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Abstract. We propose a specification and verification technique based
on separation logic to reason about data race freedom and functional cor-
rectness of GPU kernels that use atomic operations as synchronisation
mechanism. Our approach exploits the notion of resource invariant from
Concurrent Separation Logic (CSL) to capture the behaviour of atomic
operations. However, because of the different memory levels in the GPU
architecture, we adapt this notion of resource invariant to these memory
levels, i.e., group resource invariants capture the behaviour of atomic
operations that access locations in local memory, while kernel resource
invariants capture the behaviour of atomic operations that access lo-
cations in global memory. We show soundness of our approach and we
provide tool support that enables us to verify kernels from standard
benchmarks suites.

1 Introduction

General purpose GPU (GPGPU) programming enables programmers to use the
power of massively parallel accelerator devices to solve computationally inten-
sive problems with a significant speed up. However, massive parallelism also
makes programming more error prone: data races might be difficult to detect,
and moreover ensuring functional correctness becomes a challenge. To address
this issue, different verification techniques for GPGPU programs have been de-
veloped [5, 3], based on separation logic and abstraction, respectively. However,
these techniques do not support reasoning about functional properties of kernels
using atomic operations. This paper discusses how the separation logic approach
to reason about GPGPU programs is extended to reason about programs that
use atomics for synchronisation.

GPU programming is based on the notion of kernels. A kernel consists of a
large number (typically hundreds) of parallel threads that all execute the same
instructions. The GPU execution model is an extension of the Single Instruction
Multiple Data (SIMD) model!, in which each thread executes the same instruc-
tion but on different data. For efficiency reasons, threads are grouped into work
groups. Each work group has its own local memory, shared among all threads in

1 To be precise, the GPU execution model is Single Instruction Multiple Thread
(SIMT), which extends SIMD with more flexibility in the control flow.
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the work group. Further, the kernel has a global memory, which is shared among
all threads on the GPU device. Threads within a work group usually synchronise
by barriers. Atomic operations provide asynchronous updates on shared memory
locations (either in global or local memory) and are the only mechanism to sup-
port inter-group synchronisation in GPU programs. Moreover, atomic operations
are also sometimes used for synchronisation within a work group, because they
enable more flexible parallel behaviours than using barriers alone. For example,
the Parallel add example in Section 3 and the Histogram example in the Parboil
benchmark [15] benefit from the flexible parallel behaviour of atomic operations.

In earlier work, we used permission-based separation logic to reason about
data race freedom and functional correctness of GPGPU kernels that use barriers
as the only synchronisation construct [5]. This paper extends this logic to reason
about kernels that also use atomic operations. The main idea of our work is to
adapt the notion of resource invariants, as originally introduced for Concurrent
Separation Logic (CSL) by O’Hearn, to reason about the behaviour of atomic
operations w.r.t. the GPU memory hierarchy.

Resource invariants capture the properties of shared memory locations. These
properties only may be violated by a thread that is in the critical section, and
thus has exclusive access to the shared memory locations. Before leaving the
critical section, the thread has to ensure that the resource invariants are re-
established. Because of the GPU memory hierarchy, shared memory locations
can be both in local memory (shared between threads in a single work group)
and in global memory (shared between all threads). Therefore, in our approach
we use group resource invariants that capture the properties for local shared
memory locations, and kernel resource invariants to capture the properties for
global shared memory locations. For each kernel, there always is a single kernel
resource invariant, while for each work group there is a group resource invariant.
However, by parametrising the group resource invariant with the group identifier
gid, this can be specified with a single formula.

Note that we use the term shared memory locations instead of atomic vari-
ables, because the atomicity of a variable may change between different barrier
intervals. Therefore, resource invariants should be re-established when a thread
executes either an atomic operation or a barrier.

To conclude, the main contributions of this paper are:

— a specification and verification technique that adapts the notion of CSL re-
source invariants to the GPU memory model and enables us to reason about
data race freedom and functional correctness of GPGPU kernels containing
atomic operations;

— a soundness proof of our approach; and

— a demonstration of the usability of our approach by developing automated
tool support for it2.

The remainder of this paper is organised as follows. After some background
information, Section 3 explains how the behaviour of GPGPU kernels with

2 Our implementation supports the OpenCL programming language, but can easily be
extended to other GPGPU programming languages such as CUDA and C++ AMP.
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atomic operations is specified. Then, Section 4 formalizes our approach, while
we conclude with related and future work in Sections 5 and 6.

2 Background

This section first gives a short overview of Concurrent Separation Logic, and
then discusses how we use it to reason about GPGPU programs with barriers.

2.1 Atomic Operations in Concurrent Separation Logic

Separation Logic (SL) [13] is an extension of Hoare logic, originally developed to
reason about imperative pointer-manipulating data structures. The basic pred-
icate in classical SL is the points-to predicate r — v, meaning x points to a lo-
cation on the heap, and this location contains the value v. These basic points-to
predicates can be combined using the separating conjunction x, which implicitly
asserts disjointness of the locations: ¢ * 1 holds for a heap h if formulas ¢ and
1 hold for disjoint subheaps of h.

O’Hearn introduced CSL as an extension of SL to reason about concurrent
programs [12]. CSL allows one to verify threads in isolation, provided they do
not interfere and operate on disjoint parts of the heap. In order to reason about
programs with simultaneous reads, CSL has been extended with the notion of
fractional permissions to denote the right to either read from or write to a
location [7,6]. The formula Perm(e, ) indicates that a thread holds an access
right 7 to the heap location e, where any fraction of 7 in the interval (0, 1) denotes
a read permission and 1 denotes a write permission. Write permissions can be
split into read permissions, while multiple read permissions can be combined
into a write permission. For example, Perm(x,1/2) * Perm(y,1/2) indicates that
a thread holds read permissions to access locations x and y, and these permissions
are disjoint. If a thread holds Perm(x,1/2) x Perm(x,1/2), this can be merged
into a write permission Perm(z,1).

Soundness of the logic guarantees that at most one thread at the time can
hold a write permission, while multiple threads can simultaneously hold a read
permission to a location. Thus, any verified program is free of data races.

When locations on the heap are shared, CSL expresses properties about this
shared state as a resource invariant. Typically, a resource invariant captures the
access permission to the shared location, but additionally it can also express
a functional requirement on it. This leads to the following general judgement
in CSL: I + {P} S {Q}, which expresses that (1) shared state is specified
with resource invariant I, (2) if the execution of S terminates, it turns a state
satisfying precondition P into a state satisfying postcondition @, and (3) I must
be true before the execution, throughout the execution and after the execution.

One safe way to access shared locations is by using atomic operations, written
atomic{S}, which means that body S is executed in one atomic step. To reason
about atomic operations, CSL uses the following proof rule [16]:

empk {Ix P} S{IxQ}
I'+{P} atomic{S} {Q}

(1)
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/+@ requires Perm(a[gtid],1) *x Perm(b[gtid],1);
2 ensures Perm(b[gtid],1) *x b[gtid] = (gtid+1) % gsize; @x/
kernel void rotate(global int a, global int b){
4 a[gtid]=gtid;
barrier(global){
6 /*@ requires a[gtid]=gtid;
ensures Perm(a[(gtid+1) % gsize],1/2) %+ Perm(b[gtid],1);
8 ensures a[(gtid+1) % gsize]=(gtid+1) % gsize; ©x/

b[gtid]=a[(gtid+1) % gsize];

[
S}

List. 1. An example of a kernel with specifications

where emp is a predicate expressing that there is not any shared location in the
heap, I is the resource invariant, P is a precondition that holds for the executing
thread’s local state before the atomic operation, ) is a postcondition that holds
for the local state of the executing thread after the atomic operation, and S
is the body of the atomic operation accessing the shared state expressed by I.
This rule captures that a thread executing the body of an atomic operation
obtains the associated resource invariant, which provides access to the shared
state. Moreover, it may violate the resource invariant during the execution of
S, but it has to re-establish the resource invariant before finishing the atomic
operation. Section 3 explains how this CSL rule is adapted for GPU programs.

2.2 Reasoning about GPGPU Programs

In earlier work, we used permission-based separation logic to reason about GPU
kernels with barriers [5]. Kernels, work groups, threads, and barriers are specified
and verified modularly w.r.t. their specifications.

We illustrate the approach using the example in List. 1, which contains a
kernel program annotated with a thread specification, plus a barrier specification
for each barrier®. The specifications use the keywords gtid to denote the global
thread identifier, and gsize to denote the number of threads in each work group,
respectively. A thread specification specifies the permissions a thread should
hold before (keyword requires) and after (keywords ensures) execution, together
with the thread’s functional behaviour. In the example, write permission to
position gtid of both array a and b is required and it is ensured that position gtid
of array b can be written and contains (gtid+1)% gsize. To illustrate the use of a
barrier, the kernel is implemented in a non-standard way: first gtid is assigned
to a[gtid] and then access to the array is rotated by synchronisation on a barrier,
after which the thread reads a[(gtid+1) % gsize]. This rotation is specified with a
barrier specification, which specifies (1) how permissions are redistributed over

3 In our specification language we use sx for star conjunction because of the syntactic
overlap with multiplication.
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the threads in the work group, and (2) the functional pre- and postconditions
that must hold before and after execution of the barrier.

There are two ways to specify the redistribution of permissions at a barrier
in a work group. First, one can choose to redistribute all permissions available
to the work group, assuming that each thread loses all permissions at a barrier.
Second, one can force the user to explicitly specify which permissions are lost.
Our original paper and the example use the first approach, which is efficient for
proving data race freedom. In the rest of this paper, we use the second approach,
which is more convenient for functional properties, as it ensures all functional
properties are properly framed [5].

Given a thread specification which is parametrized by gtid, the group specifi-
cation and kernel specification are defined as the universal separating conjunction
of the thread specification over all threads in the same work group and over all
threads in the GPU, respectively. Thus, group and kernel specifications are auto-
matically derived from the thread specifications, and do not have to be explicitly
given. Group specifications capture the resources in global memory that can be
used by the threads in a particular work group, including its pre- and postcon-
dition. Notice that locations defined in local memory are only valid inside the
work group and thus the work group always holds write permissions for these
locations. In the kernel specification, resources that are required from the host
program along with the necessary preconditions and provided postconditions
are specified. An invocation of a kernel by a host program is correct if the host
program transfers the necessary resources and fulfils the kernel preconditions.

3 Specification

This section discusses two examples that illustrate our approach to the specifi-
cation of kernels with atomic operations. The first example uses a single atomic
add; the second example illustrates how we reason about kernels which use both
barriers and atomic operations for synchronisation, and where the atomicity of
a variable may change in different barrier intervals.

3.1 Specification of a Kernel with Parallel Addition

List. 2 contains an annotated parallel add kernel, where Itid indicates the local
thread identifier. For simplicity, in this first example we assume that we have a
single work group?, later we extend our technique also to multiple work groups.
We first explain the permission specifications, followed by an explanation of the
functional properties (the highlighted annotations).

In List. 2, each thread atomically adds its contribution (stored in values]ltid])
to the shared variable x. The requires and ensures clauses express a single thread’s
pre- and postconditions. The precondition specifies that each thread needs to

4 The number of work groups is determined in the host code before launching the
kernel.
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/+@ given int cont[gsize];

2 group invariant Perm(x,1)*xPerm(cont[*],1/2)*xx==(\sum cont[*]);
requires Perm(values[ltid],1/2)*xPerm(cont][ltid],1/2)xxcont[ltid]==0;

1 ensures Perm(values|ltid],1/2)#xPerm(cont([ltid],1/2)+xcont[ltid]==values[ltid]; @/
kernel void gpadd(local int x, local int values){

6  atomic_add(x,values[ltid]) /*@ then { cont[ltid]=values[ltid]; } @x/; }

List. 2. Specification of parallel add in a work group.

have read permission on its corresponding index of values. Additionally, we spec-
ify a group resource invariant for the local shared memory variable x, which ex-
presses that the thread executing the atomic add operation has exclusive write
access to x. With this specification, it is straightforward to prove that the pro-
gram is free of data races, as it is guaranteed that there is only one thread
executing the atomic operation and exclusively accessing the shared variable.
To reason about functional properties, the specification expresses the accu-
mulative contributions of the threads on the shared variable. To track these
contributions, we use an array cont[ ], added as a ghost parameter (line 1) to the
kernel®. The idea is that the contribution of each thread (contfltid]) is 0 before
size-1
it executes and values[ltid] after it finishes, while the invariant gz cont[i] = x
is maintained in order to prove that the kernel computes the slur(;l of the val-
ues. To make this work, the thread’s precondition (line 3) states that each tread
obtains a read permission on cont[ltid], in order to be able to use cont in the
specifications. Each thread has to track its contribution towards the total in x in
its own location in the cont array. This is done during the atomic operation by
injecting an assignment statement as ghost code (specified as a then clause, see
line 6). The thread executing atomic_add, first adds values]ltid] to x, and then exe-
cutes the injected ghost code, i.e. cont[ltid]=values][ltid]. To achieve this, the group
resource invariant is extended with a half permission on all elements of cont, writ-
ten Perm(cont[+],1/2)®. Thus, when thread Itid at the beginning of the atomic body
obtains the resource invariants, it has twice a read permission Perm(cont[ltid],1/2),
which can be combined into a single write permission Perm(cont[ltid],1).

3.2 Parallel Addition with Multiple Work Groups

As a next example, we discuss the specification of a kernel with multiple work
groups, which employs both barriers and atomic operations for synchronisation.
This is a common pattern to avoid making global memory access a bottleneck:
first all threads in a work group compute an intermediate result in local memory,
then the intermediate result is combined with the global result in global memory.

® A ghost variable (a.k.a. as auxiliary variable) is a specification-only variable, which
does not change the control flow of the program and is used only for verification.

5 This is syntactic sugar for universal quantification of the permissions over all the
indices of cont[].
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/+@ given global int sums[ksize]={0}; given local int cont[gsize]={0}, region=0;
2 kernel invariant Perm(r,1)*xPerm(sums[*],1/2)xxr==(\sum sums[*]);
group invariant Perm(region,1/(gsize+1))xxPerm(x,region==071:1/2)xx
4 Perm(cont[*],1/2)*xx==(\sum cont[*]);
requires Perm(region,1/(gsize+1))**Perm(values[gtid],1/2);
6  requires Perm(cont][ltid],1/2)=xcont[ltid]==0;
requires ltid==0 ==> Perm(sums][gid],1/2)**sums|gid]==0;
s ensures Perm(region,1/(gsize+1))*xPerm(values|gtid],1/2);
ensures Perm(cont[ltid],1/4)*xcont[ltid]==values|gtid];
10 ensures ltid==0 ==> Perm(cont[*],1/4)**Perm(sums|gid],1/2);
ensures |tid==0 ==> sums|[gid]==(\sum cont[*]); ©@x/
12 kernel void KParallelAdd(local int x, global int values, global int r){
atomic__add(x,values[gtid]) /+@ then { cont[ltid]=values[gtid]; } ©@x/;
14 barrier(local)/«@
requires Perm(region,1/(gsize+1))xxregion==0}x*xPerm(cont[ltid],1/4);

16 ensures Perm(region,1/(gsize+1))**region==1;
ensures tid==0 ==> Perm(cont[*],1/4)**x==(\sum cont[*]);
15 { region=1; } Ox/;
if(Itid==0)

20 atomic_add(r,x)/*@ then { sums[gid]=x; } @«/; }
List. 3. Specification of global parallel add.

It is used, for example, in the parallel implementation of BFS in the Parboil
benchmark [15]. The kernel in List. 3 is an extension of the previous example,
using multiple work groups and a barrier, where ksize denotes the number of
work groups. The kernel is implemented by the following steps: (1) each thread
atomically adds its element of the global array values to its local accumulator, i.e.
a locally shared variable x; (2) all threads within a work group are synchronized
by a barrier (line 14); (3) after all threads have passed the barrier, one thread
per work group (here Itid= 0) adds the work group’s final value of x to a globally
shared variable r (line 20). Eventually, r contains the collective contributions
of all the threads in the kernel. Similar to the single work group example, to
track the contributions at each step, the kernel program uses ghost arrays cont
and sums, with all elements initialized with zero. We use cont to specify the
current value of the local variable x. Similarly, array sums is used to sum up
the total accumulated contributions of the work groups. Updating the local cont
is explained in the previous example. In a similar way, using the ghost code
at line 20, in each work group, the thread with Itid= 0 stores its contribution
(the final value of x) to the global sums|gid], i.e. the index corresponding to the
executing work group from the sums array.
In List. 3, there are two invariants that are maintained:

gsize—1
1. cont[i] = x for each work group; and
i=0
ksize-1
2. sums[i] = r for the kernel.
=0

7=



VIII

After termination of work group gid, we use the group invariant to conclude that:

gsize X gid+gsize—1

sums[gid] = Z values[7] .

i=gsize X gid

Hence after termination of all work groups we can prove that:

ksize-1 ksize-1 (j+1)xgsize—1
r= E sums[i] = E g values]i]
1=0 7=0 i=j X gsize

Again, we first explain the permission specifications. The permission specifica-
tions for values are similar to the specifications in List. 2. The barrier divides the
program into regions, and within a region the distribution of permissions over
the threads and the resource invariants does not change. Only when all threads
reach the barrier, permissions may be redistributed. This means in particular
that a variable that is treated as a shared memory variable in one region, may
become unshared in a next region (or vice versa). Thus, resource invariants often
depend on the current barrier region. To keep track of the current barrier region,
we use a ghost variable region initialised at 0 (line 1). Each thread at all times
has read access to this region variable, and whenever all the threads go through
the barrier, the region is updated (see line 18). The group resource invariant spec-
ifies that within region 0 (before the barrier instruction), variable x is a shared
variable in local memory, while in region 1 (after the barrier), x is not shared any
more. So, after the barrier x can be read concurrently by all the threads within
a work group. The kernel resource invariant specifies that r is a shared variable
in global memory, but that only threads with a local thread identifier 0 are able
to correctly update r, because only threads with Itid= 0 can construct a write
permission of sums[gid] (see lines 2 and 7) to store the contributions.

The barrier specification expresses that threads keep read access on region,
and that the value of region is updated to 1. Moreover, the specification asserts
that upon entering the barrier each thread gives up 1/4 permission to access its
contribution element, i.e. cont|ltid]. The barrier redistributes these permissions to
the thread with Itid= 0, which ensures that the thread with Itid= 0 has sufficient
permissions to frame (\sum cont[+]) in the barrier postcondition. Notice that when
all threads have reached the barrier, all read accesses on region together (including
the group resource invariant) can be combined into a write permission on region,
thus enabling the update of this ghost variable within the barrier.

Next, we discuss the functional property specifications. As we stated before,
two resource invariants specify the values of the shared variables: (1) the local
shared variable x must always express the accumulation of the contributions
of the threads executing the first atomic operation (line 4), and (2) the global
shared variable r must always express the accumulation of x’s final value in
each work, group which is stored in sums|gid] (line 2). To prove these invariants,
each thread must ensure that it correctly stores its contribution as specified in
line 9. Moreover, the barrier must ensure that the thread with Itid= 0 knows the
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final value of x as specified by x==(\sum cont[«]) in the barrier’s postcondition.
Finally, the thread with Itid= 0 must guarantee that the final value of x is stored
in sums|gid] (line 11). Therefore, the verifier can prove that the value of r is the
collective contributions of all the threads in the kernel.

4 Formalisation

The previous section illustrated how we specify permissions and functional prop-
erties of kernel programs in the presence of atomic operations and barriers on
several examples. This section defines the approach formally. Rather than pre-
senting this work on the full language, we will present it for a core kernel pro-
gramming language. In our verification technique barrier divergence is not taken
into consideration, i.e. if threads in a work group arrive at a barrier they all
arrive at the same one. This is a realistic assumption: according to the OpenCL
semantics, the behaviour of programs with barrier divergence is unspecified [11].
Moreover, in our earlier work [5], we proposed syntactical restrictions to deter-
mine whether a kernel programs is free of barrier divergence.

We first introduce syntax and semantics of our core kernel language, and also
formally define the formula language to write the specifications. Then we present
the Hoare logic rules used to reason about kernels with atomics, and we prove
soundness of the proof rules. Finally, we also briefly discuss tool implementation.

4.1 Syntax and Semantics

Programming Language Figure 1 presents the syntax for our kernel program-
ming language, which adapts the Kernel Programming Language (KPL) of [3]
by extending it with atomic operations and changing the barrier statement. For
simplicity, in this language, global and local memory are assumed to be single
shared arrays. There are two local memory access operations: read from location
e in local memory (v := rdloc(ey)), and write es to location e; in local memory
(wrloc(eq, e2)). Similarly, read and write operations in global memory are repre-
sented by v := rdglob(e) and wrglob(ey, e3), respectively. W.r.t. to the original
KPL language, barriers are different. As in KPL, a barrier is labelled with a flag
F', which denotes which memories it synchronises. That is, it always acts both
as synchronisation between the threads in a work group and as a memory fence.
Depending on the flag, it is either for local or for global memory. Additionally,
a barrier is labelled with an identifier bid, which is used to distinguish different
barrier instances, and it is extended with a block of statements to be executed
while all threads are in the barrier. Further, we add an atomic block statement to
the language, which a label to denote whether it accesses global or local shared
memory. The (annotated) OpenCL atomic operations can be easily embedded
into this atomic block statement.

The state of a kernel program consists of the state of the global memory, the
states of the local memories and the state of all the threads. On these states,
three steps are possible:
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Reserved global identifiers (constant within a thread):

gtid Thread identifier with respect to the kernel

gid Group identifier with respect to the kernel

ltid Local thread identifier with respect to the work group
tc  The total number of threads in the kernel

gs The number of threads per work group

ks  The number of groups in the kernel

Kernel language:

b ::= boolean expression over global constants and private variables
e ::= integer expression over global constants and private variables
S =wv:=e€ | v := rdloc(e) | v := rdglob(e) | wrloc(e1,e2) | wrglob(e1,e2)

| nop | Si;S2 | ifbthenSielseSy | whilebdo S
| atomic(F){S} | bid : barrier(F){S}
F ::=local | global

Fig. 1. Syntax for Kernel Programming Language

1. A thread performs a non-atomic statement, see [5] for details of the opera-
tional semantics;

2. A thread atomically performs all statements in an atomic(F){S} block. Its
operational semantics is standard and can be defined easily, similar to [16].

3. All threads in the work group go through the barrier bid : barrier(F){S}.
This can only happen if all threads in a group are waiting to execute S.
The effect on the state is that all statements in S are performed, and all
threads in the group consider bid as performed. The operational semantics
of a barrier without a body is defined in [5]. However, its extension with a
body is trivial as the body is executed atomically.

Note that because barriers are labelled in KPL, any program that exhibits
barrier divergence will block forever and therefore does not terminate.

Formula Language The specifications of KPL programs can be written using the
following formula language:

E ::= expressions (in first-order logic) over global constants, private variables,
rdloc(E), rdglob(FE).
R :=true | E | LPerm(E,p) | GPerm(E,p) | Rix Ry | E=R | % R(v)
v:E(v)
where we use LPerm(E,p) and GPerm(E,p) as explicitly different permission
statements to specify accesses to local and global memories, respectively. In
addition to the separating conjunction of two resource formulas, we also have
guarded resource formulas, and a universal separating conjunction quantifier,
which quantifies over the set of values v for which E(v) is true. Formalization of
the specification language and validity of the formulas are elaborated in [5].
The behaviour of kernels, work groups, threads, and barriers are defined as
(Kpr67 Kpost7 Krinv)7 (Gpr67 Gpost7 Grinv)7 (Tpre7 Tpost), and (Bprev Bpost)v respec-
tively. Note that the user only has to annotate a kernel resource invariant Ky,
a group resource invariant G, parametrized by group id, a thread’s pre- and
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postcondition Tpye and Tpost and barrier’s pre- and postcondition B¢ and B,
We can derive the work groups’ pre- and postconditions, i.e. Gpre and Gpost, as
the separating conjunction of the pre- and postconditions of all threads belong-
ing to the work group and the work group’s resource invariant. Similarly, the
kernel’s pre- and postcondition, i.e. Ky, and Ky, can be derived automat-
ically as the separating conjunction of the pre- and postconditions of all work

groups belonging to the kernel and the kernel’s resource invariant.

4.2 Verification

Since we derive the contracts for work groups and kernels automatically, we can
verify a kernel program by verifying all the threads belonging to a kernel. To
verify a thread 7', with body T}04y, the following Hoare triple should be verified,
using the verification rules defined in Figure 2:

KrinvyGrinv(gid) F {Tpre} Tbody {Tpost}

In addition to the standard rules for sequential compositional, conditionals,
loops, and weakening, Figure 2 shows the most important Hoare logic rules to
reason about kernel threads. Rule [Assign] describes the updates to the thread’s
private memory. Rules [LRead] and [LWrite] specifies read and write of local
memory’ . The rules for global memory are defined similarly, but for space reasons
are not presented here. The rules [LAtomic] for local and [GAtomic] for
global atomic operations are simple instances of the CSL rule using the group
resource invariant and kernel resource invariant, respectively.

The rule [LBarrier] reflects the functionality of the barrier with a flag
indicating that it synchronises local memory. It acts similar to the CSL rule
for the group resource invariant but at the same time it collects resources and
knowledge from all threads and redistributes these resources and knowledge. To
do so it requires that the block S can be executed given the resources provided
by the invariant (G ;) and all threads in the work group (R(t)). Moreover, it
ensures that all resources are given back (E(t)) and the invariant is re-established
(Grinw)- The rule also says that the effect of passing through a barrier on a
thread is to give up resources R(t) and get E(t) in return. Note that there
is a side condition that S, R and E can refer to local memory only, as this
would otherwise potentially create a data race: a local barrier functions as a
memory fence for local memory, thus it can exchange information about local
memory without any difficulties, but no order on global memory is guaranteed.
The [GBarrier] rule is symmetric in the use of local vs. global memory and
invariants. Note that the local/global flag affects memory only. Both uses of the
barrier synchronise the threads within a single work group.

v Lle] denotes the value stored at location e in the local memory array, and substitution
is as usually defined for arrays, cf. [1]:

Lle][L[e1] := e2] = (e = e1)7e2 : L[e]
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[Assign]

Krino, Grinv(gid) - {R[’U = 6]} v = G{R}

[LRead]
Kriny, Grinv (gid) F {LPerm(e, ) * R[v := L[e]]} v := rdloc(e) {LPerm(e, 7) * R}

[LWrite]
Krinw, Grinv (gid) F {LPerm(e1,1) x R[L[e1] := ez]} wrloc(e1, e2) {LPerm(e1,1) x R}

S refers to local memory only.
Km'mj [ {P(t) * Gm'm;(gid)} S {Grmv(gld) * Q(t)}

Kriny , Grinv(gid) = {P(t)} atomic(local){S} {Q(¢)}

[LAtomic]

S refers to global memory only.
Grinv(gid) F {P(t) x Krinv} S {Krino * Q(t)}

Kriny 5 Grinw(gid) B {P(t)} atomic(global){S} {Q(¢)}

|G Atomic]

S, R, and FE refer to local memory only.
K'r‘in'u = { * R(t) * G’V‘iTL’U (gld)} S {Gmnv (gZd) * * E(t)}
t€(0..gs) t€[0..gs)
{P(@t) ~ R(t)}
Kriny , Grino(gid) F barrier(local) req R(t); ens E(t); {S}
{P(t)» E(t)}

[LBarrier]|

S, R, and FE refer to global memory only.
Gm’n’u (gld) [ { * R(t) * Km'n’u} S {Krinv * * E(t)}

te[0..gs) te[0..gs)
{P(t) » R(t)}
Kyiny , Grinv(gid) b barrier(global) req R(t); ens E(¢); {S}
{P(t) « E(t)}

Fig. 2. Important Hoare logic rules

[GBarrier]|

4.3 Soundness
Finally, we prove soundness of our verification technique.

Theorem 1. Given a barrier divergence free kernel, for which the thread level
Hoare triples are provably correct. Then every possible execution of the kernel
starting in a state that satisfies the kernel precondition is data race free and ends
in a state that satisfies the kernel postcondition.

Proof. We are given a finite trace of executions.
In this trace every thread ¢g;q,1+iq makes a finite number of steps Ng;q,itid,
where atomic blocks and barriers count as one step. Because a Hoare logic proof
. Ngid.iti .
of the thread exists, we can find formulas Py, .4, -, Pyiq" that are valid

before, between and after these steps, where Pgoid’ltid is the precondition of the

thread and P77,/ is its postcondition.
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All states og,---,on in the finite global trace of N steps can be described
by a function f that maps each global trace position to the positions in the local
threads. We do not know in which order the steps of the threads are executed,
but we know they all start in position 0, so f(0, gid, ltid) = 0. We also know
they end in their last state, so: f(N, gid, tid) = Ngid itid-

We claim that before and after every step in the trace the state satisfies a
specific separation logic formula.

Vi=0,---,N: 0, |F Kpino * Kk (Grinw(gid) x % P{fig,ﬁiz,ltid))
gid€[0..ks) itidef0..gs) =

This claim is proven by induction on . For ¢ = 0 this is precisely the given
precondition. Assuming that the claim is correct for 0 < ¢ < N, then there are
three cases. If the step is a plain step or an atomic step, by correctness of the
standard CSL Hoare triple used to prove that step, the validity for i + 1 follows.

The interesting case is the barrier step, in which all threads of a group are
involved. The Hoare triple for each thread is valid so each thread starts knowing
P(t) » R(t) and ends knowing P(t) = E(t). Because of the correctness of the
standard CSL Hoare triple for the barrier statement S, the change to the state
is from %  R(t) * Griny(gid) to  k  E(t) * Griny(gid), which is precisely

te[0..gs) te[0..gs)
the change in the formulas, so i + 1 is established.

The last statement is precisely the kernel postcondition which proves that
the end state satisfies the kernel postcondition.

A data race happens if: there is an access to a location [ in step i, by thread
t1, followed by an access to the same location in step i by thread to, there
is no memory fence in between these accesses, and one of these accesses is a
write. Suppose that ¢ used fraction p; for the access and thread t5 used fraction
p2. Because one of the accesses is a write, p; + po > 1. Because there is no
memory fence, that is no barrier or atomic in between, at time i; thread t5 must
have already owned fraction ps. Thus at time 41, fraction p; + p2 permission for
location [ existed, which leads to a contradiction. a

4.4 Tool Support

We have implemented tool support for the verification of kernels in the VerCors
tool set [4], whose stable version can be tried online®. The VerCors tool set
compiles programs that are specified in a complex specification language, such
as kernels, into much simpler specified programs and then verifies the latter to
prove that the former are correct. The main compilation target used for kernel
programs is Silver, the intermediate language of the Viper framework [9]. Silver
is a specification language designed along the lines of Implicit Dynamic Frames
[14]. We can then verify these Silver programs with the Silicon tool that is part
of the framework.

8 See htttp://www.utwente.nl/vercors/.
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For the verification of kernels with atomics, two transformation passes have
been added to the VerCors tool set. The first pass transforms a kernel into an
intermediate form that uses the same barrier and atomic constructs as used in
the kernel programming language used in this section. The second pass replaces
those atomic and barrier constructs with code that mimics the conclusion of the
corresponding proof rules (see Figure 2) and adds code that encodes that the
premisses of the rule is valid. The replacement ensures that when using a barrier
or atomic proof rule the program is correct. The added code verifies that the
rule is used correctly.

5 Related Work

There is very little related work in this area, as reasoning techniques for GPU
kernels are still relatively fresh. Bardsley et al. propose additional support in
GPUVerify for reasoning about GPU kernels where warps and atomic operations
are used for synchronisation [2]. In GPUVerify the user does not need to add
specifications manually, because the tool internally speculates and refines kernel
specifications [3]. However, GPUVerify is not able to reason about the functional
properties of kernels, it can only prove absence of data races. As future work,
we would like to investigate if GPUVerify could be used to infer some of the
annotations that we need.

Concerning verification of GPU kernels, we should also mention the work
of Li and Gopalakrishnan [10]. They verify CUDA programs by symbolically
encoding thread interleavings. They were the first to observe that to ensure
data race freedom it was sufficient to verify the interleavings of two arbitrary
threads. For each shared variable they use an array to keep track of read and
write accesses, and where in the code they occur. By analysing this array, they
detect possible data races. However, they do not consider atomic operations.

In the verification of (general) concurrent programs synchronized with barri-
ers, Hobor et al. [8] propose a sound extension of CSL for Pthreads-style barriers.
The simplicity of the OpenCL barriers makes our specification simpler. Addi-
tionally, we support barriers in the presence of atomic operations.

6 Conclusion

This paper presented an approach to specify and verify GPGPU programs in
the presence of atomic operations and barriers. The main characteristics of the
approach are that it can be used to prove both data race freedom and functional
correctness. To specify the shared memory accesses, the notion of resource in-
variant from CSL is lifted to the GPU memory model, distinguishing between
kernel and group resource invariants. An appropriate Hoare logic is proposed
and proven sound to reason about GPGPU programs using atomic operations
and barriers. The approach is illustrated on some examples, and supported by
an implementation in the VerCors tool set.
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At the moment, the user still has to write quite a substantial amount of

annotations to make verification work. We will investigate how to make use of
inference techniques for program annotations to reduce this annotation burden.
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