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1 Introduction

Model checking is emerging as a practical tool for automated debugging of
complex reactive systems such as embedded controllers and network protocols.
In model checking, a high-level description of a system is compared against
a logical correctness requirement to discover inconsistencies. The first tech-
niques for model checking did not admit an explicit modeling of time, and are
thus unsuitable for analysis of real-time systems whose correctness depends
on relative magnitudes of different delays. Consequently, Alur and Dill [AD90)]
proposed timed automata as a formal notion to model the behavior of real-
time systems. Timed automata are state-transition diagrams annotated with
timing constraints using finitely many real-valued clock variables. During the
last decade, there has been enormous progress in the area of timed model
checking. We refer to [Alu98, CGP99, LPY97, Yov98| for overviews of the un-
derlying theory and references to applications. Timed automata tools such as
UprPAAL [LPY97], KrRONOs [BDM*98|, and PMC [LTA98] are now routinely
used for industrial case studies.

A disadvantage of the traditional approaches is, however, that they can only
be used to verify concrete timing properties: one has to provide the values
of all timing parameters that occur in the system. Typical examples of such
parameters are upper and lower bounds on computation times, message delays
and timeouts. For practical purposes, one is often interested in deriving the
(symbolic) constraints on the parameters that ensure correctness. The process
of manually finding and proving such results is very time consuming and error
prone (we have discovered minor errors in the examples we have been looking
at). Therefore tool support for deriving the constraints automatically is very
important.

In this paper, we study a parametric extension of timed automata, called
parametric timed automata (PTAs), and present an extension to PTAs of the
(forward) state space exploration algorithm for timed automata. We show the
theoretical correctness of our approach, and its feasibility by application to
three non-trivial case studies. For this purpose, we have implemented a proto-
type extension of UPPAAL, an efficient real-time model checking tool [LPY97].
The algorithm we propose and have implemented fundamentally relies on para-
metric difference bound matrices (PDBMs) and operations on these. PDBMs
constitute a data type that extends the difference bound matrices (DBMs,
[Dil90]) in a natural way. The latter are used for recording clock differences
when model checking (non-parametric) timed automata. PDBMs are basically
DBMs, where the matrix entries are parameter expressions rather than con-
stants. Our algorithm is a semi-decision algorithm which will not terminate in
all cases. In [AHV93], the problem of synthesizing values for parameters such
that a property is satisfied was shown to be undecidable, so this is the best



we can hope for.

A second contribution of this paper is the identification of a subclass of para-
metric timed automata, called lower bound/upper bound (L/U) automata,
which appears to be sufficiently expressive from a practical perspective, while
it also has nice theoretical properties. Most importantly, we show that the
emptiness problem, in [AHV93] shown to be undecidable for parametric timed
automata, is decidable for L./U automata. We also establish a number of results
which allow one to reduce the number of parameters when tackling specific
verification questions for /U automata. The application of these lemmas has
already reduced the verification effort drastically in several of our experiments.

Related work There are currently several other tools available that can do
parametric model checking, namely LPMC, HYTECH and TReX.

LPMC [LTA98] is a parametric extension of the timed model checker PMC
[BLT00]. The model checking algorithm implemented in LPMC differs from
ours: it represents the state space of a system as an unstructured set of con-
straints, whereas we use PDBMs. Moreover, LPMC implements a partition
refinement technique, whereas we use forward reachability. Other differences
with our approach are that LPMC also allows for the comparison of non-clock
variables to parameter constraints and for more general specification proper-
ties (full TCTL with fairness assumptions).

The model checker HyTEcH [HHWT97] is a tool for linear hybrid automata.
These are more general than parametric timed automata, since they allow
the modeling of continuous behavior via linear differential equations. The
HyYTEcCH implementation uses polyhedra as its basic data type. It can explore
the state space by using either forward reachability, as we do, or partition
refinement, as in LPMC. The tool has been applied successfully to relatively
small examples such as a railway gate controller. Experience so far has shown
that HYTECH cannot cope with larger examples, such as the ones considered
in this paper, see the results in [CS01].

The tool TReX [AAB00, ABSO01] is currently the only one that can deal with
non-linear parameter constraints. Moreover, TReX has a clever method for
guessing the effect of control loops in a model, based on widening principles,
which increases chances of termination. Independently, [AABO00] developed
the same data structure as we did (PDBMs) and implemented some similar
operations on these. However, the underlying theory was not worked out in
the research literature. Hence, we believe that our contribution over [AABOO]
consists of the following. Our work presents an extensive elaboration of the
theory behind our implementation. In particular, we present a correctness
proof of the model checking algorithm we implemented. That is, we prove
that the symbolic semantics of a PTA in terms of PDBMs is equivalent to its



concrete semantics in terms of single states and transitions. These proofs rely
on a number of non-trivial generalizations of results for DBMs.

Each of the tools above has been applied to the IEEE 1394 Root Contention
Protocol [CS01, BLT00]. We refer the reader to [Sto01] for a comparison of
the results. An important conclusion was that each of the verifications has it
own merits, where our approach was the fastest.

Overview The remainder of this paper is organized as follows. Section 2 intro-
duces the notion of parametric timed automata. Section 3 gives the symbolic
semantics in terms of PDBMs and is the basis for the model checking algo-
rithm presented in Section 3.5. In Section 4, we introduce the class of L/U
automata. Section 5 reports on several experiments with our tool. Finally,
Section 6 presents some conclusions.

Acknowledgements We thank the reviewers for their reports, in particular
Reviewer 3 who gave many comments that helped us to improve our paper
and pointed out the necessity of imposing nonegative lower bounds on clocks
in constrained PBDMs.

2 Parametric Timed Automata

Parametric timed automata were first defined in [AHV93]. They generalize
the timed automata of [AD90]. The definition of parametric timed automata
that we present in this section is very similar to the definition in [AHV93], ex-
cept that progress is ensured via location invariants rather than via accepting
states. This difference is not essential.

2.1 Parameters and Constraints

Throughout this paper, we assume a fixed set of parameters P = {p1,...,p,}.

Definition 2.1 (Constraints) A linear expression e is either an expression
of the form typ; + -+ + t,pn + to, where ty,...,t, € Z, or cc. We write F
to denote the set of all linear expressions. A constraint is an inequality of the
form e ~ €', with e, €’ linear expressions and ~€ {<, <, >, >}. The negation of
constraint ¢, denoted —¢, is obtained by replacing relation symbols <, <, >, >
by >, >, <, <, respectively. A (parameter) valuation is a function v : P — R=°
assigning a nonnegative real value to each parameter. There is a one-to-one
correspondence between valuations and points in (RZ%)". In fact we often
identify a valuation v with the point (v(py),...,v(p,)) € (RZ%)".



If e is a linear expression and v is a valuation, then e[v]| denotes the expression
obtained by replacing each parameter p in e with v(p). Likewise, we define
c[v] for ¢ a constraint. Valuation v satisfies constraint ¢, denoted v = ¢, if ¢[v]
evaluates to true. The semantics of a constraint ¢, denoted [c], is the set of
valuations that satisfy c¢. A finite set of constraints C'is called a constraint set.
A valuation satisfies a constraint set if it satisfies each constraint in the set.
The semantics of a constraint set C' is given by [C] := N.ce [c]. We say that
C' is satisfiable if [C] is nonempty.

Constraint ¢ covers constraint set C, denoted C |= ¢, iff [C] C [¢]. Constraint
set C' is split by constraint ¢ iff neither C' = ¢ nor C = —c.

During the analysis questions arise of the kind: given a constraint set C' and
a constraint ¢, does ¢ hold, i.e., does constraint ¢ cover C'?7 There are three
possible answers to this, yes, no, and split. A split occurs when ¢ holds for
some valuations in the semantics of C' and —¢ holds for some other valuations.
Here will not discuss in detail methods for answering such questions: in the
remainder of this paper we just assume the presence of the following “oracle”
function.

Definition 2.2 (Oracle)

ves if Cl=c
O(c,C)=4no if C E —c

split  otherwise

The oracle function can be computed in polynomial time using linear pro-
gramming (LP) solvers. Suppose we want to compute O(c, C'), where ¢ takes
the form e < ¢'. Then we first maximize the linear function ¢ — e subject to
the set C of linear inequalities. This is a linear programming problem. If the
outcome is negative then O(c, C') = no. Otherwise we maximize e — ¢’ subject
to C. If the outcome is less than or equal to 0 then O(c,C) = yes. Otherwise
O(e, C) = split. In our implementation we use an LP solver that was kindly
provided to us by the authors of [BLT00], who built it for their model checking
tool LPMC. This LP solver is geared to perform well on small, simple sets of
constraints rather than large, complicated ones.

Observe that using the oracle, we can easily decide semantic inclusion between
constraint sets: [C] C [C'] iff V&' € C": O(¢, C) = yes.



2.2 Parametric Timed Automata

Throughout this paper, we assume a fixed set of clocks X = {zq,..., 2} and
a fixed set of actions A = {ay,...,ar}. The special clock zg, which is called
the zero clock, always has the value 0 (and hence does not increase with time).

A simple guard is an expression f of the form x; — xz; < e, where z;, x; are
clocks, <€ {<,<}, and e is a linear expression. We say that f is proper if
i # j. We define a guard to be a (finite) conjunction of simple guards. We let
g range over guards and write GG to denote the set of guards. A clock valuation
is a function w : X — R2Y assigning a nonnegative real value to each clock
such that w(zg) = 0. We will identify a clock valuation w with the point
(w(zp),...,w(zy)) € (RZO)™F1. Let g be a guard, v a parameter valuation,
and w a clock valuation. Then g¢[v, w] denotes the expression obtained by
replacing each parameter p with v(p), and each clock = with w(z). A pair
(v,w) of a parameter valuation and a clock valuation satisfies a guard g,
denoted (v, w) [ g, if g[v, w] evaluates to true. The semantics of a guard g,
denoted [g], is the set of pairs (v, w) such that (v, w) = g. Given a parameter
valuation v, we write [g], for the set of clock valuations {w | (v,w) E g}.

A reset is an expression of the form, x; := b where i« # 0 and b € N. A reset
set is a set of resets containing at most one reset for each clock. The set of
reset sets is denoted by R.

We now define an extension of timed automata [AD94, Yov98] called paramet-
ric timed automata. Similar models have been presented in [AHV93, AABOO,
BLT00].

Definition 2.3 (PTA) A parametric timed automaton (PTA) over set of
clocks X, set of actions A, and set of parameters P, is a quadruple A =
(Q, qo, —, I), where @ is a finite set of locations, qo € @ is the initial location,
—C QR xAXxGExRxQ is a finite transition relation, and function I : Q — G
assigns an invariant to each location. We abbreviate a (¢, a, g,r,¢") €— con-
sisting of a source location ¢, an action a, a guard g, a reset set r, and a
target location ¢’ as ¢ 223 ¢'. For a simple guard z; — xj < e to be used in an
invariant it must be the case that j = 0, that is, the simple guard represents

an upper bound on a clock. ?

Example 2.4 A parametric timed automaton with clocks z, y and param-
eters p, ¢ can be seen in Fig. 1. The initial location is S0 and has invariant

2 There is no fundamental reason to impose this restriction on invariants; our whole
theory can be developed without it. However, technically the restriction makes our
lives a bit easier, see for instance Proposition 3.17. In practice the condition is (as
far as we are aware) always met.



Fig. 1. A parametric timed automaton

x < p. There is a transition from the initial location to S1, which has guard
y > ¢ and reset set {x := 0}. There are no actions on the transitions. The
transition from S0 to S1 can only become enabled if p < ¢, otherwise the
system will end up in a deadlock.

To define the semantics of PTAs, we require two auxiliary operations on clock
valuations. For clock valuation w and nonnegative real number d, w + d is
the clock valuation that adds to each clock (except z() a delay d. For clock
valuation w and reset set r, w(r| is the clock valuation that resets clocks
according to r.

0 if £ = xg b ifz:=ber
(w+d)(z) = (wlr])(z) =

w(zx) + d otherwise w(x) otherwise.

Definition 2.5 (LTS) A labeled transition system (LTS) over a set of sym-
bols X is a triple £ = (S, Sy, —), with S a set of states, Sy C S a set of
initial states, and —C S x X x S a transition relation. We write s — s’
for (s,a,s") €—. A run of L is a finite alternating sequence spa;sias-- -y,
of states s; € S and symbols a; € ¥ such that s; € Sy and, for all i < n,

S; Lty sit1.- A state is reachable if it is the last state of some run.

Definition 2.6 (Concrete semantics) Let A= (Q, gy, —,I) be a PTA and
v be a parameter valuation. The concrete semantics of A under v, denoted
[A],, is the labeled transition system (LTS) (S, Sy, —) over AU R>? where

S={(g,w) € Q x (X = R*") | w(wo) = 0A (v,w) = I(q)}.
So={(q,w) € S|q=qoNw = \z.0},

and the transition predicate — is specified by the following two rules. For all
(q,w), (¢',w') € S,d>0and a € A,

d

e (q,w) — (¢,w')if ¢g=¢ and w' = w + d.
o (¢, w) % (¢ w') if 3g,r: ¢ 22 ¢ and (v, w) = g and w' = wr].



Note that the LTS [A], has at most one initial state. It has no initial state if
the invariant assigned to the initial location of A is unsatisfiable.

2.8 The Parametric Model Checking Problem

In its current version, UPPAAL is able to check for reachability properties,
in particular whether certain combinations of locations and constraints on
clock variables are reachable from the initial configuration. Our parametric
extension of UPPAAL handles exactly the same properties. However, rather
than just telling whether a property holds or not, our tool looks for constraints
on the parameters which ensure that the property holds.

Definition 2.7 (Properties) Let A = (Q,qy,—,I) be a PTA. The sets of
system properties and state formulas for A are defined by, respectively,

P 2=V0¢ |30 pu=z—y=<blgl-d|lond|oVe

where z,y € X, b€ N and q € (). Let A be a PTA, v a parameter valuation,
s a state of [A],, and ¢ a state formula. We write s =, ¢ if ¢ holds in state
s of [A],, we write [A], = VO¢ if ¢ holds in all reachable states of [.A],, and
we write [A], E 3¢ if ¢ holds for some reachable state of [A],.

The problem that we address in this paper can now be stated as follows:

Given a parametric timed automaton A and a system property 1,
compute the set of parameter valuations v for which [A], = 1.

Remark 2.8 Timed automata [AD94, Yov98] arise as a special case of PTAs
for which the set P of parameters is empty. If A is a PTA and v is a parameter
valuation, then the structure Afv] that is obtained by replacing all linear
expressions e that occur in A by e[v] is a timed automaton.? It is easy to
see that in general [A], = [A[v]]. Since the reachability problem for timed
automata is decidable [AD94], this implies that, for any A, integer valued v
and v, [A], = ¢ is decidable.

2.4  Ezxample: Fischer’s Mutual Exclusion Algorithm

Figure 3 shows a PTA model of Fischer’s mutual exclusion algorithm [Lam87].
The purpose of this algorithm is to guarantee mutually exclusive access to a

3 Strictly speaking, A[v] is only a timed automaton if v assigns an integer to each
parameter.



critical section among n competing processes P;, P, ... P,. The algorithm,
where each process P; (perpetually) runs the code of Figure 2, uses a shared
variable lock for communication between the processes.

FISCHER (P)

lock :=0

repeat
while lock # 0 do skip od
lock := 1
delay

until lock = i

critical section

lock := 0

Fig. 2. Fischer’s mutual exclusion algorithm

The correctness of this algorithm crucially depends on the timing of the op-
erations. The key idea is that any process P; that sets lock := 7 is made to
wait long enough before checking lock = ¢ to ensure that any other process P;
that tested lock = 0, before P; set lock to its index, has already set lock to its
index j, when P; finally checks lock = 7.

Assume that read/write access to the global variable (in the operations lock =
i and lock := 0) takes between min_rw and maz_rw time units and assume that
the delay operation (including the time needed for the assignment lock := 1)
takes between min_delay and max_delay time units. If we assume the basic
constraints 0 < min_rw < maz_rw A 0 <min_delay < max_delay, then mutual
exclusion is guaranteed if and only if maz_rw < min_delay.

lock I=1,
X >min_delay

lock==0, ; x>min_delay,
X>minw -~ Cminmw lockes; Y
x:=0 I x:=0 v
set G try enter cs
x<=max_rw locki=i  xm3 Gelay
x:=0, lock:=0

Fig. 3. A PTA model of Fischer’s mutual exclusion algorithm

Now consider the PTA in Fig. 3, which is represented in UPPAAL syntax. (Sev-
eral different models of this algorithm exist [AL92, AHV93, Lyn96, KLL97];
our model is closest to the one in [Lyn96].) It consists of four locations start
(which is initial), set, try_enter and cs; four parameters, min_rw, maz_-rw,
min_delay and max_delay; one clock x and a shared variable lock. By con-
vention, x and lock are initially 0. Note that the process can remain in the
locations start and set for at least min_rw and strictly less than maz_rw
time units. Similarly, the process can remain in try_enter for any time in the
interval [min_delay, maz_delay).



The shared variable, which is not a part of the definition of PTAs, is syntactic
sugar which allows for an efficient encoding of the algorithm as a PTA. Also the
notion of parallel composition for PTAs is standard, see for instance [LPY97]
for their definitions.

3 Symbolic State Space Exploration

Our aim is to use basically the same algorithm for parametric timed model
checking as for timed model checking. We represent sets of states symbolically
in a similar way and support the same operations used for timed model check-
ing. In the nonparametric case, sets of states can be efficiently represented
using matrices [Dil90]. Similarly, in this paper we represent sets of states sym-
bolically as (constrained) parametric difference bound matrices.

3.1 Parametric Difference Bound Matrices

In the nonparametric case, a difference bound matrix is a (m + 1) x (m + 1)
matrix whose entries are elements from (ZU{oo}) x {0,1}. An entry (¢, 1) for
D;; denotes a nonstrict bound z; — z; < ¢, whereas an entry (c,0) denotes a
strict bound z; — z; < c. In the parametric case, instead of using integers in
the entries, we will use linear expressions over the parameters. Also, we find
it convenient to view the matrix slightly more abstractly as a set of guards.

Definition 3.1 (PDBM) A parametric difference bound matriz (PDBM) is
a set D which contains, for all 0 < i,7 < m, a simple guard D;; of the form
x; — xj <i; €i;. We require that, for all 4, D;; is of the form z; — 2; < 0. Given
a parameter valuation v, the semantics of D is given by [D], = [A;; Dij].-
PDBM D is satisfiable for v if [D], is nonempty. If f is a guard of the form
x; —xj < e with i # j (i.e., a proper guard), then D[f] denotes the PDBM
obtained from D by replacing D;; by f. If i, j are indices then D% denotes the
pair (e;j, <i;); we call DY a bound of D. Clearly, a PDBM is fully determined
by its bounds.

Definition 3.2 (Constrained PDBM) A constrained PDBM is a pair (C, D)
where C'is a constraint set and D is a PDBM. We require that C' = p > 0,
for each p, and C = ey; < 0, for each i. The semantics of (C, D) is given by
[C,D] ={(v,w) | v € [C]Aw € [D],}. We call (C, D) satisfiable if [C, D] is
nonempty.

Condition C' = p > 0 expresses that parameter p may only take nonnegative
values. The condition C' = ep; < 0 ensures a nonnegative lower bound on the

10



value of clock z;. Such a condition is required since clocks in a PTA only take
nonnegative values. A similar condition occurs in [Yov98]. In the setting of
[Dil90] the condition of nonnegative lower bounds is not needed since in this
paper clocks (called timers) may take values in R. In [LLPY97, Alu98, CGP99,
AABO00] the condition (or something similar) is needed but not mentioned.*

PDBMs with the tightest possible bounds are called canonical. To formalize
this notion, we define an addition operation on linear expressions by

(tip1 + -+ + tapn + o) + (001 + - + tpn + 1)
2 (b +t)pr 4+ (b + )P + (to + 1),

Also, we view Boolean connectives as operations on relation symbols < and <
by identifying < with 1 and < with 0. For instance, (< A <) =<, (< A <) =<,
- <=< and (£ = <) =<.

Our definition of a canonical form of a constrained PDBM is essentially equiv-
alent to the one for standard DBMs.

Definition 3.3 (Canonical Form) A constrained PDBM (C, D) is in canon-
ical form iff for all 4, j, k, C' = e;; (<ij = <ik N <kj) €ik + €kj-

The proof of the following technical result is immediate from the definitions.

Lemma 3.4

(1) Ifv =e <€ andv =€ <" €' thenvi=e (XA <) €.

(2) If (v,w) =z —y<eandv e <€ then (v,w) =z —y (KA =<') €.

(3) Ifvi=e (R A=) € thenvi=e<¢.

(4) If (v,w) =z —y (KA =<') e then (v,w) Ez—y<e.

(5) If (v,w) Ex—y < eand (v,w) =y—2z <" € then (v,w) Ex—2z (<
AN=<")e+e.

(6) viE—(e<¢)iffvEe (m<)e.

The next lemma states that canonicity of a constrained PDBM guarantees
satisfiability.

Lemma 3.5 Suppose (C, D) is a constrained PDBM in canonical form and
v € [C]. Then D is satisfiable for v.

4 For instance, in [CGP99] it is claimed on page 289: “If the clock zone is empty or
unsatisfiable, there will be at least one negative entry in the main diagonal.” This
claim is incorrect. A counterexample is the canonical form of a DBM that contains
as the only nontrivial guard z; —xg < —1.

11



PrROOF: By induction on 7, with 0 < 7 < m, we construct a valuation
(to,...,t;) for clock variables (x,...,2;) such that all constraints D;; for
0 <7,k <1 are met.

To begin with, we set t, = 0. Then, trivially, (v, zo — to) E Doo.

For the induction step, suppose that for some ¢ < m we have a valuation
(to,...,t;) for variables (x,...,2;) such that all constraints D;; for 0 <
j,k < 1 are met. In order to extend this valuation to z;;;, we have to
find a value ¢;; such that the following simple guards hold for valuation
(U,.',Eg =10, ..., Tig ti-l—l):

Ditio - Dit1i Doivr -+ Dijpr Digrin (1)

Here the first ¢ + 1 simple guards give upper bounds for #;,, the second 7 + 1
simple guards give lower bounds for ¢;,, and the last simple guard is trivially
met by any choice for ¢;,;. We claim that each of the upper bounds is larger
than or equal to each of the lower bounds. In particular, the minimum of the
upper bounds is larger than or equal to the maximum of the lower bounds.
This gives us a nonempty interval of possible values for ¢;,; to choose from.
Formally, we claim that, for all 0 < j,k < ¢ + 1, the following formula holds
for valuation (v, [xg > to, ..., x; — t;]):

Tj — €jiv1 (<jit1 A Ritie) T + €iv1k (2)
To see why (2) holds, observe that by induction hypothesis (v, zg — tg, ..., x; —
ti) =

Tj — Tk <k €k (3)

Furthermore, since (C, D) is canonical and v € [C], v =

ek (<jk = <jit1 A <it1k) €jit1 + €iv1k (4)

Combination of (3) and (4), using Lemma 3.4(2), gives (v, g — tg,...,x; —

T — T (<jit1 N <it1k) €5it1 + i1k

which is equivalent to (2). This means that we can choose ¢;;; in accordance
with all the guards of (1). In particular, guard Dg,; holds, which by the
assumption that lower bounds on clocks are nonnegative implies that ¢;,; is
nonnegative. This completes the proof of the induction step and thereby of
the lemma. []

12



The following lemma essentially carries over from the nonparametric case too,
see for instance [Dil90]. As a direct consequence, semantic inclusion of con-
strained PDBMs is decidable for canonical PDBMs (using the oracle function).

Lemma 3.6 Suppose (C, D), (C',D') are constrained PDBMs and (C, D) is
canonical. Then [C,D] C [C",D'] < ([C] C[C']AVi,j:C = ej(<ij =

<ij)el)-

3.2 Operations on PDBMs

Our algorithm requires basically four operations to be implemented on con-
strained PDBMs: adding guards, canonicalization, resetting clocks and com-
puting time successors.

3.2.1 Adding Guards

In the case of DBMs, adding a guard is a simple operation. It is implemented
by taking the conjunction of a DBM and the guard (which is also viewed
as a DBM). The conjunction operation just takes the pointwise minimum of
the entries in both matrices. In the parametric case, adding a guard to a
constrained PDBM may result in a set of constrained PDBMs. We define a
relation <= which relates a constrained PDBM and a guard to a collection of
constrained PDBMs that satisfy this guard. For this we need an operation
C that takes a PDBM and a simple guard, and produces a constraint stating
that the bound imposed by the guard is weaker than the corresponding bound
in the PDBM. Let D% = (eij, <ij)- Then

C(D,z; —x; <e)=¢e; (=i = <) e.

Relation <5 is defined as the smallest relation that satisfies the following rules:

(R1) O(C(D,f)}: C) = yes (R2) O(C(D,f),C’)f: no, f proper
(c,p) <, D) (¢, D) <, Dly)
(R3) O(C(D, f),C) = split P O(C(D, f),C) = split, f proper
(C.D) <& (cu{c(p, )}, D) (¢, D) & (cu{-¢(D, )}, D)
(R3) (C,D) = (C', D’)gA,gl(C’D’) & (C", D)

(C,D) = (C",D")

13



If the oracle replies “yes” then adding a simple guard will not change the
constrained PDBM. If the answer is “no” then we tighten the bound in the
PDBM. With the answer “split” there are two possibilities and two PDBMs
with updated constraint systems are returned. Thus the result of the operation
of adding a guard is a set of constrained PDBMs. The side condition “f proper”
in R2 and R4 rules out guards of the form z; —z; < e and thereby ensures that
the diagonal bounds in the PDBM always remain equal to (0, <). It is routine
to check, using Lemma 3.4, that relation <= is well-defined in the sense that
(C, D) <4 (C', D) implies that (C', D') is a constrained PDBMs. In particular,
the condition that clocks have nonnegative lower bounds is met. Note that if
we update a bound in D the semantics of the PDBM may become empty:
a typical situation occurs when D contains a constraint x > 5 and we add
a guard z < 3. Note however that (C, D) <4 (C’,D') and [C] # 0 implies
[C'] # 0. The following lemma characterizes <= semantically.

Lemma 3.7 [C,D]N[¢] = U{[C".D] | (C, D)< (C'", D)}

PROOF: “C”. Assume (v, w) € [C, D]A(v,w) |= g. By structural induction on

g we prove that there exists a constrained PDBM (C', D') such that (C, D) <4
(C", D) and (v,w) € [C", D'].

For the induction basis, suppose ¢ is of the form x; —x; < e. We consider four
cases:

e O(C(D,qg),C) = yes. Let C' = C and D' = D. Then trivially (v,w) €
[C', D'] and, by rule R1, (C, D) <4 (C", D).

e O(C(D,g),C) = no. By contradiction we prove that g is proper. Suppose g
is not proper. Then, since i = j and v = —e;;(<;; = <)e, v = (0 < e).
By Lemma 3.4(6), v = e(— <)0. But (v,w) = g implies v = 0 < e. Hence,
by Lemma 3.4(1), v = 0 < 0, a contradiction. Let C' = C and D' = D][g].
Then, by rule R2, (C, D) <4 (C", D'). Since v € [C] and C' = C, trivially
v € [C']. Since w € [D], and (v, w) [= g, easily w € [D]g]],. It follows that
(v,w) € [C", D'].

e O(C(D,yg),C)=splitandv =C(D,g). Let C' = CU{C(D, g)} and D' = D.
Then, by rule R3, (C,D) < (C', D). Since v € [C] and v = C(D,g),
v e [CU{C(D,g)}]. Since w € [D], and D' = D, trivially w € [D'],. It
follows that (v, w) € [C", D'].

e O(C(D,g),C) = split and v = =C(D, g). By contradiction we prove that g
is proper. Suppose g is not proper. Then, since v = =C(D, g), v = —(0 < e).
By Lemma 3.4(6), v = e~ < 0. But (v,w) |= ¢ implies v = 0 < e. Hence,
by Lemma 3.4(1), v = 0 < 0, a contradiction. Let C' = C U {=C(D, g)}
and D' = D[g]. Then, by rule R4, (C,D) < (C', D). Since v € [C] and
v = -C(D,g),ve[CU{-C(D,g)}]. Since w € [D], and (v, w) = g, easily
w € [Dlg]],- It follows that (v,w) € [C', D'].
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For the induction step, suppose that g is of the form ¢’ A ¢”. Then (v, w) = ¢'.

By induction hypothesis, there exist C", D" such that (C, D) 4 (C",D") and
(v,w) € [C",D"]. Since (v,w) = ¢", we can use the induction hypothesis

once more to infer that there exist €', D' such that (C”, D") & (€', D') and
(v,w) € [C', D']. Moreover, by rule R5, (C, D) & (C', D").

“37 Assume (C, D) < (C',D') and (v,w) € [C’, D']. By induction on the
size of the derivation of (C, D) < (C', D'), we establish (v, w) € [C, D] and
(v,w) = g. There are five cases, depending on the last rule r used in the
derivation of (C, D) < (C', D").

(1) » = R1. Then C = C'", D = D" and C | C(D,g). Let g be of the
form z; — x; < e. Hence, (v,w) € [C,D] and v = C(D,g). By the
first statement (v,w) = x; — z; </] e, and by the second statement
v | ef (<)) = <) e. Combination of these two observations, using
parts (2) and (4) of Lemma 3.4 yields (v,w) = g.

(2) = R2. Then C = (", D' = D[g] and C = —=C(D, g). Hence, (v,w) g
and v = —C(D, g). Let g be of the form z;—z; < e. By Lemma 3.4(6), v =
e ~(<) = <) e/}. Using parts (2) and (4) of Lemma 3.4, combination
of these two observations yields (v,w) = x; — x; <] e]). Since trivially
(v, w) is a model for all the other guards in D, (v,w) € [C, D].

(3) r = R3. Then " = CU{C(D,g)} and D' = D. Let g be of the form
x; — x; < e. We have (v, w) € [C, D]. This implies (v,w) = z; — z; <[
ef])-. We also have v |= 65- (<£ — <) e. Combination of these two
observations, using parts (2) and (4) of Lemma 3.4 yields (v, w) = g.

(4) r = R4. Then C" = CU{=C(D, g)} and D' = D[g]. We have v |= =C(D, g)
and (v,w) = g¢. Let g be of the form z; — xz; < e. By Lemma 3.4(6),
v = e 2(<j; = <) ej;. Using parts (2) and (4) of Lemma 3.4 yields
(v,w) | z; — x; <] e;]. Since trivially (v, w) is a model for all other
guards in D, (v,w) € [C, D].

(5) r = R5. Then g is of the form ¢’ A ¢"” and there are C”, D" such that
(C, D) & (C",D") and (C",D") 4 (C',D"). By induction hypothe-
sis, (v,w) € [C",D"] and (v,w) = ¢". Again by induction hypothesis,
(v,w) € [C, D] and (v,w) = ¢'. It follows that (v,w) = g.

3.2.2 Canonicalization

Each DBM can be brought into canonical form using classical algorithms for
computing all-pairs shortest paths, for instance the Floyd-Warshall (FW) al-
gorithm [CLR91]. In the parametric case, we also apply this approach except
that now we run FW symbolically, see Figure 4. The algorithm repeatedly
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FLOYD-WARSHALL (Cy, Dy)
(C, D) = (Cg, Dg)
for k=0tom
do for i =0 tom
do for j =0tom
(C, D) := choose (C',D') such that

i—Tj <ik\<kj €ikTerj
(C’ D) T;—Tj k<:|kj €ikTEL;
(¢, D")
return (C, D)
Fig. 4. The Floyd-Warshall algorithm

compares the difference between two clocks to the difference obtained by tak-
ing an intermediate clock into account (cf. the inequality in Definition 3.3).
The symbolic FW algorithm contains a nondeterministic assignment, in which
(C, D) nondeterministically gets a value from a set. This set may be empty, in
which case the algorithm terminates unsuccessfully. We are interested in the
(possibly empty, finite) set of all possible constrained PDBMs that may result
when running the algorithm.

For the purpose of proving things we find it convenient to describe the com-
putation steps of the symbolic FW algorithm in SOS style. In the SOS de-
scription, we use configurations of the form (k,4,j,C, D), where (C,D) is a
constrained PDBM and k, 1, j € [0, m + 1] record the values of indices. In the
rules below, k, i, j range over [0, m].

zi—xj (<ikA<pkj) €ik+er;
|

(C, D) (C', D)
(k, i,j, C, D) —FW (k, Z,] + 1, Cl, D’)

(kai:m+1;C;D) —FW (k;2+1:0707D)
(k,m+1,0,C,D) —FW (k+1,0,0,C,D)

We write (C, D) —. (C',D') if there exists a sequence of —py steps lead-
ing from configuration (0,0,0,C, D) to configuration (m + 1,0,0,C", D). In
this case, we say that (C’, D') is an outcome of the symbolic Floyd-Warshall
algorithm on (C, D). It is easy to see that the set of all outcomes is fi-
nite and can be effectively computed. If the semantics of (C, D) is empty,
then the set of outcomes is also empty. We write (C,D) <& (C',D') iff

(C, D) < (C", D") =, (C', D", for some C", D",
The following lemma says that if we run the symbolic Floyd-Warshall algo-

rithm, the union of the semantics of the outcomes equals the semantics of the
original constrained PDBM.
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Lemma 3.8 [C, D] = U{[C", D] | (C,D) —. (C", D')}.

PrOOF: By an inductive argument, using Lemma 3.7 and the fact that, for
any valuation (v, w) in the semantics of (C, D),

(v,w)Ez; —x < ey and
(v,w)Exr —x; <k; ek, and therefore by Lemma 3.4(5)
(’U, w) ):xl —Z; =ik N <gj € + €y

O

Lemma 3.9 Fach outcome of the symbolic Floyd-Warshall algorithm is a
constrained PDBM in canonical form.

PRrROOF: As in [CLR91]. O

Remark 3.10 Non-parametric DBMs can be canonicalized in O(n?), where
n is the number of clocks. In the parametric case, however, each operation
of comparing the bound D(z,z') to the weight of another path from z to 2’
may give rise to two new PDBMs if this comparison leads to a split. Then
the two PDBMs must both be canonicalized to obtain all possible PDBMs
with tightest bounds. Still, that part of these two PDBMs which was already
canonical, does not need to be investigated again. So in the worst case, the
cost of the algorithm becomes (’)(2”3). In practice, it turns out that this is
hardly ever the case.

3.2.3 Resetting Clocks

A third operation on PDBMs that we need is resetting clocks. Since we do not
allow parameters in reset sets, the reset operation on PDBMs is essentially
the same as for DBMs, see [Yov98]. If D is a PDBM and r is a singleton reset
set {x; := b}, then D]r| is the PDBM obtained by (1) replacing each bound
D, for j # i, by (eg; + b, <o;); (2) replacing each bound D’ for j # i, by
(ejo — b, <jo). We generalize this definition to arbitrary reset sets by

Dl :==by,...,x;, :=bp|=Dlx; :=bi]...[x;, = byl.

h

It easily follows from the definitions that resets preserve canonicity. Note also
that the reset operation is well-defined on constrained PDBMs: if (C, D) is
a constrained PDBMs then (C, D[r]) is a constrained PDBMs as well: since
clocks can only be reset to natural numbers, lower bounds on clocks remain
nonnegative.

Lemma 3.11 If (C, D) is canonical then (C, D|r]) is canonical as well.
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The following lemma characterizes the reset operation semantically.

Lemma 3.12 Let (C, D) be a constrained PDBM in canonical form, v € [C],
and w a clock valuation. Then w € [D]r]], iff Fw'" € [D], : w = w'[r].

PrOOF: We only prove the lemma for singleton resets. Using Lemma 3.11,
the generalization to arbitrary resets is straightforward. Let r = {z; := b} and
D' = DIr].

“<” Suppose w' € [D], and w = w'[r]. In order to prove w € [D'],, we must
show that (v, w) = Dy, for all k and j. There are four cases:

(1) k # i # j. Then Dy, = Dy;. Since (v,w') = Di; and w and w' agree on
all clocks occurring in Dy, (v, w) = Dy

(2) k =1 = j. Then Dj; = Dy;. Since (v,w') = Dy, 0 <i ey [v]. Hence,
(v,0) = D,

(3) k#i=j. Then D}, = xp — 1; <o exo — . Using that (v,w') = Dy, we
derive w(zy) — w(z;) = w'(zr) — b <ko ero[v] — b. Hence, (v, w) = Dy;.

(4) k=1+# j. Then Dj; = x), — x; <o; €oj + b. Using that (v,w’) = Dy;, we
derive w(wy) — w(w;) = b — w'(z;) <o; eoj[v] +b. Hence, (v,w) = Dy,

“=" Suppose w € [D'],. We have to prove that there exists a clock valuation
w' € [D], such that w = w'[r]. Clearly we need to choose w' in such a way
that, for all j # 4, w'(z;) = w(x;). This means that, for any choice of w'(z;),
for all j # i # k, v,w' = Dj;. Using the same argument as in the proof of
Lemma 3.5, we can find a value for w'(x;) such that also the remaining simple
guards of D are satisfied. [

3.2.4 Time Successors

Finally, we need to transform PDBMs for the passage of time, notation D 1.
As in the DBMs case [Dil90], this is done by setting the upper bounds x; — x
to (o0, <), for each 7 # 0, and leaving all other bounds unchanged. We have
the following lemma.

Lemma 3.13 Suppose (C, D) is a constrained PDBM in canonical form, v €
[C], and w a clock valuation. Then w € [D1], iff 3d > 0 Jw' € [D], :
w +d=w.

PROOF: “«<” Suppose d > 0, w' € [D], and w' + d = w. We claim that
w € [D1],. For this we must show that for each guard f of D1, (v, w) = f.
Let f be of the form z; — z; < e. We distinguish between three cases:

e i # 0Aj = 0. In this case, by definition of D1, f is of the form z; —xy < oo,
and so (v,w) = f trivially holds.
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i = 0. In this case f is also a constraint of D. Since w’ € [D], we have
(v,w") = f, and thus —w'(z;) < e[v]. But since d > 0, this means that
—w(xj) = —w'(x;) — d < e[v] and therefore (v,w) = f.

e i Z0Aj #0. In this case f is again a constraint of D. Since w' € [D], we
have (v,w') = f, and therefore w'(x;) — w'(z;) < e[v]. But this means that
w'(x;) —w'(z;) = (w(zr;) —d) — (w(z;) — d) < e[v] and therefore (v, w) = f.

“=" Suppose w € [D1],. If m = 0 (i.e., there are no clocks) then D t= D
and the rhs of the implication trivially holds (take w' = w and d = 0). So
assume m > 0. For all indices 4, j with i # 0 and j # 0, (v,w) = D;;. Hence,
w(z;) —w(x;) <ij e;;[v]. Thus, for any real number ¢, w(x;) —t— (w(z;) —1t) <ij
e;j[v]. But this means (v, w—t) = D;;. It remains to be shown that there exists
a value d such that in valuation (v, w — d) also the remaining guards Dy; and

DiO hold. Let

to =max(0, w(z1) — erp[v], ..., w(zy) — enolv])
t =min(w(xy) + en[v],. .., w(z,) + eon[v])
d=(to+t1)/2

w=w-—d

Intuitively, t, gives the least amount of time one has to go backwards in time
from w to meet all upper bounds of D (modulo strictness), whereas t; gives
the largest amount of time one can go backwards in time from w without
violating any of the lower bounds of D (again modulo strictness). Value d sits
right in the middle of these two. We claim that d and w’ satisfy the required
properties. For any i, since (v, w) = Dy, trivially

0 <o; w(z;) + epi]v] (5)
Using that D is canonical we have, for any i, 7,

eji['U] (<ji — <j0 N <Ui) €jU[U} + €0Z‘[U}

and, since v, w = Dj;,
w(z;) — wlw;) <ji €jiv].

Using these two observations we infer
w(z;) — ejolv] (=i = <jo A <) w(z;) — eji[v] + eqiv] <ji w(z;) + egifv].

Hence,

w(xj) — ejo[’l)] <o N <oi U)(.TZ) + €0Z‘[U} (6)
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By inequalities (5) and (6), each subterm of max in the definition of ty is
dominated by each subterm of min in the definition of #;. This implies 0 <
to < .

Now either ty < t; or ty = ¢1. In the first case it easy to prove that in valuation
(v, w) the guards Dy; and D, hold, for any i:

w'(r;) = wlz;) —d < w(w) —to < w(w) — (w(rg) — ejolv]) = eilv]
and thus w'(z;) < exo[o] and v, w' = Dy, Also
—w'(z;) = —w(x;) +d < —w(z;) +t; < —w(x;) + (w(z;) + egiv]) = ewi[v]
and s0 —w'(2;) < eoi[v] and v, w' = Dy.
In the second case, fix an i. If w(z;) — ejo[v] < fo then
w'(zi) = w(w;) —d=w(x;) —to < w(z;) — (w(z:) — eiofv]) = einlv]

and thus w'(z;) < epfv] and v,w' | D;. Otherwise, if w(z;) — e;ov] = g
observe that by tq = #;, inequality (6) and the fact that, ¢, = w(z;) + eg;[v],
for some j, <;0=<. Since

w'(x;) = w(z;) —d < wlx;) —tg < wlx;) — (w(x;) — eplv]) < ejplv]
and thus w'(z;) < e;o[v] this implies v, w' = D;.

to = t; proceeds similarly. []
3.3  Symbolic Semantics

Having defined the four operations on PDBMs, we are now in a position to
describe the semantics of a parametric timed automaton symbolically.

Definition 3.14 (Symbolic semantics) Let A = (Q, gy, —, ) be a PTA.
The symbolic semantics of A is an LTS: the states are triples (¢, C, D) with
q a location from @ and (C, D) a constrained PDBM in canonical form such
that [C, D] C [I(q)]; the set of initial states is

I(q0)

{(qU: O; D) | (007 ET)

where Cy = {p > 0 | p € P}, E is the PDBM with E¥ = (0, <), for all 7, j; the
transitions are defined by the following rule:

(€, D)},

05 g (C,D) <L (", D), (", D'r1) Y, (D)
(q7 C’ D) % (qIJ Cl? D’)
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Observe that if (¢,C, D) is a state in the symbolic semantics and (v, w) €
[C, D], then (g, w) is a state of the concrete semantics [A],. It is also easy to
see that the symbolic semantics of a PTA is a finitely branching LTS. It may
have infinitely many reachable states though.

In order to establish that each run in the symbolic semantics can be simulated
by a run in the concrete semantics, we require two lemmas.

Lemma 3.15 Suppose that (q,C, D) is an initial state of the symbolic seman-
tics of A with (v, w) € [C, D]. Then the concrete semantics [A], has an initial
state (qo, wo) from which state (q,w) can be reached.

PROOF: Using the fact that (v,w) € [C, D], the definition of initial states,
Lemma 3.8 and Lemma 3.7, we know that ¢ = qo, (v, w) = I(q) and (v, w) €
[Co,E1]. By Lemma 3.13, we get that there exists a d > 0 and wy € [E], such
that wy+d = w. Since (v, w) = I(go) and invariants in a PTA only give upper
bounds on clocks, also (v, wq) | I(qo). It follows that (go, wp) is a state of the

concrete semantics [LA], and (go, wo) —= (g, w). Since wy € [E],, wo is of the
form Az.0. Hence, (g, wy) is an initial state of the concrete semantics. [J

Lemma 3.16 Suppose that (¢',C', D") — (q,C, D) is a transition in the sym-
bolic semantics of A and (v,w) € [C,D]. Then there exists a pair (v,w') €
[C, D] such that in the concrete semantics [A], there is a path from (¢',w'")
to (g, w).

PROOF: By the definition of transitions in the symbolic semantics, Lemma 3.8
and Lemma 3.7, we know that there is a transition ¢’ 223 ¢ in A, and there
are C", D" such that (v,w) = I(q), (v,w) € [C",D"[r]1] and (C'",D') <,
(C",D"). By Lemma 3.13, we get that there exists a d > 0 and w"” € [D"[r]],
such that w"” + d = w. Since (v, w) | I(q) and invariants in a PTA only give

upper bounds on clocks, also (v, w") = I(q). It follows that (¢, w") is a state

of the concrete semantics [A], and (¢, w") —% (¢, w). Using Lemma 3.12 we
get that there exists a w' € [D"], such that w” = w'[r]. Using Lemma 3.8
and Lemma 3.7 again, it follows that (v, w') = g and (v,w') € [C’, D']. Since
(¢',C", D') is a state of the symbolic semantics, (v, w') = I(¢'). Hence, (¢, w')
is a state of the concrete semantics and (¢, w') - (g, w") is a transition
in the concrete semantics. Combination of this transition with the transition
(g, w") SN (¢, w) gives the required path in the concrete semantics. [J

Proposition 3.17 For each parameter valuation v and clock valuation w, if
there is a run in the symbolic semantics of A reaching state (q,C, D), with
(v,w) € [C, D], then this run can be simulated by a run in the concrete se-
mantics [A], reaching state (q,w).

PROOF: By induction on the number of transitions in the run.
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As basis we consider a run with 0 transitions, i.e., a run that consists of an
initial state of the symbolic semantics. So this means that (¢, C, D) is an initial
state. The induction basis now directly follows using Lemma 3.15.

For the induction step, assume that we have a run in the symbolic semantics,
ending with a transition (¢',C',D') — (¢,C,D). By (v,w) € [C,D] and
Lemma 3.16, there exists a pair (v,w') € [C, D] such that in the concrete
semantics [A], there is a path from (¢’, w') to (¢, w). By induction hypothesis,
there is a path in the concrete semantics leading up to state (¢, w'). Extension
of this path with the path from (¢’,w') to (¢, w) gives the required path in the
concrete semantics. []

Conversely, for each path in the concrete semantics, we can find a path in the
symbolic semantics such that the final state of the first path is semantically
contained in the final state of the second path.

Proposition 3.18 For each parameter valuation v and clock valuation w, if
there is a run in the concrete semantics [A], reaching a state (q,w), then
this run can be simulated by a run in the symbolic semantics reaching a state

(¢,C, D) such that (v,w) € [C, D].

PROOF: In any execution in the concrete semantics, we can always insert
zero-delay transitions at any point. Also, two consecutive delay transitions
(q,w) SN (¢, w+d) and (g, w+d) N (¢, w+d+d') can always be combined
into a single delay transition (¢, w) dtd (¢, w+d+d'). Therefore, without loss
of generality, we only consider concrete executions that start with a delay tran-
sition, and in which there is a strict alternation of action transitions and delay
transitions. The proof is by induction on the number of action transitions.

As basis we consider a run consisting of a single time-passage transition:

(g0, wo) SN (go, wo+d), where wg = Az.0. By definition of the concrete seman-
tics, (v, wo+d) E I(qo). Using Lemma 3.13, we have that (v, wo+d) € [Cy, E1]
since (v, wp) € [Cy, E]. From (v, wy + d) € [Cy,ET] and (v, wo + d) = I(qo),
using Lemma 3.7 and Lemma 3.8 we get that there exists C, D such that

(Co, ET) I(qo)c (C, D) and (v, wy+d) € [C, D]. By definition, (C, D) is an ini-
tial state of the symbolic semantics. This completes the proof of the induction
basis.

For the induction step, assume that the run in the concrete semantics of [A],
a

ends with transitions (¢, w") — (¢, w’) LN (¢, w). By induction hypothesis,
there exists a run in the symbolic semantics ending with a state (¢”,C", D")
such that (v, w") € [C", D"].

By definition of the concrete semantics, there is a transition ¢” £%% ¢’ in A
such that (v,w") = ¢ and w' = w"[r]. Moreover, we have ¢' = ¢, w = w' +d
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and (v, w) = I(g). Using Lemma 3.7 and Lemma 3.8 gives that there exists
C', D' such that (C", D") <, (C’, D') and (v,w") € [C', D']. By Lemma 3.12,
w' € [D'[r]],. Moreover, by Lemma 3.13, w € [D'[r]1],. Using (v,w) =
I(q), Lemma 3.7 and Lemma 3.8, we infer that there exists C, D such that
(v,w) € [C,D] and (C', D'[r] 1) g)c (C, D). Finally, using the definition of
the symbolic semantics, we infer the existence of a transition (¢”,C"”, D") —
(q,C, D).

O

Example 3.19 Figure 3.19 shows the symbolic state-space of the automaton
in Fig. 1 represented by constrained PDBMs. In the initial state the invariant
x < p limits the value of z, and since both clocks have the same value also
the value of y. When taking the transition from S0 to S1 we have to compare
the parameters p and ¢. This leads to a split where in the one case no state
is reachable since the region is empty, and in the other (when ¢ < p) S1 can
be reached. From then on, no more splits occur and only one new state is

reachable.
K ,{a <p})
f
,{a <p})
D

(S0, . 0)

Y
q
(51,
Y
(50, 0, {q > p})
q
(S0,
Fig. 5. The symbolic state space of the PTA in Fig. 1.

3.4 FEvaluating State Formulas

We now define the predicate <:¢| which relates a symbolic state and a state
formula ¢ (as defined in Definition 2.7) to a collection of symbolic states that
satisty ¢.

In order to check whether a state formula holds, we break it down into its
atomic subformulas, namely checking locations and clock guards. Checking

23



that a clock guard holds relies on the definition given earlier, of adding that
clock guard to the constrained PDBM. We rely on a special normal form of
the state formula, in which all = signs have been pushed down to the basic
formulas.

Definition 3.20 State formula ¢ is in normal form if all — signs in ¢ appear
only in subformulae of the form —gq.

Since each simple guard with a — sign in front can be rewritten to equivalent
simple guard without, for each state formula there is an equivalent one in
normal form.

In the following, let f be a simple guard, and ¢ be in normal form.

@) : S
(QJ 07 D)<:| (q7 C’ D) (q7 C’ D) <:| (q7 C’ D)

(€, D)<, (c, D)
(¢.C. D) <i(¢,C", D)

(¢,0,D) & (q.C". D), (¢,C", D) & (¢,C", D)

(Qs)

(@4) e
(4,C, D) “&” (g,C", D")
(@) (¢,C,D) & (¢,C", D) (@) (¢,C,D) & (¢,C", D")
5 P1V2 PR 6 1V !
(¢,C,D) & (q,C", D) (¢.C,D) &= (¢.C", D)

The following lemma gives the soundness and completeness of relation <g|

Lemma 3.21 Let ¢ be a state formula in normal form, q a location and
(C, D) a constrained PDBMs. Let [q, ¢] denote the set {(v,w) | (¢, w) =, ¢}.
Then

[C, D] N [0,6]=J{IC", D] | (4, C, D)< (g,C", D')}.

PROOF: “C”: Assume that (v, w) € [C, D] and (¢, w) =, ¢. We prove that

there are C', D' such that (v,w) € [C', D] and (¢,C, D) & (q,C",D"). We
proceed by induction on the structure of ¢.

e Base cases.
- Suppose ¢ = ¢'. As (¢q,w) E, ¢, clearly, ¢ = ¢'. Since, by rule @,
(¢,C, D) & (q,C, D), we can take C' = C" and D = D' and the result
follows.
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- Suppose ¢ = —¢'. Similar to the previous case, apply rule Q».

- Suppose ¢ = f with f a simple guard. Then (v,w) € [C, D] and (v, w) =
f. By Lemma 3.7 there exist C”, D" such that (C, D) 4 (C",D") and
(v,w) € [C", D"]. Lemma 3.8 yields the existence of C', D' with (C", D") —.
(C', D") and (v, w) € [C', D']. By application of rule Q3 we have (¢, C, D) e
(q,C", D").

e Induction step.

- Suppose ¢ = ¢1A¢y. Then (¢, w) |, ¢1 and (¢, w) =, ¢o. By applying the
induction hypothesis on ¢;, we derive that there exist C", D" such that
(¢q,C, D) éll (q,C",D") and (v,w) € [C",D"]. Applying the induction

hypothesis on ¢, yields the existence of C’, D' such that (¢, C", D") <¢£|2
(q,C",D") and (v,w) € [C'",D']. Then by application of rule Q4 also
(0.C, D) "E” (g.C", D),

- Suppose ¢ = ¢1 V ¢o. Then (¢, w) =, ¢1 or (¢, w) =, ¢2. Suppose that
(¢, w) =y ¢1. The induction hypothesis yields the existence of C’, D' such

that (¢, C, D) éll (¢q,C",D") and (v,w) € [C', D']. Then, by application of
rule Qs, (¢, C, D) P (q,C", D"). The case (q, w) = ¢ is similar (using

rule Qg).

“D”: Assume (¢, C, D) & (¢.C",D') and (v, w) € [C', D']. By induction on

the structure of the derivation of <:¢|, we establish that (v, w) € [C, D] and
(Qa w) =y 0.

e Base cases. The derivation consists of a single step r.

- r = Q1. Then ¢ = ¢, C = C', D = D'. Trivially (v,w) € [C, D] and
(¢, w) = q.

- r = (9. Similar to the previous case.

- r = Q3. Suppose ¢ = f with f a simple guard. Then (C, D)élc(C”,D’).
This means that there exist C”, D" such that (C, D)<£|(C’”,D”) and
(C", D")—=.(C",D"). By Lemma 3.8 we have (v,w) € [C", D"]. Then we
have by Lemma 3.7 that (v, w) = f and (v,w) € [C, D].

e Induction step. Consider the last rule r used in the derivation of (¢, C, D) <i|

(q,C", D").

. 1= Q4. Then ¢ = ¢y A ¢ and (¢, C, D) & (¢,C", D") and (q,C", D") &
(q,C", D") for some C”,D". Applying the induction hypothesis to the
derivation of éll yields (¢, w) =, ¢ and (v, w) € [C", D"]. Then applying

the induction hypothesis to the derivation of <¢£|2 yields (¢, w) =, ¢1 and
(v,w) € [C, D]. Then also (q,w) =, ¢1 A ¢s.

.7 = Qs. Then ¢ = ¢1 V ¢, Then (¢,C, D) & (¢,C", D'). By induction

hypothesis we have (¢, w) =, ¢; and (v, w) € [C, D].
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- r = (g. Similar to the previous case.

3.5 Algorithm

We are now in a position to present our model checking algorithm for para-
metric timed automata. The algorithm displayed in Fig. 6 describes how our
tool explores the symbolic state space and searches for constraints on the
parameters for which a reachability property 3¢ holds in a PTA A.

REACHABLE (A, ¢)

T
RESULT := (),PASSED := (), WAITING := {(qo, C, D) | (Co,E?1) g?)c (C,D)}

while WAITING # () do
select (q,C, D) from WAITING
RESULT i= REsurT U {(¢,C", D) | (¢, C, D)< (¢, C", D)}
FALsE := {(¢,C", D) | (¢,C.D) < (¢',C", D)}
for each (¢',C’, D') in FALSE do
if for all (¢",C", D") in PAsSED: (¢',C',D") € (¢",C",D") then
add (¢',C’, D') to PASSED
for each (¢",C",D") such that (¢',C',D") — (¢".C",D") do
WAITING := WAITING U {(¢",C",D")}
return RESULT

Fig. 6. The parametric model checking algorithm

In the algorithm, we use inclusion between symbolic states defined by

(¢,C,D) C (¢,C",D"Y2q=¢ A[C,D] C [C,D].

Note that whenever a triple (¢, C, D) ends up in one of the lists maintained
by the algorithm, (C, D) is a constrained PDBM in canonical form. This fact,
in combination with Lemma 3.6, gives decidability of the inclusion opera-
tion. Our search algorithm explores the symbolic semantics in an “intelligent”
manner, and stops whenever it reaches a state whose semantics is contained
in the semantics of a state that has been encountered before. Despite this, our
algorithm need not terminate.

If it terminates, the result returned by the algorithm is a set of satisfiable
symbolic states, all of which satisfy ¢, for any valuation of the parameters and
clocks in the state.

Theorem 3.22 Suppose (q,C, D) is in the result set returned by REACHABLE
(A, ¢). Then (C, D) is satisfiable. Moreover, for all (v,w) € [C, D], (q,w) is
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a reachable state of [A], and (¢, w) =, ¢.

PROOF: It is easy to see that all the symbolic states returned by the algorithm
are satisfiable: the only operation that may modify the constraint set is adding
a guard, but this will never lead to unsatisfiable constraint sets. Since all
constrained PDBMs returned by the algorithm are in canonical form, they are
all satisfiable by Lemma 3.5.

Suppose that (v, w) € [C, D]. By a straightforward inductive argument, using
Lemmas 3.15, 3.16 and 3.21, it follows that (¢, w) is a reachable state of [A],

and (¢, w) |, ¢. O

For invariance properties VO¢, our tool runs the algorithm on —¢, and the
result is then a set of symbolic states, none of which satisfies ¢. The answer
to the model checking problem, stated in Section 2.2, is obtained by taking
the union of the constraint sets from all symbolic states in the result of the
algorithm; in the case of an invariance property we take the complement of
this set.

A difference between the above algorithm and the standard timed model check-
ing algorithm is that we continue the exploration until either no more new
states are found or all paths end in a state satisfying the property. This is
because we want to find all the possible constraints on the parameters for
which the property holds. Also, the operations on non-parametric DBMs only
change the DBM they are applied to, whereas in our case, we may end up
with a set of new PDBMs and not just one.

Some standard operations on symbolic states that help in exploring as little
as possible, have also been implemented in our tool for parametric symbolic
states. Before starting the state space exploration, our implementation de-
termines the mazimal constant for each clock. This is the maximal value to
which the clock is compared in any guard or invariant in the PTA. When
the clock value grows beyond this value, we can ignore its real value. This
enables us to identify many more symbolic states, and helps termination. In
fact, for unparameterized timed automata this trick guarantees termination

[AD94, Alu9g].

4 Lower Bound / Upper Bound Automata

This section introduces the class of lower bound/upper bound (L/U) automata
and describes several (rather intuitive) observations that simplify the para-
metric model checking problem for PTAs in this class. Our results use the
possibility to eliminate parameters in certain cases. This is a relevant issue,
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because the complexity of parametric model checking grows very fast in the
number of parameters. Moreover, our observations yield some decidability re-
sults for /U automata, where the corresponding problems are undecidable for
general PTAs. The applicability of the results is illustrated by the verification
of Fischer’s algorithm.

4.1 Lower bound/Upper bound Automata

Informally, each parameter in an L/U automaton A occurs either as a lower
bound in the invariants and guards of A or as an upper bound, but never as
both. For instance, p is an upper bound parameter in x —y < 2p. Lower bound
parameters are for instance g and ¢ iny — 2> q¢+2¢ (=2 —y < —q—2¢)
and in z —y < 2p — q¢— 2¢'. A PTA containing both the guards x —y < p —¢
and z < ¢ — p is not an L,/U automaton.

Definition 4.1 A parameter p; € P is said to occur in the linear expression
e =ty +1t-pr+ - -ty-pn if t; # 0; p; occurs positively in e if t; > 0 and p;
occurs negatively in e if t; < 0. A lower bound parameter of a PTA A is a
parameter that only occurs negatively in the expressions of A and an upper
bound parameter of A is a parameter that only occurs positively in A. We call
A a lower bound/upper bound (L/U) automaton if every parameter occurring
in A is either a lower bound parameter or an upper bound parameter.

From now on, we work with a fixed set L = {ly,...lx} of lower bound pa-
rameters and a fixed set U = {uy,...up} of upper bound parameters with
LNU=0and L UU = P. Furthermore, we consider, apart from parameter
valuations, also extended parameter valuations. Intuitively, an extended pa-
rameter valuation is a parameter valuation with values in RZ% U {oc0}, rather
than in RZ%. Extended parameter valuations are useful in certain cases to solve
the verification problem (over non-extended valuations) stated in Section 2.3.
Working with extended parameter valuations may cause the evaluation of an
expression to be undefined. For example, the expression e[v] is not defined
for e = p — ¢ and v(p) = v(q) = oo. We therefore require that an extended
parameter valuation does not assign the value oo to both a lower bound pa-
rameter and an upper bound parameter. Then we can easily extend notions
e[v], (v,w) = e and A[v] (defined in Section 2) to extended valuations. Here,
we use the conventions that 0-oc = 0, that x — y < oo evaluates to true and
r—y < —oo to false. In particular, we have [A], = [A[v]] for extended valua-
tions v and L/U automata 4. Moreover, we extend the orders ~ to R U {o0}
in the usual way and we extend them to extended parameter valuations via
point wise extension (i.e. v ~ v iff v(p) ~ v'(p) for all p € P). We denote an
extended valuation of an L/U automaton by a pair (A, u), which equals the
function A on the lower bound parameters and p on the upper bound param-
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eters. We write 0 and oo for the functions assigning respectively 0 and oo to
each parameter.

The following proposition is based on the fact that weakening the guards in
A (i.e. decreasing the lower bounds and increasing the upper bounds) yields
an LTS whose reachable states include those of A. Dually, strengthening the
guards in A (i.e. increasing the lower bounds and decreasing the upper bounds)
yields an LTS whose reachable states are a subset of those of A. The result
crucially depends on the fact that state formulae (by definition) do not contain
parameters. The usefulness of this property (and of several other properties
in this section) lies in the fact that the satisfaction of a property for infinitely
many extended parameter valuations (X, p') is reduced to its satisfaction for
a single valuation (\, p).

Proposition 4.2 Let A be an L/U automaton and ¢ a state formula. Then

(1) [[A]]()HM) ‘: 3<>d) < V)\I S )\,/l/ S /,L’ . [[A]](A’,/L’) ‘: 3<>¢
(2) [[A]](/\’”) ‘: VD¢ < V)\ S )\’,/L’ S Mo [[A]]()\/’#/) ): VD¢

PROOF: (sketch) The “=" parts of both statements are trivial. The crucial
observation for both “==" parts is the following. For all linear expressions e
in A4 and all extended parameter valuations (A, ), (N, g') with A < X and
p < g, we have that e[\, u] < e[N, u']. Therefore, if (A, p),w) =z —y < e,
then (N, p),w) Fx—y<e O

The following example illustrates how Proposition 4.2 can be used to eliminate
parameters in L/U automata.

Example 4.3 The PTA in Fig. 7 is clearly an L/U automaton: min is a
lower bound and maz is an upper bound parameter. Location S; is reachable
irrespective of the parameter values. By setting the parameter min to oo and
maz to 0, one checks with a non-parametric model checker that A[(oo,0)] =
3¢S, Then Proposition 4.2(1) (together with [A], = [A[v]]) yields that S;
is reachable in [[A]](/\’”) for all extended parameter valuations 0 < A\, u < oc.

Clearly, [A],,, F 3OS iff A(min) < p(maz) A A(min) < oo. We will
see in this running example how we can verify this property completely by
non-parametric model checking. Henceforth, we construct the automaton A’
from A by substituting the parameter maz by the parameter min yield-
ing an (non L/U) automaton with one parameter, min. The next example
shows that [A'], = 3OS, for all valuations v, which essentially means that
[Alx,) B 3OS, for all A, u such that p(maz) = A(min) < oc. From this
fact, Proposition 4.2(1) concludes that [A], , [ 3OS, for all A, pu with
A(min) < p(maz) and A(min) < oo.
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Fig. 7. Reducing parametric to non-parametric model checking

The question whether there exists a (non-extended) parameter valuation such
that a given location ¢ is reachable, is known as the emptiness problem for
PTAs. In [AHV93], it is shown that the emptiness problem is undecidable for
PTAs with three clocks or more. The following proposition implies that we
can solve the emptiness problem for an L/U automaton A by only consid-
ering the timed automaton .A[(0, c0)]. Since reachability for timed automata
is decidable ([AD94]), the emptiness problem is decidable for L/U automata.
Then it follows that the dual problem is also decidable for L /U automata.
This is the universality problem for invariance properties, asking whether an
invariance property holds for all parameter valuations.

Proposition 4.4 Let A be an L/U automaton with location q. Then A[(0, 00)] =
30q if and only if there exists a (non-extended) parameter valuation (N, )
such that [A], ,, F 30q.

PROOF: The “only if” part is an immediate consequence of Proposition 4.2(1)
and the fact that [A[(0,00)]] = [A]g ). For the “if” part, assume that o
is a run of [A[(0,00)]] that reaches the location g. Let T’ be the smallest
constant occurring in A and let T be the maximum clock value occurring
in a. (More precisely, if @ = spa1s1a2...axsy and s; = (¢;, w;), then T =
max;<nqex wi(x); T' compensates for negative constants ¢, in expressions e of
A.) Now, take A(l;) =0 and p(u;) =T+ |T"|+ 1. Leti < Nandg=xz—y <
e be the invariant associated with a state s; occurring in « or the guard
associated with the *" transition taken by a. One easily shows that, since
w;(z) — wi(y) < €[]0, 00], also w;(x) — w;(y) < e[\, p], that is (A, p), w;) = g.
Hence, a is a run of [A], ,, so [A4], , =3Cq. O

Corollary 4.5 The emptiness problem is decidable for L/U automata.

Definition 4.6 A PTA A is fully parametric if clocks are only reset to 0 and
every linear expression in A of the form ¢, -p; + - -+ t, - p,, where t; € Z.

The following proposition is basically the observation in [AD94], that multi-
plication of each constant in a timed automaton and in a system property
with the same positive factor preserves satisfaction.
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Proposition 4.7 Let A be fully parametric PTA. Then for all parameter val-
uations v and all system properties 1

[Al, £ 6 <= Vi€ R [A],, E -0,

where t-v denotes the valuation p — t-v(p) and t-1 the formula obtained
from 1 by multiplying each number in 1) by t.

PROOF: It is easy to see that for all t € R?, o = sga151a9...aysy with
s; = (¢i,w;) is a run of [A], if and only if sja;s) ... ansy is a run of [A]
where s; = (g;,t-w;) and t - w; denotes x +— ¢ - w;(x). O

t-v)

Then for fully parametric PTAs with one parameter and system properties v
without constants (except for 0), we have [A], = ¢ for all valuations v of P
if and only if both A[0] = ¢ and A[1] = ¢. The need for a separate treatment
of the value 0 is illustrated by the (fully parametric) automaton with a single
transition equipped with the guard z < p. The target location of the transition
is reachable for any value of p, except for p = 0.

Corollary 4.8 For a fully parametric PTA A with one parameter, a con-
straint set C and a property 1 without constants (except 0), it is decidable
whether Yv € [C] : [A], E .

Example 4.9 The PTA A’ mentioned in Example 4.3 is a fully parametric
timed automaton and the property 3<¢S5 is without constants. We establish
that A'[0] = 3¢S, and A'[1] = 3OSy, Then Proposition 4.7 implies that
A'[v] = 3OS, for all v. As shown in Example 4.3, this implies that [A], , F
3OS, for all A, g with A(min) = p(maz) < oo.

In the running example, we would like to use the same methods as above to
verify that [A], , ¥ 3OS, if A(min) > p(maz). However, we can not take
min = maz in this case, since the bound in the constraint is a strict one. The
following definition and results allows us to move the strictness of a constraint
into the PTA.

Definition 4.10 Let P’ C P be a set of parameters. Define A5, as the PTA
obtained from A by replacing every inequality z — y < e in A by a strict
inequality x —y < e, provided that e contains at least one parameter from P’.
Similarly, define AISD, as the PTA obtained from A by replacing every inequality
x —y < e by a non-strict inequality z — y < e, provided that e contains at
least one parameter from P’. For < = <, <, write A~ for A7. Moreover, define
v <p v by v(p) < v'(p) if p € P" and v(p) = v'(p) otherwise.

Proposition 4.11 Let A be an L/U automaton. Then for all extended valu-
ations (A, ) of A

31



(1) [A%] ) B 300 = YN <A p <y [A] 0 =300
(2) [A<]p, EVOY <= YA <N, 1 < p:[A]y . E YO,

PROOF:

1 Let (A, p) be an extended valuation and assume that [A%], , &= 3O¢. Let
e be a linear expression occurring in A. Then we can write e = ty + e; + e,
where g € Z, e; is an expression over the upper bound parameters and e
an expression over the lower bound parameters. Then we have

p<p = el <eld],
by <\ = 62[)\’] < 62[)\],
N<hp<p = el(\p)] < e[(N, 1)

If there is at least one parameter occurring respectively in e; or ey then
respectively

p<p = ey <eily]
N <A = e\ < e N].

Thus, if there is at least one parameter occurring in e, then
N<hp<p = e[(\p)] <el(N, )]

Now, let ¢ = x — y < e be a simple guard occurring in AS and let ¢’ =
x —y <’ e be the corresponding guard in A. Assume that (w, (\, 1)) = g,
Le. w(x) —w(y) < e[(A, u)]. We show that (w, (A, ) = ¢'. We distinguish
two cases.
case 1: There exists a parameter occurring in e. Then w(z) — w(y) <
e[(A, )] < e[(N, u)]. Then certainly ((\, p),w) =g =z —y <"e.
case 2: The expression e does not contain any parameter. Then ¢ = ¢
and hence ((\, p), w) =g’

It easily follows that every run of [A<], , is also a run of [A],, . Thus,

A
if a state satisfying ¢ is reachable in [[AS]](/\M then it is also reachable in

[l

2, = This follows from statement (1) of this proposition: assume that
[A<](y,) = VO¢ and let X', i/ be such that A < X', p < p. Since [A<],  #
3O-¢, we have

—|\V/)\” < )\I, /LI < /,L” . [[A<]](/\u’“u) ): 3<>_‘¢

Then contraposition of statement (1) together with (A<)S = AS yields
[A=](y ) ¥ FO—¢. As Aimposes stronger bounds than A=, also [A] . ¥
30=¢, Le. [A] ) FE VO

2, <: Let ()\,/LS be an extended valuation. Assume that [A] . .\ F YO
for all \" > A, 4 < p and that o = spais1as...axsy is a run of [[)A<]](/\,“).
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We have to show that sy = ¢. Below, we construct A > A and u' < p such
that o is also a run of [A] ,, ). Then we are done: since [A],, ) = VOo,
SN ): ¢

We use the following notation. For the run a = sga;s1as . ..aysy of A<,
we write s, = (qg, wi), I(qr) = N_oLir, Lix = x; <i Ej, where J is the
number of clocks in A. As a is a run, we have that for all k, 0 < k < N, either
ars1 € R20 or there exists a transition g, 222 00 in A<, We write
the guard on this transition as gy = A, j<s9ijk With g1 = x; — 25 <4k €iji-
If ay € R2°, then we put <;;,=< and e, = oo for all i, j < J.

If for all 7, j, k neither the guard g;;; nor the invariant I;; contains a
parameter, then we can take A and p' arbitrarily and we have that « is a
run of [[A]](/\,’#,). Therefore, assume that at least one of the guards g;;; or
invariants [;;, contains a parameter. Then, by definition of A<, this guard
or invariant contains a strict bound. In this case, we construct A > A and
p' < p such that wi(z —y) < e[(N,u')] < e[(A, p)] for all & < N and all
expressions e occurring in the invariants I;; or guard g;;;. Informally, we
use the minimum “distance” e[(A, u)] — wg(x — y) occurring in « to slightly
increase the lower bounds and slightly decrease the upper bounds yielding
A< XNand p< .

Formally, let

Ty Zkgrglvi’lng{Eik[(A,u)] —wi(zi) | <a=<},

Ti=, min_ e[V p)] = (wie:) —wi(z5)) | <ip=<},

0 < T < min {Tg,Tl},

with the convention that min@ = oo. At least one of the inequalities <;;x
or < is strict, since at least one of the guards or invariants contains a
parameter. Hence, either T, < oo or T} < oo. Since ((A, p), wi) = Lix A giji,
we have that Ty > 0 and 7} > 0. Hence, 0 < min {7y, 7} < oc and the
requested T exists. The crucial property is that if g;;z = x; — 2; < e
contains a parameter, then

wi (7)) — wi(25) < e[\, p)] =T (7)

and, similarly, if Iz = x; < Ej contains a parameter, then wg(z;) <
Eu[(A,w)] =T

Now, we can distribute the value 7" over all parameters to obtain larger
values for the lower bounds and smaller ones for the upper bounds. Let T’
be the sum of the constants that appear in front of a parameter in one of
the guards g;;, or the invariants I, i.e.

T'= Y sumofconst(Ey)+ Y  sum_of_const(e),
k<N,i<J K<Nii<)

where sum_of_const(tg + t;-p; + -+ + tn-pn) = |t1| + -+ + [ta]. Since at
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least one of the guards or invariants contains a parameter, we have 7" > 0.
Now, take \' = A+ % and ' = p— % Let i,7 < J,k < N and consider
the guard gijx = x; — @ <f}-k eijr in A, which corresponds to the guard
Gijk = T; — xj <ijk ey in AS. We prove below that ((X, '), wx) = Gijk-
In a similar way, one can show that ((\,u'),wr) = I for the invariant
corresponding to f;;. Then, o is a run of [A],, ) and we are done.
case 1: The expression g;;; does not contain any parameter. Since ((A, ), w) =
Gijk> ((Xa M,): wk) ): Gijk-
case 2: There exists a parameter occurring in g;;;. Then g, = z; — x; <
e;jr and we can write e;j, = to+t - uy+- - Fty - uy —t L —- =t -k,
with ¢; > 0, t. > 0 for ¢ > 0. Then

M K
eik[(Ns 1)) = (to + 3 th-un = Dt - )[(A+ o, = 70)]
h=1 h=1
M K
=to+ Y th-(n— )= St (A + L)
h=1 h=1

M K M K
:tg—i—Zth-uh— Zt;l')‘h_%'(zth+zt;z)
h=1 h=1 h=1 h=1
> eijp[(A )] = 77 - T (by 7)
> wy(z;) — wi(x).
Thus, (N, 1), wx) E 2; — x; < e and then also (N, p'), wy) = z; —
A
Zj <Z~jk €5k -
0J

The previous result concerns the automaton that is obtained when all the
strict inequalities in guards and invariants with parameters are changed into
nonstrict ones (or the other way around). Sometimes, we want to “toggle”
only some of the inequalities. Then the following result can be applied.

Corollary 4.12 Let A be an L/U automaton and P' C P.

(1) [[Alg'"]]()\,u) ): 3<>¢ — V)\, <Pl )\,M <Pl /L, . [[A]]()\/’#/) ‘: 3<>¢
(2) [[Af)/]](/\’“) ): VD¢ < V)\ <Pl )\I,ILL, <Pl ,LL: [[A]]()\/’#/) ): VD¢

PROOF: Let (A, i) be an extended valuation. Let Ay be the automaton ob-
tained from A by substituting p by (A, u)(p) for every p ¢ P'. Then [A3/], ) =

[A5] 5, and [ ]SD,]](/\,“) = [[AOS]](,\’#)- Now the result follows by applying Propo-
sition 4.11 to A,. O

The following example shows that the converse of Proposition 4.11(1) does
not hold.

Example 4.13 Consider the automaton A in Fig. 8. Recall that the clocks
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r < mazr
z:=0

Fig. 8. The converse of Proposition 4.11(1) does not hold.

2 and y are initially 0. Then A = AS and the location ¢ is reachable if
max > 0 but not if mar = 0. This is so because if mazr = 0, then clock
y is never augmented. Thus, VA" < 0,0 < p' : [A] . = 304, but not
[[AS]](O,U) = 309

We believe that the class of L/U automata can be very useful in practice.
Several examples known from the literature fall into this class, or can be
modelled slightly differently to achieve this. We mention the root contention
protocol [IEE96], Fischer’s mutual exclusion algorithm [Lam87], the (toy) rail
road crossing example from [AHV93], the bounded retransmission protocol
(when considering fixed values for the integer variables) and the biphase mark
protocol (with minor adaptations). Moreover, the time constrained automata
models of [MMT91, Lyn96] can be encoded straightforwardly into L/U au-
tomata.

We expect that quite a few other distributed algorithms and protocols can
be modelled with /U automata, since it is natural that the duration of an
event (such as the communication delay in a channel, the computation time
needed to produce a result, the time required to open the gate in a rail road
crossing) lies between a lower bound and an upper bound. These bounds are
often parameters of the system.

The next section and Section 5 show that the techniques discussed in this
section to eliminate parameters in L/U models reduce the verification effort
significantly and possibly lead to a completely non-parametric model.

4.2 Verification of Fischer’s Mutual Ezxclusion Protocol

In this section, we apply the results from the previous section to verify the
Fischer protocol described in Section 2.4. We establish the sufficiency of the
protocol constraints completely by non-parametric model checking and the
necessity of the constraints by eliminating three of the four parameters.

We also tried to use the prototype to verify the protocol model without any
substitutions or changing of bounds, but this did not terminate within 20
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hours. Since we observed that the constraint lists of the states explored kept
on growing, we suspected that this experiment would not terminate at all.
(Recall that parametric verification is undecidable.) Verification of the reduced
models took only 2 seconds.

Now, consider the Fischer protocol model from Section 2.4 again. In this sec-
tion, we analyze a system A consisting of two parallel processes P; and Ps. It is
clear that A is a fully parametric L/U automaton: min_rw and min_delay are
lower bound parameters and maz_rw and maz _delay upper bound parameters.

The mutual exclusion property is expressed by the formula ® yp = VO-(Py.csA
Py.cs). In Section 2.4 we claimed that, when assuming the basic constraints
Byr = 0<min_rw<maz_rw N 0<min_delay < max_delay, mutual exclusion
is guaranteed if and only if Cyyp = maz_rw <min_delay. To establish this
formally, we will prove that v = Byr = ([A], E Pur <= v = Cug),
for all valuations v.

4.2.1 Sufficiency of the Constraints
We show that the constraints assure mutual exclusion, that is
if v = Cyg A Byg, then [A], = @ yp.
We perform the substitution
min_rw — 0, maz_delay — oo, min_delay — maz_rw

to obtain a fully parametric automaton A’ with one parameter, maz_rw. We
have established by non-parametric model checking that A'[0] = ®pp and
A'[1] = ®yp. Now Proposition 4.7 yields that [A'], = ® g for all valuations
v (where only the value of maz_rw matters). This means that [A], = ®ug
if v(min_rw) = 0, v(maz_rw) = v(min_delay) and v(maz_delay) = oc. Then
Proposition 4.2(2) yields that the invariance property ® g also holds if we
increase the lower bound parameters min_rw and min_delay and if we de-
crease the upper bound parameter maz_rw. More precisely, Proposition 4.2(2)
implies that [A], = ®ug for all v with 0 < v(min_rw), v(maz_rw) <
v(min_delay) and v(maz_delay) < oco. Then, in particular, [A], = @y if

Necessity of the Constraints:
We show that

v ): Buyr N _‘CME — [[A]]v ): _‘(I)ME;
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i.e. that if v E min_rw < maz_rw A min_delay <maz_delay N min_delay <
maz_rw, then Afv] = =®yp = IO(Py.cs A Py.cs). We consider the automaton
A= and proceed in two steps.

Step 1 Let vy be the valuation vy(min_delay) = vo(maz_delay) = 0 and
vo(min_rw) = vo(maz_delay) = 1. By non-parametric model checking we have
established that

AS[0] & —® (8)
A=[vg] E ~P . (9)
We show that it follows that for all v

v = 0 = min_delay = maz_delay < min_rw = maz_rw = AS[v] E ~®yp.

(10)

Assume v | 0 = min_delay = maz_delay < min_rw = maz_rw. Consider
t = v(min_rw). If v(min_rw) = 0, then (8) shows that [AS], = —®yp.

Therefore, assume v(min_rw) > 0 and consider ¥ = Az, 22 Tt is not difficult

t
to see that

% E 0 = min_delay = maz_delay < min_rw = maz_rw = 1.

Therefore, (9) yields [AS], = —®yp. Since A< is a fully parametric PTA,
Proposition 4.7 yields that [AS], | =P yp.

Step 2 Let A’ be the automaton that is constructed from A< by perform-
ing the following substitution min_delay — 1, maz_delay — 1, min_rw —
maz_rw. By parametric model checking we have established

v=1<marrw = [A], = -Pup. (11)
This means that if
v | min_delay = maz_delay = 1 < min_rw = maz_rw = [A%], = ~Puyz.

By a argument similar to the one we used to prove (10), (where now the
case v(min_delay) = 0 is covered by Equation (10) in Step 1.), we can use
Proposition 4.7 to show that

v = min_delay = maz_delay < min_rw = maz_rw = [AS], = ~Puyp.

Now, Proposition 4.2(1) yields that the reachability property —® 5 also holds
if the values for the lower bounds are decreased and the values for the upper
bounds are increased. Note that we may increase maz_delay as much as we
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want; v(maz_delay) may be larger than v(min_rw). Thus we have

v = min_rw<maz_rw A\ min_delay <maz_delay N min_delay <maz_rw

= [A%], E~Qup
and then Proposition 4.11 yields that

v E min_rw <maz-rw A min_delay <maz_delay N min_delay < maz_-rw
= [A], E ~Pus-

We have checked the result formulated in Equation (11) with our prototype
implementation. The experiment was performed on a SPARC Ultra in 2 sec-
onds CPU time and 7.7 Mb of memory.

The substitutions and techniques used in this verification to eliminate param-
eters are ad hoc. Probably, more general strategies can be applied in this case,
because the constraints are L/U-like (i.e. they can be written in the form
e < 0 such that every p occurring negatively in e is a lower bound parameter
and every p occurring positively in e is an upper bound parameter).

5 Experiments
5.1 A Prototype Extension of UPPAAL

Based on the theory described in Section 3, we have built a prototype extension
of UPPAAL. In this section, we report on the results of experimenting with
this tool.

Our prototype allows the user to give some initial constraints on the param-
eters. This is particularly useful when explorations cannot be finished due
to lack of memory or time resources, or because a non-converging series of
constraint sets is being generated. Often, partial results can be derived by ob-
serving the constraint sets that are generated during the exploration. Based
on partial results, the actual solution constraints can be established in many
cases. These partial results can then be checked by using an initial set of
constraints.

5.2 The Root Contention Protocol

Description The root contention protocol is part of a leader election protocol
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in the physical layer of the IEEE 1394 standard (FireWire/i-Link), which is
used to break symmetry between two nodes contending to be the root of a
tree, spanned in the network topology. The protocol consists of first drawing
a random number (0 or 1), then waiting for some time according to the result
drawn, followed by the sending of a message to the contending neighbor. This
is repeated by both nodes until one of them receives a message before sending
one, at which point the root is appointed.

Parametric Approach We use the UPPAAL models of [SV99, SS01], turn
the constants used into parameters, and experiment with our prototype im-
plementation (see Fig. 9 for results®). In both models, there are five con-
stants, all of which are parameters in our experiments. The delay constant in-
dicates the maximum delay of signals sent between the two contending nodes.
The rc_fast_min and rc_fast_maz constants give the lower and upper bound
to the waiting time of a node that has drawn 1. Similarly, the rc_slow_min
and rc_slow_maz constants give the bounds when 0 has been drawn. It is rea-
sonable to assume that initially, the constraints rc_fast_min < re_fast.maz <
re_slow-min < rc_slow_maz hold for each experiment.

We have checked for safety with the following property:

VO . (=(Node;.root A Nodey.root) A =(Nodey.child A Node,.child))

Safety for [SV99] The model in [SV99] consists of 8 communicating pro-
cesses, varying from 3 locations with 6 transitions to 9 locations with 12 tran-
sitions, and has 4 clocks in total. It is shown in [SV99], that the safety property
holds (through a refinement relation), if the parameters obey the following re-
lation: delay < rc_fast_min. We have checked that the error states, expressed
in the safety property, are indeed unreachable when this parameter constraint
is met. If we give no initial constraints, our experiments do not terminate. If
we loosen the solution constraint to delay < rc_fast_min, we are able to check
that no error states are reachable. In fact, it is argued in Remark 2 in [SV99],
that the mentioned constraint is not needed for the correctness of the proto-
col. Rather than checking this on the parametric model without any initial
constraints, which is a large task, we experiment with a non-parametric ver-
sion of the model without any timing constraints. It turns out that this model
satisfies the safety property, hence we deduce that the parametric model, in
which guards and invariants have been added, satisfies the safety property for
any valuation of the parameters.

Safety for [SS01] A different model of the root contention protocol is pro-
5 All experiments were performed on a 366 MHz Celeron, except the first exper-

iment of safety for [SV99] and [SS01], and all the refinement experiments. These
were performed on a 333 MHz SPARC Ultra Enterprise.
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posed in [SS01], in which it is shown that the relation between the parameters
for the safety property to hold, should obey: 2xdelay < rc_fast_min. In fact,
the model satisfies the safety property already when delay < rc_fast_min, but
the stronger constraint is needed for proper behavior of the connecting wires.
This model also consists of 8 communicating processes, varying from 3 loca-
tions with 6 transitions to 16 locations with 28 transitions, and has 6 clocks
in total. The necessity and sufficiency of these constraints is shown in [SSO01]
by applying standard UPPAAL to several valuations for the parameters, and
presented as an experimental result.

We have checked that the error states, expressed in the safety property, are
indeed unreachable when either of these parameter constraints are met. We
have also experimented without these initial constraints in an effort to generate
constraints. This experiment terminates with a number of reachable error
states. The union of the constraint sets of these states can be rewritten to the
constraint delay > rc_fast_min.

Safety for [SS01] with L/U automata Since the model used for safety
is a L/U automaton, we can experiment with Proposition 4.2, as follows. We
show that our invariant property is satisfied by a more general model of root
contention, and deduce with part 2 of Proposition 4.2 that it holds for the con-
straints we are after. We first identify the sets L = {rc_fast_min, rc_slow_min}
and U = {delay, rc_fast_max, rc_slow_max}. We substitute infinity for both
rc_fast_max and rc_slow_maz, rc_fast_min for rc_slow_min. The new model, to-
gether with either the initial constraint delay < rc_fast_min, or with 2xdelay <
rc_fast_min, satisfies the invariant property. This allows us to conclude that the
original model satisfies the invariant property for any valuation of the param-
eters where rc_fast_min < rc_slow_min, and the given initial constraint are sat-
isfied. This includes the special case rc_fast_min < rc_fast_max < re_slow_min
< re_slow_maxz.

We can do even better by applying Proposition 4.11, if we first change each
guards or invariants for delay to a strict version, and then substitute infin-
ity for both re_fast_maz and rc_slow_mazx, and rc_fast_min for both delay and
rc_slow_min. Now we have a model with only one parameter and no constants,
which we can verify non-parametrically with standard UPPAAL, for two valua-
tions of the parameter rc_fast_min, namely 0 and a non-zero value. The invari-
ant property is satisfied, hence, by Proposition 4.7, we can deduce that it holds
for all valuations of rc_fast_min, hence the original model satisfies the invariant
property for any valuation of the parameters where rc_fast_min < rc_slow_min,
and delay < rc_fast_min. Likewise, we can substitute rc_fast-min/2 for delay,
and derive the other constraint. As can be seen in Fig. 9, the speed-up in
terms of memory and time is drastic.

Finally, we can combine the results for initial constraints delay < rc_fast_min
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model from  initial constraints reduced property UPPAAL time  memory

[SV99] part of solution no safety param 18 h 339 Mb
[SV99] solution no safety param 29h 185 Mb
[SV99] - yes safety std 1s 800 Kb
[SSo01] no no safety param 40 m 38 Mb
[SS01] solution no safety param 1.6 m 36 Mb
[SS01] solution partly safety param 11s 13 Mb
[SSo01] - completely safety std 1s 800 Kb
[SS01] part of solution no refinement  param 8d 1.4 Gb
[SS01] solution no refinement  param 2.6 h 308 Mb

Fig. 9. Experimental results for the root contention protocol

and delay = rc_fast-min with the fact that our model is a L/U automaton,
and derive the necessity of constraint delay < rc_fast_min, as follows. Suppose
that a parameter valuation for delay and rc_fast_min exists, such that (1)
the safety property holds, but (2) the constraint delay < rc_fast_-min is not
satisfied. Assume this valuation assigns d to delay and r to rc_fast_min. By
our results, we know that d # r, so d > r. We now apply Proposition 4.2,
and deduce that for each parameter valuation that assigns a value to upper
bound parameter delay which is smaller than d, and a value to lower bound
parameter rc_fast_min which is larger than r, the safety property must hold.
This includes valuations that satisfy constraint delay = rc_fast_-min, which
contradicts our results. We conclude that only for parameter valuations that
satisfy constraint delay < rc_fast_min, the safety property holds.

Refinement for [SS01] In [SS01], it is also shown that a refinement relation
between the model of the most detailed level, and a model which is a bit more
abstract, holds when the following relations are obeyed: 2xdelay < rc_fast-min,
and 2xdelay < rc_slow_min - rc_fast_mazx. The refinement relation is such that
it preserves both safety and liveness properties for the root contention pro-
tocol (which is proved in [SSO1]). Again, the necessity and suffiency of the
constraints is shown by experimenting with standard UPPAAL for several val-
uations for the parameters, and presented as an experimental result. Here, the
most detailed model is put in parallel with a test automaton version of the
more abstract model, and with a forward reachability exploration it is checked
whether error states are reachable. If this is not the case, the refinement re-
lation holds. This model consists of 6 communicating processes, varying now
from 4 locations with 5 transitions to 11 locations with 87 transitions, and
has 7 clocks in total.
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model from  initial constraints  property  UPPAAL time  memory

[DKRT97] yes safetyl param 1.3 m 34 Mb
[DKRT97] no safety?2 param 11m 180 Mb
[DKRT97] yes safety?2 param 3.5 m 64 Mb

Fig. 10. Experimental results for the bounded retransmission protocol

We have checked for a completely parametric version of the system with the
detailed model and the test automaton of the more abstract model, that er-
ror states in the test automaton are unreachable (i.e. the refinement relation
holds), given both constraints initially. We have also experimented without
these initial constraints in an effort to generate them. If we give no initial
constraints, the prototype takes a lot of time exploring and computing, and
does not terminate within reasonable time or memory limits. When given one
initial constraint: delay < rc_fast_min, this experiment terminates successfully
with a number of reachable error states. The union of the constraint sets of
these states can be rewritten to the constraint 2xdelay > rc_fast_min V 2xdelay
> re_slow_min - rc_fast_maz.

Since the models for refinement use constraints that fall outside the scope of
L/U automata, we cannot apply Proposition 4.11 here.

5.3 The Bounded Retransmaission Protocol

Description This protocol was designed by Philips for communication be-
tween remote controls and audio/video/TV equipment. It is a slight alteration
of the well-known alternating bit protocol, to which timing requirements and
a bound on the retry mechanism have been added. In [DKRT97] constraints
for the correctness of the protocol are derived by hand, and some instances
are checked using UPPAAL. Based on the models in [DKRT97], an automatic
parametric analysis is performed in [AABOO], however, no further results are
given.

Parametric approach For our analysis, we use the timed automata models
from [DKRT97]. These models typically consist of 7 communicating processes,
varying from 2 locations with 4 transitions to 6 locations with 54 transitions,
and has 5 clocks and 9 non-clock variables in total. In [DKRT97] three different
constraints are presented based on three properties which are needed to satisfy
the safety specification of the protocol. We are only able to check two of these
since one of the properties contains a parameter which our prototype version
of UPPAAL is not able to handle yet.

One of the constraints derived in [DKRT97] is that TR > 2-MAX-T;+3-TD,
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where TR is the timeout of the receiver, T is the timeout of the sender,
MAX is the number of resends made by the sender, and TD is the delay of the
channel. This constraint is needed to ensure that the receiver does not time out
prematurely before the sender has decided to abort transmission. The sender
has a parameter SYNC which decides for how long the sender waits until it
expects that the receiver has realized a send error and reacted to it. In our
parametric analysis we used TR and SYNC as parameters and instantiated
the others to fixed values. Using our prototype we did derive the expected
constraint TR > 2-MAX.-T;+3-TD. However, we also derived the additional
constraint TR — 2 < SYNC which was not stated in [DKRT97] for this
property. The necessity of this constraint was verified by trying models with
different fixed values for the parameters. The full set of constraints derived in
[DKRT97] includes a constraint TR > SYNC which is based on the property
we cannot check. Therefore the error we have encountered is only present in
an intermediate result, the complete set of constraints derived is correct. The
authors of [DKRT97] have acknowledged the error and provided an adjusted
model of the protocol, for which the additional constraint is not necessary.

The last constraint derived in [DKRT97] arises from checking that the sender
and receiver are not sending messages too fast for the channel to handle. In

this model we treat T as a parameter and derive the constraint T; > 2-TD
which is the same as is derived in [DKRT97].

5.4 Other Experiments

We have experimented with parametric versions of several models from the
standard UPPAAL distribution, namely Fischer’s mutual exclusion protocol, a
train gate controller, and a car gear box controller.

In the case of Fischer’s protocol (which is the version of the standard UPPAAL
distribution, and not the one discussed in the rest of this paper), we param-
eterized a model with two processes, by turning the bound on the period the
processes wait, before entering the critical section, into a parameter. We were
able to generate the constraints that ensure the mutual exclusion within 2
seconds of CPU time on a 266 MHz Pentium MMX. Using these constraints
as initial constraints and checking that now indeed the mutual exclusion is
guaranteed, is done even faster. Fischer’s protocol with two processes was also
checked in [AABO0], which took about 3 minutes.
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5.5  Discussion

Our prototype handles parametric versions of bench-mark timed automata
rather well. In some cases, the prototype will not generate a converging series
of constraints, but in all cases we were able to get successful termination
when applying (conjectures of) solution constraints as initial constraints in
the exploration. The amount of time and memory used is then in many cases
quite reasonable.

From our results it is not easy to draw clear-cut conclusions about the type
of parametric model, for which our prototype can successfully generate con-
straints. It seems obvious from the case studies that the more complicated the
model, the larger the effort in memory and time consumption. So it is worth-
while to have small, simple models. However, the danger of non-termination
is most present in models which have a lot of behavioural freedom. The most
promising direction, therefore, will be to experiment with conjectured solution
constraints, and to combine this with the techniques for L/U automata.

6 Conclusions

This paper reports on a parametric extension to the model checker UPPAAL.
This tool is capable of generating parameter constraints that are necessary and
sufficient for a reachability or invariant property to hold for a linear parametric
timed automaton. The semantics of the algorithms underlying the tool is given
in clean SOS-style rules. Although the work [AHV93] shows that parameter
synthesis is undecidable in general, our prototype implementation terminates
on many practical verification questions and the run time of the tool is ac-
ceptable. Significant reductions are obtained by parameter elimination in L /U
automata.

There are several relevant and interesting topics for future research. First of
all, serious improvements in the applicability of the tool can be obtained by
improving the user interface. Currently, the tool generates many parameter
equations whose disjunction is the desired constraint. Since the number of
equations are can be quite large, it would be more convenient if the tool could
simplify these set of equations. This could for instance be done with reduction
techniques for BDDs.

Another relevant issue for parameter analysis is the theoretical investigation
of the class of L/U automata. It would for instance be interesting to get more
insight which types of problems are decidable for L /U automata and which
are not. Furthermore, it would be interested to investigate the use of L/U

44



automata for synthesizing the constraints, rather than for analyzing given
constraints as we did in this paper. On the practical side, the reduction tech-
niques for L/U automata could be implemented.
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Notational Conventions

action

natural number

constraint

nonnegative real number
linear expression

simple guard

guard

index

total number of actions

lower bound parameter

total number of clocks

total number of parameters
parameter

location

reset set

state

integer or real number

upper bound parameter
parameter valuation

clock valuation

clock

parametric zone

set of actions

set of constraints

parametric difference bound matrix
set of linear expressions

set of guards

invariant function

number of lower bound parameters
set of lower bound parameters
number of upper bound parameters
set of parameters

set of locations

set of reset sets

set of states

set of upper bound parameters
set of clocks

parametric timed automaton
unit PDBM

labelled transition system

the natural numbers

the real numbers
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Z  the integers

A, p extended valuation of lower bound (upper bound) parameter, respectively
¢  state formula

1) system property
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