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Abstract. This paper motivates and presents a program logic for rea-
soning about multithreaded Java-like programs with concurrency prim-
itives such as dynamic thread creation, thread joining and reentrant ob-
ject monitors. The logic is based on concurrent separation logic. It is
the first detailed adaptation of concurrent separation logic to a multi-
threaded Java-like language.

The program logic associates a unique static access permission with each
heap location, ensuring exclusive write accesses and ruling out data races.
Concurrent reads are supported through fractional permissions. Permis-
sions can be transferred between threads upon thread starting, thread
joining, initial monitor entrancies and final monitor exits.

This paper presents the basic principles to reason about thread creation
and thread joining. It finishes with an outlook how this logic will evolve
into a full-fledged verification technique for Java (and possibly other
multithreaded languages).

1 Introduction

1.1 Motivation and Context

In the last decade, researchers have spent great efforts on developing advanced
program analysis tools for popular object-oriented programming languages, like
Java or C#. Such tools include software model-checkers [28], static analysis tools
for data race and deadlock detection [2TI22], type-and-effect systems for atomic-
ity [9/1], and program verification tools based on interactive theorem proving [15].
A particularly successful line of research is concerned with static contract check-
ing based on Hoare logic. Examples include ESC/Java [8] — a highly automatic,
but deliberately unsound, tool based on a weakest precondition calculus and an
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SMT solver, the Key tool [4] — a sound verification tool for Java programs
based on dynamic logic and symbolic execution, and Spec# [3] — a verification
tool for C# programs that achieves modular soundness by imposing a dynamic
object ownership discipline. While still primarily used in academics, these tools
are mature and usable enough, so that programmers other than the tool develop-
ers can employ them for constructing realistic, verified programs. A restriction,
however, is that their support for concurrency is limited. As most real-world ap-
plications written in Java or C# are multithreaded, this limitation is a serious
obstacle for bringing assertion-based verification to the real world. Support for
concurrency is therefore the most important next step.

What makes verification of shared-variable concurrent programs difficult is
the possibility of thread interference. Any assertion that has been established
by one thread can potentially be invalidated by any other thread at any time.
Some traditional program logics for shared-variable concurrency, e.g., Owicki-
Gries [25] or Jones’s rely-guarantee method [18], account for thread interference
in the most general way. Unfortunately, the generality of these logics makes them
tedious to use, perhaps even unsuitable as a practical foundation for verifying
Java-like programs. In comparison to these logics, Hoare’s logics for conditional
critical regions [13] and monitors [14] are much simpler, because they rely on syn-
tactically enforceable synchronization disciplines that limit thread interference
to few synchronization points (see [2] for a survey).

Because Java’s main thread synchronization mechanism is based on moni-
tors, Hoare’s logic for monitors is a good basis for the verification of Java-like
programs. Unfortunately, however, a safe monitor synchronization discipline can-
not be enforced syntactically for Java. This is so, because Java threads typically
share heap memory including possibly aliased variables. Recently, O’Hearn [23]
generalized Hoare’s logic to programming languages with heap. To this end, he
extended a new program logic, called separation logic [I7127], which had previ-
ously been used for reasoning about sequential pointer programs. O’Hearn’s con-
current separation logic (CSL) enforces correct synchronization of heap accesses
logically, rather than syntactically. Logical enforcement of correct synchroniza-
tion has the desirable consequence that all CSL-verified programs are guaranteed
to be data-race free. In this paper, we adapt CSL to a Java-like language.

Adapting CSL to Java requires a number of substantial extensions: Firstly,
while O’Hearn’s CSL assumes a static set of locks, in Java locks have the same
status as other objects that are dynamically allocated and stored on the heap,
and can be aliased. Secondly, while O’Hearn’s CSL assumes structured paral-
lelisnﬂ Java threads are based on thread identifiers (represented by thread ob-
jects) that are dynamically allocated on the heap, can be stored on the heap and
can be aliased. A join-operation that is parametrized by a thread identifier allows
threads to wait for the termination of other threads. Thirdly, while O’Hearn’s
CSL assumes that programs go through a global initialization phase to establish
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all invariants, this assumption is inappropriate for Java programs where objects
and locks are created dynamically and, consequently, initialize their invariants
dynamically. Fourthly, while O’Hearn considers classical monitors that cannot
be reentered, Java’s monitors are reentrant. Reentrant monitors have the advan-
tage of avoiding deadlocks due to attempted reentrancy. Such deadlocks would,
for instance, occur when synchronized methods call synchronized methods on
the current self: a very common call-pattern in Java. Fifthly, O’Hearn’s CSL
does not allow multiple threads to read the same location simultaneously. This
is more restrictive than necessary: to avoid data races read-write and write-write
conflicts must be avoided, but concurrent reads are harmless.

CSL has since been extended in various directions to overcome some of
these limitations. For instance, Bornat and others have combined separation
logic with permission accounting in order to support concurrent reads [5], while
Gotsman and others have generalized concurrent separation logic to cope with
Posix-style threads and locks [I0]. This paper takes the ideas from concurrent
separation logic into another direction, namely towards reasoning about multi-
threaded Jawva-like programs. The resulting proof system supports Java’s main
concurrency primitives: dynamically created threads and monitors that can be
stored on the heap, thread joining, and monitor reentrancy, thus allowing rea-
soning about multithreaded programs written in Java. Since the use of Java is
widespread (e.g., internet applications, mobile phones and smart cards), this is
an important step towards reasoning about realistic software.

1.2 Separation Logic Informally

We first informally present the features of separation logic that are most impor-
tant for our logic.

Formulas as Access Tickets Separation logic [27] combines the usual logical
operators with the points-to predicate z.f — v and the resource conjunction
Fx*G.

The predicate x.f — v has a dual purpose: firstly, it asserts that the object
field x.f contains data value v and, secondly, it represents a ticket that grants
permission to access the field x.f. This is formalized by separation logic’s Hoare
rules for reading and writing fields (where z.f + _is short for (Fv)(z.f — v)):

{z.f— Ja.f=v{z.f — v} {z.f —ovly=z.f{z.f—v *x v==y}

The crucial difference to standard Hoare logic is that both rules have a pre-
condition of the form x.f — _ that functions as an access ticket for x.f.

It is important that tickets are not forgeable: one ticket is not the same as
two tickets! For this reason, the resource conjunction * is not idempotent: F
is not equivalent to F' * F. Intuitively, the formula F' * G represents two access
tickets F' and G to separate parts of the heap. In other words, the part of the
heap that F' permits to access is disjoint from the part of the heap that G
permits to access. As a consequence, separation logic’s * implicitly excludes
interfering heap accesses through aliases: this is why the Hoare rules shown
above are sound. It is noteworthy that given two objects x and y with field f,



the assertion x.f — _*y.f — _ does not mean the same as x.f — _Ay.f — _:
the first assertion implies that x and y are distinct, while the second assertion
can be satisfied even if x and y are aliases.

Local Reasoning A crucial feature of separation logic is that it allows to reason
locally about methods. This means that, when calling a method, one can identify
(1) the (small) part of the heap accessed by that method and (2) the rest of the
heap that is left unaffected. Formally, this is expressed by the (Frame) rule:

{F}e{F"}
(F*Gyc{F * G}

(Frame)

This rule expresses that given a command ¢ which only accesses the part of
the heap described by F, one can reason locally about command ¢ ((Frame)’s
premise) and deduce something globally, i.e., in the context of a bigger heap
F* G ((Frame)’s conclusion). In this rule, G is called the frame and represents
the part of the heap unaffected by executing c. It is important that the (Frame)
rule can be added to our verification rules without harming soundness.

1.3 Contributions

Using the aspects of separation logic described above, we have developed a pro-
gram logic for a concurrent language with Java’s main concurrency primitives.
Our logic combines separation logic with fraction-based permissions. This results
in an expressive and flexible logic, which can be used to verify many realistic
applications. The logic ensures the absence of data races, but is not overly re-
strictive, as it allows concurrent reads.

Because of the use of fraction-based permission permissions, as proposed by
Boyland [6], our program logic prevents data races, but allows multiple threads
to read a location simultaneously. Permissions are fractions in the interval (0, 1].
Each access to the heap is associated with a permission. If a thread has full
permission (i.e., with value 1) to access a location, it can write this location,
because the thread is guaranteed to have exclusive access to it. If a thread
has a partial permission (less than 1), it can read a location. However, since
other threads might also have permission to read the same location, a partial
permission does not allow to write a location. Soundness of the approach is
ensured by the guarantee that the total permissions to access a location are
never more than 1.

Permissions can be transferred from one thread to another upon thread cre-
ation and thread termination. If a new thread is forked, the parent thread trans-
fers the necessary permissions to this new thread (and thus the creating thread
abandons these permissions, to avoid permission duplication). Once a thread
terminates, its permissions can be transferred to the remaining threads. The
mechanism for doing this in Java is by joining a thread: if a thread ¢ joins an-
other thread w, it blocks until v has terminated. After this, ¢ can take hold of
u’s permissions. In order to soundly account for permissions upon thread join-
ing, a special join-permission is used. Only threads that hold (a fraction of) this
join-permission can take hold of (the same fraction of) the permissions that have



been released by the terminating thread. Note that, contrary to Posix threads,
Java threads allow multiple joiners of the same thread. Our logic supports mul-
tiple thread joiners. For example, the logic can verify programs where multiple
threads join the same thread ¢ in order to gain shared read-access to the part of
the heap that was previously owned by t.

Just as in O’Hearn’s approach [23], locks are associated with so-called re-
source invariants. If a thread acquires a lock, it may assume the lock’s resource
invariant and obtain access to the resource invariant’s footprint (i.e., to the part
of the heap that the resource invariant depends on). If a thread releases a lock, it
has to establish the lock’s resource invariant and transfers access to the resource
invariant’s footprint back to the lock. Previous variants of concurrent separation
logic prohibit threads to acquire locks that they already hold. In contrast, Java’s
locks are reentrant. Our program logic supports reentrant locks. To this end, the
logic distinguishes between initial lock entries and lock reentries. Permissions are
transferred upon initial lock entries only, but not upon reentries.

1.4 Overview

This paper describes the main ideas of our permission-based separation logic to
reason about multithreaded Java programs. Section[2)introduces the specification
language and basic proof rules for single-threaded programs. Section [3] extends
this to multithreaded programs with dynamic thread creation and termination.
Finally, Section [4] concludes and discusses future work. This paper does not
present formally how the logic handles reentrant locks, and it also leaves out how
we use abstract predicates [26] to model encapsulation of objects, and inheritance
of specifications. For full details, we refer to the full version of this paper [I1]
and Hurlin’s PhD thesis [16].

2 Separation Logic for a Java-like Language

As mentioned above, we have developed the program logic for a Java-like lan-
guages. The semantics of this language is standard, and for space reasons we
therefore do not give a formal definition of this language. This section discusses
how we reason about sequential programs written in this language; the next sec-
tions extends this to a multithreaded setting. We first present separation logic
formulas formally, and then present the main ingredients of the proof system.

2.1 Separation Logic

To write method contracts, we use intuitionistic separation logic [I7J27J26]. This
is most suitable to reason about properties that are invariant under heap ex-
tensions, and to reason about garbage-collected languages like Java. Contrary
to classical separation logic, intuitionistic separation logic admits weakening. In-
formally, this means that one can “forget” a part of the state, which makes it
appropriate for garbage-collected languages.

Specification formulas F are defined by the following grammar:

lop € {*,-*,& |} qt € {ex, fa}
F € Formula ::= e | PointsTo(e.f,m,e) | Flop F | (¢t T o) (F)



We now explain these formulas:

The points-to predicate PointsTo (e.f, 7, v) is ASCII for e.f ~— v [5]. Super-
script 7 must be a fractional permission [6] i.e., a fraction 5 in the interval (0, 1].
As explained earlier, formula PointsTo(e.f, 7, v) has a dual meaning: firstly, it
asserts that field e.f contains value v, and, secondly, it represents access right 7
to e.f. Permission m = 1 grants write access, while any permission 7 grants read
access.

The resource conjunction F * G (a.k.a separating conjunction) expresses that
resources F' and G are independently available: using either of these resources
leaves the other one intact. Resource conjunction is not idempotent: F' does not
imply F'* F. Because Java is a garbage-collected language, we allow dropping
assertions: F'* G implies F.

The resource implication F - G (a.k.a. linear implication or magic wand)
means “consume F yielding G”. Resource F' —* G permits to trade resource F' to
receive resource G in return. Resource conjunction and implication are related
by the modus ponens: F' * (F —x G) implies G. Most related work omit the magic
wand. We include it, because it can be added without any difficulties, and we
found it useful to specify programming patterns such as iterators [12].

Quantified formulas have the shape (gt T ) (F'), where ¢t is a universal or
existential quantifier, « is a variable whose scope is formula F', and T is «’s type.

2.2 Hoare Triples

Most Hoare rules to reason about sequential programs are standard, we only
discuss the most important ones. Appendix B of Hurlin’s PhD thesis [16] lists
the complete collection.

First, we present the rule for field writing . The rule’s preconditiorﬂ requires
that the heap contains at least the object dereferenced and the field mentioned.
In addition, it requires permission 1 to this object’s field, i.e., write-permission.
The rule’s postcondition simply ensures that the heap has been updated with the
value assigned. It should be noted that this rule is small [24]: it does not require
anything more than a single PointsTo predicate. The frame rule (discussed in
Section is used to build proofs in bigger contexts.

I'tu,w:UW W fefldU)
I';v B {PointsTo (u.f,1, W) }u.f =w{PointsTo (u.f,1,w)}

(F1d Set)

The rule for field reading requires a PointsTo predicate with any permission 7:

I'tu,mw:Upern,W W fefldU) W <:I'(()
I';v B {PointsTo(u.f,m, w) }=u.f{PointsTo (u.f, m,w) * £ == w}

(Get)

The rule for creating new objects has precondition true, because we do
not check for out of memory errors. After creating an object, all its fields are
writable: the predicate ¢.init abbreviates a *-conjunction of the predicates
PointsTo(¢.f,1,df(T)) for all fields T f in £’s class:

2 Where PointsTo (u.f,1, W) abbreviates (ex W w) (PointsTo (u.f,1,w)), as defined

in Section E



C<Ta>ecct I'Fa:T[x/a] C<7><:T(¥)
I';v F {true}f=new C<7>{l.init * C classof (}

(New)

The rule for method calls is verbose, but standard: it looks up the method
specification, type checks the method call, requires the precondition to hold
before the call, and ensures the postcondition holds after the call.

mtype(m, t<7>) = <T a> requires G; ensures (ex U o) (G');
Um (t<7> 10W7)
o= (u/1, 7 /a,w/7) TFu,7, w:t<z> Tlo],W[o] Ulo] <: ['(£) (Call)
ok {u't=null * Glo|}=um@@){(ex Ulo] ') (¢/ == ¢ * G'[o]}

Soundness of the logic is proven via a preservation theorem [16]. As corollary
we can prove that any verified program never dereferences null, and is partially
correct. The latter means that if a verified program contains a specification com-
mand assert (F), then F' holds whenever the assertion is reached at runtime:

Theorem 1 (Partial Correctness).
If (ct,c) : o and init(c) —%, (h,assert(F);c, s), then (I' - &;(h,P);s = Flo])
for some I',E = Foi (E),P and o € LogVar — SpecVal.

3 Separation Logic for dynamic threads

This section discusses how the logic is extended to reason about a multithreaded
language with fork and join primitives, & la Java. The rules allow to transfer per-
missions between threads upon thread creation and termination. The resulting
program logic is still sound.

We assume that class tables always contain a declaration of class Thread,
where class Thread contains methods fork, join, and run. As in Java, the
methods fork and join are assumed to be implemented natively; their behavior
is specified as follows:

— o.fork() creates a new thread, whose thread identifier is o, and executes
o.run() in this thread. Method fork should not be called more than once
on o: any subsequent call results in blocking of the calling thread.

— 0.join() blocks until thread o has terminated.

The run-method is meant to be overridden while methods join and fork should
not be overridden (in this simplified setting).

3.1 Separation Logic for fork/join

To extend our assertion language to deal with fork and join primitives, we
introduce a Join predicate that controls how threads access postconditions of
terminated threads.

The Join predicate To model join’s behavior, we add a new formula to the
assertion language defined in Section [2.1] This formula will be used to govern
exchange of permissions from terminated threads to alive threads:

F == ... | Join(e,m) | ...



The intuitive meaning of Join (e, 7) is as follows: it allows to pick up fraction
7 of thread e’s postcondition after e has terminated. As a specific case, if 7 is
1, the thread in which the Join predicate appears can pick up thread e’s entire
postcondition when e terminates.

3.2 Contracts for fork and join

Since we can specify contracts in the program logic for fork and join in class
Thread, we do not need to give new Hoare rules for them. Instead, rules for
fork and join are simply instances of the rule for method call. The contracts
for fork and join model how permissions to access the heap are exchanged
between threads. Intuitively, newly created threads obtain a part of the heap
from their parent thread. Dually, when a terminated thread is joined, (a part
of) its heap is transferred to the joining threads.

Specifications for Class Thread. To specify the methods in class Thread we
use so-called abstract predicates preFork and postJoin. For a more precise
definition of those predicates, we refer to the full version of this paper [T1]. Class
Thread is specified as follows:

class Thread extends Object{

pred preFork = true;
pred postJoin<perm p> = true;

requires preFork; ensures true;
final void fork();

requires Join(this,p); ensures postJoin<p>;
final void join();

final requires preFork; ensures postJoin<i1>;
void run() { null }

Predicates preFork and postJoin describe the pre- and postcondition of run,
respectively. Notice that the contracts of fork, join, and run are tightly related:
(1) fork’s precondition is similar to run’s precondition and (2) run’s postcondi-
tion includes predicate postJoin<1> while join’s postcondition is postJoin<p>.
Point (1) models that when a thread is forked, its run method is executed: part
of the parent thread’s state is transferred to the forked thread. Point (2) mod-
els that join returns after run terminates. Further, (2) represents that threads
joining a thread might pick up a part of the joined thread’s state. The fact that
permission p appears both as an argument to Join and to postJoin (in join’s
contract) models that joining threads pick up a part of the terminated thread’s
state which is proportional to Join’s argument. Because one Join (o, 1) predicate
is issued per thread o, and this cannot be duplicated, our system enforces that
threads joining o do not pick up more than thread o’s postcondition. Method
run’s contract in class Thread is fixed, which means that programmers have to
specify run by adapting the predicates preFork and postJoin. In our examples,
this proved to be convenient; however we have not investigated consequences of
this choice on more intricate examples.



Since run’s contract is fixed, run’s contract cannot be parameterized by log-
ical parameters. One could consider that this reduces expressiveness. But this
is wrong, in fact it would be unsound to allow logical parameters for method
run. As run’s pre and postconditions are interpreted in different threads, one
cannot guarantee that logical parameters are instantiated in a similar way be-
tween callers to fork and callers to join. Hence, logical parameters have to be
forbidden for run.

We highlight that method run can also be called directly, without forking a
new thread. Our system allows such behavior which is used in practice to flexibly
control concurrency (cf Java’s Executors [20]).

Soundness of the logic has also been proven for this extension. In addition
to absence of null dereferencing and partial correctness, we can also prove that
any verified program is free of data races.

4 Conclusions and Future Work

In this paper, we have presented a variant of permission-based separation logic
that allows to reason about object-oriented concurrent programs with dynamic
threads. The full logic also allows to reason about reentrant locks and supports
abstract predicates, see [I1]. The main selling point of this logic is that it com-
bines several existing specification techniques, and that it is not developed for an
idealized programming language. Together this makes it powerful and practical
enough to reason about real-life concurrent Java programs.

An essential ingredient of the logic is the use of permissions. These ensure
that in a verified program, data races cannot occur, while multiple simultaneous
reads are allowed. Thus concurrent execution of the program is restricted as little
as possible.

The work described in this paper will be continued in the VerCors project,
see http://fmt.cs.utwente.nl/projects/VerCors/. A first point for future
work is to develop tool support for the existing logic. This involves several top-
ics: (1) improving readability of the specification language, for example by ex-
tending an existing specification language such as JML [19]; (2) development of
appropriate proof theories to automatically discharge proof obligations; and (3)
development of techniques to reason about the absence of aliasing in the context
of lock-reentrancy. We also plan to study whether permission annotations can
be generated, instead of being written by the programmer.

In the longer term, we plan to study how the logic can be used in a more
flexible way for concurrent data structures. In particular, specifications should
be split into a functional and a concurrency part, in such a way that changing
the locking policy or concurrency or synchronization primitives of an implemen-
tation would only affect validity of the concurrency specification, and not of
the functional specification. Thus, if correctness of a program depends only on
the functional specification of the data structure, then the change in the data
structure’s concurrency mechanism does not change correctness of the program.
Eventually, this should also lead to a technique to reason about lock-free data
structures, where some benign data races may be explicitly allowed by the logic.
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