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Abstract

This paper provides an elementary introduction to the gritilstic automaton (PA) model, which
has been developed by Segala. We describe how distribustensy with discrete probabilities can
be modeled and analyzed by means of PAs. We explain how the tascepts for the analysis of
nonprobabilistic automata can be extended to probabilsststems. In particular, we treat the parallel
composition operator on PAs, the semantics of a PA as a seaad tistributions, an extension of the
PA model with time and simulation relations for PAs. Finallie give an overview of various other state
based models that are used for the analysis of probabiigsitems.

1 Introduction

Probabilistic Automata (PAs) constitute a mathematicaifework for the specification and analysis of
probabilistic systems. They have been developed by Se§algOpbb, SL95, Seg95a] and serve the pur-
pose of modeling and analyzing asynchronous, concurraigisy with discrete probabilistic choice in a
formal and precise way. Examples of such systems are razédmdlistributed algorithms (such as the
randomized dining philosophers [LR81]), probabilisticvaounication protocols (such as the IEEE 1394
Root Contention protocol [IEE96]) and the Binary ExponehBiack Off protocol, see [Tan81]); and fault
tolerant systems (such as unreliable communication chginne

PAs are based on state transition systems and make a clgactibis betweerprobabilisticandnon-
deterministic choiceWe will go into the differences and similarities betweenthbtypes of choices later
in this paper. As subsume nonprobabilistic automata, Mackains and Markov decision processes. The
PA framework does not provide any syntax, but several systhave been defined on top of it to facilitate
the modeling of a system as a PA. Properties of probabikgstems that can be established formally us-
ing PAs include correctness and performance issues, suds the probability that an error occurs small
enough (e.g< 1079)? Is the average time between two subsequent failures ¢éargegh? What is the
minimal probability that the system responds within 3 selst

A PA has a well-defined semantics as a sdtade distributions The parallel composition operatfpr
allows one to construct a PA from several component PAs ngnini parallel, thus keeping system models
modular. PAs have been extended with time in order to modeteason about time.

The aim of this paper is to explain the basic ideas behind Paistlzeir behavior in an intuitive way.
Our explanation focuses on the differences and similanitith nonprobabilistic automata.

Organization of the paper This paper is organized as follows. Section 2 introducesptiodabilistic
automaton model and Section 3 treats its behavior (sensdntithen Sections 4 and 5 are concerned
respectively with implementation and simulation relaidor PAs. In Section 6, we give several other
models dealing with probabilistic choice and finally, Seetv presents a summary of the paper.

*This paper is a revised version of a Chapter 2 in [Sto02], wiaas written while the author working at the Computing Scéen
Institute, University of Nijmegen, the Netherlands.
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Figure 1: A channel automaton

2 The Probabilistic Automaton Model

Basically, a probabilistic automaton is just an ordinaryoaaton (also callethbeled transition system
or state machingwith the only difference that the target of a transition iprababilistic choice over
several next states. Before going into the details of thespwefly recall the notion of a nonprobabilistic
automaton, which also known as a state machine, a labelesltican system, or a state transition system.

2.1 Nonprobabilistic Automata

An nonprobabilistic automatgnabbreviated NA, is a structure consistingstdtesandtransitions the
latter are also calledteps The states of an NA represent the states in the system thatdeled. One
or more states are designatedsaart states representing the initial configuration of the system. The
transitions in the NA represent changes of the system siatkare labeled by actions. Thus, the transition
s 5 s' represents that, being in statethe system can move via am-action to another staté. The
action labels are partitioned inioternal andexternalactions. The former represent internal computation
steps of the automaton and are not visible to the automagorisonment. We often use the symbolo
denote an internal action. The external actions are vidtl¢he automaton’s environment and are used
for interaction with it. This will be explained in more ddtai Section 2.4.

Example 2.1 Consider the NA in Figure 1. It models a 1-place buffer used esmmunication channel
for the transmission of bits between two processes. Thesstal and1 represent respectively the channel
being empty, the channel containing the bit 0 and the chammhlnmg a 1. Initially, the channel is empty
(denoted by the double circle in the picture). The transitio s represent the sender process (not
depicted here) sending the bito the channel. Similarly, the transitions—<s ¢ represent the delivery
of the bit at the receiver process. Notice that the transiidoeledsnd (i) represents the sending of a
bit by the sender, which is the receipt of a bit by the commatidn channel. Similarly, the receipt of a
bit at the receiving process corresponds to the sending dflaylthe channel, which is modeled by the
rec(i)—transitions.

It is natural that the actiongid (0), rec(0), snd(1) andrec(1) in this NA are external, since these are
used for communication with the environment.

Thus, the notion of an NA can be formalized as follows.

Definition 2.2 An NA A consists of four components:
1. AsetS 4 of states
2. anonempty se% C 5S4 of start states

3. Anaction signaturesig4 = (V4,14), consisting ofexternal (visibleyandinternal actionsrespec-
tively. We requireV 4 and 4 to be disjoint and define the setadftionsasAct 4 = V4 4UI4.

4. atransition relationA 4, C S4 x Act g4 X S4.

We writes = 4 s', ors = s' if Ais clear from the context, fdis, a, s') € A 4. Moreover, we say that the
actiona is enabledn s, if s has an outgoing transition labeled by

Several minor variations of this definition exist. Some d#&tins require, for instance, a unique start
state rather than a set of start states or allow only a singgerial action, rather than a set of these. In the
I/O automaton model [LT89], external actions are dividetd input andoutputactions. Input actions, not



being under the control of the NA, are required to be enalrleahi state. The basic concepts are similar
for the various definitions.

2.1.1 Nondeterminism

Nondeterministic choices can be specified in an automatdraliing several transitions leaving from the
same state. Nondeterminism is used when we wish to incameeaeral potential system behaviors in a
model. Hoare [Hoa85] phrases it as follows:

There is nothing mysterious about nondeterminism, it aris@m the deliberated decision to
ignore the factors which influence the selection.

Nondeterministic choices are often divided into extermal mternal nondeterministic choicesxter-
nal nondeterministic choices are choices that can be influelmgéite environment. Since interaction with
the environment is performed via external actions, exteraadeterministic behavior is specified by hav-
ing several transitions with different labels leaving frtme same statdnternal nondeterministic choices
are choices that are made by the automaton itself, indepénflthe environment. These are modeled by
internal actions or by including several transitions wiie same labels leaving from the same state. In the
literature, the word nondeterminism sometimes refers tatwite call internal nondeterminism.

As pointed out by [Seg95b, Alf97], nondeterminism is esséribr the modeling of the following
phenomena.

Scheduling freedomWhen a system consists of several components running itiglaree often do not
want to make any assumptions on the relative speeds of thparments, because we want the application to
work no matter what these relative speeds are. Therefonelgierminism is essential to define the parallel
composition operator (see Definition 2.13), where we mduekhoice of which automaton in the system
takes the next step as an (internal or external) nondetésticiohoice.

Implementation freedom Automata are often used to represent a specification. Gdtwlese engineer-
ing practice requires the specification to descriwbstthe system should do, nbbwit should be im-
plemented. Therefore, a specification usually leaves rawrsdveral alternative implementations. Since
it does not matter for the correct functioning of the systehicl of the alternatives is implemented, such
choices are also represented by (internal or external)etenainism.

External environment An automaton interacts with its environment via its extéawions. When mod-
eling a system, we do not wish to stipulate how the envirortnagih behave. Therefore the possible
interactions with the environment are modeled by (ext¢@mmahdeterministic choices.

Incomplete information Sometimes it is not possible to obtain exact informationuatioe system to be
modeled. For instance, one might not know the exact durafion— in probabilistic systems — the exact
probability of an event, but only a lower and upper bound.hiat tase, one can incorporate all possible
values by a nondeterministic choice. This is appropriateesiwve consider a system to be correct if it
behaves as desired no matter how the nondeterministicehare resolved.

Example 2.3 In the states, the channel NA in Figure 1 contains an external nondetéastiinchoice
between the actiongd (0) andsnd(1). This models a choice to be resolved by the environment {#& th
case a sender process) which decides which bit to sent. femnaaistic choices modeling implementation
freedom, scheduling freedom, and incomplete informatrergaven in Examples 2.9 and 2.14.

2.2 Probabilistic Automata

As said before, the only difference between a nonprobéabiisd a probabilistic automaton is that the
target of a transition in the latter is no longer a singleesthtt is a probabilistic choice over several next
states. For instance, a transition in a PA may reach one witheprobability% and another one with
probability% too. In this way, we can represent a coin flip and a dice rodl,;sgure 2.



Figure 2: Transitions representing a fair coin flip, an unéain flip and a fair dice roll.
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Figure 3: A lossy channel PA

Thus, a transition in a PA relates a state and an actiongmbability distributionover the set of
states. A probability distribution over a s&t is a functiony that assigns a probability ifd), 1] to each
element ofX, such that the sum of the probabilities of all elements is dt Ibistr(X') denote the set of
all probability distributions oveX . Thesupportof u is the se{z € X | u(z) > 0} of elements that are
assigned a positive probability. K = {z;, 2., ...}, then we often write the probability distributignas
{z1 — p(z1),z2 — pu(x:) ...} and we leave out the elements that have probability 0.

Example 2.4 Let the set of states be given byhd, I, 1, 2, 3, 4, 5 and6. The transitions in Figure 2 are
respectively given by

s 2% hd — Lt LY,
ﬂ"’ {hd = L, t1— 2} and
L”>{1|—> 2|—>13»—>14»—> L5 260 1)

Note that we have left out many elements with probability d, ihstance the state is reached with
probability 0 by each of the transitions above. Moreovetheaf the three pictures in Figure 2 represents
a single transition, where several arrows are needed tesept the probabilistic information.

The definition of a PA is now given as follows.

Definition 2.5 A PA A consists of four components:
1. AsetS 4 of states
2. anonempty se’ C S4 of start states

3. Anaction signaturesigqa = (Va,14), consisting ofexternalandinternal actionsrespectively. We
requireV 4 andl 4 to be disjoint and define the setadtionsasAct 4 = V4 4UI4.

4. atransition relationA 4 C S4 x Act4 X Distr(S4).

Again, we writes % 4 p for (s, a, u) € A 4. Furthermore, we simply write % 4 s’ for s 2 4 {s' ~ 1}.
Obviously, the definition of PAs gives rise to the same vamet as the definition of NAs.

Example 2.6 The PA in Figure 3 represents the same 1-place communiaziemmel as the NA in Fig-

ure 1, except that now the ch(a)nnel is lossy: a bit sent to thared is lost with a probability o{— By
convention, the transitions——= ¢ reach the state with probability 1.
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Figure 4: Modeling multi-labeled transitions in a PA

Remark 2.7 Note that each transition in a PA is labeled with a singlecactiThe system depicted on the
left in Figure 4 models a process sending the bits 0 and 1 e'&hrpvmbability%. However, this system is
not a PA, because two actions appear in the same transitasheRa PA model of such a process is shown
on the right of Figure 4.

There is, however, a multilabeled version of the PA moded,Section 2.5. That model is technically
more complex and, in practice, the PA model is expressivagmo

Remark 2.8 The nonprobabilistic automata can be embedded in the pilatiigbones by viewing each
transitions = s’ in an NA as the transitioa = {s' ~—+ 1} in a PA. Conversely, each PA can be “deprob-
abilized,” yielding an NAA~, by forgetting the specific probabilistic information ang dinly retaining
whether a state can be reached with a positive probabiligcisely,s = s’ is a transition ind~ if and
only if there is a transitiom % 1 in A with pu(s') > 0.

2.2.1 Probabilistic versus nondeterministic choice

One can specify nondeterministic choices in a PA in exabdyshme way as in a NA, viz. by having internal
transitions or by having several transitions leaving frdra same state. Also the distinction between
external and internal nondeterminism immediately cawies to PAs. Hence, the probabilistic choices are
specifiedwithin the transitions of a PA and the nondeterministic choloetsveerthe transitions (leaving
from the same state) of a PA.

Section 2.1.1 has pointed out the need for nondetermingbtiices in automata, namely to model
scheduling freedom, implementation freedom, the extesmatonmentand incomplete information. These
arguments are still valid in the presence of probabilistioice. In particularnondeterminism cannot be
replaced by probabilityn these cases. As mentioned, nondeterminism is used if ileedztely decide not
to specify how a certain choice is made, so in particular waatavant to specify a probability mechanism
that governs the choice. Rather, we use a probabilisticcehibithe event to be modeled has really all
the characteristics of a probabilistic choice. For inséarthe outcome of a coin flip, random choices in
programming languages, and the arrivals of consumers i sthus, probability and nondeterminism
are two orthogonal and essential ingredients in the PA model

An important difference between probabilistic and nonduatiristic choice is that the former are gov-
erned by a probability mechanism, whereas the latter ar@laly free. Therefore, probabilistic choices
fulfill the laws from probability theory, and in particulane law of large numbers. Informally, this law
states that if the same random choice is made very oftenytirage number of times that a certain event
occurs is approximately (or, more precisely, it converggsts expected value. For instance, if we flip a
fair coin one hundred times, it is very likely that about hafifthe outcomes is heads and the other half
is tails. If, on the other hand, we make a nondeterministmicghbetween two events, then we cannot
guantify the likelihood of the outcomes. In particular, vamnoot say that each of the sequences is equally
likely, because this refers to a probabilistic choice!

The following example illustrates the combination of notedministic choice and probabilistic choice.



Figure 5: A lossy channel PA with partially unknown probétas

Example 2.9 Like in Figure 3, the PA in Figure 5 also represents a faultjmeownication channel. The
difference with the PA in Figure 3 is that, here, we do not kribe probability that a bit is lost exactly.

Depending on which transition is taken, it canﬁg or 11% However, we will see in Section 3 that this

probability can in fact have any value betweﬁ;@ andllm. Thus, the nondeterministic choice between the
two send(7) transitions is used here to represent incomplete infoomatbout exact probabilities.

This PA can also be considered as the specification of a systlere the nondeterministic choice
represents implementation freedom: It requires that inrgriémentation the probability to lose a message
is at mostﬁ and at Ieas%. (The latter might be a bit awkward in practice.)

For future use, define distributiopg and the transitiong’, by

. snd(1 . . . o
0; = ™0, i, pi = {ems Lim 221y

wherexz = 100, 200 and: = 0, 1. Thus, the superscripts denote the bit and the subscripigrtibability.

Finally, we remark that the philosophical debate on theneatfinondeterminism choice and probability
has not ended. In this paper, we take a practical standpathpastulate that both types of choices are
appropriate for describing and predicting certain phenmanie system behavior. For more information on
the philosophical issues arising in the area of probalitigory, the reader is referred to [Coh89].

2.3 Timing

Timing can be incorporated in the PA model in a similar wayrathe NA model (c.f. the “old fashioned
recipe for time” [AL92]). Aprobabilistic timed automaton (PTAg a PA with time passage actions. These
are actionsd € R>? that indicate the passage dftime units. While time elapses, no other actions
take place and, in the PTA approach, time advances detestimaily. So, in particular, no (internally)
nondeterministic or probabilistic choices can be specifigdin time passage actions, see requirements 1
and 2 in the definition below. The third condition below, Wangxiom [Yi90], requires that, while time
advances, the state of the PTA is well-defined at each potithimand that, conversely, two subsequent
time passage actions can be combined into a single one.

The PTA model presented here is a simplification of the ong9Sk], which is based on a generaliza-
tion of Wang’s axiom.

Definition 2.10 A PTA A is a PA enriched with a partition ofct \ {7} into a set ofdiscrete actions\ct p,
and the seR>° of positive real numbers dime—passage action¥Ve requiré that, for alls, s’, s" € Sy
andd, d' € R>° with d' < d,

1. each transition labeled with a time—passage action feadglistribution that chooses one element
with probability 1,

i . Lo d
2. (Time determinism) it — 4 s’ ands — 4 s” thens’ = 5",

, . d . d d—d’
3. (Wang's Axiom)s — 4 s’ iff 35" : s — 4 s"” ands” —— 4 s'.

1For simplicity the conditions here are slightly more resive than those in [LV96].



Figure 6: A part of a PTA

As PTAs are a special kind of PAs, we can use the notions defiimd?As also for PTAs.

By letting time pass deterministically, PTAs treat proltiabc choice, nondeterministic choice and time
passage as orthogonal concepts, which leads to a teclyritedih model. Example 2.11 below shows that
discrete probabilistic choices over time can be encodedlfsRria internal actions. Nondeterministic
choices over time can be encoded similarly: just replaceptiodabilistic choice in the example by a
nondeterministic one. Thus, although we started from arghééstic view on time, nondeterminism and
probabilistic choices over time sneak in via a back door. @tleantage of the PTA approach is that
we separate concerns by specifying one thing at the timee fiassage or probabilistic/nondeterministic
choice.

Example 2.11 We can use a PTA to model a system that decides with an intproahbilistic choice
whether to wait a short period (duration one time unit) orreglperiod (two time units) before performing
ana action. This PTA is partially given in Figure 6, where the@®sd element of each state records the
amount of time that has elapsed. Note that there are undmiymtmny transitions missing in the picture,

for instance the transitions, 0) LLLN (s1,0.2) and(s1,0.2) — (s1,0.7), see Wang's Axiom in the
preceding definition. The full transition relation is givien
(50,0) = {(51,0) = 3,(52,0) = 3},
(s1,d) L5 (s1, d+d’) ifd+d <1,
(s0,d) L3 (82,d + d), ifd+d <2,
(5171) i) (537 ):

(82,2) i) (54, 1)

Continuous distributions over time can of course not be daddan a PTA, since such distributions cannot
be modeled in the PA model anyhow. There are various otheels@dmbining time and probability, see
Section 6, including models dealing with continuous digttions over time.

Moreover, there is a second model that extends PAs with riermdmistic timing. The automata in-
troduced in [KNSS01] — also called PTAs — augment the classimed automata [AD94] with discrete
probabilistic choice. They allow timing constraints to Ipesified via real-valued clocks.

2.4 Parallel Composition

The parallel composition operatpallows one to construct a PA from several component PAs. faises
system descriptions more understandable and enables cempavise design. The component PAs run
in parallel and interact via their external actions. As befthe situation is similar to the nonprobabilistic
case.

Consider a composite PA that is built from two component PR®n the state space of the composite
PA consists of pairgs, t), reflecting that the first component is in statand the second in state If one
of the components can take a step, then so can the composienefesynchronizatioron shared actions
has to be taken into account. This means that whenever onpar@nt performs a transition involving a
visible actiona, the other one should do so simultaneously, provideddligin its action set.

When synchronization occurs, both automata resolve thelrgbilistic choices independently, because
the probability mechanisms used in different componergsat supposed to influence each other. Thus,
if the transitionss; = 1 andss = s synchronize, then the stafg), s) is reached with probability
w1 (sh) - ua(sh). No synchronization is required for transitions labeledabyinternal actior € I nor for
visible actions which are not shared (i.e. presentin onlyafrthe automata). In this case, one component
takes a transition, while the other remains in its curreattesvith probability one. For instance, if the first
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Figure 7: A sender PA
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component takes the transitien = y; and the other one remains in the statethen the probability to
reach the statés!, so) by taking this transition equajs, (s}) and the probability to reach a stdtg , s})
with s, # so is zero.

To define the parallel composition, we need to define the (itibic distribution arising from two
independent probabilistic choices. Furthermore, we aaltg the parallel composition of PAs whose action
signatures do not clash.

Notation 2.12 Let i be a probability distribution oX’ andv one onY'. Define the distributiomn x v on
X xY by (uxv)(zy) = p) vy).

Definition 2.13 We say that two PAs{ and B arecompatibleif 74N Actg = Act4NIg = (. For two
compatible PAs4 and5, theparallel compositions the probabilistic automata || B defined by:

1. S.AHB = S_A X SB-

2. 8%5 = S x S

3. sz’gAHB = (V4 UVp, 14 UlIR).
4

. A 4 isthe set of transition&; , s») 2 111 x pe such that at least one of the following requirements
is met.

e a €V NVg, 51 5 u € Agandsy = s € Ap.
e a € Acty \ Actp Ora € 14, ands; 2y € Aqandpy ={sy — 1}.
e a € Actg \ Act4 Ora € Ig, ands, 2 s € A andu; = {51 — 1}.

Note that nondeterminism is essential in this definition.

Example 2.14 The system in Figure 7 represents a sender process. Its aetiags{snd(0), snd(1),a}.
Figure 8 shows the parallel composition process of thisgesand the channel process in Figure 3.

2.5 Other Automaton Models with Nondeterminism and Discree Probabilities

Below, we discuss the GPA model and the alternating modei¢lware two other automaton models
combining discrete probabilities and nondeterminism hBoe equivalent to the PA model in some sense.

General probabilistic automata Segala [Seg95b] introduces a more general notion of présébau-
tomata, which we catheneral probabilistic automatéGPAsY. A GPA is the same as a PA, except that the
transitions have the typ® x Distr(Act x SU{L}). Thus, each transition chooses both the action and the
next state probabilistically. Moreover, it can choose tadleck (L) with some probability. In the latter
case, no target state is reached. Figure 4 on page 5 shows th&R#\not a PA.

Problems arise when defining the parallel composition dpefar arbitrary GPAs. The trouble comes
from synchronizing transitions that have some shared Betmd some actions which are not shared (see
[Seg95b], Section 4.3.3).

The problem can be solved by imposing the I/O distinction &A& (c.f. the remark below Defini-
tion 2.2). This distinction comes with the requirement timgut actions are enabled in every state and

2Segala uses the word PA for what we call GPA and says simple RAat we call PA.
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Figure 8: Parallel composition

Figure 9: A PA model and two alternating models equivalerit to

occur only on transitions labeled by a single action. Thigrapach is followed in [WSS97] and in [HPOOQ].
Surprisingly, the latter reverses the role of input and otgetions.

In our experience, many practical systems can be modelecena@ntly with PAs (see Remark 2.7;
deadlocks can be modeled by moving to a special deadloak) stetoreover, several notions have been
worked out for the PA model only. Therefore, this thesis sl@dth PAs rather than with GPAs.

Alternating model The alternating model, introduced by Hansson and Jonssang# HJ94], distin-
guishes betweeprobabilistic and nondeterministic statesNondeterministic states have zero or more
outgoing transitions. These are labeled by actions andteadunique probabilistic state. Probabilistic
states have one or more outgoing transitions. These arkethbg probabilities and specify a probability
distribution over the nondeterministic states.

The alternating model and the PA model are isomorphic uptadled strong bisimulation [LS91]. This
means that all notions defined on PAs that respect stromgiiation can be translated into the alternating
model and vice versa.

In order to translate an alternating model into a PA, one r&wa@ll probabilistic states and contracts
each ingoing transition of a probabilistic state with thelmbility distribution going out of that state,
thus passing by the probabilistic state. Conversely, ireotd translate a PA into an alternating model,
one introduces an intermediate probabilistic state fohegmnsition. The reason why this only yields an
isomorphism upto bisimulation, rather than just an isorham, is illustrated in Figure 9.

3 The Behavior of Probabilistic Automata

This section defines the semantics of a PA as the set of ite thiatributions. Each trace distribution is
a probability space assigning a probability to certain sétsaces. The idea is that a trace distribution
arises from resolving the nondeterministic choice first Bpdhen abstracting from nonvisible elements,



i.e. by removing the states and internal actions and leasigthe external actions. A difference with the
nonprobabilistic case is that the theory of PAs allows négreinistic choices to be resolved by probabilis-
tic choices. As we will see, these are described by an adyefdareover, resolving the nondeterministic
choices in a PA no longer yields a linear execution, as in aniha tree—like structure.

We recall the definition of traces for NAs first.

3.1 Paths and Traces

The semantics of an NA is given by the set of its traces. Eaaetrepresents one of the potential visible
behaviors of the system and is obtained by the followingssté&jirst, the nondeterministic choices in the

NA are resolved. This yields an execution, i.e. a sequencgabés and actions. Then the states and
internal actions are removed from the execution. This gieldequence of actions, callettace

Definition 3.1 1. Anpath(or executiof of an NA A is a possibly infinite sequeneae= spa;s1as .
Whereso is an initial state of4, s; is a state of4, a; is an (internal or external) action of and
S; —>A s;+1 IS a transition. Moreover, we require thatifis finite, then it ends in a state.

2. Atraceis afinite or infinite sequence of external actions that isinietd from a path by omitting the
states and internal actions. We denote the set of tracdsgfirace(.A).

Example 3.2 The three sequencesand(e snd(1) 1 rec(1) € snd(0) 0) and(e snd(0) 0 rec(0) & snd(0)
0 rec(0) ...) are paths of the NA in Figure 1. Their traces are, respegtitteé empty sequeneg the se-
quencesnd (1) rec(1) snd(0)) and the sequendend(0) rec(0) snd(0) rec(0) snd(0) ...). (The brackets
() here have been inserted for the sake of readability, but haveeaning.)

We can also identify paths and traces in a PA.

Definition 3.3 1. Aprobabilistic path(abbreviated apath) of a PA A is an alternating, finite or infinite
sequence

T = SoGi1M151Q2U4282a3U3 . ..

wheresy € SY s; € Sa, a; € Acta, s; ﬂ)A pir1 anduiiq (s;v1) > 0. Moreover, ifr is finite,
then it has to end in a state. Lkis¢(r) denote the last state of a finite path] € NU{oo} the
number of actions occurring im, Path*(.A) the set of finite paths oft and Path* (s, A) the set of
finite paths in4 starting in state.

2. Atraceis a finite or infinite sequence of external actions that isupietd from a path by omitting the
states, internal actions and distributions. Lietce denote the function that assigns to each execution
its trace.

Both the probabilistic and the nondeterministic choicegehaeen resolved in a probabilistic path, since
it reveals that theé!" transition taken is; ; —» i and that the outcome of th# probabilistic choiceu;

is s;. Moreover, note that each probabilistic path.4fgives rise to a path ofi~, by removing all the
probability distributions.

Example 3.4 The sequencé snd(1) ulye € snd(1) uiy, 1) is a finite probabilistic path of the PA in
Figure 5. Its trace igsnd (1) snd(1)).

3.2 Trace Distributions

The semantics of a PA is given by the set of distributions dtgetraces, calledrace distributions Each
trace distribution of a PA represents one of the potent&blé behaviors of the system, just as a trace in an
NA. As said before, a trace distribution is obtained by fiestalving the nondeterministic choices in the PA
(replacing them by probabilistic choices) and then remgtire states and the internal actions. Formally,
nondeterminism is resolved bgndomized, partial adversariesAn adversary can be considered as the
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equivalent of an execution in an NA. Thus, each adversatgyi different system behavior. To study the
probabilistic behavior it generates, each adversary scésed gorobability spaceassigning probabilities
to certain sets of paths. The trace distribution of this ashugy is then obtained by removing all states and
internal actions from the associated probability space.

The forthcoming sections discuss each of the steps aboverie detail.

3.2.1 Resolving nondeterministic choices in PAs

In order to understand what the behavior of a PA is like and tieanondeterministic choices in a PA are
resolved, consider the channel in Figure 3 on page 4 againesmadl thatsnd(i) models the sending of a
bit by a sender process, which corresponds to the receiptebgttannel.

What can happen during the execution of this channel? Baiitg start state, the channel may either
receive a 0, a 1 or it might receive no bit at all. One of the améntal aspects in the theory of PAs is that
each of these possibilities may occur with a certain prdltgbiSay that the probability on a 0 to arrive is
qo, on a 1 to arrive ig; and on no bit to arrive at all is — go — ¢;. Then the channel takes the transition
snd(0) with probabilitygy. Similarly, it takes the transitiosnd (1) with probabilityg; and remains in the
states (forever) with1 — gg — ¢1. In the latter case we say that the execution of the chanirgkisupted.

Each choice for the valugg andq, in [0, 1] yields a potential (and different) behavior of the channel.
In this example, the probabilities naturally arise from algabilistic environment (a sender process) that
determines probabilistically whether to send a bit and Wioice. In general, we describe the resolution of
the nondeterministic choices by an adversary.

Upon taking the transition that has been chosen probadililt, the system determines its next state
according to the target distribution of the transition drasin the example, the channel moves to the state
0 with probabilityqq - 2, to 1 with probabilityg; - {a and stays ir with the remaining probability mass
1—¢qo- % —qr- % Here, we see that the probability to lose a bit is only deieech exactly if we
know how the nondeterminism in the system is resolved (f.eieiknowq, andq;). Before resolving the
nondeterministic choices, do not know the probability tedl@ bit, we can only say that it is at mq%@.

After taking the transition, the procedure starts over eribw state: the channel makes a probabilistic
choice between the outgoing transitions in the new stateaanidterruption. That is, in the statésthe
channel has the choice between(i) and an interruption; in the statehere is a choice betweend(0),
snd(1) and interruption. Obviously, these choices are not thexeiére ire as the result of an interruption.
Moreover, when resolving the nondeterministic choice,imwe do not have to take the same probabilities
go andq; as before: for instance, the environment may now send tisevbih different probabilities.
Moreover, the probabilities may be different depending foa lbit that the channel previously received.
Therefore the resolution of the nondeterminism can be tyisttependent: it may not only depend on the
current system state, but also on the path leading to that sta

3.2.2 Adversaries

Formally, the resolution of the nondeterministic choigea iPA is described by aadversary(also called
scheduleror policy). In each state of the system, the adversary determinesettigransition to be taken.
The explanation above shows that we need adversaries ¢hat ar

e partial i.e. may interrupt the execution at any time,
e randomized.e. determine their choices randomly and

¢ history—dependerite. may base their choices not only on the current statealsoton the path
leading to that state.

This means that, given a finite pathending in a state, the adversary¥ schedules the transition=s
with probability E()(a, 1). The valueE(7)(L) is the probability on an interruption. We let our adver-
saries start from a fixed start statg.

30bviously, the forthcoming theory also applies to adveesastarting in non—start states, but we wish to considebéhavior
generated from start states only.
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Definition 3.5 Let sq be a start state of a PA. A randomized, partial, history—dependent adversgny
shortly anadversary of A starting froms is a function

E : Path*(sg, A) — Distr(Act4 x Distr(S4) U {L})
such that ifE () (a, 1) > 0 thenlast(m) %4 .

Example 3.6 Reconsider the lossy communication channel from Exam@8le et F, be the adversary
that schedules the transitiéiy, (i.e. sends a 1) whenever the system is in the stateurthermoref;
schedules theec(i)—action whenever the system isiinThenE; is defined by

Ey (m)(snd(1), o) = 1, if last(m) = ¢
Ey (m)(rec(i), {e = 1}) = 1, if last(m) =i

and 0 in all other cases. Obviously, in the second clausg tbalcasé = 1 is relevant, because the bit 0 is
never sent. Nevertheless, we require the adversary alsodefined on paths containing amd (0) action,
since this is technically simpler. Later, we will see thattspaths are assigned probability 0.

The adversary, schedules the transitiof$;, 69,,, 81, andé3,, each with probability: whenever
the system is in state. Therec(i) action is taken with probability one if the system is in thetst. Then
E, is given by

E, (ﬂ)(snd(i),ué) =4 if last(n) =¢
Ey(m)(rec(i), {e = 1}) =1, if last(m) =1
fori = 0,1, j = 100,200 and 0 in all other cases.
The adversaryi; corresponds to scheduling the transitip, in states with probability%, the transi-

tion 63y, with probability 5, the transition#{,, andf,, with probability 0 and to interrupt the execution
with probability%. Also, in statel, the probability of interruption i%. This adversary is defined by

Es(m)(snd (1), pyge) = 5. if last(n) =¢
Es(m)(snd(1), pygo) = %, if last(m) = ¢
Es(m)(rec(i),{e = 1}) = 2, if last(m) =i
Es(m)(L) = 3,

and 0 otherwise.

Remark 3.7 An adversaryF starting in a state, can be described by a tree whose root is the siate
whose nodes are the finite pathsHrand whose leaves are the sequenceswherer is a path satisfying
E(m)(L) > 0. The children of a node are the finite pathsaut, whereE(w)(a, 1) > 0 andu(t) > 0, and
the sequence L if E(7)(L) > 0. The edge fromr to maut is labeled with the probability (7) (a, ) - pu(¢)
and the edge fromr to 7L with the probabilityE(x)(L). In fact, this tree is a cycle—free discrete time
Markov chain.

By considering partial, history—dependent, randomizeceeshries, the theory of PAs makes three
fundamental choices for the behavior of PAs. We have mai/liese choices by the channel NA already
and below we give a more generic motivation of these decision

Partiality is already present in the nonprobabilistic case, wheretkewtion of an NA may end in any
state, even if there are transitions available in that stB#stiality is needed for compositionality results,
both in the probabilistic and the nondeterministic case.

History dependenceis also exactly the same as in the non—probabilistic cas#h tae the execution of
an NA visits a certain state, it may take a different outgamgsition to leave that state.

Randomization has no counterpart in NAs. There are several arguments whmeeg randomized adver-
saries rather than deterministic ones.
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¢ Including all possible resolutiong:irst of all, it is very natural to allow a nondeterministicaice to
be resolved probabilistically. As said before, nondetersm is used if we do not wish to specify the
factors that influence the choice. Since there is no reasexdode the possibility that probabilistic
factors govern this choice, we need probabilistic adversap describe all the possible ways to
resolve the nondeterministic choices.

¢ Modeling probabilistic environmentés we saw in the channel example, nondeterminism can model
choices to be resolved by the environment. Since the envieoth may be probabilistic, randomized
adversaries are needed to model the behavior of the PA ietkisonment.

e Randomized algorithms: implementing a nondeterminidtmice by a probabilistic choice The
specification of a system often leaves room for severalratare implementations. Randomized
algorithms often implement their specifications by a pralistle choice over those alternative im-
plementations. By allowing randomized adversaries, theber of the randomized algorithm is
included in the behavior of the specification, but this is moé when ranging over deterministic
adversaries only. In Section 4 we will see that implemeatatelations for PAs are based on in-
clusion of external behavior. If we base the notion of betialsdased on deterministic adversaries,
then it is not possible to implement nondeterministic wighadomized algorithms, unlike a notion of
randomized adversaries [AlIf97].

However, it has been proven [AIf99] that, if one is only irgsted in the minimal and maximal probability
of a certain event, then it suffices to consider only deteistimadversaries.

3.2.3 The probability space associated to an adversary

Once the nondeterminism has been resolved by an adversamganvstudy the probabilistic behavior of
the system under this adversary. This is done via the asedgiaobability space. The behavior generated
by an adversary is obtained by scheduling the transitions describedtbgnd executing them until —
possibly —F tells us to stop. The paths obtained in this way arenia&imal pathsn E, i.e. the infinite
paths and the finite paths that have a positive probabilitgmmination. Thus, the maximal paths represent
the complete rather than partial behaviorfof The associated probability space assigns a probability to
certain sets of maximal paths.

Throughout this section, |€f be a randomized partial adversary for a BA

Definition 3.8 A path in E is a finite or infinite path

T = SoGi1M181G2M42 . ..

such thatE(seaip1 81 - .. ajp;) (a1, ip1) > 0forall 0 < i < |x|. Themaximal paths inE are the
infinite paths inE and the finite pathg in £ where E(7)(L) > 0. Define Path™**(E) as the set of
maximal paths in.

Note the difference between paths in a PA and those in an salyeiThe former are a superset of the latter:
compare Definitions 3.3 and 3.8.

For every finite pathr, we can compute the probabili@” (r) that a path generated Wy starts with
. This probability is obtained by multiplying the probabés thatE actually schedules the transitions
given byr with the probabilities that taking a transition actuallglgs the state specified ky Note that
the probability that the path generatedBys exactlyr equalsQ?(r) - E(rw)(L1).

Definition 3.9 Let.4 be a PAand let, € S4 be astate. Then we define the functQfi : Path*(sg, A) —
[0, 1] inductively by

Q”(s0) = 1andQ”(mapt) = Q" () - E(r)(a, u) - u(t).
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Example 3.10 Reconsider the adversaries, F», andE; from the Example 3.6. The path= (e, snd(1),
Uloos €, snd(1), plgg, 1) is a path inEy, E; and inEj3. It is assigned the following probabilities by the
adversaries:

E _ 1 99 E 1 1 1 99 E 1 1 1 99
Q" (m) =115 -1 155 Q™(m) =1 105 1 100 Q™(m) =3 153 100

This path is maximal i3, but notinE; andE,. Furthermore, the sequenge snd(0), 1)y, €) is a path
of the system in Figure 5. It is also a path of the adverganybut not of the adversarids, andEs.

To study the probabilistic behavior generated by an adwerBawe associate a probability space to
it. A probability space is a mathematical structure thaiggmssa probability to certain sets of (in this case)
maximal paths such that the axioms of probability are regowiz., the probability on the set of all events
is 1; the probability on the complement of a set is one minagtiobability on the set; and the probability
of a countable, pairwise disjoint union of sets is the sunhefgrobabilities on the sets).

We cannot describe the probabilistic behavior of an advgisaa probabilitydistribution, assigning a
probability to each element (in this case a maximal patigabse this does not provide enough information.
For instance, consider the adversargsand E; from Example 3.6. Their maximal paths are all infinite
and both adversaries assign probability 0 to each infinita.p&lowever, they differ on many sets of
maximal paths, e.qg. the probability that the first action path issnd(1) equals 1 forE; and% for E,.

Definition 3.11 A probability spaces a triple(Q2, 7, P), where
1. Qis a set, called theample space

2. F C 2% is o-field, i.e. a collection of subsets 61 which is closed under countaBlanion and
complement and which contaifis

3. P: F — [0,1] is aprobability measuren F, which means thaP[?] = 1 and for any countable
collection{ X;}; of pairwise disjoint subsets i we haveP[U; X;] = Y. P[X;].

Note that it now follows thaP[(})] = 0 andP[Q2 — X] = 1 — P[X]. Itis also obvious thaf is closed
under intersection.

The idea behind the definition of a probability space is dg¥d. One can prove that it is not possible
to assign a probability to each set and to respect the axibpr®bability at the same time. Therefore, we
collect those sets to which we can assign a probability inte-field 7. A o—field is a collection of sets
that contains the sé! of all events and that is closed under complementation andtable union. The
rationale behind this is that we can follow the axioms of @doibty. Thus, we can assign probability one
to Q and therefor€) € F. Moreover, if we assign probabilitP[X] to a setX € F, then we can also
assign a probability to its complement, viz— P[X]. Therefore, theF is closed under complementation.
Similarly, if we have a collection of pairwise disjoint s€tX; }; which are all assigned a probability then
P[U; X;] = >, P[X;]. Hence, the union can also be given a probability and thezeffds closed under
countable unions.

The probability space associated to an adversary is getefiam the setg’,. HereC is thecone
abover, the set containing all maximal paths that start with thadipathm. Since we know the proba-
bilities on the set’, — namelyQ” (7) — and we need to haveca-field, we simply consider the smallest
o—field that contains these sets. A fundamental theorem fremsore theory now states that, under the
conditions met here, we can give a probability measure osetdl inFz by specifying it on the set€';
only, see for instance [Hal50] and [Seg95b].

Definition 3.12 The probability spaceassociated to a partial adversdrystarting insg is the probability
space given by
1. Qp = Path™**(E),

2. Fg is the smallest—field that contains the s¢C; | # € Path*(E)}, whereC, = {7’ € Qg |
mCn'} andC denotes the prefix relation on paths,

4In our terminology, countable objects include finite ones.
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3. Py is the unique measure dfg such thatP z[C,] = QF () for all 7 € Path*(s, A).

The fact that(Qg, Fr, Pg) is a probability space follows from standard measure theogyments, see
for instance [Hal50] or [Coh80]. Note th&r andFr do not depend o but only onA, and thatP g is
fully determined by the functio®?.

Note that the con€’; is contained inFg for every finite path inF, but that the cone itself contains
finite and infinitemaximalpaths. The reason for requiringto be a path in the adversafyrather than a
path inA is that in this wayFg is generated by countably many cones, even if the set okstatactions
of A is uncountable (as is the case for PTAS).

Furthermore, it is not difficult to see that if the $&t is countable, thetFg is simply the power set of
E. However, ifQQg is uncountable (and this is the case for which probabiligess have been designed),
then the sef is quite complicated — probably more complicated than itsat first sight. Obviously,
this collection can be generated inductively by startimgnfrthe cones and by taking complementation
and countable unions, but this requires ordinal inductiather than ordinary induction. Moreover, the
construction of a set not being Jfig crucially depends on the axiom of choice. The branch of nmatties
that is concerned with probability spaces and, more geneedsure spaces is callewtasure theory

The following example presents a few sets that are contamé&dg .

Example 3.13 The collectionFg contains many sets of traces that occur in practice, or thaeceasily
to one’s mind. For instance, the set of paths containing &t thoee elementsis given by

e

pEX

whereX = {a € Path*(A) | a contains at most thregs}. SinceX is countable, the set above is an
element ofFg. The set containing the single infinite patlequals

N ¢

pCm p#£m

Example 3.14 Consider the adversa#, from Example 3.6. Thefg, is just the sets of all infinite paths.
The setC';. contains the infinite paths extending the patand Fg, is the smallest—algebra containing
those cones. Some values of the funci®fe are

pre [C<E snd(0) ulgo 1)] = QE2(<ES”d(0)H%001>) = % ' %
and

P%2[a max. path generated ty contains at most three actiossd (0)] <
P”2[a max. path generated t#y contains finitely many actiong:d (0)] =

PP U a max. path generated iy contains nasnd(0) after position;| =

(3

lim PP2[a max. path generated t#ycontains nosnd(0) after position] =
1— 00
lim 0 = 0.

i—00

The third step in this computation follows easily from théinigion of probability space.

3.2.4 The trace distribution of an adversary

Now, the trace distributiol generated by an adversaFyis obtained by removing all states and inter-
nal actions from the probability space associate@toThe probability on a set of traces is now the
probabilityP ;[ X] that E generates a maximal path with a traceXin
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Definition 3.15 The trace distribution H of an adversan¥, denoted byirdistr(E), is the probability
space given by

1. Qg = Act 4" UAct4*°,
2. Fp isthe smallest-field that contains the sef€’s | 5 € Act 4™}, whereCz = {§' € Qp | BCH'},
3. PyisgivenbyPy[X] = Pg[{n € Qg | trace(r) € X}]forall X € Fy.

Standard measure theory arguments [Hal50] together withatt that the functionrace is measurable
ensure thatQ, Fi, Prr) is well-defined. We denote the set of trace distributiongl dify ¢rdistr(A).

Example 3.16 Consider the trace distributiol of adversaryF, from Example 3.6 again. The seig;
andF g need no further explanation. The probability on the{set trace(r) = snd(1)}, i.e. the maximal
paths whose trace starts withd (1), is given as follows.

Py[Cina1)) = PE[Clesnayuty, 1))
+ P [Clesnai
+ P, [Clesna(n
+ P [Clesnai

=1,_1 4,1, 99
1 100"’ "To0 T

JH100€) ]
1) uggol ]
)H300€) ]
1,
4

1 1,199 _ 1
300 T 73200 — 2

4 Implementation Relations for PAs

4.1 Trace distribution inclusion

A common approach in verification of concurrent systems iddscribe both the implementation of a
system and its specification by automata. ifplementation relatiothen expresses when one automaton
is a correctimplementation of another. For NAs, titaee inclusiorrelation, denoted biZ tg, is often used.
This means thatl to is considered to be a correct implementatiog dfand only if trace(A) C trace(B).
Trace inclusion is one of the simplest implementation refet and many others are based on it. Trace
inclusion preservesafety properties

Since trace distributions are the natural counterpartsagiess, one might propose trace distribution
inclusionCyp as an implementation relation for PAs. The trace distriougquivalencespp expresses
that two systems have the same external behavior.

Definition 4.1 For PAsA andB, defined Ctp B = trdistr(A) C BandA =1p B = trdistr(A) =
trdistr(B).

In order to be useful in verification, an implementatiorshould be substitutive with respect to parallel
composition. This means that; C A, implies.A; || B C 4|l B. Substitutivity guarantees that.4;
correctly implementsis, it does so in all environments. Moreover, substitutiviyneeded for composi-
tional verification and design, that is, to derive the camess from a system from the correctness of its
components.

As shown below, the relationrp, is not substitutive with respect {0 The example is the result of a
discussion with Segala and is an adaptation of an earlienpbeaby him [Seg95b]. We find the example
here more convincing, because these adversaries use orktenmal information (visible actions) of the
other system, whereas the ones in [Seg95b] make differeitides depending on internal information
(states) of the environment.

Example 4.2 Consider the PAsd,;, A> andB in Figure 10. It is not difficult to see thal; Ctp A-.

We claim that4, || B Z1p A2 || B. In order to see this, consider the automdta|| B andA, || B in
Figure 11.
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Figure 10: The automatd,, 4> and53 showing that trace distribution inclusion is not compasitil
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Figure 11: The PAs{, || B and.A, || B, showing that trace distribution inclusion is not compiosial

Let E; be the adversary afl; || B that, in each state having an outgoing transition, schedhie
unigue outgoing transition with probability one. (The trepresenting this adversary has the same struc-
ture as the PAA4; || B.) Itis not difficult to see that there is no adversary4f || B with the same
trace distributiond, = trdistr(F;): assume that there is one, sAy. Let Hy = trdistr(Ez). As
Py, [{adf}] = L, E, should schedule the leftmost transition.4f || B with probability one. But then
P, [{aeg}] = 0, wherea® y, [{aeg}] = 1.

Note that, when considered as NAs, then we hdvé_tr A>. Thus, probabilistic environments (mod-
eled as a PA) can distinguish more than nonprobabilisticenmnents, even if the automata considered do
not contain probabilistic choices.

4.2 Trace distribution precongruence

In order to obtain a substitutive implementation relatiSagala proposes to simply consider the coarsest
(i.e. the largest) precongruence containe@ i, denoted by"_ptp. The relatiorCprp preserves prob-
abilistic safety properties. These are properties exprgsbat for a given probability, “some bad thing
happens with a probability smaller than p.” A direct proof4fCprp B from the definitions is usually
complicated. Section 5 treats probabilistic simulatidatiens, which are sound for trace distribution in-
clusion and much easier to establish. Another importanttresthe alternative characterizationGbrp

with the principal context.

Theorem 4.3 ([Seg95b])LetC be the PA shown in Figure 12, where we suppose that the agilefisand
pright are fresh. Thetd Cpp Biff A||C Ctp B || C.

The work [AHJO01] develops notion of behavior for a variablesed, synchronous probabilistic model.
The key idea is to retain the variable dependencies when asimgptwo systems. That is, an adversary of
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Figure 12: Principal context

the composed system is a product of two adversaries for timpaoent systems and one for the environ-
ment.

Remark 4.4 (Trace distributions versus traces)Recall from Remark 2.8 that each NA can be interpreted
as a PA by simply considering the target state of a transétsomDirac distribution. Then the question arises
whether two trace equivalent NAs are also trace distrilougiguivalent. Surprisingly, this is not the case. In
[Sto02], it is shown that trace equivalence and trace 8istion equivalence coincide for finitely branching
NAs, that is, for NAs in which the number of outgoing trarwits in a state is finite. It is conjectured that
this also holds for countably branching NAs. However, focauntably branching NAs, the result fails.

5 Probabilistic Simulation and Bisimulation

Simulation and bisimulation relations are a useful tooldgstem analysis. Both relations are sound for
trace-based relations, while they are much easier to éstaldffurthermore, bisimulation relations allow
one to reduce a system to equivalent but smaller system hwhiobtained by replacing each state in a
system by its bisimulation equivalence class.

(Bi-)simulation relations have been developed for manfediint systems, including timed and hybrid
systems. This section discusses weak and strong probtitis)simulations.

Recall that in the non-probabilistic case a bisimulatioansequivalence? on the state spacg such
that (s, s') € R ands = t imply that there is a transitios’ = #' and(s’,#') € R. Since the target of
a transition a PA is a probability distribution rather thasiragle state, a probabilistic bisimulation has to
compare probability distributionsandy’ when matching transitions % p ands’ % p/ in related states
ands’. The idea is as follows. Since bisimilar states are intergkable, it does not matter which element
within the same bisimulation equivalence class is reacliézhce, a bisimulation relation compares the
probability to reach the equivalence classes, rather timpriobability to reach a single element. Thus, we
lift an equivalence relatio® on S to a relation oDistr(S) in as follows.

Definition 5.1 Let X be a set and leR an equivalence relation oK. Then the lifting of R to Distr(.S),
denoted by=g, is defined by

p=rp = VC[u[C]=p[C]].
whereC ranges over the séf/ R of equivalence classes modufo

Definition 5.2 (Strong bisimulation) An equivalence relatiof® C S x S is astrong simulatioriff for all
(s,s') € R

if s——u then there is a transitiosi— ' with © =g 1.
The states ands’ arestrongly bisimilar notations =~ ', if there exists a bisimulatio® containing

(s,8).
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Example 5.3 The states ands’ in the system in Figure 13(a) are strongly bisimilar and soyaandy’
and so are;;, x> andz’. Indeedu andy’ assign exactly the same probabilities to each of the eqnical
classeqs, s'}, {z}, {y,y'} and{z1, 22, z}.

The situation for simulations is similar, except that wergatruse the relationreg anymore to com-
pare the target probability distributions of two trangiso because simulation relations need not be equiv-
alences. Instead, Cg 1’ is established by a weight function. This function quargif@ewhich extend the
probability u(z) contributes to the probability’ (') of a related state.

Definition 5.4 (Strong simulation) A relationR C S x S is astrong simulationiff for all (s,s') € R
if s——u then there is a transitiosi— ' with u Cr p'.
The states ands’ arestrongly similar notations <., s, if there exists a bisimulatio® containing

(s,8").

Example 5.5 Now, consider the system in Figure 13(b). The relafide= {(s, s'), (t,t'), (u,u’), (u,t'),
(v,v")} is a strong simulation. For instance, the stais related to the statesandu’. We can distribute
n(u) = 2 overt’ andu’ by havinguwgt (¢,t') = 1/3, wgt(u,u’) = 1/2. Moreover, takewgt(u,t') = 1/6
andwgt(-,-) = 0in the other cases. This shows" g '

5.1 Strong Combined (Bi-)simulation

In [Seg95b], Segala claims that strong (bi—)simulatioro $trong in certain cases. He argues that it is
more natural to allow an—transition to be matched by a convex combination-gfansitions, rather than
by a singlea—transition. This leads to a notion that we aaimbined bisimulation

Definition 5.6 We write s =  iff there is a countable family of transitions—sy;, such that: is a
convex combination of the distributiops.

Definition 5.7 (Strong combined (bi—)simulation) A strong combined simulatiois a relationk on S
such that for alls,s') € R

if s—=s then there is a transitiost = z/ with u C g 4'.

A strong combined bisimulatiois a strong combined simulation which is an equivalence. kigew
81 Rsesim S2 (81 Rsepis S2) iff there exists a strong combined (bi—)simulation whidm@ins(sy, s2).

Simulation relations are often used to establish that cate $or system) correctly implements another
one. The example below shows that, unlike strong simulafido strongcombinedsimulations allow a
nondeterministic choice to be implemented by a probalul@toice.
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Example 5.8 Consider the systems in Figure 14. The relatidn,, t1), (s2,t2), (s3,t3)} is a strong
combined simulation. The transition—», ;1 corresponds to the combined transitibn = v with

v(ts) = v(t3) = 1 is obtained as a convex combination of the step&s {t, — 1} andt; = {t3 — 1}

withv = 2 {t, = 1} + 1 - {t5 = 1}. This relation is not a strong simulation becaus&,  cannot be
matched with any of the outgoing transitionsin

@

¢ ¢

Figure 14: Simulating a probabilistic choice by a nondetarstic one.

6 Other Models for Probabilistic Systems

Several models have been proposed in the literature to nsyde#ms with probabilistic choice. These
models can be classified according to the types nondetesticiand probabilistic choices they allow. we

consider models that contain either no or only external terewal and internal nondeterminism. As far as
probability concerns, we consider models with discretéh) ekponential and with any kind of probabilities.

The reader is referred to Table 15 for a schematic overvieilveomodels discussed below.

6.1 Probabilistic Models without Nondeterministic choice

Probabilistic models without nondeterminism are sometiwedledpurely probabilistic models Below
we discuss discrete time, continuous time, and semi-Mawains, which widely used in performance
analysis, economics and the social sciences.

Discrete time Markov Chains A discrete time Markov Chain (DTMG$ basically an unlabeled PA in
which each state has exactly one outgoing probabilistitsttan.

Continuous time Markov Chains A continuous time Markov chain (CTM@an be seen as a DTMC in
which each state is assigned aatein A\, € R>°. The rate\, determines theojourn timein s, that is, the
amount of time the process can spend:ithe probability to stay i for at mostt time units is given by
1—e~*s . One of the key features of the exponential distributiortsictvymake CTMCs relatively easy to
analyze, is the memoryless property. This means that tHeapitity to stay in a state for at most another
time units does not depend on the amount of time that hasdgitszen spent there.

Semi—Markov chains Semi—Markov chains (SMCggneralize CTMCs, by allowing the sojourn time to
be determined by an arbitrary probability distributions.

An advantage of purely probabilistic models over model$iwidbndeterminism is that the probability
on a certain event is a single real number, not an interval.orfy Iresearch tradition in these models
has put forward many algebraic, analytical and numericdin&ues to compute these probabilities. A
disadvantage is that the absence of nondeterminism doedlowtan asynchronous parallel composition
operator.

6.2 Probabilistic Models with External Nondeterministic Choice

In models that combine probabilistic choice with externahdeterminism, all outgoing edges of a state
have different labels. We discuss Markov Decision ProcgsBeobabilistic /O automata and Semi—

20



Markov decision processes. The advantage of these modélstian asynchronous parallel composition
operator can be defined, allowing a large system to be spli{/geveral smaller components. Furthermore,
when we put the system in an purely probabilistic environingguinch that each system transition synchro-
nizes with an environment transition), the whole systenmphees purely probabilistic and the analysis
techniques for these systems can be used.

Markov Decision Processe#é Markov Decision Process (MDR3 a PA without internal actions in which
each state contains at most one outgoing transition lalvétd:.

Probabilistic I/O automata Probabilistic I/0 automata (PIOAs) [WSS97] combine exéénondetermin-
ism with exponential probability distributions. The meryless property of these distributions allows a
smooth definition of a parallel composition operator, assfaimdependent transitions are concerned. For
synchronizing transitions, the situation is more difficiMarious solutions have been proposed. We find
the solution adopted in PIOAs one of the cleanest. This mpaleitions the visible actions into input and
output actions. Output and internal actions are governedteg. This means that they can only been taken
when the sojourn time has expired. Furthermore, the chabeden the various output or internal action
is purely probabilistic. Input actions, on the other hane, @ways enabled and can be taken before the
sojourn time has expired.

Semi—Markov decision processeButerman [Put94] discusses Semi—Markov decision proséS$&DPs),
which are basically Semi—Markov chains with external naedeinistic choice.

6.3 Probabilistic Models with Full Nondeterminism

Probabilistic automata We have already seen that probabilistic automata and v‘arihareof combine
nondeterministic and discrete probabilistic choice. $@Ey@ocess algebras, such as ACP [And99b, And99a],
the probabilistier—calculus and the probabilistic process algebra definedan4], allow one to describe
such models algebraically.

Interactive Markov chains Interactive Markov Chains (IMCs) [Her99] combine exponaidistributions
with full nondeterminism. The definition of a parallel congit®on operator poses the same problems as
when one combines exponential distributions with extenmaideterminism. IMCs propose an elegant
solution by distinguishing between interactive transii@nd Markovian transitions. Tlmeractive tran-
sitionsallow one to specify external and internal nondetermiaistioices and they synchronize (except
for the 7 transition) with their environment. Thi@larkovian transitionsspecify the rate with which the
transition is taken, similarly to CTMCs.

SPADESFull nondeterminism and arbitrary probability distrilmrts are combined in the process algebra
SPADES (also writter)) and its underlying semantic modsfochastic automatéSAs). The sojourn
time in a state of an SA is specified via clocks, which can hatérary probability distributions. More
precisely, each transition is decorated with a (possiblytgiset of clocks: and can only be taken when all
clocks ink have expired. In that case all clocks4drare assigned new values according to their probability
distributions. Stochastic automata in their turn have assgits in terms of stochastic transition systems.
These are transition systems in which the target of a tiansian be an arbitrary probability space.

7 Summary

The probabilistic automaton model discussed in this papetines discrete probabilistic choice and non-
deterministic choice in an orthogonal way. This allows udeéine an asynchronous parallel composition
operator and makes the model suitable for reasoning abeddnaized distributed algorithms, probabilistic
communication protocols and systems with failing compasieRAs subsume nonprobabilistic transition
systems, Markov decision processes and Markov chains. &emdinistic timing can be naturally incor-
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none | external | full nondeterminism
discrete | DTMC MDP PAs, GPA, AM
pr ACP, prr—calculus
exponentiall CTMC PIOA IMC
SPN algebra for IMC
general SMP SAs
GSNP | SMDP A

Figure 15: Classification of probabilistic models accogdin their nondeterministic and probabilistic
choices

porated in this model, but stochastic time, allowing fortimmnous probabilistic choice over time, cannot.

The behavior of a PA relies on randomized, partial advezsarirhese resolve the nondeterministic
choices in the model by replacing them by probabilistic oWgken ranging over all possible adversaries,
one obtains the set of associated probability spaces of a&Rése, in their turn, yield the set of trace
distributions, describing the external behavior of a PA.

The implementation relation proposed for PAs is the tractridution precongruence. This is the
largest precongruence relation contained in the traceilalition inclusion relation. The latter is not a
precongruence. The trace distribution precongruence eachhracterized alternatively by a principal
context. Surprisingly, this context can also distinguigimieen nonprobabilistic automata that are trace
equivalent.

We ended this section with an overview of probabilistic mMedad classified them according to their
treatment of probabilistic choice, nondeterministic deaind the nature of time (nondeterministic or prob-
abilistic).
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