
tionlo
k := 0Fig. 2. Fis
her's mutual ex
lusion algorithmThe 
orre
tness of this algorithm 
ru
ially depends on the timing of the op-erations. The key idea is that any pro
ess Pi that sets lo
k := i is made towait long enough before 
he
king lo
k = i to ensure that any other pro
ess Pjthat tested lo
k = 0, before Pi set lo
k to its index, has already set lo
k to itsindex j, when Pi �nally 
he
ks lo
k = i.Assume that read/write a

ess to the global variable (in the operations lo
k =i and lo
k := 0) takes betweenmin rw andmax rw time units and assume thatthe delay operation (in
luding the time needed for the assignment lo
k := i)takes between min delay and max delay time units. If we assume the basi

onstraints 0�min rw <max rw ^ 0�min delay<max delay , then mutualex
lusion is guaranteed if and only if max rw�min delay .
start

x<=max_rw
set

x<=max_rw
try_enter

x<= max_delay
cs

lock==0,
x > min_rw

x:=0

x>min_rw

x:=0, 
lock:=i

x>min_delay, 
lock==i

x:=0, lock:=0

lock != 0, 
x> min_rw

x:=0

lock != i, 
x > min_delay

x:= 0

Fig. 3. A PTA model of Fis
her's mutual ex
lusion algorithmNow 
onsider the PTA in Fig. 3, whi
h is represented in Uppaal syntax. (Sev-eral di�erent models of this algorithm exist [AL92, AHV93, Lyn96, KLL+97℄;our model is 
losest to the one in [Lyn96℄.) It 
onsists of four lo
ations start(whi
h is initial), set , try enter and 
s; four parameters, min rw , max rw ,min delay and max delay; one 
lo
k x and a shared variable lo
k . By 
on-vention, x and lo
k are initially 0. Note that the pro
ess 
an remain in thelo
ations start and set for at least min rw and stri
tly less than max rwtime units. Similarly, the pro
ess 
an remain in try enter for any time in theinterval [min delay ;max delay). 9



The shared variable, whi
h is not a part of the de�nition of PTAs, is synta
ti
sugar whi
h allows for an eÆ
ient en
oding of the algorithm as a PTA. Also thenotion of parallel 
omposition for PTAs is standard, see for instan
e [LPY97℄for their de�nitions.3 Symboli
 State Spa
e ExplorationOur aim is to use basi
ally the same algorithm for parametri
 timed model
he
king as for timed model 
he
king. We represent sets of states symboli
allyin a similar way and support the same operations used for timed model 
he
k-ing. In the nonparametri
 
ase, sets of states 
an be eÆ
iently representedusing matri
es [Dil90℄. Similarly, in this paper we represent sets of states sym-boli
ally as (
onstrained) parametri
 di�eren
e bound matri
es.3.1 Parametri
 Di�eren
e Bound Matri
esIn the nonparametri
 
ase, a di�eren
e bound matrix is a (m + 1)� (m + 1)matrix whose entries are elements from (Z[f1g)�f0; 1g. An entry (
; 1) forDij denotes a nonstri
t bound xi � xj � 
, whereas an entry (
; 0) denotes astri
t bound xi � xj < 
. In the parametri
 
ase, instead of using integers inthe entries, we will use linear expressions over the parameters. Also, we �ndit 
onvenient to view the matrix slightly more abstra
tly as a set of guards.De�nition 3.1 (PDBM) A parametri
 di�eren
e bound matrix (PDBM) isa set D whi
h 
ontains, for all 0 � i; j � m, a simple guard Dij of the formxi � xj �ij eij. We require that, for all i, Dii is of the form xi� xi � 0. Givena parameter valuation v, the semanti
s of D is given by [[D℄℄v = [[Vi;jDij℄℄v.PDBM D is satis�able for v if [[D℄℄v is nonempty. If f is a guard of the formxi � xj � e with i 6= j (i.e., a proper guard), then D[f ℄ denotes the PDBMobtained from D by repla
ing Dij by f . If i; j are indi
es then Dij denotes thepair (eij;�ij); we 
all Dij a bound of D. Clearly, a PDBM is fully determinedby its bounds.De�nition 3.2 (Constrained PDBM) A 
onstrained PDBM is a pair (C;D)where C is a 
onstraint set and D is a PDBM. We require that C j= p � 0,for ea
h p, and C j= e0i � 0, for ea
h i. The semanti
s of (C;D) is given by[[C;D℄℄ = f(v; w) j v 2 [[C℄℄ ^ w 2 [[D℄℄vg. We 
all (C;D) satis�able if [[C;D℄℄ isnonempty.Condition C j= p � 0 expresses that parameter p may only take nonnegativevalues. The 
ondition C j= e0i � 0 ensures a nonnegative lower bound on the10



value of 
lo
k xi. Su
h a 
ondition is required sin
e 
lo
ks in a PTA only takenonnegative values. A similar 
ondition o

urs in [Yov98℄. In the setting of[Dil90℄ the 
ondition of nonnegative lower bounds is not needed sin
e in thispaper 
lo
ks (
alled timers) may take values in R. In [LLPY97, Alu98, CGP99,AAB00℄ the 
ondition (or something similar) is needed but not mentioned. 4PDBMs with the tightest possible bounds are 
alled 
anoni
al. To formalizethis notion, we de�ne an addition operation on linear expressions by(t1p1 + � � �+ tnpn + t0)+ (t01p1 + � � �+ t0npn + t00)�=(t1 + t01)p1 + � � �+ (tn + t0n)pn + (t0 + t00):Also, we view Boolean 
onne
tives as operations on relation symbols � and <by identifying� with 1 and < with 0. For instan
e, (� ^ �) =�, (� ^ <) =<,: �=<, and (� =) <) =<.Our de�nition of a 
anoni
al form of a 
onstrained PDBM is essentially equiv-alent to the one for standard DBMs.De�nition 3.3 (Canoni
al Form) A 
onstrained PDBM (C;D) is in 
anon-i
al form i� for all i; j; k, C j= eij (�ij =) �ik ^ �kj) eik + ekj.The proof of the following te
hni
al result is immediate from the de�nitions.Lemma 3.4(1) If v j= e � e0 and v j= e0 �0 e00 then v j= e (� ^ �0) e00.(2) If (v; w) j= x� y � e and v j= e �0 e0 then (v; w) j= x� y (� ^ �0) e0.(3) If v j= e (� ^ �0) e0 then v j= e � e0.(4) If (v; w) j= x� y (� ^ �0) e then (v; w) j= x� y � e.(5) If (v; w) j= x� y � e and (v; w) j= y� z �0 e0 then (v; w) j= x� z (�^ �0) e+ e0.(6) v j= :(e � e0) i� v j= e0 (: �) e.The next lemma states that 
anoni
ity of a 
onstrained PDBM guaranteessatis�ability.Lemma 3.5 Suppose (C;D) is a 
onstrained PDBM in 
anoni
al form andv 2 [[C℄℄. Then D is satis�able for v.4 For instan
e, in [CGP99℄ it is 
laimed on page 289: \If the 
lo
k zone is empty orunsatis�able, there will be at least one negative entry in the main diagonal." This
laim is in
orre
t. A 
ounterexample is the 
anoni
al form of a DBM that 
ontainsas the only nontrivial guard x1 � x0 � �1.11



Proof: By indu
tion on i, with 0 � i � m, we 
onstru
t a valuation(t0; : : : ; ti) for 
lo
k variables (x0; : : : ; xi) su
h that all 
onstraints Djk for0 � j; k � i are met.To begin with, we set t0 = 0. Then, trivially, (v; x0 7! t0) j= D00.For the indu
tion step, suppose that for some i < m we have a valuation(t0; : : : ; ti) for variables (x0; : : : ; xi) su
h that all 
onstraints Djk for 0 �j; k � i are met. In order to extend this valuation to xi+1, we have to�nd a value ti+1 su
h that the following simple guards hold for valuation(v; x0 7! t0; : : : ; xi+1 7! ti+1):Di+1;0 � � � Di+1;i D0;i+1 � � � Di;i+1 Di+1;i+1 (1)Here the �rst i+ 1 simple guards give upper bounds for ti+1, the se
ond i+ 1simple guards give lower bounds for ti+1, and the last simple guard is triviallymet by any 
hoi
e for ti+1. We 
laim that ea
h of the upper bounds is largerthan or equal to ea
h of the lower bounds. In parti
ular, the minimum of theupper bounds is larger than or equal to the maximum of the lower bounds.This gives us a nonempty interval of possible values for ti+1 to 
hoose from.Formally, we 
laim that, for all 0 � j; k < i + 1, the following formula holdsfor valuation (v; [x0 7! t0; : : : ; xi 7! ti℄):xj � ej;i+1 (�j;i+1 ^ �i+1;k)xk + ei+1;k (2)To see why (2) holds, observe that by indu
tion hypothesis (v; x0 7! t0; : : : ; xi 7!ti) j=xj � xk�jk ejk (3)Furthermore, sin
e (C;D) is 
anoni
al and v 2 [[C℄℄, v j=ejk (�jk =) �j;i+1 ^ �i+1;k) ej;i+1 + ei+1;k (4)Combination of (3) and (4), using Lemma 3.4(2), gives (v; x0 7! t0; : : : ; xi 7!ti) j=xj � xk (�j;i+1 ^ �i+1;k) ej;i+1 + ei+1;kwhi
h is equivalent to (2). This means that we 
an 
hoose ti+1 in a

ordan
ewith all the guards of (1). In parti
ular, guard D0;i+1 holds, whi
h by theassumption that lower bounds on 
lo
ks are nonnegative implies that ti+1 isnonnegative. This 
ompletes the proof of the indu
tion step and thereby ofthe lemma. � 12



The following lemma essentially 
arries over from the nonparametri
 
ase too,see for instan
e [Dil90℄. As a dire
t 
onsequen
e, semanti
 in
lusion of 
on-strained PDBMs is de
idable for 
anoni
al PDBMs (using the ora
le fun
tion).Lemma 3.6 Suppose (C;D); (C 0; D0) are 
onstrained PDBMs and (C;D) is
anoni
al. Then [[C;D℄℄ � [[C 0; D0℄℄ , ([[C℄℄ � [[C 0℄℄ ^ 8i; j : C j= eij(�ij =)�0ij)e0ij).3.2 Operations on PDBMsOur algorithm requires basi
ally four operations to be implemented on 
on-strained PDBMs: adding guards, 
anoni
alization, resetting 
lo
ks and 
om-puting time su

essors.3.2.1 Adding GuardsIn the 
ase of DBMs, adding a guard is a simple operation. It is implementedby taking the 
onjun
tion of a DBM and the guard (whi
h is also viewedas a DBM). The 
onjun
tion operation just takes the pointwise minimum ofthe entries in both matri
es. In the parametri
 
ase, adding a guard to a
onstrained PDBM may result in a set of 
onstrained PDBMs. We de�ne arelation ( whi
h relates a 
onstrained PDBM and a guard to a 
olle
tion of
onstrained PDBMs that satisfy this guard. For this we need an operationC that takes a PDBM and a simple guard, and produ
es a 
onstraint statingthat the bound imposed by the guard is weaker than the 
orresponding boundin the PDBM. Let Dij = (eij;�ij). ThenC(D; xi � xj � e)= eij (�ij =) �) e:Relation( is de�ned as the smallest relation that satis�es the following rules:(R1) O(C(D; f); C) = yes(C;D) f( (C;D) (R2) O(C(D; f); C) = no; f proper(C;D) f( (C;D[f ℄)(R3) O(C(D; f); C) = split(C;D) f( (C [ fC(D; f)g; D) (R4) O(C(D; f); C) = split; f proper(C;D) f( (C [ f:C(D; f)g; D[f ℄)(R5) (C;D) g( (C 0; D0) ; (C 0D0) g0( (C 00; D00)(C;D) g^g0( (C 00; D00)13



If the ora
le replies \yes" then adding a simple guard will not 
hange the
onstrained PDBM. If the answer is \no" then we tighten the bound in thePDBM. With the answer \split" there are two possibilities and two PDBMswith updated 
onstraint systems are returned. Thus the result of the operationof adding a guard is a set of 
onstrained PDBMs. The side 
ondition \f proper"in R2 and R4 rules out guards of the form xi�xi � e and thereby ensures thatthe diagonal bounds in the PDBM always remain equal to (0;�). It is routineto 
he
k, using Lemma 3.4, that relation ( is well-de�ned in the sense that(C;D) g( (C 0; D0) implies that (C 0; D0) is a 
onstrained PDBMs. In parti
ular,the 
ondition that 
lo
ks have nonnegative lower bounds is met. Note that ifwe update a bound in D the semanti
s of the PDBM may be
ome empty:a typi
al situation o

urs when D 
ontains a 
onstraint x � 5 and we adda guard x � 3. Note however that (C;D) g( (C 0; D0) and [[C℄℄ 6= ; implies[[C 0℄℄ 6= ;. The following lemma 
hara
terizes ( semanti
ally.Lemma 3.7 [[C;D℄℄ \ [[g℄℄ = Sf[[C 0; D0℄℄ j (C;D) g( (C 0; D0)g.Proof: \�". Assume (v; w) 2 [[C;D℄℄^(v; w) j= g. By stru
tural indu
tion ong we prove that there exists a 
onstrained PDBM (C 0; D0) su
h that (C;D) g((C 0; D0) and (v; w) 2 [[C 0; D0℄℄.For the indu
tion basis, suppose g is of the form xi�xj � e. We 
onsider four
ases:� O(C(D; g); C) = yes. Let C 0 = C and D0 = D. Then trivially (v; w) 2[[C 0; D0℄℄ and, by rule R1, (C;D) g( (C 0; D0).� O(C(D; g); C) = no. By 
ontradi
tion we prove that g is proper. Suppose gis not proper. Then, sin
e i = j and v j= :eij(�ij =) �)e, v j= :(0 � e).By Lemma 3.4(6), v j= e(: �)0. But (v; w) j= g implies v j= 0 � e. Hen
e,by Lemma 3.4(1), v j= 0 < 0, a 
ontradi
tion. Let C 0 = C and D0 = D[g℄.Then, by rule R2, (C;D) g( (C 0; D0). Sin
e v 2 [[C℄℄ and C 0 = C, triviallyv 2 [[C 0℄℄. Sin
e w 2 [[D℄℄v and (v; w) j= g, easily w 2 [[D[g℄℄℄v. It follows that(v; w) 2 [[C 0; D0℄℄.� O(C(D; g); C) = split and v j= C(D; g). Let C 0 = C[fC(D; g)g and D0 = D.Then, by rule R3, (C;D) g( (C 0; D0). Sin
e v 2 [[C℄℄ and v j= C(D; g),v 2 [[C [ fC(D; g)g℄℄. Sin
e w 2 [[D℄℄v and D0 = D, trivially w 2 [[D0℄℄v. Itfollows that (v; w) 2 [[C 0; D0℄℄.� O(C(D; g); C) = split and v j= :C(D; g). By 
ontradi
tion we prove that gis proper. Suppose g is not proper. Then, sin
e v j= :C(D; g), v j= :(0 � e).By Lemma 3.4(6), v j= e: � 0. But (v; w) j= g implies v j= 0 � e. Hen
e,by Lemma 3.4(1), v j= 0 < 0, a 
ontradi
tion. Let C 0 = C [ f:C(D; g)gand D0 = D[g℄. Then, by rule R4, (C;D) g( (C 0; D0). Sin
e v 2 [[C℄℄ andv j= :C(D; g), v 2 [[C [ f:C(D; g)g℄℄. Sin
e w 2 [[D℄℄v and (v; w) j= g, easilyw 2 [[D[g℄℄℄v. It follows that (v; w) 2 [[C 0; D0℄℄.14



For the indu
tion step, suppose that g is of the form g0^g00. Then (v; w) j= g0.By indu
tion hypothesis, there exist C 00; D00 su
h that (C;D) g0( (C 00; D00) and(v; w) 2 [[C 00; D00℄℄. Sin
e (v; w) j= g00, we 
an use the indu
tion hypothesison
e more to infer that there exist C 0; D0 su
h that (C 00; D00) g00( (C 0; D0) and(v; w) 2 [[C 0; D0℄℄. Moreover, by rule R5, (C;D) g( (C 0; D0).\�" Assume (C;D) g( (C 0; D0) and (v; w) 2 [[C 0; D0℄℄. By indu
tion on thesize of the derivation of (C;D) g( (C 0; D0), we establish (v; w) 2 [[C;D℄℄ and(v; w) j= g. There are �ve 
ases, depending on the last rule r used in thederivation of (C;D) g( (C 0; D0).(1) r = R1. Then C = C 0, D = D0 and C j= C(D; g). Let g be of theform xi � xj � e. Hen
e, (v; w) 2 [[C;D℄℄ and v j= C(D; g). By the�rst statement (v; w) j= xi � xj �Dij eDij , and by the se
ond statementv j= eDij (�Dij =) �) e. Combination of these two observations, usingparts (2) and (4) of Lemma 3.4 yields (v; w) j= g.(2) r = R2. Then C = C 0, D0 = D[g℄ and C j= :C(D; g). Hen
e, (v; w) j= gand v j= :C(D; g). Let g be of the form xi�xj � e. By Lemma 3.4(6), v j=e :(�Dij =) �) eDij . Using parts (2) and (4) of Lemma 3.4, 
ombinationof these two observations yields (v; w) j= xi � xj �Dij eDij . Sin
e trivially(v; w) is a model for all the other guards in D, (v; w) 2 [[C;D℄℄.(3) r = R3. Then C 0 = C [ fC(D; g)g and D0 = D. Let g be of the formxi � xj � e. We have (v; w) 2 [[C;D℄℄. This implies (v; w) j= xi � xj �DijeDij . We also have v j= eDij (�Dij =) �) e. Combination of these twoobservations, using parts (2) and (4) of Lemma 3.4 yields (v; w) j= g.(4) r = R4. Then C 0 = C[f:C(D; g)g andD0 = D[g℄. We have v j= :C(D; g)and (v; w) j= g. Let g be of the form xi � xj � e. By Lemma 3.4(6),v j= e :(�Dij =) �) eDij . Using parts (2) and (4) of Lemma 3.4 yields(v; w) j= xi � xj �Dij eDij . Sin
e trivially (v; w) is a model for all otherguards in D, (v; w) 2 [[C;D℄℄.(5) r = R5. Then g is of the form g0 ^ g00 and there are C 00; D00 su
h that(C;D) g0( (C 00; D00) and (C 00; D00) g00( (C 0; D0). By indu
tion hypothe-sis, (v; w) 2 [[C 00; D00℄℄ and (v; w) j= g00. Again by indu
tion hypothesis,(v; w) 2 [[C;D℄℄ and (v; w) j= g0. It follows that (v; w) j= g.�3.2.2 Canoni
alizationEa
h DBM 
an be brought into 
anoni
al form using 
lassi
al algorithms for
omputing all-pairs shortest paths, for instan
e the Floyd-Warshall (FW) al-gorithm [CLR91℄. In the parametri
 
ase, we also apply this approa
h ex
eptthat now we run FW symboli
ally, see Figure 4. The algorithm repeatedly15



Floyd-Warshall (C0; D0)(C;D) := (C0; D0)for k = 0 to mdo for i = 0 to mdo for j = 0 to m(C;D) := 
hoose (C 0; D0) su
h that(C;D) xi�xj �ik^�kj eik+ekj((C 0; D0)return (C;D)Fig. 4. The Floyd-Warshall algorithm
ompares the di�eren
e between two 
lo
ks to the di�eren
e obtained by tak-ing an intermediate 
lo
k into a

ount (
f. the inequality in De�nition 3.3).The symboli
 FW algorithm 
ontains a nondeterministi
 assignment, in whi
h(C;D) nondeterministi
ally gets a value from a set. This set may be empty, inwhi
h 
ase the algorithm terminates unsu

essfully. We are interested in the(possibly empty, �nite) set of all possible 
onstrained PDBMs that may resultwhen running the algorithm.For the purpose of proving things we �nd it 
onvenient to des
ribe the 
om-putation steps of the symboli
 FW algorithm in SOS style. In the SOS de-s
ription, we use 
on�gurations of the form (k; i; j; C;D), where (C;D) is a
onstrained PDBM and k; i; j 2 [0; m+ 1℄ re
ord the values of indi
es. In therules below, k; i; j range over [0; m℄.(C;D) xi�xj (�ik^�kj) eik+ekj( (C 0; D0)(k; i; j; C;D)!FW (k; i; j + 1; C 0; D0)(k; i;m+ 1; C;D)!FW (k; i+ 1; 0; C;D)(k;m+ 1; 0; C;D)!FW (k + 1; 0; 0; C;D)We write (C;D) !
 (C 0; D0) if there exists a sequen
e of !FW steps lead-ing from 
on�guration (0; 0; 0; C;D) to 
on�guration (m + 1; 0; 0; C 0; D0). Inthis 
ase, we say that (C 0; D0) is an out
ome of the symboli
 Floyd-Warshallalgorithm on (C;D). It is easy to see that the set of all out
omes is �-nite and 
an be e�e
tively 
omputed. If the semanti
s of (C;D) is empty,then the set of out
omes is also empty. We write (C;D) g(
 (C 0; D0) i�(C;D) g( (C 00; D00)!
 (C 0; D0), for some C 00; D00.The following lemma says that if we run the symboli
 Floyd-Warshall algo-rithm, the union of the semanti
s of the out
omes equals the semanti
s of theoriginal 
onstrained PDBM. 16



Lemma 3.8 [[C;D℄℄ = Sf[[C 0; D0℄℄ j (C;D)!
 (C 0; D0)g.Proof: By an indu
tive argument, using Lemma 3.7 and the fa
t that, forany valuation (v; w) in the semanti
s of (C;D),(v; w) j= xi � xk �ik eik and(v; w) j= xk � xj �kj ekj; and therefore by Lemma 3.4(5)(v; w) j= xi � xj �ik ^ �kj eik + ekj:�Lemma 3.9 Ea
h out
ome of the symboli
 Floyd-Warshall algorithm is a
onstrained PDBM in 
anoni
al form.Proof: As in [CLR91℄. �Remark 3.10 Non-parametri
 DBMs 
an be 
anoni
alized in O(n3), wheren is the number of 
lo
ks. In the parametri
 
ase, however, ea
h operationof 
omparing the bound D(x; x0) to the weight of another path from x to x0may give rise to two new PDBMs if this 
omparison leads to a split. Thenthe two PDBMs must both be 
anoni
alized to obtain all possible PDBMswith tightest bounds. Still, that part of these two PDBMs whi
h was already
anoni
al, does not need to be investigated again. So in the worst 
ase, the
ost of the algorithm be
omes O(2n3). In pra
ti
e, it turns out that this ishardly ever the 
ase.3.2.3 Resetting Clo
ksA third operation on PDBMs that we need is resetting 
lo
ks. Sin
e we do notallow parameters in reset sets, the reset operation on PDBMs is essentiallythe same as for DBMs, see [Yov98℄. If D is a PDBM and r is a singleton resetset fxi := bg, then D[r℄ is the PDBM obtained by (1) repla
ing ea
h boundDij, for j 6= i, by (e0j + b;�0j); (2) repla
ing ea
h bound Dji, for j 6= i, by(ej0 � b;�j0). We generalize this de�nition to arbitrary reset sets byD[xi1 := b1; : : : ; xih := bh℄ =D[xi1 := b1℄ : : : [xih := bh℄:It easily follows from the de�nitions that resets preserve 
anoni
ity. Note alsothat the reset operation is well-de�ned on 
onstrained PDBMs: if (C;D) isa 
onstrained PDBMs then (C;D[r℄) is a 
onstrained PDBMs as well: sin
e
lo
ks 
an only be reset to natural numbers, lower bounds on 
lo
ks remainnonnegative.Lemma 3.11 If (C;D) is 
anoni
al then (C;D[r℄) is 
anoni
al as well.17



The following lemma 
hara
terizes the reset operation semanti
ally.Lemma 3.12 Let (C;D) be a 
onstrained PDBM in 
anoni
al form, v 2 [[C℄℄,and w a 
lo
k valuation. Then w 2 [[D[r℄℄℄v i� 9w0 2 [[D℄℄v : w = w0[r℄.Proof: We only prove the lemma for singleton resets. Using Lemma 3.11,the generalization to arbitrary resets is straightforward. Let r = fxi := bg andD0 = D[r℄.\(" Suppose w0 2 [[D℄℄v and w = w0[r℄. In order to prove w 2 [[D0℄℄v, we mustshow that (v; w) j= D0kj, for all k and j. There are four 
ases:(1) k 6= i 6= j. Then D0kj = Dkj. Sin
e (v; w0) j= Dkj and w and w0 agree onall 
lo
ks o

urring in Dkj, (v; w) j= D0kj.(2) k = i = j. Then D0kj = Dkj. Sin
e (v; w0) j= Dii, 0 �ii eii[v℄. Hen
e,(v; w) j= D0kj.(3) k 6= i = j. Then D0kj = xk � xj �k0 ek0 � b. Using that (v; w0) j= Dk0, wederive w(xk)� w(xj) = w0(xk)� b �k0 ek0[v℄� b. Hen
e, (v; w) j= D0kj.(4) k = i 6= j. Then D0kj = xk � xj �0j e0j + b. Using that (v; w0) j= D0j, wederive w(xk)� w(xj) = b� w0(xj) �0j e0j[v℄ + b. Hen
e, (v; w) j= D0kj.\)" Suppose w 2 [[D0℄℄v. We have to prove that there exists a 
lo
k valuationw0 2 [[D℄℄v su
h that w = w0[r℄. Clearly we need to 
hoose w0 in su
h a waythat, for all j 6= i, w0(xj) = w(xj). This means that, for any 
hoi
e of w0(xi),for all j 6= i 6= k, v; w0 j= Djk. Using the same argument as in the proof ofLemma 3.5, we 
an �nd a value for w0(xi) su
h that also the remaining simpleguards of D are satis�ed. �3.2.4 Time Su

essorsFinally, we need to transform PDBMs for the passage of time, notation D ".As in the DBMs 
ase [Dil90℄, this is done by setting the upper bounds xi�x0to (1; <), for ea
h i 6= 0, and leaving all other bounds un
hanged. We havethe following lemma.Lemma 3.13 Suppose (C;D) is a 
onstrained PDBM in 
anoni
al form, v 2[[C℄℄, and w a 
lo
k valuation. Then w 2 [[D"℄℄v i� 9d � 0 9w0 2 [[D℄℄v :w0 + d = w.Proof: \(" Suppose d � 0, w0 2 [[D℄℄v and w0 + d = w. We 
laim thatw 2 [[D"℄℄v. For this we must show that for ea
h guard f of D ", (v; w) j= f .Let f be of the form xi � xj � e. We distinguish between three 
ases:� i 6= 0^j = 0. In this 
ase, by de�nition of D", f is of the form xi�x0 <1,and so (v; w) j= f trivially holds. 18



� i = 0. In this 
ase f is also a 
onstraint of D. Sin
e w0 2 [[D℄℄v we have(v; w0) j= f , and thus �w0(xj) � e[v℄. But sin
e d � 0, this means that�w(xj) = �w0(xi)� d � e[v℄ and therefore (v; w) j= f .� i 6= 0 ^ j 6= 0. In this 
ase f is again a 
onstraint of D. Sin
e w0 2 [[D℄℄v wehave (v; w0) j= f , and therefore w0(xi)� w0(xj) � e[v℄. But this means thatw0(xi)�w0(xj) = (w(xi)� d)� (w(xj)� d) � e[v℄ and therefore (v; w) j= f .\)" Suppose w 2 [[D"℄℄v. If m = 0 (i.e., there are no 
lo
ks) then D "= Dand the rhs of the impli
ation trivially holds (take w0 = w and d = 0). Soassume m > 0. For all indi
es i; j with i 6= 0 and j 6= 0, (v; w) j= Dij. Hen
e,w(xi)�w(xj) �ij eij[v℄. Thus, for any real number t, w(xi)�t�(w(xj)�t) �ijeij[v℄. But this means (v; w�t) j= Dij. It remains to be shown that there existsa value d su
h that in valuation (v; w� d) also the remaining guards D0i andDi0 hold. Lett0=max(0; w(x1)� e10[v℄; : : : ; w(xn)� en0[v℄)t1=min(w(x1) + e01[v℄; : : : ; w(xn) + e0n[v℄)d=(t0 + t1)=2w0=w � dIntuitively, t0 gives the least amount of time one has to go ba
kwards in timefrom w to meet all upper bounds of D (modulo stri
tness), whereas t1 givesthe largest amount of time one 
an go ba
kwards in time from w withoutviolating any of the lower bounds of D (again modulo stri
tness). Value d sitsright in the middle of these two. We 
laim that d and w0 satisfy the requiredproperties. For any i, sin
e (v; w) j= D0i, trivially0�0i w(xi) + e0i[v℄ (5)Using that D is 
anoni
al we have, for any i; j,eji[v℄ (�ji =) �j0 ^ �0i) ej0[v℄ + e0i[v℄and, sin
e v; w j= Dji, w(xj)� w(xi) �ji eji[v℄:Using these two observations we inferw(xj)� ej0[v℄ (�ji =) �j0 ^ �0i) w(xj)� eji[v℄ + e0i[v℄ �ji w(xi) + e0i[v℄:Hen
e,w(xj)� ej0[v℄ �j0 ^ �0i w(xi) + e0i[v℄ (6)19



By inequalities (5) and (6), ea
h subterm of max in the de�nition of t0 isdominated by ea
h subterm of min in the de�nition of t1. This implies 0 �t0 � t1.Now either t0 < t1 or t0 = t1. In the �rst 
ase it easy to prove that in valuation(v; w) the guards D0i and Di0 hold, for any i:w0(xi) = w(xi)� d < w(xi)� t0 � w(xi)� (w(xi)� ei0[v℄) = ei0[v℄and thus w0(xi) < ei0[v℄ and v; w0 j= Di0. Also�w0(xi) = �w(xi) + d < �w(xi) + t1 � �w(xi) + (w(xi) + e0i[v℄) = e0i[v℄and so �w0(xi) < e0i[v℄ and v; w0 j= D0i.In the se
ond 
ase, �x an i. If w(xi)� ei0[v℄ < t0 thenw0(xi) = w(xi)� d = w(xi)� t0 < w(xi)� (w(xi)� ei0[v℄) = ei0[v℄and thus w0(xi) < ei0[v℄ and v; w0 j= Di0. Otherwise, if w(xi) � ei0[v℄ = t0observe that by t0 = t1, inequality (6) and the fa
t that, t1 = w(xj) + e0j[v℄,for some j, �i0=�. Sin
ew0(xi) = w(xi)� d � w(xi)� t0 � w(xi)� (w(xi)� ei0[v℄) � ei0[v℄and thus w0(xi) � ei0[v℄ this implies v; w0 j= Di0.t0 = t1 pro
eeds similarly. �3.3 Symboli
 Semanti
sHaving de�ned the four operations on PDBMs, we are now in a position todes
ribe the semanti
s of a parametri
 timed automaton symboli
ally.De�nition 3.14 (Symboli
 semanti
s) Let A = (Q; q0;!; I) be a PTA.The symboli
 semanti
s of A is an LTS: the states are triples (q; C;D) withq a lo
ation from Q and (C;D) a 
onstrained PDBM in 
anoni
al form su
hthat [[C;D℄℄ � [[I(q)℄℄; the set of initial states isf(q0; C;D) j (C0;E") I(q0)( 
 (C;D)g;where C0 = fp � 0 j p 2 Pg, E is the PDBM with Eij = (0;�), for all i; j; thetransitions are de�ned by the following rule:q a;g;r�! q0 ; (C;D) g(
 (C 00; D00) ; (C 00; D00[r℄") I(q0)( 
 (C 0; D0)(q; C;D)! (q0; C 0; D0) :20



Observe that if (q; C;D) is a state in the symboli
 semanti
s and (v; w) 2[[C;D℄℄, then (q; w) is a state of the 
on
rete semanti
s [[A℄℄v. It is also easy tosee that the symboli
 semanti
s of a PTA is a �nitely bran
hing LTS. It mayhave in�nitely many rea
hable states though.In order to establish that ea
h run in the symboli
 semanti
s 
an be simulatedby a run in the 
on
rete semanti
s, we require two lemmas.Lemma 3.15 Suppose that (q; C;D) is an initial state of the symboli
 seman-ti
s of A with (v; w) 2 [[C;D℄℄. Then the 
on
rete semanti
s [[A℄℄v has an initialstate (q0; w0) from whi
h state (q; w) 
an be rea
hed.Proof: Using the fa
t that (v; w) 2 [[C;D℄℄, the de�nition of initial states,Lemma 3.8 and Lemma 3.7, we know that q = q0, (v; w) j= I(q0) and (v; w) 2[[C0;E"℄℄. By Lemma 3.13, we get that there exists a d � 0 and w0 2 [[E℄℄v su
hthat w0+d = w. Sin
e (v; w) j= I(q0) and invariants in a PTA only give upperbounds on 
lo
ks, also (v; w0) j= I(q0). It follows that (q0; w0) is a state of the
on
rete semanti
s [[A℄℄v and (q0; w0) d�! (q; w). Sin
e w0 2 [[E℄℄v, w0 is of theform �x:0. Hen
e, (q0; w0) is an initial state of the 
on
rete semanti
s. �Lemma 3.16 Suppose that (q0; C 0; D0)! (q; C;D) is a transition in the sym-boli
 semanti
s of A and (v; w) 2 [[C;D℄℄. Then there exists a pair (v; w0) 2[[C;D℄℄ su
h that in the 
on
rete semanti
s [[A℄℄v there is a path from (q0; w0)to (q; w).Proof: By the de�nition of transitions in the symboli
 semanti
s, Lemma 3.8and Lemma 3.7, we know that there is a transition q0 a;g;r�! q in A, and thereare C 00; D00 su
h that (v; w) j= I(q), (v; w) 2 [[C 00; D00[r℄"℄℄ and (C 0; D0) g(
(C 00; D00). By Lemma 3.13, we get that there exists a d � 0 and w00 2 [[D00[r℄℄℄vsu
h that w00 + d = w. Sin
e (v; w) j= I(q) and invariants in a PTA only giveupper bounds on 
lo
ks, also (v; w00) j= I(q). It follows that (q; w00) is a stateof the 
on
rete semanti
s [[A℄℄v and (q; w00) d�! (q; w). Using Lemma 3.12 weget that there exists a w0 2 [[D00℄℄v su
h that w00 = w0[r℄. Using Lemma 3.8and Lemma 3.7 again, it follows that (v; w0) j= g and (v; w0) 2 [[C 0; D0℄℄. Sin
e(q0; C 0; D0) is a state of the symboli
 semanti
s, (v; w0) j= I(q0). Hen
e, (q0; w0)is a state of the 
on
rete semanti
s and (q0; w0) a�! (q; w00) is a transitionin the 
on
rete semanti
s. Combination of this transition with the transition(q; w00) d�! (q; w) gives the required path in the 
on
rete semanti
s. �Proposition 3.17 For ea
h parameter valuation v and 
lo
k valuation w, ifthere is a run in the symboli
 semanti
s of A rea
hing state (q; C;D), with(v; w) 2 [[C;D℄℄, then this run 
an be simulated by a run in the 
on
rete se-manti
s [[A℄℄v rea
hing state (q; w).Proof: By indu
tion on the number of transitions in the run.21



As basis we 
onsider a run with 0 transitions, i.e., a run that 
onsists of aninitial state of the symboli
 semanti
s. So this means that (q; C;D) is an initialstate. The indu
tion basis now dire
tly follows using Lemma 3.15.For the indu
tion step, assume that we have a run in the symboli
 semanti
s,ending with a transition (q0; C 0; D0) ! (q; C;D). By (v; w) 2 [[C;D℄℄ andLemma 3.16, there exists a pair (v; w0) 2 [[C;D℄℄ su
h that in the 
on
retesemanti
s [[A℄℄v there is a path from (q0; w0) to (q; w). By indu
tion hypothesis,there is a path in the 
on
rete semanti
s leading up to state (q0; w0). Extensionof this path with the path from (q0; w0) to (q; w) gives the required path in the
on
rete semanti
s. �Conversely, for ea
h path in the 
on
rete semanti
s, we 
an �nd a path in thesymboli
 semanti
s su
h that the �nal state of the �rst path is semanti
ally
ontained in the �nal state of the se
ond path.Proposition 3.18 For ea
h parameter valuation v and 
lo
k valuation w, ifthere is a run in the 
on
rete semanti
s [[A℄℄v rea
hing a state (q; w), thenthis run 
an be simulated by a run in the symboli
 semanti
s rea
hing a state(q; C;D) su
h that (v; w) 2 [[C;D℄℄.Proof: In any exe
ution in the 
on
rete semanti
s, we 
an always insertzero-delay transitions at any point. Also, two 
onse
utive delay transitions(q; w) d�! (q; w+d) and (q; w+d) d0�! (q; w+d+d0) 
an always be 
ombinedinto a single delay transition (q; w) d+d0�! (q; w+d+d0). Therefore, without lossof generality, we only 
onsider 
on
rete exe
utions that start with a delay tran-sition, and in whi
h there is a stri
t alternation of a
tion transitions and delaytransitions. The proof is by indu
tion on the number of a
tion transitions.As basis we 
onsider a run 
onsisting of a single time-passage transition:(q0; w0) d�! (q0; w0+d), where w0 = �x:0. By de�nition of the 
on
rete seman-ti
s, (v; w0+d) j= I(q0). Using Lemma 3.13, we have that (v; w0+d) 2 [[C0;E"℄℄sin
e (v; w0) 2 [[C0;E℄℄. From (v; w0 + d) 2 [[C0;E"℄℄ and (v; w0 + d) j= I(q0),using Lemma 3.7 and Lemma 3.8 we get that there exists C;D su
h that(C0;E") I(q0)( 
 (C;D) and (v; w0+ d) 2 [[C;D℄℄. By de�nition, (C;D) is an ini-tial state of the symboli
 semanti
s. This 
ompletes the proof of the indu
tionbasis.For the indu
tion step, assume that the run in the 
on
rete semanti
s of [[A℄℄vends with transitions (q00; w00) a�! (q0; w0) d�! (q; w). By indu
tion hypothesis,there exists a run in the symboli
 semanti
s ending with a state (q00; C 00; D00)su
h that (v; w00) 2 [[C 00; D00℄℄.By de�nition of the 
on
rete semanti
s, there is a transition q00 g;a;r�! q0 in Asu
h that (v; w00) j= g and w0 = w00[r℄. Moreover, we have q0 = q, w = w0 + d22



and (v; w) j= I(q). Using Lemma 3.7 and Lemma 3.8 gives that there existsC 0; D0 su
h that (C 00; D00) g(
 (C 0; D0) and (v; w00) 2 [[C 0; D0℄℄. By Lemma 3.12,w0 2 [[D0[r℄℄℄v. Moreover, by Lemma 3.13, w 2 [[D0[r℄"℄℄v. Using (v; w) j=I(q), Lemma 3.7 and Lemma 3.8, we infer that there exists C;D su
h that(v; w) 2 [[C;D℄℄ and (C 0; D0[r℄ ") I(q)( 
 (C;D). Finally, using the de�nition ofthe symboli
 semanti
s, we infer the existen
e of a transition (q00; C 00; D00) !(q; C;D).�Example 3.19 Figure 3.19 shows the symboli
 state-spa
e of the automatonin Fig. 1 represented by 
onstrained PDBMs. In the initial state the invariantx � p limits the value of x, and sin
e both 
lo
ks have the same value alsothe value of y. When taking the transition from S0 to S1 we have to 
omparethe parameters p and q. This leads to a split where in the one 
ase no stateis rea
hable sin
e the region is empty, and in the other (when q � p) S1 
anbe rea
hed. From then on, no more splits o

ur and only one new state isrea
hable.
(S0;

(S0, ;, fq > pg)
(S1; x
(S0; , fq � pg)y

pq

y
pq , fq � pg), ;)y x

Fig. 5. The symboli
 state spa
e of the PTA in Fig. 1.3.4 Evaluating State FormulasWe now de�ne the predi
ate �( whi
h relates a symboli
 state and a stateformula � (as de�ned in De�nition 2.7) to a 
olle
tion of symboli
 states thatsatisfy �.In order to 
he
k whether a state formula holds, we break it down into itsatomi
 subformulas, namely 
he
king lo
ations and 
lo
k guards. Che
king23



that a 
lo
k guard holds relies on the de�nition given earlier, of adding that
lo
k guard to the 
onstrained PDBM. We rely on a spe
ial normal form ofthe state formula, in whi
h all : signs have been pushed down to the basi
formulas.De�nition 3.20 State formula � is in normal form if all : signs in � appearonly in subformulae of the form :q.Sin
e ea
h simple guard with a : sign in front 
an be rewritten to equivalentsimple guard without, for ea
h state formula there is an equivalent one innormal form.In the following, let f be a simple guard, and � be in normal form.(Q1) (q; C;D) q( (q; C;D) (Q2) q 6= q0(q; C;D) :q0( (q; C;D)(Q3) (C;D) f(
(C 0; D0)(q; C;D) f( (q; C 0; D0)(Q4) (q; C;D) �1( (q; C 0; D0) ; (q; C 0; D0) �2( (q; C 00; D00)(q; C;D) �1^�2( (q; C 00; D00)(Q5) (q; C;D) �1( (q; C 0; D0)(q; C;D) �1_�2( (q; C 0; D0) (Q6) (q; C;D) �2( (q; C 0; D0)(q; C;D) �1_�2( (q; C 0; D0)The following lemma gives the soundness and 
ompleteness of relation �(.Lemma 3.21 Let � be a state formula in normal form, q a lo
ation and(C;D) a 
onstrained PDBMs. Let [[q; �℄℄ denote the set f(v; w) j (q; w) j=v �g.Then[[C;D℄℄ \ [[q; �℄℄ =[ f[[C 0; D0℄℄ j (q; C;D) �( (q; C 0; D0)g:Proof: \�": Assume that (v; w) 2 [[C;D℄℄ and (q; w) j=v �. We prove thatthere are C 0, D0 su
h that (v; w) 2 [[C 0; D0℄℄ and (q; C;D) �( (q; C 0; D0). Wepro
eed by indu
tion on the stru
ture of �.� Base 
ases.� Suppose � = q0. As (q; w) j=v q0, 
learly, q = q0. Sin
e, by rule Q1,(q; C;D) q( (q; C;D), we 
an take C = C 0 and D = D0 and the resultfollows. 24



� Suppose � = :q0. Similar to the previous 
ase, apply rule Q2.� Suppose � = f with f a simple guard. Then (v; w) 2 [[C;D℄℄ and (v; w) j=f . By Lemma 3.7 there exist C 00; D00 su
h that (C;D) f( (C 00; D00) and(v; w) 2 [[C 00; D00℄℄. Lemma 3.8 yields the existen
e ofC 0; D0 with (C 00; D00)!
(C 0; D0) and (v; w) 2 [[C 0; D0℄℄. By appli
ation of ruleQ3 we have (q; C;D) f((q; C 0; D0).� Indu
tion step.� Suppose � = �1^�2. Then (q; w) j=v �1 and (q; w) j=v �2. By applying theindu
tion hypothesis on �1, we derive that there exist C 00; D00 su
h that(q; C;D) �1( (q; C 00; D00) and (v; w) 2 [[C 00; D00℄℄. Applying the indu
tionhypothesis on �2 yields the existen
e of C 0; D0 su
h that (q; C 00; D00) �2((q; C 0; D0) and (v; w) 2 [[C 0; D0℄℄. Then by appli
ation of rule Q4 also(q; C;D) �1^�2( (q; C 0; D0).� Suppose � = �1 _ �2. Then (q; w) j=v �1 or (q; w) j=v �2. Suppose that(q; w) j=v �1. The indu
tion hypothesis yields the existen
e of C 0; D0 su
hthat (q; C;D) �1( (q; C 0; D0) and (v; w) 2 [[C 0; D0℄℄. Then, by appli
ation ofrule Q5, (q; C;D) �1_�2( (q; C 0; D0). The 
ase (q; w) j= �2 is similar (usingrule Q6).\�": Assume (q; C;D) �( (q; C 0; D0) and (v; w) 2 [[C 0; D0℄℄. By indu
tion onthe stru
ture of the derivation of �(, we establish that (v; w) 2 [[C;D℄℄ and(q; w) j=v �.� Base 
ases. The derivation 
onsists of a single step r.� r = Q1. Then � = q, C = C 0, D = D0. Trivially (v; w) 2 [[C;D℄℄ and(q; w) j=v q.� r = Q2. Similar to the previous 
ase.� r = Q3. Suppose � = f with f a simple guard. Then (C;D) f(
(C 0; D0).This means that there exist C 00, D00 su
h that (C;D) f((C 00; D00) and(C 00; D00)!
(C 0; D0). By Lemma 3.8 we have (v; w) 2 [[C 00; D00℄℄. Then wehave by Lemma 3.7 that (v; w) j= f and (v; w) 2 [[C;D℄℄.� Indu
tion step. Consider the last rule r used in the derivation of (q; C;D) �((q; C 0; D0).� r = Q4. Then � = �1 ^ �2 and (q; C;D) �1( (q; C 00; D00) and (q; C 00; D00) �2((q; C 0; D0) for some C 00; D00. Applying the indu
tion hypothesis to thederivation of �1( yields (q; w) j=v �2 and (v; w) 2 [[C 00; D00℄℄. Then applyingthe indu
tion hypothesis to the derivation of �2( yields (q; w) j=v �1 and(v; w) 2 [[C;D℄℄. Then also (q; w) j=v �1 ^ �2.� r = Q5. Then � = �1 _ �2. Then (q; C;D) �1( (q; C 0; D0). By indu
tionhypothesis we have (q; w) j=v �1 and (v; w) 2 [[C;D℄℄.25



� r = Q6. Similar to the previous 
ase.�3.5 AlgorithmWe are now in a position to present our model 
he
king algorithm for para-metri
 timed automata. The algorithm displayed in Fig. 6 des
ribes how ourtool explores the symboli
 state spa
e and sear
hes for 
onstraints on theparameters for whi
h a rea
hability property 93� holds in a PTA A.Rea
hable (A, �)Result := ;,Passed := ;,Waiting := f(q0; C;D) j (C0;E") I(q0)( 
 (C;D)gwhile Waiting 6= ; dosele
t (q; C;D) from WaitingResult := Result [ f(q0; C 0;D0) j (q; C;D) �( (q0; C 0;D0)gFalse := f(q0; C 0;D0) j (q; C;D) :�( (q0; C 0;D0)gfor ea
h (q0; C 0;D0) in False doif for all (q00; C 00;D00) in Passed: (q0; C 0;D0) 6� (q00; C 00;D00) thenadd (q0; C 0;D0) to Passedfor ea
h (q00; C 00;D00) su
h that (q0; C 0;D0)! (q00; C 00;D00) doWaiting := Waiting [ f(q00; C 00;D00)greturn ResultFig. 6. The parametri
 model 
he
king algorithmIn the algorithm, we use in
lusion between symboli
 states de�ned by(q; C;D) � (q0; C 0; D0) �= q = q0 ^ [[C;D℄℄ � [[C;D0℄℄:Note that whenever a triple (q; C;D) ends up in one of the lists maintainedby the algorithm, (C;D) is a 
onstrained PDBM in 
anoni
al form. This fa
t,in 
ombination with Lemma 3.6, gives de
idability of the in
lusion opera-tion. Our sear
h algorithm explores the symboli
 semanti
s in an \intelligent"manner, and stops whenever it rea
hes a state whose semanti
s is 
ontainedin the semanti
s of a state that has been en
ountered before. Despite this, ouralgorithm need not terminate.If it terminates, the result returned by the algorithm is a set of satis�ablesymboli
 states, all of whi
h satisfy �, for any valuation of the parameters and
lo
ks in the state.Theorem 3.22 Suppose (q; C;D) is in the result set returned by Rea
hable(A, �). Then (C;D) is satis�able. Moreover, for all (v; w) 2 [[C;D℄℄, (q; w) is26



a rea
hable state of [[A℄℄v and (q; w) j=v �.Proof: It is easy to see that all the symboli
 states returned by the algorithmare satis�able: the only operation that may modify the 
onstraint set is addinga guard, but this will never lead to unsatis�able 
onstraint sets. Sin
e all
onstrained PDBMs returned by the algorithm are in 
anoni
al form, they areall satis�able by Lemma 3.5.Suppose that (v; w) 2 [[C;D℄℄. By a straightforward indu
tive argument, usingLemmas 3.15, 3.16 and 3.21, it follows that (q; w) is a rea
hable state of [[A℄℄vand (q; w) j=v �. �For invarian
e properties 82�, our tool runs the algorithm on :�, and theresult is then a set of symboli
 states, none of whi
h satis�es �. The answerto the model 
he
king problem, stated in Se
tion 2.2, is obtained by takingthe union of the 
onstraint sets from all symboli
 states in the result of thealgorithm; in the 
ase of an invarian
e property we take the 
omplement ofthis set.A di�eren
e between the above algorithm and the standard timed model 
he
k-ing algorithm is that we 
ontinue the exploration until either no more newstates are found or all paths end in a state satisfying the property. This isbe
ause we want to �nd all the possible 
onstraints on the parameters forwhi
h the property holds. Also, the operations on non-parametri
 DBMs only
hange the DBM they are applied to, whereas in our 
ase, we may end upwith a set of new PDBMs and not just one.Some standard operations on symboli
 states that help in exploring as littleas possible, have also been implemented in our tool for parametri
 symboli
states. Before starting the state spa
e exploration, our implementation de-termines the maximal 
onstant for ea
h 
lo
k. This is the maximal value towhi
h the 
lo
k is 
ompared in any guard or invariant in the PTA. Whenthe 
lo
k value grows beyond this value, we 
an ignore its real value. Thisenables us to identify many more symboli
 states, and helps termination. Infa
t, for unparameterized timed automata this tri
k guarantees termination[AD94, Alu98℄.4 Lower Bound / Upper Bound AutomataThis se
tion introdu
es the 
lass of lower bound/upper bound (L/U) automataand des
ribes several (rather intuitive) observations that simplify the para-metri
 model 
he
king problem for PTAs in this 
lass. Our results use thepossibility to eliminate parameters in 
ertain 
ases. This is a relevant issue,27



be
ause the 
omplexity of parametri
 model 
he
king grows very fast in thenumber of parameters. Moreover, our observations yield some de
idability re-sults for L/U automata, where the 
orresponding problems are unde
idable forgeneral PTAs. The appli
ability of the results is illustrated by the veri�
ationof Fis
her's algorithm.4.1 Lower bound/Upper bound AutomataInformally, ea
h parameter in an L/U automaton A o

urs either as a lowerbound in the invariants and guards of A or as an upper bound, but never asboth. For instan
e, p is an upper bound parameter in x�y < 2p. Lower boundparameters are for instan
e q and q0 in y � x > q + 2q0 (� x� y < �q � 2q0)and in x� y < 2p� q� 2q0. A PTA 
ontaining both the guards x� y � p� qand z < q � p is not an L/U automaton.De�nition 4.1 A parameter pi 2 P is said to o

ur in the linear expressione = t0 + t1 � p1 + � � � tn � pn if ti 6= 0; pi o

urs positively in e if ti > 0 and pio

urs negatively in e if ti < 0. A lower bound parameter of a PTA A is aparameter that only o

urs negatively in the expressions of A and an upperbound parameter of A is a parameter that only o

urs positively in A. We 
allA a lower bound/upper bound (L/U) automaton if every parameter o

urringin A is either a lower bound parameter or an upper bound parameter.From now on, we work with a �xed set L = fl1; : : : lKg of lower bound pa-rameters and a �xed set U = fu1; : : : uMg of upper bound parameters withL \ U = ; and L [ U = P . Furthermore, we 
onsider, apart from parametervaluations, also extended parameter valuations. Intuitively, an extended pa-rameter valuation is a parameter valuation with values in R�0 [ f1g, ratherthan in R�0. Extended parameter valuations are useful in 
ertain 
ases to solvethe veri�
ation problem (over non-extended valuations) stated in Se
tion 2.3.Working with extended parameter valuations may 
ause the evaluation of anexpression to be unde�ned. For example, the expression e[v℄ is not de�nedfor e = p � q and v(p) = v(q) = 1. We therefore require that an extendedparameter valuation does not assign the value 1 to both a lower bound pa-rameter and an upper bound parameter. Then we 
an easily extend notionse[v℄, (v; w) j= e and A[v℄ (de�ned in Se
tion 2) to extended valuations. Here,we use the 
onventions that 0 �1 = 0, that x� y � 1 evaluates to true andx�y � �1 to false. In parti
ular, we have [[A℄℄v = [[A[v℄℄℄ for extended valua-tions v and L/U automata A. Moreover, we extend the orders � to R [ f1gin the usual way and we extend them to extended parameter valuations viapoint wise extension (i.e. v � v0 i� v(p) � v0(p) for all p 2 P ). We denote anextended valuation of an L/U automaton by a pair (�; �), whi
h equals thefun
tion � on the lower bound parameters and � on the upper bound param-28



eters. We write 0 and 1 for the fun
tions assigning respe
tively 0 and 1 toea
h parameter.The following proposition is based on the fa
t that weakening the guards inA (i.e. de
reasing the lower bounds and in
reasing the upper bounds) yieldsan LTS whose rea
hable states in
lude those of A. Dually, strengthening theguards inA (i.e. in
reasing the lower bounds and de
reasing the upper bounds)yields an LTS whose rea
hable states are a subset of those of A. The result
ru
ially depends on the fa
t that state formulae (by de�nition) do not 
ontainparameters. The usefulness of this property (and of several other propertiesin this se
tion) lies in the fa
t that the satisfa
tion of a property for in�nitelymany extended parameter valuations (�0; �0) is redu
ed to its satisfa
tion fora single valuation (�; �).Proposition 4.2 Let A be an L/U automaton and � a state formula. Then(1) [[A℄℄(�;�) j= 93� () 8�0 � �; � � �0 : [[A℄℄(�0;�0) j= 93�:(2) [[A℄℄(�;�) j= 82� () 8� � �0; �0 � � : [[A℄℄(�0;�0) j= 82�:Proof: (sket
h) The \(=" parts of both statements are trivial. The 
ru
ialobservation for both \=)" parts is the following. For all linear expressions ein A and all extended parameter valuations (�; �), (�0; �0) with �0 � � and� � �0, we have that e[�; �℄ � e[�0; �0℄. Therefore, if ((�; �); w) j= x � y � e,then ((�0; �0); w) j= x� y � e. �The following example illustrates how Proposition 4.2 
an be used to eliminateparameters in L/U automata.Example 4.3 The PTA in Fig. 7 is 
learly an L/U automaton: min is alower bound and max is an upper bound parameter. Lo
ation S1 is rea
hableirrespe
tive of the parameter values. By setting the parameter min to 1 andmax to 0, one 
he
ks with a non-parametri
 model 
he
ker that A[(1; 0)℄ j=93S1. Then Proposition 4.2(1) (together with [[A℄℄v = [[A[v℄℄℄) yields that S1is rea
hable in [[A℄℄(�;�) for all extended parameter valuations 0 � �; � � 1.Clearly, [[A℄℄(�;�) j= 93S2 i� �(min) � �(max) ^ �(min) < 1. We willsee in this running example how we 
an verify this property 
ompletely bynon-parametri
 model 
he
king. Hen
eforth, we 
onstru
t the automaton A0from A by substituting the parameter max by the parameter min yield-ing an (non L/U) automaton with one parameter, min. The next exampleshows that [[A0℄℄v j= 93S2 for all valuations v, whi
h essentially means that[[A℄℄(�;�) j= 93S2 for all �; � su
h that �(max) = �(min) < 1. From thisfa
t, Proposition 4.2(1) 
on
ludes that [[A℄℄(�;�) j= 93S2 for all �; � with�(min) � �(max) and �(min) <1. 29



S0 S1
S2 x � minx � maxx := 0

Fig. 7. Redu
ing parametri
 to non-parametri
 model 
he
kingThe question whether there exists a (non-extended) parameter valuation su
hthat a given lo
ation q is rea
hable, is known as the emptiness problem forPTAs. In [AHV93℄, it is shown that the emptiness problem is unde
idable forPTAs with three 
lo
ks or more. The following proposition implies that we
an solve the emptiness problem for an L/U automaton A by only 
onsid-ering the timed automaton A[(0;1)℄. Sin
e rea
hability for timed automatais de
idable ([AD94℄), the emptiness problem is de
idable for L/U automata.Then it follows that the dual problem is also de
idable for L/U automata.This is the universality problem for invarian
e properties, asking whether aninvarian
e property holds for all parameter valuations.Proposition 4.4 Let A be an L/U automaton with lo
ation q. ThenA[(0;1)℄ j=93q if and only if there exists a (non-extended) parameter valuation (�; �)su
h that [[A℄℄(�;�) j= 93q.Proof: The \only if" part is an immediate 
onsequen
e of Proposition 4.2(1)and the fa
t that [[A[(0;1)℄℄℄ = [[A℄℄(0;1). For the \if" part, assume that �is a run of [[A[(0;1)℄℄℄ that rea
hes the lo
ation q. Let T 0 be the smallest
onstant o

urring in A and let T be the maximum 
lo
k value o

urringin �. (More pre
isely, if � = s0a1s1a2 : : : aNsN and si = (qi; wi), then T =maxi�N;x2X wi(x); T 0 
ompensates for negative 
onstants t0 in expressions e ofA.) Now, take �(lj) = 0 and �(uj) = T + jT 0j+1. Let i � N and g = x� y �e be the invariant asso
iated with a state si o

urring in � or the guardasso
iated with the ith transition taken by �. One easily shows that, sin
ewi(x)� wi(y) � e[0;1℄, also wi(x) � wi(y) � e[�; �℄, that is ((�; �); wi) j= g.Hen
e, � is a run of [[A℄℄(�;�), so [[A℄℄(�;�) j= 93q. �Corollary 4.5 The emptiness problem is de
idable for L/U automata.De�nition 4.6 A PTA A is fully parametri
 if 
lo
ks are only reset to 0 andevery linear expression in A of the form t1 � p1 + � � �+ tn � pn, where ti 2 Z.The following proposition is basi
ally the observation in [AD94℄, that multi-pli
ation of ea
h 
onstant in a timed automaton and in a system propertywith the same positive fa
tor preserves satisfa
tion.30



Proposition 4.7 Let A be fully parametri
 PTA. Then for all parameter val-uations v and all system properties  [[A℄℄v j=  () 8t 2 R>0 : [[A℄℄t � v j= t � ;where t � v denotes the valuation p 7! t � v(p) and t � the formula obtainedfrom  by multiplying ea
h number in  by t.Proof: It is easy to see that for all t 2 R>0, � = s0a1s1a2 : : : aNsN withsi = (qi; wi) is a run of [[A℄℄v if and only if s00a1s01 : : : aNs0N is a run of [[A℄℄t � v,where s0i = (qi; t �wi) and t �wi denotes x 7! t �wi(x). �Then for fully parametri
 PTAs with one parameter and system properties  without 
onstants (ex
ept for 0), we have [[A℄℄v j=  for all valuations v of Pif and only if both A[0℄ j=  and A[1℄ j=  . The need for a separate treatmentof the value 0 is illustrated by the (fully parametri
) automaton with a singletransition equipped with the guard x < p. The target lo
ation of the transitionis rea
hable for any value of p, ex
ept for p = 0.Corollary 4.8 For a fully parametri
 PTA A with one parameter, a 
on-straint set C and a property  without 
onstants (ex
ept 0), it is de
idablewhether 8v 2 [[C℄℄ : [[A℄℄v j=  .Example 4.9 The PTA A0 mentioned in Example 4.3 is a fully parametri
timed automaton and the property 93S2 is without 
onstants. We establishthat A0[0℄ j= 93S2 and A0[1℄ j= 93S2. Then Proposition 4.7 implies thatA0[v℄ j= 93S2 for all v. As shown in Example 4.3, this implies that [[A℄℄(�;�) j=93S2 for all �, � with �(min) = �(max) <1.In the running example, we would like to use the same methods as above toverify that [[A℄℄(�;�) 2 93S2 if �(min) > �(max). However, we 
an not takemin = max in this 
ase, sin
e the bound in the 
onstraint is a stri
t one. Thefollowing de�nition and results allows us to move the stri
tness of a 
onstraintinto the PTA.De�nition 4.10 Let P 0 � P be a set of parameters. De�ne A<P 0 as the PTAobtained from A by repla
ing every inequality x � y � e in A by a stri
tinequality x� y < e, provided that e 
ontains at least one parameter from P 0.Similarly, de�neA�P 0 as the PTA obtained fromA by repla
ing every inequalityx � y < e by a non{stri
t inequality x � y � e, provided that e 
ontains atleast one parameter from P 0. For � = <;�, write A� for A�P . Moreover, de�nev �P 0 v0 by v(p) � v0(p) if p 2 P 0 and v(p) = v0(p) otherwise.Proposition 4.11 Let A be an L/U automaton. Then for all extended valu-ations (�; �) of A 31



(1) [[A�℄℄(�;�) j= 93� =) 8�0 < �; � < �0 : [[A℄℄(�0;�0) j= 93�.(2) [[A<℄℄(�;�) j= 82� () 8� < �0; �0 < � : [[A℄℄(�0;�0) j= 82�.Proof:1 Let (�; �) be an extended valuation and assume that [[A�℄℄(�;�) j= 93�. Lete be a linear expression o

urring in A. Then we 
an write e = t0+ e1 + e2,where t0 2 Z, e1 is an expression over the upper bound parameters and e2an expression over the lower bound parameters. Then we have� � �0 =) e1[�℄ � e1[�0℄;�0 � � =) e2[�0℄ � e2[�℄;�0 � �; � � �0 =) e[(�; �)℄ � e[(�0; �0)℄:If there is at least one parameter o

urring respe
tively in e1 or e2 thenrespe
tively � < �0 =) e1[�℄ < e1[�0℄�0 < � =) e2[�℄ < e2[�0℄:Thus, if there is at least one parameter o

urring in e, then�0 < �; � < �0 =) e[(�; �)℄ < e[(�0; �0)℄:Now, let g � x � y � e be a simple guard o

urring in A� and let g0 �x � y �0 e be the 
orresponding guard in A. Assume that (w; (�; �)) j= g,i.e. w(x)� w(y) � e[(�; �)℄. We show that (w; (�; �)) j= g0. We distinguishtwo 
ases.
ase 1: There exists a parameter o

urring in e. Then w(x) � w(y) �e[(�; �)℄ < e[(�0; �0)℄. Then 
ertainly ((�; �); w) j= g0 � x� y �0 e.
ase 2: The expression e does not 
ontain any parameter. Then g0 � gand hen
e ((�; �); w) j= g0.It easily follows that every run of [[A�℄℄(�;�) is also a run of [[A℄℄(�0;�0). Thus,if a state satisfying � is rea
hable in [[A�℄℄(�;�) then it is also rea
hable in[[A℄℄(�0;�0).2, =) : This follows from statement (1) of this proposition: assume that[[A<℄℄(�;�) j= 82� and let �0, �0 be su
h that � < �0, �0 < �. Sin
e [[A<℄℄(�;�) 293:�, we have :8�00 < �0; �0 < �00 : [[A<℄℄(�00 ;�00) j= 93:�:Then 
ontraposition of statement (1) together with (A<)� = A� yields[[A�℄℄(�0;�0) 2 93:�. AsA imposes stronger bounds thanA�, also [[A℄℄(�0;�0) 293:�, i.e. [[A℄℄(�0;�0) j= 82�.2, (=: Let (�; �) be an extended valuation. Assume that [[A℄℄(�00;�00) j= 82�for all �00 > �, �00 < � and that � = s0a1s1a2 : : : aNsN is a run of [[A<℄℄(�;�).32



We have to show that sN j= �. Below, we 
onstru
t �0 > � and �0 < � su
hthat � is also a run of [[A℄℄(�0;�0). Then we are done: sin
e [[A℄℄(�0;�0) j= 82�,sN j= �.We use the following notation. For the run � = s0a1s1a2 : : : aNsN of A<,we write sk = (qk; wk), I(qk) = ^Ji=0Iik, Iik = xi �ik Eik, where J is thenumber of 
lo
ks inA. As � is a run, we have that for all k, 0 � k < N , eitherak+1 2 R�0 or there exists a transition qk gk;ak+1;rk+1�������! qk+1 in A<. We writethe guard on this transition as gk = ^i;j�Jgijk with gijk = xi � xj �ijk eijk.If ak 2 R�0, then we put �ijk=< and eijk =1 for all i; j � J .If for all i, j, k neither the guard gijk nor the invariant Iik 
ontains aparameter, then we 
an take �0 and �0 arbitrarily and we have that � is arun of [[A℄℄(�0;�0). Therefore, assume that at least one of the guards gijk orinvariants Iik 
ontains a parameter. Then, by de�nition of A<, this guardor invariant 
ontains a stri
t bound. In this 
ase, we 
onstru
t �0 > � and�0 < � su
h that wk(x � y) < e[(�0; �0)℄ < e[(�; �)℄ for all k < N and allexpressions e o

urring in the invariants Iik or guard gijk. Informally, weuse the minimum \distan
e" e[(�; �)℄�wk(x� y) o

urring in � to slightlyin
rease the lower bounds and slightly de
rease the upper bounds yielding� < �0 and � < �0.Formally, letT0 = mink�N;i�J fEik[(�; �)℄� wk(xi) j �ik=<g;T1 = mink�N;i;j�J feijk[(�; �)℄� (wk(xi)� wk(xj)) j �ijk=<g;0 < T < minfT0; T1g;with the 
onvention that min; = 1. At least one of the inequalities �ijkor �ik is stri
t, sin
e at least one of the guards or invariants 
ontains aparameter. Hen
e, either T0 <1 or T1 <1. Sin
e ((�; �); wk) j= Iik ^ gijk,we have that T0 > 0 and T1 > 0. Hen
e, 0 < minfT0; T1g < 1 and therequested T exists. The 
ru
ial property is that if gijk � xi � xj < eijk
ontains a parameter, thenwk(xi)� wk(xj) < eijk[(�; �)℄� T (7)and, similarly, if Iik � xi < Eik 
ontains a parameter, then wk(xi) <Eik[(�; �)℄� T .Now, we 
an distribute the value T over all parameters to obtain largervalues for the lower bounds and smaller ones for the upper bounds. Let T 0be the sum of the 
onstants that appear in front of a parameter in one ofthe guards gijk or the invariants Iik, i.e.T 0 = Xk�N;i�J sum of 
onst(Eik) + Xk�N;i;j�J sum of 
onst(eijk);where sum of 
onst(t0 + t1 �p1 + � � � + tn � pn) = jt1j + � � � + jtnj : Sin
e at33



least one of the guards or invariants 
ontains a parameter, we have T 0 > 0.Now, take �0 = �+ TT 0 and �0 = �� TT 0 . Let i; j � J , k � N and 
onsiderthe guard gijk � xi � xj �Aijk eijk in A, whi
h 
orresponds to the guardgijk � xi � xj �ijk eijk in A<. We prove below that ((�0; �0); wk) j= gijk.In a similar way, one 
an show that ((�0; �0); wk) j= Iik for the invariant
orresponding to Iik. Then, � is a run of [[A℄℄(�0;�0) and we are done.
ase 1: The expression gijk does not 
ontain any parameter. Sin
e ((�; �); wk) j=gijk, ((�0; �0); wk) j= gijk.
ase 2: There exists a parameter o

urring in gijk. Then gijk � xi � xj <eijk and we 
an write eijk = t0+t1 � u1+ � � �+tM �uM�t01 � l1�� � ��t0K � lK ,with ti � 0, t0i � 0 for i > 0. Theneijk[(�0; �0)℄ = (t0 + MXh=1 th �uh � KXh=1 t0h � lh)[(�+ TT 0 ; �� TT 0 )℄= t0 + MXh=1 th �(�h � TT 0 )� KXh=1 t0h �(�h + TT 0 )= t0 + MXh=1 th ��h � KXh=1 t0h ��h � TT 0 �( MXh=1 th + KXh=1 t0h)� eijk[(�; �)℄� TT 0 �T 0 (by 7)> wk(xi)� wk(xj):Thus, ((�0; �0); wk) j= xi � xj < eijk and then also ((�0; �0); wk) j= xi �xj �Aijk eijk.�The previous result 
on
erns the automaton that is obtained when all thestri
t inequalities in guards and invariants with parameters are 
hanged intononstri
t ones (or the other way around). Sometimes, we want to \toggle"only some of the inequalities. Then the following result 
an be applied.Corollary 4.12 Let A be an L/U automaton and P 0 � P .(1) [[A�P 0℄℄(�;�) j= 93� =) 8�0 <P 0 �; � <P 0 �0 : [[A℄℄(�0;�0) j= 93�.(2) [[A<P 0℄℄(�;�) j= 82� () 8� <P 0 �0; �0 <P 0 � : [[A℄℄(�0;�0) j= 82�.Proof: Let (�; �) be an extended valuation. Let A0 be the automaton ob-tained fromA by substituting p by (�; �)(p) for every p =2 P 0. Then [[A<P 0℄℄(�;�) =[[A<0 ℄℄(�;�) and [[A�P 0℄℄(�;�) = [[A�0 ℄℄(�;�). Now the result follows by applying Propo-sition 4.11 to A0. �The following example shows that the 
onverse of Proposition 4.11(1) doesnot hold.Example 4.13 Consider the automaton A in Fig. 8. Re
all that the 
lo
ks34



q0 qx � maxx := 0y � 10x � 2
Fig. 8. The 
onverse of Proposition 4.11(1) does not hold.x and y are initially 0. Then A = A� and the lo
ation q is rea
hable ifmax > 0 but not if max = 0. This is so be
ause if max = 0, then 
lo
ky is never augmented. Thus, 8�0 < 0; 0 < �0 : [[A℄℄(�0;�0) j= 93�, but not[[A�℄℄(0;0) j= 93�.We believe that the 
lass of L/U automata 
an be very useful in pra
ti
e.Several examples known from the literature fall into this 
lass, or 
an bemodelled slightly di�erently to a
hieve this. We mention the root 
ontentionproto
ol [IEE96℄, Fis
her's mutual ex
lusion algorithm [Lam87℄, the (toy) railroad 
rossing example from [AHV93℄, the bounded retransmission proto
ol(when 
onsidering �xed values for the integer variables) and the biphase markproto
ol (with minor adaptations). Moreover, the time 
onstrained automatamodels of [MMT91, Lyn96℄ 
an be en
oded straightforwardly into L/U au-tomata.We expe
t that quite a few other distributed algorithms and proto
ols 
anbe modelled with L/U automata, sin
e it is natural that the duration of anevent (su
h as the 
ommuni
ation delay in a 
hannel, the 
omputation timeneeded to produ
e a result, the time required to open the gate in a rail road
rossing) lies between a lower bound and an upper bound. These bounds areoften parameters of the system.The next se
tion and Se
tion 5 show that the te
hniques dis
ussed in thisse
tion to eliminate parameters in L/U models redu
e the veri�
ation e�ortsigni�
antly and possibly lead to a 
ompletely non-parametri
 model.4.2 Veri�
ation of Fis
her's Mutual Ex
lusion Proto
olIn this se
tion, we apply the results from the previous se
tion to verify theFis
her proto
ol des
ribed in Se
tion 2.4. We establish the suÆ
ien
y of theproto
ol 
onstraints 
ompletely by non-parametri
 model 
he
king and thene
essity of the 
onstraints by eliminating three of the four parameters.We also tried to use the prototype to verify the proto
ol model without anysubstitutions or 
hanging of bounds, but this did not terminate within 2035



hours. Sin
e we observed that the 
onstraint lists of the states explored kepton growing, we suspe
ted that this experiment would not terminate at all.(Re
all that parametri
 veri�
ation is unde
idable.) Veri�
ation of the redu
edmodels took only 2 se
onds.Now, 
onsider the Fis
her proto
ol model from Se
tion 2.4 again. In this se
-tion, we analyze a system A 
onsisting of two parallel pro
esses P1 and P2. It is
lear that A is a fully parametri
 L/U automaton: min rw and min delay arelower bound parameters andmax rw andmax delay upper bound parameters.The mutual ex
lusion property is expressed by the formula �ME � 82:(P1:
s^P2:
s). In Se
tion 2.4 we 
laimed that, when assuming the basi
 
onstraintsBME � 0�min rw<max rw ^ 0�min delay<max delay, mutual ex
lusionis guaranteed if and only if CME � max rw�min delay. To establish thisformally, we will prove that v j= BME =) ([[A℄℄v j= �ME () v j= CME ),for all valuations v.4.2.1 SuÆ
ien
y of the ConstraintsWe show that the 
onstraints assure mutual ex
lusion, that isif v j= CME ^ BME , then [[A℄℄v j= �ME .We perform the substitutionmin rw 7! 0;max delay 7! 1;min delay 7! max rwto obtain a fully parametri
 automaton A0 with one parameter, max rw . Wehave established by non-parametri
 model 
he
king that A0[0℄ j= �ME andA0[1℄ j= �ME . Now Proposition 4.7 yields that [[A0℄℄v j= �ME for all valuationsv (where only the value of max rw matters). This means that [[A℄℄v j= �MEif v(min rw) = 0, v(max rw) = v(min delay) and v(max delay) = 1. ThenProposition 4.2(2) yields that the invarian
e property �ME also holds if wein
rease the lower bound parameters min rw and min delay and if we de-
rease the upper bound parameter max rw . More pre
isely, Proposition 4.2(2)implies that [[A℄℄v j= �ME for all v with 0 � v(min rw), v(max rw) �v(min delay) and v(max delay) � 1. Then, in parti
ular, [[A℄℄v j= �ME ifv j= CME ^ BME .Ne
essity of the Constraints:We show that v j= BME ^ :CME =) [[A℄℄v j= :�ME ;36



i.e. that if v j= min rw <max rw ^ min delay <max delay ^ min delay <max rw , then A[v℄ j= :�ME � 93(P1:
s^P2:
s). We 
onsider the automatonA� and pro
eed in two steps.Step 1 Let v0 be the valuation v0(min delay) = v0(max delay) = 0 andv0(min rw) = v0(max delay) = 1. By non-parametri
 model 
he
king we haveestablished that A�[0℄ j= :�ME (8)A�[v0℄ j= :�ME : (9)We show that it follows that for all vv j= 0 = min delay = max delay � min rw = max rw =) A�[v℄ j= :�ME :(10)Assume v j= 0 = min delay = max delay � min rw = max rw . Considert = v(min rw). If v(min rw) = 0, then (8) shows that [[A�℄℄v j= :�ME .Therefore, assume v(min rw) > 0 and 
onsider vt � �x:v(x)t . It is not diÆ
ultto see thatvt j= 0 = min delay = max delay � min rw = max rw = 1:Therefore, (9) yields [[A�℄℄ vt j= :�ME . Sin
e A� is a fully parametri
 PTA,Proposition 4.7 yields that [[A�℄℄v j= :�ME .Step 2 Let A0 be the automaton that is 
onstru
ted from A� by perform-ing the following substitution min delay 7! 1, max delay 7! 1, min rw 7!max rw . By parametri
 model 
he
king we have establishedv j= 1 � max rw =) [[A0℄℄v j= :�ME : (11)This means that ifv j= min delay = max delay = 1 � min rw = max rw =) [[A�℄℄v j= :�ME :By a argument similar to the one we used to prove (10), (where now the
ase v(min delay) = 0 is 
overed by Equation (10) in Step 1.), we 
an useProposition 4.7 to show thatv j= min delay = max delay � min rw = max rw =) [[A�℄℄v j= :�ME :Now, Proposition 4.2(1) yields that the rea
hability property :�ME also holdsif the values for the lower bounds are de
reased and the values for the upperbounds are in
reased. Note that we may in
rease max delay as mu
h as we37



want; v(max delay) may be larger than v(min rw). Thus we havev j= min rw�max rw ^ min delay�max delay ^ min delay�max rw=) [[A�℄℄v j= :�MEand then Proposition 4.11 yields thatv j= min rw<max rw ^ min delay<max delay ^ min delay<max rw=) [[A℄℄v j= :�ME :We have 
he
ked the result formulated in Equation (11) with our prototypeimplementation. The experiment was performed on a SPARC Ultra in 2 se
-onds CPU time and 7.7 Mb of memory.The substitutions and te
hniques used in this veri�
ation to eliminate param-eters are ad ho
. Probably, more general strategies 
an be applied in this 
ase,be
ause the 
onstraints are L/U{like (i.e. they 
an be written in the forme � 0 su
h that every p o

urring negatively in e is a lower bound parameterand every p o

urring positively in e is an upper bound parameter).5 Experiments5.1 A Prototype Extension of UppaalBased on the theory des
ribed in Se
tion 3, we have built a prototype extensionof Uppaal. In this se
tion, we report on the results of experimenting withthis tool.Our prototype allows the user to give some initial 
onstraints on the param-eters. This is parti
ularly useful when explorations 
annot be �nished dueto la
k of memory or time resour
es, or be
ause a non-
onverging series of
onstraint sets is being generated. Often, partial results 
an be derived by ob-serving the 
onstraint sets that are generated during the exploration. Basedon partial results, the a
tual solution 
onstraints 
an be established in many
ases. These partial results 
an then be 
he
ked by using an initial set of
onstraints.5.2 The Root Contention Proto
olDes
ription The root 
ontention proto
ol is part of a leader ele
tion proto
ol38



in the physi
al layer of the IEEE 1394 standard (FireWire/i-Link), whi
h isused to break symmetry between two nodes 
ontending to be the root of atree, spanned in the network topology. The proto
ol 
onsists of �rst drawinga random number (0 or 1), then waiting for some time a

ording to the resultdrawn, followed by the sending of a message to the 
ontending neighbor. Thisis repeated by both nodes until one of them re
eives a message before sendingone, at whi
h point the root is appointed.Parametri
 Approa
h We use the Uppaal models of [SV99, SS01℄, turnthe 
onstants used into parameters, and experiment with our prototype im-plementation (see Fig. 9 for results 5 ). In both models, there are �ve 
on-stants, all of whi
h are parameters in our experiments. The delay 
onstant in-di
ates the maximum delay of signals sent between the two 
ontending nodes.The r
 fast min and r
 fast max 
onstants give the lower and upper boundto the waiting time of a node that has drawn 1. Similarly, the r
 slow minand r
 slow max 
onstants give the bounds when 0 has been drawn. It is rea-sonable to assume that initially, the 
onstraints r
 fast min � r
 fast max �r
 slow min � r
 slow max hold for ea
h experiment.We have 
he
ked for safety with the following property:82 : (:(Node1:root ^ Node2:root) ^ :(Node1:
hild ^ Node2:
hild))Safety for [SV99℄ The model in [SV99℄ 
onsists of 8 
ommuni
ating pro-
esses, varying from 3 lo
ations with 6 transitions to 9 lo
ations with 12 tran-sitions, and has 4 
lo
ks in total. It is shown in [SV99℄, that the safety propertyholds (through a re�nement relation), if the parameters obey the following re-lation: delay < r
 fast min. We have 
he
ked that the error states, expressedin the safety property, are indeed unrea
hable when this parameter 
onstraintis met. If we give no initial 
onstraints, our experiments do not terminate. Ifwe loosen the solution 
onstraint to delay � r
 fast min, we are able to 
he
kthat no error states are rea
hable. In fa
t, it is argued in Remark 2 in [SV99℄,that the mentioned 
onstraint is not needed for the 
orre
tness of the proto-
ol. Rather than 
he
king this on the parametri
 model without any initial
onstraints, whi
h is a large task, we experiment with a non-parametri
 ver-sion of the model without any timing 
onstraints. It turns out that this modelsatis�es the safety property, hen
e we dedu
e that the parametri
 model, inwhi
h guards and invariants have been added, satis�es the safety property forany valuation of the parameters.Safety for [SS01℄ A di�erent model of the root 
ontention proto
ol is pro-5 All experiments were performed on a 366 MHz Celeron, ex
ept the �rst exper-iment of safety for [SV99℄ and [SS01℄, and all the re�nement experiments. Thesewere performed on a 333 MHz SPARC Ultra Enterprise.39



posed in [SS01℄, in whi
h it is shown that the relation between the parametersfor the safety property to hold, should obey: 2�delay < r
 fast min. In fa
t,the model satis�es the safety property already when delay < r
 fast min, butthe stronger 
onstraint is needed for proper behavior of the 
onne
ting wires.This model also 
onsists of 8 
ommuni
ating pro
esses, varying from 3 lo
a-tions with 6 transitions to 16 lo
ations with 28 transitions, and has 6 
lo
ksin total. The ne
essity and suÆ
ien
y of these 
onstraints is shown in [SS01℄by applying standard Uppaal to several valuations for the parameters, andpresented as an experimental result.We have 
he
ked that the error states, expressed in the safety property, areindeed unrea
hable when either of these parameter 
onstraints are met. Wehave also experimented without these initial 
onstraints in an e�ort to generate
onstraints. This experiment terminates with a number of rea
hable errorstates. The union of the 
onstraint sets of these states 
an be rewritten to the
onstraint delay � r
 fast min.Safety for [SS01℄ with L/U automata Sin
e the model used for safetyis a L/U automaton, we 
an experiment with Proposition 4.2, as follows. Weshow that our invariant property is satis�ed by a more general model of root
ontention, and dedu
e with part 2 of Proposition 4.2 that it holds for the 
on-straints we are after. We �rst identify the sets L = fr
 fast min; r
 slow mingand U = fdelay; r
 fast max; r
 slow maxg. We substitute in�nity for bothr
 fast max and r
 slow max, r
 fast min for r
 slow min. The new model, to-gether with either the initial 
onstraint delay < r
 fast min, or with 2�delay <r
 fast min, satis�es the invariant property. This allows us to 
on
lude that theoriginal model satis�es the invariant property for any valuation of the param-eters where r
 fast min � r
 slow min, and the given initial 
onstraint are sat-is�ed. This in
ludes the spe
ial 
ase r
 fast min � r
 fast max � r
 slow min� r
 slow max.We 
an do even better by applying Proposition 4.11, if we �rst 
hange ea
hguards or invariants for delay to a stri
t version, and then substitute in�n-ity for both r
 fast max and r
 slow max, and r
 fast min for both delay andr
 slow min. Now we have a model with only one parameter and no 
onstants,whi
h we 
an verify non-parametri
ally with standard Uppaal, for two valua-tions of the parameter r
 fast min, namely 0 and a non-zero value. The invari-ant property is satis�ed, hen
e, by Proposition 4.7, we 
an dedu
e that it holdsfor all valuations of r
 fast min, hen
e the original model satis�es the invariantproperty for any valuation of the parameters where r
 fast min � r
 slow min,and delay < r
 fast min. Likewise, we 
an substitute r
 fast min=2 for delay,and derive the other 
onstraint. As 
an be seen in Fig. 9, the speed-up interms of memory and time is drasti
.Finally, we 
an 
ombine the results for initial 
onstraints delay < r
 fast min40



model from initial 
onstraints redu
ed property Uppaal time memory[SV99℄ part of solution no safety param 18 h 339 Mb[SV99℄ solution no safety param 2.9 h 185 Mb[SV99℄ - yes safety std 1 s 800 Kb[SS01℄ no no safety param 40 m 38 Mb[SS01℄ solution no safety param 1.6 m 36 Mb[SS01℄ solution partly safety param 11 s 13 Mb[SS01℄ - 
ompletely safety std 1 s 800 Kb[SS01℄ part of solution no re�nement param 8 d 1.4 Gb[SS01℄ solution no re�nement param 2.6 h 308 MbFig. 9. Experimental results for the root 
ontention proto
oland delay = r
 fast min with the fa
t that our model is a L/U automaton,and derive the ne
essity of 
onstraint delay < r
 fast min, as follows. Supposethat a parameter valuation for delay and r
 fast min exists, su
h that (1)the safety property holds, but (2) the 
onstraint delay < r
 fast min is notsatis�ed. Assume this valuation assigns d to delay and r to r
 fast min. Byour results, we know that d 6= r, so d > r. We now apply Proposition 4.2,and dedu
e that for ea
h parameter valuation that assigns a value to upperbound parameter delay whi
h is smaller than d, and a value to lower boundparameter r
 fast min whi
h is larger than r, the safety property must hold.This in
ludes valuations that satisfy 
onstraint delay = r
 fast min, whi
h
ontradi
ts our results. We 
on
lude that only for parameter valuations thatsatisfy 
onstraint delay < r
 fast min, the safety property holds.Re�nement for [SS01℄ In [SS01℄, it is also shown that a re�nement relationbetween the model of the most detailed level, and a model whi
h is a bit moreabstra
t, holds when the following relations are obeyed: 2�delay < r
 fast min,and 2�delay < r
 slow min - r
 fast max. The re�nement relation is su
h thatit preserves both safety and liveness properties for the root 
ontention pro-to
ol (whi
h is proved in [SS01℄). Again, the ne
essity and suÆen
y of the
onstraints is shown by experimenting with standard Uppaal for several val-uations for the parameters, and presented as an experimental result. Here, themost detailed model is put in parallel with a test automaton version of themore abstra
t model, and with a forward rea
hability exploration it is 
he
kedwhether error states are rea
hable. If this is not the 
ase, the re�nement re-lation holds. This model 
onsists of 6 
ommuni
ating pro
esses, varying nowfrom 4 lo
ations with 5 transitions to 11 lo
ations with 87 transitions, andhas 7 
lo
ks in total. 41



model from initial 
onstraints property Uppaal time memory[DKRT97℄ yes safety1 param 1.3 m 34 Mb[DKRT97℄ no safety2 param 11 m 180 Mb[DKRT97℄ yes safety2 param 3.5 m 64 MbFig. 10. Experimental results for the bounded retransmission proto
olWe have 
he
ked for a 
ompletely parametri
 version of the system with thedetailed model and the test automaton of the more abstra
t model, that er-ror states in the test automaton are unrea
hable (i.e. the re�nement relationholds), given both 
onstraints initially. We have also experimented withoutthese initial 
onstraints in an e�ort to generate them. If we give no initial
onstraints, the prototype takes a lot of time exploring and 
omputing, anddoes not terminate within reasonable time or memory limits. When given oneinitial 
onstraint: delay � r
 fast min, this experiment terminates su

essfullywith a number of rea
hable error states. The union of the 
onstraint sets ofthese states 
an be rewritten to the 
onstraint 2�delay � r
 fast min _ 2�delay� r
 slow min - r
 fast max.Sin
e the models for re�nement use 
onstraints that fall outside the s
ope ofL/U automata, we 
annot apply Proposition 4.11 here.5.3 The Bounded Retransmission Proto
olDes
ription This proto
ol was designed by Philips for 
ommuni
ation be-tween remote 
ontrols and audio/video/TV equipment. It is a slight alterationof the well-known alternating bit proto
ol, to whi
h timing requirements anda bound on the retry me
hanism have been added. In [DKRT97℄ 
onstraintsfor the 
orre
tness of the proto
ol are derived by hand, and some instan
esare 
he
ked using Uppaal. Based on the models in [DKRT97℄, an automati
parametri
 analysis is performed in [AAB00℄, however, no further results aregiven.Parametri
 approa
h For our analysis, we use the timed automata modelsfrom [DKRT97℄. These models typi
ally 
onsist of 7 
ommuni
ating pro
esses,varying from 2 lo
ations with 4 transitions to 6 lo
ations with 54 transitions,and has 5 
lo
ks and 9 non-
lo
k variables in total. In [DKRT97℄ three di�erent
onstraints are presented based on three properties whi
h are needed to satisfythe safety spe
i�
ation of the proto
ol. We are only able to 
he
k two of thesesin
e one of the properties 
ontains a parameter whi
h our prototype versionof Uppaal is not able to handle yet.One of the 
onstraints derived in [DKRT97℄ is that TR � 2�MAX�T1+3�TD,42



where TR is the timeout of the re
eiver, T1 is the timeout of the sender,MAX is the number of resends made by the sender, and TD is the delay of the
hannel. This 
onstraint is needed to ensure that the re
eiver does not time outprematurely before the sender has de
ided to abort transmission. The senderhas a parameter SYNC whi
h de
ides for how long the sender waits until itexpe
ts that the re
eiver has realized a send error and rea
ted to it. In ourparametri
 analysis we used TR and SYNC as parameters and instantiatedthe others to �xed values. Using our prototype we did derive the expe
ted
onstraint TR � 2�MAX�T1+3�TD. However, we also derived the additional
onstraint TR � 2 � SYNC whi
h was not stated in [DKRT97℄ for thisproperty. The ne
essity of this 
onstraint was veri�ed by trying models withdi�erent �xed values for the parameters. The full set of 
onstraints derived in[DKRT97℄ in
ludes a 
onstraint TR � SYNC whi
h is based on the propertywe 
annot 
he
k. Therefore the error we have en
ountered is only present inan intermediate result, the 
omplete set of 
onstraints derived is 
orre
t. Theauthors of [DKRT97℄ have a
knowledged the error and provided an adjustedmodel of the proto
ol, for whi
h the additional 
onstraint is not ne
essary.The last 
onstraint derived in [DKRT97℄ arises from 
he
king that the senderand re
eiver are not sending messages too fast for the 
hannel to handle. Inthis model we treat T1 as a parameter and derive the 
onstraint T1 > 2 �TDwhi
h is the same as is derived in [DKRT97℄.
5.4 Other ExperimentsWe have experimented with parametri
 versions of several models from thestandard Uppaal distribution, namely Fis
her's mutual ex
lusion proto
ol, atrain gate 
ontroller, and a 
ar gear box 
ontroller.In the 
ase of Fis
her's proto
ol (whi
h is the version of the standard Uppaaldistribution, and not the one dis
ussed in the rest of this paper), we param-eterized a model with two pro
esses, by turning the bound on the period thepro
esses wait, before entering the 
riti
al se
tion, into a parameter. We wereable to generate the 
onstraints that ensure the mutual ex
lusion within 2se
onds of CPU time on a 266 MHz Pentium MMX. Using these 
onstraintsas initial 
onstraints and 
he
king that now indeed the mutual ex
lusion isguaranteed, is done even faster. Fis
her's proto
ol with two pro
esses was also
he
ked in [AAB00℄, whi
h took about 3 minutes.43



5.5 Dis
ussionOur prototype handles parametri
 versions of ben
h-mark timed automatarather well. In some 
ases, the prototype will not generate a 
onverging seriesof 
onstraints, but in all 
ases we were able to get su

essful terminationwhen applying (
onje
tures of) solution 
onstraints as initial 
onstraints inthe exploration. The amount of time and memory used is then in many 
asesquite reasonable.From our results it is not easy to draw 
lear-
ut 
on
lusions about the typeof parametri
 model, for whi
h our prototype 
an su

essfully generate 
on-straints. It seems obvious from the 
ase studies that the more 
ompli
ated themodel, the larger the e�ort in memory and time 
onsumption. So it is worth-while to have small, simple models. However, the danger of non-terminationis most present in models whi
h have a lot of behavioural freedom. The mostpromising dire
tion, therefore, will be to experiment with 
onje
tured solution
onstraints, and to 
ombine this with the te
hniques for L/U automata.6 Con
lusionsThis paper reports on a parametri
 extension to the model 
he
ker Uppaal.This tool is 
apable of generating parameter 
onstraints that are ne
essary andsuÆ
ient for a rea
hability or invariant property to hold for a linear parametri
timed automaton. The semanti
s of the algorithms underlying the tool is givenin 
lean SOS{style rules. Although the work [AHV93℄ shows that parametersynthesis is unde
idable in general, our prototype implementation terminateson many pra
ti
al veri�
ation questions and the run time of the tool is a
-
eptable. Signi�
ant redu
tions are obtained by parameter elimination in L/Uautomata.There are several relevant and interesting topi
s for future resear
h. First ofall, serious improvements in the appli
ability of the tool 
an be obtained byimproving the user interfa
e. Currently, the tool generates many parameterequations whose disjun
tion is the desired 
onstraint. Sin
e the number ofequations are 
an be quite large, it would be more 
onvenient if the tool 
ouldsimplify these set of equations. This 
ould for instan
e be done with redu
tionte
hniques for BDDs.Another relevant issue for parameter analysis is the theoreti
al investigationof the 
lass of L/U automata. It would for instan
e be interesting to get moreinsight whi
h types of problems are de
idable for L/U automata and whi
hare not. Furthermore, it would be interested to investigate the use of L/U44



automata for synthesizing the 
onstraints, rather than for analyzing given
onstraints as we did in this paper. On the pra
ti
al side, the redu
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A Notational Conventionsa a
tionb natural number
 
onstraintd nonnegative real numbere linear expressionf simple guardg guardi; j indexk total number of a
tionsl lower bound parameterm total number of 
lo
ksn total number of parametersp parameterq lo
ationr reset sets statet; T integer or real numberu upper bound parameterv parameter valuationw 
lo
k valuationx; y 
lo
kz parametri
 zoneA set of a
tionsC set of 
onstraintsD parametri
 di�eren
e bound matrixE set of linear expressionsG set of guardsI invariant fun
tionK number of lower bound parametersL set of lower bound parametersM number of upper bound parametersP set of parametersQ set of lo
ationsR set of reset setsS set of statesU set of upper bound parametersX set of 
lo
ksA parametri
 timed automatonE unit PDBML labelled transition systemN the natural numbersR the real numbers 48



Z the integers�, � extended valuation of lower bound (upper bound) parameter, respe
tively� state formula system property
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