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1. Introduction

The IEEE 1394 Root Contention Protocol (RCP) has become a rather popular case study for investigating
the feasibility of formal specification and verification techniques. The protocol is small and easy to understand
and yet the problems encountered when verifying this protocol are in many aspects illustrative for the formal
verification of many other applications. Moreover, as a part of the IEEE 1394 serial bus protocol (” FireWire,”
”iLink”), RCP is associated with an appealing state—of-the—art multimedia application.

RCP is a subprotocol of the Tree Identify Phase of the IEEE 1394 standard and its purpose is to elect a
leader among two processes. Its correctness critically depends on the use of randomisation and timing delays.

This paper compares several approaches to the verification of IEEE 1394 RCP and reports on the expe-
riences and lessons to be learned when applying formal methods to industrial systems. Notably, we survey
the papers [Sha99, SV99a, BLdRT00, BST00, CS01, D’A99, KNS02, DKN02, FS01, Sto99, SV99b, SS01,
HRSVO02]. These case studies can be divided into three classes: papers that study the functional behaviour
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of the protocol (including timing and probabilistic behaviour) [Sha99, SV99a, Sto99, SV99b, SS01], case
studies that employ parametric model checking to discover the parameter constraints needed for protocol
correctness [BLART00, BST00, CS01, HRSV02], and studies that focus on the performance analysis of RCP

[D’A99, KNS02, DKN02, FS01]. The results of these case studies are summarised in Table 1 on page 8.

Organisation of the paper This paper is organised as follows. We first discuss several aspects that are
important in the modeling and analysis of the protocol in Section 2. Then Sections 3, 4 and 5 survey the
case studies that respectively consider the functional behaviour of RCP, the parametric aspects of RCP and
the performance of RCP. Within each subsection, the works are discussed in chronological order. Finally,
Section 6 presents some concluding remarks. We refer the reader to Table 1 on page 8 for an overview of
results.

2. Aspects in the Modeling and Analysis of RCP

For a description of RCP, the reader is referred to the introductory chapter [MRS02] of this special issue or
to any of the other papers discussed below. In this section, we describe various features that play a role in
its modeling and analysis.

Due to the use of random bits, the protocol is probabilistic in nature. Real-time is needed to model and
analyse the root contend wait times and communication delays in the cables. Furthermore, nondeterminism
is essential to model the fact that the timing delays (i.e. the root contend wait times and the communica-
tion delay) do not have not fixed values, but lie within intervals. Moreover, within more abstract protocol
descriptions, nondeterminism models the phenomenon that, if two nodes pick the same random bits, then
either one of them is elected as leader or root contention reoccurs. Finally, parametric models abstract from
the concrete values in the protocol. Parameters of RCP are the minimal and maximal values of RC_FAST
and RC_SLOW, the maximal communication delay in the cables and the probability p that the coin flip
yields heads (i.e. random bit zero is drawn, in which case fast timing is selected). Note that the (maximal)
communication delay is determined by two other parameters, namely the maximal cable length and the
(maximal) signal propagation delay per meter. In the sequel, we deal with the delay parameter, not with the
cable length and delay per meter.

Several properties are of interest for the protocol’s correctness. Safety properties are properties stating
that “nothing bad ever happens” during execution of the protocol. A crucial safety property for RCP is
that at most one leader is elected. Liveness properties state that “eventually, something good happens.”
An important liveness property is that eventually at least one leader is elected (with probability one).
Furthermore, performance properties concern the quantitative behaviour of the protocol, for instance the
probability that a leader is elected within a certain amount of time or the average number of rounds needed
to elect a leader. All of these properties can either be tackled parametrically or nonparametrically.

Obviously, it is impossible to consider all those features and properties at the same time. Therefore, each
of the case studies described below focuses on one or more aspects, while abstracting from others.

Notation Throughout this paper, we use the following notation. Let PN denote the parent notify signal
(parent request), CN the child notify signal (acknowledgement) and IDLE the idle signal. Furthermore,
delay denotes the maximal communication delay in the channel, rc_fast_min denotes the minimal value of
RC_FAST and rc_fast_maz its maximal value. Similarly, re_slow_min and rc_slow_max respectively denote

the minimum and maximum of RC_.SLOW. The actual values of these constants can be found in [MRS02].

3. Functional and Timing Behaviour of RCP
3.1. Verification of RCP using stepwise refinement

The papers [St099, SV99b, SS01] verify RCP using automata theory. That is, they describe both the protocol
and its specification as automata, respectively Impl and Spec. Correctness of Impl with respect to Spec is
then expressed by Impl C Spec, where C is a suitable behavioral inclusion. This relation is established by
stepwise abstraction: it is shown that Impl C I; C I, C I3 C Spec. The mentioned works consider different
versions of Impl and I;: The automaton I; is obtained by abstracting from the communication in Impl,



I, removes all timing information from I; (in the discrete time case I; = I5) and I3, which is similar in
all works, further contracts the internal choices. To prove these inclusions, [St099, SV99b] introduce special
cases of the probabilistic simulation relations from [SL95, SV99b]. The inclusion I, C I3 is the step where
the main probabilistic analysis is carried out and only involves small automata.

Discrete time model [St099] As a starting point for further verification, [Sto99] describes a probabilistic,
discrete time model in the probabilistic I/O automata framework from [Seg95]. The abstraction to discrete
time is justified by the observation that RC_.SLOW is about 2 times RC_FAST and that the communication
delay is negligible compared to the root contention wait times.

The work [Sto99] studies the probabilistic behaviour in combination with fairness and uses a combination
of manual verification and model checking to establish the protocol correctness: the relations C are checked
manually and the invariants and fairness properties needed to establish these inclusions are checked with
SMV [McM93]. An important conclusion from this verification effort is that is quite easy to model the
protocol in SMV and check the desired properties, but the formal relationship between the I/O automaton
model and the derived SMV model, which is needed to infer that the properties that were checked for the
SMYV model also hold for the I/O automaton model, involves many technical details.

Real-time model [SV99b] To study the real-time behaviour, timing has been modeled more precisely
in [SV99b], using the probabilistic timed I/O automaton from [Seg95]. As in the discrete time model, the
communication between the nodes is modeled as the transfer of packages (PN or CN). That is, single messages
which are sent only once and, upon receipt, removed from the wire. The analysis of this protocol model has
been done manually, where the constants rc_fast_min, rc_fast_-mazx, rc_slow_min, rc_slow_-maz and delay
are treated as timing parameters. Two constraints on these parameters are derived that ensure protocol
correctness:

delay < rc_fast_min, (Eqo)
2 x delay < rc_slow_min — re_fast_max. (Eqz)

However, a document from the IEEE 1394 working group [LaF97] (found by the authors after publication
of their work) provides different timing constraints:

2 x delay < rc_fast_min, (Eq:)
2 x delay < rc_slow_min — rc_fast_maz, (Eqz)

showing that the model in [SV99b] does not conform to the IEEE standard. Neither of these constraints are
present in the standards, but the root contend wait times for the 1394 and 1394a standards meet all of them.

Detailed model [SS01] A close inspection of the IEEE documentation yielded that it is inappropriate to
model the communication between the nodes by a packet mechanism as in [St099, SV99b]. This is for two
reasons. First, it is necessary to model the absence of a message (IDLE) explicitly. Secondly, signals, unlike
packages, may remain unseen by the receiving node. The latter is the case if a second signal (possibly IDLE)
arrives at the receiving node’s port, while the node has not sampled its port since the first signal arrived. This
observation yielded the more accurate model in [SSO1], where the processes communicate via signals, that
is, where discrete events represent changes in the signals — the signals themselves are driven continuously
across the wire.

There is one (minor) point where the model in [SS01] does not conform to the IEEE standard: initially,
both nodes in this model detect root contention simultaneously, whereas one can infer from the standard
that any delay less than delay is allowed between the detection of root contention by both nodes. When root
contention reoccurs, the model in [SS01] does, however, allow for exactly this maximal delay between both
detections.

Since the probabilistic analysis of this model is very similar to the real-time model, [SS01] replaces the
probabilistic choice by nondeterminism and focuses the timing parameters. The work established experi-
mentally that the equations Fq; and Ege from [LaF97] are necessary and sufficient for correct protocol
operation. To do so, it used the model checker Uppaal to analyse a large number of protocol instances with
different parameters values. Although not completely formal, these experiments provide good evidence that
Eq; and Eqg are indeed the required constraints. As it is the case with SMV, it was not difficult to model



and analyse the protocol in Uppaal, but the formal relationship between the I/O automaton model and the
Uppaal model involves many technical details.

3.2. Modeling RCP with E-LOTOS

E-LOTOS Shankland et al. [Sha99, SV99a] present a formal description in E-LOTOS of the entire Tree
Identify Phase in IEEE 1394, including RCP. E-LOTOS is an enhancement to the ISO standard formal
description technique LOTOS and extends LOTOS with time, a better modularity and more flexible data
types. An advantage of E-LOTOS is its similarity with programming languages, making it easy to read for
engineers, see [MS00]. The main purpose of this work is to investigate the usability of the new language
features of E-LOTOS; the experience is positive. Since tools for E-LOTOS have not been developed yet, no
rigorous verification was carried out.

Although created independently, the models [Sha99, SV99a] (their RCP parts) and [SV99b] are quite
similar and both do not completely comply to the standard. Each of these works models the communication
by a packet mechanism. Secondly, in [Sha99, SV99a], a CN is sent immediately after a PN has been detected,
whereas the standard requires to wait at least the minimal root contention time. It is said in [SV99a, MS00)]
that this has been done because checking for a message after the waiting time has been expired is not
expressible in E-LOTOS. If this is indeed the case, then this would plead for an extension of E-LOTOS with
more expressive means.

Since no probabilistic choice is present in E-LOTOS, it is replaced by nondeterminism, as in [SSO01,
CS01, HRSVO02]. Furthermore, being integrated in the Tree Identify Phase, the nodes in [Sha99, SV99a]
automatically detect root contention asynchronously, in less than delay time one after another, also in the
initial state. The latter is not the case in [SSO01].

4. Parametric Model Checking of RCP

Given a parameterised system model A, a property ¢ and an optional initial parameter constraint Cy, the aim
of parametric model checking is to synthesise a parameter constraint C; which describes the exact conditions
on the parameter values required for A to satisfy ¢, where we may assume that the parameters meet Cj.
Formally, C; is such that Cp = (A E ¢ < C4).

Although it is shown in [AHV93] that this problem is undecidable for linear parametric timed automata,
several parametric model checkers for these automata been developed, namely HyTech [HHW97], LPMC
[LTA98], TReX [ABSO1] and a parametric extension to Uppaal [HRSV02]. Given the result in [AHV93],
termination of these tools is not guaranteed, but all of them have been successfully applied to RCP. Another
practical problem is that the generated constraint C; often comes out of the tool as a very long expression,
which can usually be simplified. Currently, the simplification has to be done by hand, because none of the
tools has a simplification procedure.

Besides generating the constraints for a property ¢, parametric model checking can also be used to
establish that a given constraint C' is sufficient for ¢ to hold in 4. In that case, one provides C' as an initial
constraint checks that the generated constraint C; is true. Necessity of C' can be established by checking
that =C' is sufficient for =¢. Although undecidable as well, checking parameter constraints turns out to be
considerably more efficient in practice than generating them.

Since automatic parameter analysis is challenging enough, all the models below replace the probabilistic
choice that governs the selection of random bits by a nondeterministic one.

LPMC Toetenel and his team ([BLART00, BST00]) have used their parametric model checker LPMC to
investigate the timing constraints of RCP. The model in [BLARTO00] is based on to the one in [SV99b] and
[BSTOO] is similar to [SS01]; the same timing constraints are found. However, by designating a different initial
state, the model in [BST00] allows the nodes to detect root contention asynchronously when the protocol
starts. Thus, the model in [BSTO00] is — according to the author’s current knowledge of the protocol — the
only one that completely conforms to the standard. Furthermore, [BLART00, BST00] carry out the entire
verification with LPMC. This is unlike [SS01, HRSV02, CS01], where additional machinery is needed to deal
with liveness and probabilistic choice. Since LPMC is capable of analysing liveness properties, [BLART00,
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BSTO00] simply replaced the probabilistic choice with a fairness property. This is appropriate since only
functional behaviour is considered: the fairness property is implied by the probabilistic behaviour of the
protocol.

Several safety and liveness properties are analysed; the most important ones being that eventually, one
leader is elected and that never two leaders are elected. However, only one or two the values are taken as
parameters: delay and (in some cases) rc_slow_min — rc_fast_maz; the other values are constants. Since the
time and memory consumption in the verification was very modest, one might wonder why they did not
analyse a fully parametric model.

Parametric Uppaal The work [HRSV02] verified the models Impl in [SV99b] and [SS01] with a parametric
extension of the model checker Uppaal, where all the five timing constants of RCP are treated as parameters.
It establishes the constraints needed for the inclusion Impl C I; and for the property that never two leaders
are elected. This was done both by parameter synthesis and by parameter checking. Parameter synthesis
is considerably more resource consuming than parameter checking. Furthermore, [HRSV02] develops and
applies a technique that, when checking sufficiency of a constraint, allows certain parameters to be eliminated,
while the results obtained hold for the fully parameterised model.

When checking the parameter constraints, [HRSV02] gains serious speed ups by developing (and applying)
a parameter elimination technique. Due to the special format of the RCP models, where each parameter in
RCP constitutes either a lower bound or an upper bound on the timing delays, certain parameters can be
eliminated, while the results hold for the fully parametric model.

The special format of the automata modeling RCP allowed certain parameters to be eliminated and still
to obtain general results, which gained serious speed ups.

TReX Another parametric verification of RCP has been carried out by Collomb—Annichini & Sighireanu
[CSO01]. Using their TReX tool [ABS01] as well as HyTech, [CS01] analysed several variations of Impl,
including a model that allows for asynchronous detection of root contention in the initial state. It generated
the constraints for the fact that at most one leader is elected, the fact that root contention is resolved if
both nodes pick different random bits; and it checks the constraints for the inclusion Impl C I;. All 5 timing
constants are taken as parameters and the same constraints as in [SS01, HRSV02] are established.

TReX synthesises the constraints for RCP automatically. Since TReX overapproximates the constraints
for which a property ¢ does not hold (i.e. finds a necessary constraint for ¢), several runs of the tool with
different initial constraints are needed to derive the exact constraints which needed for ¢ to hold. In this
way, [CS01] derives the constraints for several properties.

Furthermore, [CS01] establishes that Impl C I; if the parameters meet the constraints Eq; and Egs.
Here, Fq; and Eqe are given as initial constraints, not synthesised. The ability of TREX to detect synchroni-
sation failures allows it to smoothly check whether Impl C I;, whereas [HRSV02] needs rather complicated
constructions on timed automata.

The performance of TReX is worse, both in time and in space, than the parametric extension to Uppaal,
also in the cases where constraints were checked and not synthesised. This is explained by the fact that
TReX is more general than Parametric Uppaal. In particular, it is able to deal with nonlinear constraints,
which require more complex comparison algorithms. Compared with HyTech, TReX is slower, but HyTech
was not able to synthesise the constraints for RCP and ran out of memory on several crucial properties,
which TReX could handle successfully.

Comparison All tools are able to analyse the constraints for RCP and report the same results. Each of
the approaches has its own weak and strong points — basically determined by the power of underlying tools:
LPMC is the only tool that can handle fairness, but analyses only 2 parameters; parametric Uppaal is
fast, TReX needs multiple runs of the tool to synthesise the constraints, but does not need complicated
constructions on automata to check inclusion of behaviour. Thus, one can expect that a combination of the
techniques implemented in the various tools will yield further improvements.

5. Performance Analysis of RCP

Performance analysis aims at a quantitative evaluation of a system. Interesting performance measures for
RCP are the minimal probability to elect a leader within a certain time and the maximal average number of



rounds needed before a leader is elected. Traditionally, performance analysis considers purely probabilistic
systems, that is, systems with discrete and/or continuous probabilistic choices, but without nondeterminism.
If nondeterminism is present — such as in RCP — then most performance measures are no longer expressible as
a single number, but yield an interval, since the performance of the system may depend on the resolution of
the nondeterminism. Thus, we can compute the minimal® probability for RCP to elect a leader in 5 rounds,
but not the or the average probability to choose a leader in 5 rounds.

Several performance analysis methods have been extended for systems with nondeterminism, for instance
[LSS94, BA95, Alf97, McI99, KNSS01], where only [KNSS01] has been implemented. The papers [BA95,
Alf97, McI99] consider finite systems that associate to each state a number expressing the cost of being in
that state. Since its real-time behaviour makes RCP an infinite state system these works cannot be applied
directly here. In fact, only [LSS94, KNSS01] are directly applicable.

Hence, the approach taken by [D’A99] and [FSO01] is to first remove the nondeterminism, respectively
replacing it by a probabilistic and a deterministic choice, and then to apply techniques from traditional
performance analysis. The works [KNS02] and [DKNO02], which apply techniques from [KNSS01], are one of
the few that take up the challenge of doing performance analysis in the presence of nondeterminism.

Spades D’Argenio [D’A99] investigates the performance of RCP using a discrete event simulator for §
(Spades). @ is a stochastic process algebra which allows one to specify timing delays governed by arbitrary
probability distributions. Discrete event simulation is similar to testing in the sense that many runs from
a system are taken, for which the performance measures are then computed. However, since all choices are
probabilistic, one can exactly quantify the accuracy of the simulation — which is high if very many runs are
taken.

The protocol model is based on [SV99b]. Although the standard specifies timing delays to be taken
nondeterministically within their respective intervals, [D’A99] assumes a uniform distribution for the root
contention times and [—distribution for the communication delay. Since techniques and tools for doing
performance analysis in the presence of nondeterminism and real-time hardly existed when [D’A99] was
written, resolving the nondeterministic choices by probabilistic ones was the best one could do. The analysis
shows that, in most of the cases, root contention is resolved in one round of the protocol. It also reveals that
both the average time until root contention is resolved and its variance grow approximately linearly with
the cable length.

Deadline properties Kwiatkowska, Norman and Sproston [KNS02] and Daws, Kwiatkowska and Norman
[DKNO2] study deadline properties of RCP. Given a deadline of d ns, they compute the minimal probability
that RCP elects a leader within that deadline, for different values of d. Such deadline properties can be
verified automatically by the tool Prism [{AKNT00, KNP02] for systems modeled as finite Markov decision
processes (MDPs).

The models analysed in [KNS02] are Impl and I; from [SS01], augmented with probabilities % for the
outcomes of the coin flips. Since Impl and I; include real-time, these do not fall into the class of MDPs.
Three techniques are used to translate I into a finite MDP: the first uses the forward reachability method
from [KNSSO01] implemented in HyTech; the second partitions the state space of I; according to the region
equivalence as in [AD94]; and the last one interprets I in integer semantics, which yields in this case a
model that is equivalent to the standard real semantics, but which is finite. The resulting MDPs were then
given as input to Prism and all yield (upon termination) the same minimal probability for electing a leader
within the choose deadlines. Since Impl C I;, we know that the minimal probability to elect a leader within
deadline d for I; is a lower bound for the minimal probability for Impl to do so. This needs not be the exact
probability, since it is not known whether I; C Impl — probably so, but a firm result would be useful here.

The model Impl was analysed using integer semantics only, which was the most efficient technique for
the analysis of I;. Since the state space of the generated MDP grows with the deadline d, smaller deadlines
can be analysed for Impl than for the smaller automaton I;. The minimal probabilities for Impl are the
same as for I, thus suggesting that Iy C Impl indeed.

The work [DKNO02] takes a similar approach and analyses the model I; using Kronos and Prism. First,
Kronos is used to construct the symbolic forward reachability graph, which is then fed into Prism to analyse

L Since these intervals can be open, half-open or closed, we should, in general, consider infima and suprema. It is not difficult
to show that for the performance measures of RCP mentioned below the minima and maxima exist.



the deadline properties. The analysis with Kronos and Prism is considerably more efficient in time and space
than the analysis with HyTech and Prism; the same results are found. Furthermore, [DKNO02] studies the
influence of using a biased coin. As mentioned in [Sto01], a curious property of the protocol is that the both
the maximal and the minimal probability to elect a leader before a deadline can be slightly increased by
increasing the probability for a node to select fast timing. This is because, although the protocol will need
more rounds to elect a leader, the time per round in lower when both nodes select fast timing. It turns out
that, for deadlines of 6000 and 10000 ns, the optimal maximal probability is reached when the probability

to select fast timing is approximately 0.6.

pGCL A third investigation of the performance of RCP has been carried out by Fidge & Shankland [FS01]
using pGCL (probabilistic guarded command language). The language pGCL [MM99] is a probabilistic
extension of Dijkstra’s GCL where pre— and postcondition predicates no longer yield booleans, but values
in [0, 1] representing probabilities.

The model analysed in [FS01] is a high—level description of the protocol in which neither nondeterminism
nor real-time is present. Instead, root contention always reoccurs when two nodes pick the same random
bits. When computing the worst case performance, this abstraction is appropriate, but a formal proof to
justify this would be valuable.

Using pGLC proof rules, [FS01] establishes that the probability to terminate in M rounds of the protocol
equals 1 — (p®> + (1 = p)H)M =1 — (1 — 2p + 2-p*)M, where p is the probability to select fast timing. Since
each round is bounded by rc_slow_maz (communication delays are neglected), the probability to terminate
within a deadline M - rc_fast_maz is at least 1 — (1 — 2p + 2-p?)M. These lower bounds are strictly smaller
than the exact ones derived by [KNS02]. This can be explained by the fact that, if both nodes select fast
timing, then a round is bounded by rc_fast_maz, rather than by rc_slow_maz. However, [FS01] present an
easy to compute symbolic expression, whereas the tool [KNS02] computes exact bounds for fixed deadline.

Besides RCP, [FS01] also provides a pGCL analysis of the Tree Identify Phase.

Future work Several interesting performance aspects of RCP remain to be investigated, such as the minimal
and maximal average number of rounds and the minimal and maximal average time before a leader is elected.
The works [D’A99, KNS02, FS01, DKNO02] provide a good starting point here.

A useful fact for efficiency reasons, which has been successfully exploited in [KNS02], is that the imple-
mentation relation C mentioned above preserves many relevant performance measures (namely those that
can be expressed by traces). In other words, if A C B then A does not perform worse than B with respect
to those measures. If we also have B C A4, then A and B satisfy ezactly the same performance measures.

Moreover, we remark that the minimal and maximal average number of rounds can be computed easily
with the methods by [BA95, Alf97] on the automaton I3, because we can abstract from the exact timing
delays. However, no techniques exist yet for calculation of bounds on the average time before a leader is
elected, so an extension of the results by [BA95, Alf97] to probabilistic timed automata would be useful here.

6. Conclusion

From the papers [Sha99, SV99a, BLART00, BST00, CS01, D’A99, KNS02, FS01] and our own experiences
with verifying the IEEE 1394 Root Contention protocol, we conclude the following.

The verification of RCP shows again that constructing a realistic protocol model is far from easy: Indus-
trial standards are often informal, incomplete and difficult to read for nonexperts. Thus, errors in a protocol
model arise easily due to misinterpretations and misunderstandings. Moreover, it is usually unavoidable to
abstract from certain details in the standard, but it is hard to judge whether these abstractions are appro-
priate. In RCP, it turned out to be inappropriate to model the communication delay between the nodes
by a packet mechanism. Since other case studies verified parts of the Tree Identify Phase using a packet
mechanism as well, it would be worthwhile to investigate to what extent this is appropriate there.

Furthermore, for maximal profit from tool support, it would be desirable to have more translations
available between different formalisms and input languages of tools. If one wants to analyse a model specified
in a certain formalism, with a tool having a different input formalism, then the first formalism has to
be encoded into the second. These encodings, though not very difficult, involve a lot of technical details
due to different languages having different synchronisation principles, fairness assumptions, priorities, etc.



paper formalism  aspects properties technique tool

St099] PIOA dt,pr,nd beh. incl. sim.rel, mc manual, SMV
SV99b) PTIOA rt,pr,nd beh. incl. sim.rel manual

SS01] TA rt,nd,pm beh. incl. sim.rel, mc Uppaal

Sha99, SV99a] E-LOTOS rt,nd - - -

BLdRT00, BST00] LPTA rt,pm,nd,f safety, liveness pmc LPMC

CS01] LPTA rt,pm,nd  safety, beh. incl. pmc TReX, HyTech
HRSV02] LPTA rt,pm,nd safety, beh. incl  pmc Pa-Uppaal
D’A99] Q rt,pr perf. prop. DE DES

KNS02] PTA rt,pr,nd deadline prop. prmc HyTech + Prism
DKNO02] PTA rt,pr,nd deadline prop. prmec Kronos + Prism
FS01] pGCL dt,pr perf. prop. WPE calculus manual

Fig. 1. Overview of methods. Abbreviations: formalism PIOA = probabilistic I/O automata, PTIOA = probabilistic timed
I/O automata, LPTA = linear parametric timed automata, PTA = probabilistic timed automata, aspects pr = probability, nd
= nondeterminacy, pm = parameters, f = fairness, properties beh. incl = behavioural inclusion (C), perf. prop. = performance
properties, deadline prop. = deadline properties, technigue mc = model checking, pmc = parametric model checking, prmc
= probabilistic model checking, DE = discrete event simulation, WPE calculus = weakest pre-expectation calculus, tools
Pa-Uppaal = parametric extension of Uppaal, DES = discrete event simulator for Spades.

Automating the translations between formalisms could be achieved easily and would save a considerable
amount of verification effort.

Finally, it would be interesting to know why the IEEE standard has chosen this particular leader election
algorithm, rather than the more obvious method: each node flips a coin and sends the outcome to the other
party, until two different outcomes arise. The latter procedure seems to be faster and, importantly, does
not depend on timing constraints. This is relevant as the timing constraints Eq; and Egqe require the the
contention times to increase when longer cables are used to connect the nodes (see also [LaF97]). Hence, the
current values of RC_FAST and RC_SLOW limit the type of applications for the 1394 serial bus. Exactly
for this reason, alternative root contention protocols are investigated by the IEEE 1394 working groups
([LaF97]).
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