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ABSTRACT
This paper discusses how a subtle interaction between the
semantics of Java and the implementation of the JML run-
time checker can cause the latter to fail to report errors.
This problem is due to the well-known capability of finally
clauses to implicitly override exceptions. We give some sim-
ple examples of annotation violations that are not reported
by the run-time checker because the errors are caught within
the program text; even without any explicit reference to
them. We explain this behaviour, based on the official Java
Language Specification. We also discuss what are the con-
sequences of this problem, and we sketch different solutions
to the problem (by adapting the implementation of the JML
run-time checker, or by adopting a slightly different seman-
tics for Java).

1. INTRODUCTION
It is common folklore that if one could analyse the whole

state space of a program using a run-time checker, then any
violation of the specification would be found (assuming that
the specification is executable). Thus, provided that one has
a correct specification of the intended program behaviour,
if run-time checking does not signal errors for any program
execution, this gives a 100 % correctness guarantee for the
program. And only because in general it is impossible to
consider all possible execution paths of a program, it makes
sense to apply static verification and other static analysis
methods.

However, this point of view is actually too optimistic: we
show how the Java semantics (cf. [7]) can cause the JML
run-time checker to fail to report some annotation viola-
tions to the user – even though they can be detected using
static verification. The source of the problem, the seman-
tics of finally in Java, is well-known to be problematic [6,
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10]; programmers are usually advised to adhere to partic-
ular programming patterns when using finally, to avoid
unexpected program behaviour. This paper discusses how
the semantics of finally also can have consequences for the
use of a run-time checker. This paper does not intend to say
that run-time checking does not work; it merely points out
a peculiarity that is caused by the interaction between the
semantics of finally clauses, and the implementation of the
JML run-time checker. Standard solutions cannot avoid the
problem: the programming patterns that are proposed for
finally clauses are useless here, because one cannot expect
the programmer to add code in the implementation of a fi-

nally block that checks whether run-time checking might
have produced an error. Instead run-time checking tool
builders should be aware of the problem (since it seems un-
likely to expect a change to the Java semantics), and adapt
their tools appropriately.

JML is an expressive annotation language for Java, that
allows one to encode many useful safety and security proper-
ties. It is supported by a wide variety of tools, for run-time
and static verification, annotation generation etc., see [3].
The standard JML run-time checker tool set compiles the
specification into run-time checks (using jmlc), by adding
appropriate instructions to the program. When the actual
run-time checker jmlrac is executed, appropriate errors are
thrown if the annotations are violated [4]. However, since
the way to signal specification violations is encoded in the
programming language itself, the JML errors are treated as
any other kind of exception. And thus, in particular, it is
possible to catch them, and return to a “normal” program
state again. Moreover, because of the subtle semantics of
Java for try-catch-finally statements, it is even possible
to overwrite a JML error with another exception, and thus
to catch it without explicitly mentioning it in the program
text.

This paper emerged as an unexpected difficulty in a larger
project on inlining security monitors [8] (in collaboration
with A. Tamalet, University of Nijmegen, Netherlands). Ul-
timate goal of the project is to develop a static verification
method that makes monitoring of an application unneces-
sary. The inlining is defined in two steps: first the monitor
is translated into appropriate annotations of the methods
directly involved in the security property that the moni-
tor encodes, next the annotations are propagated, so that a
verification condition generator can generate provable proof
obligations. Correctness of the procedure is also proven in
two steps: (1) a monitored program only gets stuck if run-
time checking of the basic annotations would raise an excep-



tion; (2) propagation of annotations would never result in
an incorrect program being accepted. One of the initial as-
sumptions of the project was that any incorrect application
would always be rejected by run-time annotation checking.
However, when formalising the correctness proof, we realised
that this assumption was actually incorrect.

Section 2 presents some examples where run-time anno-
tation violations are not reported to the user. Section 3
explains this behaviour, based on the Java Language Seman-
tics. Section 4 discusses consequences for run-time checkers,
while Section 5 sketches possible solutions, and Section 6
concludes.

2. EXAMPLES
This section illustrates how a program can be manipu-

lated, so that it does not signal specification violations. Sup-
pose that we have a method decrypt, whose first argument
is a key, and its second a special access_code that deter-
mines whether one is allowed to use decryption. Thus, the
access code should be in a particular range; for simplicity let
us assume that it should be below 10. In JML, this method
could be specified as follows.

//@ requires access_code < 10;

public void decrypt(int [] key, int access_code){

...

}

Now suppose that somebody who does not have the access
code nevertheless attempts to decrypt a message. A naive
approach would be to just guess an access code (say 36), and
to call the decrypt message anyway:

// Example 1

public void sneakyMethod(){

int r = 36;

decrypt(key, r);

}

However, any attempt with a guess that is out-of-range
would be signalled by the JML run-time checker jmlrac:

> jmlrac TryCatchExample

Exception in thread "main"

org.jmlspecs.jmlrac.run-time.JMLInternalPreconditionError:

by method TryCatch.decrypt

at TryCatch.sneakyMethod(TryCatchExample.java:432)

at TryCatch.internal$cheat(TryCatchExample.java:11)

at TryCatch.cheat(TryCatchExample.java:292)

at TryCatchExample.internal$main(TryCatchExample.java:1101)

at TryCatchExample.main(TryCatchExample.java:1373)

A possible way to hide this would be to put the code inside
a try-block, and to catch the JML error.

// Example 2

public void sneakyMethod(){

try{

int r = 36;

decrypt(key, r);

}

catch (Error e){

}

}

Run-time checking with jmlrac would not signal an error
anymore, even though one attempts to call decrypt with il-
legal arguments. However, an attentive code inspector might
get suspicious by the attempt to catch an Error, since “the
class Error and its subclasses are exceptions from which or-
dinary programs are not ordinarily expected to recover.” [7,
§11.5] (JML errors are a subclass of the class Error, which
inherits directly from Throwable, and is thus incompatible
with the class Exception). Therefore, errors can be dis-
tinguished from exceptions, from which recovery might be
possible.

A smarter way to hide this attempt is by using a finally

block to override the possible JML error.

// Example 3

public void sneakyMethod() throws ArbitraryException{

try{

int r = 36;

decrypt(key, r);

}

finally{

throw new ArbitraryException();

}

}

In this case, the program will throw an ArbitraryException

(or terminate normally if this ArbitraryException is caught
by the method that triggered sneakyMethod). For this pro-
gram, manual code inspection to reveal whether a JML er-
ror was hidden might not be straightforward (remember
that the code for the decrypt method and the invocation
of sneakyMethod might be stored in different classes). Nat-
urally, tools for static validation of JML annotations (such
as ESC/Java [5] or Jack [2]) would detect this attempt to
call decrypt with illegal arguments.

3. A SEMANTICS-BASED EXPLANATION
This failure of run-time checking with jmlrac can be ex-

plained directly on the basis of the Java semantics. The
Java Language Specification gives a detailed description of
the behaviour of the try-catch and the try-catch-finally
statements [7, §14.20]. Here, we repeat only those fragments
of the specification that are relevant for this paper.

A try-catch-finally statement with a finally

block is executed by first executing the try block. [..]
If execution of the try block completes abruptly
because of a throw of a value V , then there is a
choice:

• If the run-time type of V is assignable to
the parameter of any catch clause of the
try-catch-finally statement, then the first
(leftmost) such catch clause is selected. The
value V is assigned to the parameter of the
selected catch clause, and the block of that
catch clause is executed. [..]

• If the run-time type of V is not assignable
to the parameter of any catch clause of the
try-catch-finally statement, then the fi-
nally block is executed. Then there is a
choice:

– If the finally block completes normally,
then the try statement completes ab-



ruptly because of a throw of the value
V .

– If the finally block completes abruptly
for reason S, then the try-catch-fi-

nally statement completes abruptly for
reason S (and the throw of value V is
discarded and forgotten).

[...]

Notice that if execution of a catch block completes ab-
ruptly because of a throw of an exception, similar rules apply
for the execution of the finally block. Also, if the try or
catch block completes abruptly for any other reason R (e.g.,
execution of a return statement), abrupt completion of the
finally block always discards reason R.

It is not too complicated to give a formal specification (in a
formal language) of the behaviour of the try-catch-finally
statement, based on the description from the Java Language
Specification, see for example the formalisation that was
used within the LOOP project [9].

Thus, in Example 2 above, the JML error is caught explic-
itly by the catch clause, since its run-time type is assignable
to the parameter Error e.

In Example 3, there is no matching catch clause (as there
are none). Therefore, the finally block will be executed
directly, and as this will throw an (arbitrary) exception, the
JML error will be discarded. Thus, this behaviour of the
finally block in fact allows implicit catching of all excep-
tions, including errors from which recovery should not be
possible.

As mentioned above, this behaviour of finally clauses is
well-known, and requires use of special programming pat-
terns to avoid problems [6, 10]. Finally clauses are typically
used to perform clean-up on objects that deal with an exter-
nal resource, e.g., to close a file. Correct use of finally clauses
ensures that even though a program might terminate be-
cause of an exception, it will not corrupt external resources.
Notice however that finally clauses are not essential; algo-
rithms exist to eliminate their bytecode counterparts, i.e.,
jsr instructions, see e.g., [1].

Notice further that the semantics of the try-catch-fi-

nally statement prescribes that any abrupt completion of
the finally block discards the throw of value V . Thus, any
return, break or continue statement would have a similar
effect. In particular, the following variant of sneakyMethod:

// Example 4

public void sneakyMethod(){

try{

int r = 36;

decrypt(key, r);

}

finally{

return;

}

}

would have the same effect as Example 3 above, i.e., it would
discard the JML error, but instead of throwing a new excep-
tion, sneakyMethod would terminate normally.

Finally, we would like to remark that IDEs like Eclipse
try to help the user to avoid writing a finally block that
completes abruptly. From the Eclipse 3.0 release notes:

The Java compiler can now find and flag fi-

nally blocks which cannot complete normally
(as defined in the Java Language Specification).
Finally blocks which cannot complete normally
can be confusing and are considered bad practice.

However, this feature has limited value, as it does not give
a warning when in a finally block a method is called that
might throw an exception – even when this method has an
explicit throws clause as part of its declaration.

4. CONSEQUENCES FOR RUN-TIME
CHECKING

The main consequence of the behaviour described above
is that it causes run-time checking with jmlrac not to be
completely transparent, where transparency means that if
no annotation violations are reported (to the user), run-
ning a program with run-time checking results in the same
behaviour as running the program without run-time check-
ing [3].

In particular, both the second and the third example pro-
gram in Section 2 will behave differently when executed with
run-time checking enabled or disabled even though no anno-
tation violations are reported (to the user): run-time check-
ing will ensure that the method decrypt is not executed,
while it will be executed when run-time checking is disabled.
In fact, the annotation violation is detected by the JML run-
time checker, but the underlying program semantics causes
the violation not be reported to the user.

The loss of transparency can in particular be exploited to
call a method in an inconsistent state. Suppose we have a
method m that requires data to be consistent, as specified
by a class invariant (for example: the value of a variable
is within a certain range). If we call method m within a
try-catch-finally statement in a state that does not re-
spect this invariant, the violation of the invariant will not
be reported to the user – provided the state is set back to
a consistent one before completing the caller of method m.
This might make him/her believe that the invariant is never
violated, and thus that it is safe to run the program without
run-time checking enabled (which is more efficient). But if
this is done, the method m will be called in this inconsistent
state, which can cause highly unexpected behaviour, and
can easily violate security.

However, without adding additional try-catch-finally
statements, it is not possible to disguise all the annota-
tion violations – provided the program is sufficiently an-
notated. In particular, JML run-time checking will check
whether the postcondition of the method containing the
try-catch-finally statement holds upon termination of
this method, and whether all class invariants have been re-
established. Thus, this prevents the inconsistent state to
be propagated. However, this has the consequence that the
error is reported at a different point, than that where it oc-
curred, and thus it breaks isolation, i.e., the ability of the
run-time checker to identify the source of a problem [3].

5. POSSIBLE SOLUTIONS

5.1 Changing the JML Run-Time Checker
The problem discussed above is caused by the semantics

of the finally clause, and its ability to discard exceptions.



Therefore, a simple way to avoid the problem is by forbid-
ding all uses of finally clauses; but of course this solution
is a bit drastic, as it would mean that the JML run-time
checker cannot be used for all programs written in Java.
Moreover, as mentioned above, finally clauses are useful to
ensure clean-up of external resources.

As also mentioned above, algorithms exist to eliminate
the jsr instruction, the bytecode equivalent of the finally

clause [1]. Even though applying such an algorithm would
make it more explicit where potentially a JML error might
be discarded, it would not avoid it happening.

In fact, to guarantee that run-time checking with jmlrac

will report all annotation violations to the user, it is suffi-
cient to restrict the behaviour of try-catch-finally state-
ments where the try or the catch clause could throw a
JML error. To ensure that the JML error is not discarded,
either the finally clause should terminate normally, or it
should throw a JML error itself. This ensures that the whole
try-catch-finally statement will terminate in an excep-
tional state, because of a JML error. This is expressed by
the following conditions:

• If execution of the try block completes abruptly be-
cause of a throw of a JML error J , then execution
of the whole try-catch-finally statement completes
abruptly because of a throw of a JML error J ′.

• If execution of the try block completes abruptly be-
cause of a throw of a value V , that is not assignable
to a JML error, and if execution of the (leftmost)
matching catch clause completes abruptly because of
a throw of a JML error J , then execution of the whole
try-catch-finally statement completes abruptly be-
cause of a throw of a JML error J ′.

Notice that here we leave it unspecified whether the JML
error that the whole statement terminates with (J ′) is the
same as the JML error that the try or catch block termi-
nates with (J). Requiring that these JML errors are identi-
cal would ensure even better isolation of the problem.

However, it is not always straightforward to determine
statically whether a program satisfies this property. For
example, consider the following code fragment, where we
suppose that method m throws a JML error, and does not
change the variable b.

try {

if (b) {m();}

}

finally {

if (!b) {

throw new ArbitraryException();

}

}

This satisfies the conditions above, because if m is called, and
the JML error is thrown, the finally clause will not throw
an ArbitraryException, thus the JML error will not be dis-
carded. However, it requires advanced analysis techniques
to determine this statically.

An alternative solution would be to have jmlc instrument
the finally block by additional try-catch-finally con-
structs, that ensure that JML errors are not discarded – even
when the finally block throws another exception. Suppose

we have a statement try T catch C finally F . To en-
sure that JML errors that occur in T or C cannot be dis-
carded by F , the statement could be transformed according
to the following pattern:

try {

try {

try T
catch C
}

catch (JMLError j) {

... // set flag, store j

}

finally F
}

finally {

... // if flag set, rethrow j

}

This ensures that whatever happens, F will be executed.
However, if execution of T or C gave rise to a JML error j,
this error will be stored, and the last finally clause ensures
that the complete statement ends with abruptly because of
the JML error j.

Finally, another possibility is to change the instrumenta-
tion approach of JML: instead of (or in addition to) throwing
a special error, any annotation violation is stored into a spe-
cial log file. However, this means that one gives up on the
idea to stop the execution as soon as an annotation violation
is detected (to avoid any further damage).

5.2 Changes to the Java Semantics
In fact, we believe that the real source of the problem is

that a finally clause can (implicitly) catch exceptions and
errors and discard them, even though recovery from errors
should not be possible, see the Java Language Specifica-
tion [7, §11.5]. This problem is not only related to errors
thrown by the run-time checker, it applies to all errors.
Consider for example the program in Figure 1. The call
to the constructor of class A will recursively invoke itself,
to initialise the field a in class A. This will quickly result
in a java.lang.StackOverflowError. However, the finally
clause will discard this error, and throw some other, arbi-
trary exception. This exception is caught in the surround-
ing try-catch statement, and thus the program will termi-
nate by printing still alive – and the occurrence of the
StackOverflowError has been forgotten. Notice that in a
similar way other errors, such as NoClassDefFoundError,
OutOfMemoryError and internal JVM errors, can be dis-
carded.

To avoid the discarding of errors, the semantics of the
try-catch-finally statement could be adapted such that
a finally clause is only executed if the try or catch clause ter-
minates normally, or with an exception V that is assignable
to a variable of type Exception. Otherwise, if V is not
assignable to an Exception, the whole try-catch-finally

statement completes abruptly because of a throw of value
V . This means that the only way to recover from an error is
by an explicit catch. In particular, to ensure that run-time
checking does report all annotation violations, it is sufficient
to check that there are no catch clauses for class Throwable,
Error or any JML-specific error class. However, this would
mean that upon occurrence of an error, the JVM would have
to ensure that external resources are handled appropriately.



class A {

A a = new A();

}

class FinallyCatchesAll {

public static void main (String [] args) {

try {

try {

A a = new A();

}

finally {

throw new ArbitraryException();

}

}

catch (Exception e) {

};

System.out.println ("still alive");

}

}

Figure 1: Recovering from Unrecoverable Errors

An alternative solution would be to prioritise throwables,
in such a way that errors have a higher priority than excep-
tions, while exceptions have a higher priority than other rea-
sons for abrupt completion. One then requires that finally
clauses cannot discard errors (unless maybe, they throw an
error themselves). Thus, for example, if a try (or catch)
block throws an error E, the finally block is executed. If ex-
ecution of the finally block results in exception E′, then ex-
ception E′ is discarded, and the whole try-catch-finally

statement terminates abruptly because of a throw of error
E.

6. CONCLUSIONS
This paper discusses a case where run-time checking with

JML does not report an annotation violation, even though it
properly detects it. This is due to an interaction between the
run-time checker, and the implicit recovery of exceptions, as
specified by the semantics of finally clauses in Java. We ar-
gue that in this case, behaviour of the JML run-time checker
is not transparent, i.e., applications for which no run-time
errors are reported to the user can have different behaviours
depending on whether run-time checking is enabled or not.
In many cases, the annotation violation will still be signalled
later, because other, related annotations are violated, but
this has the consequence that the run-time checker looses
its ability to isolate problems at the point where they occur.

This paper concentrates on the case of Java applications,
annotated with JML, but the observations presented here
are partly applicable in any context where the run-time
checker is inlined into the code of the application that is
being monitored. If the programming language contains a
mechanism to recover from the errors that are used to signal
run-time annotation violations, then it is possible to recover
from them – and thus not to report them to the user. How-
ever, what is particular about Java is that finally clauses
implicitly can discard errors, so that recovery is possible
without even explicitly referring to the error found by the

run-time checker.
In addition, we showed that the semantics of finally clauses

also allows to recover (implicitly) from other errors, that are
in fact supposed to be unrecoverable, such as stack overflows.

Above, we discuss two possible changes to the Java se-
mantics that would fix this problem. Of course, given the
wide-spread use of Java, and the constraints on backwards
compatibility of Java bytecode, such a change to the Java
semantics is possibly not a viable solution, and the concrete
problem at hand would better be solved by changing the
implementation of the JML run-time checker. However, we
believe that for future language designs, it is important to
consider the issues discussed in this paper. And of course,
if the Java semantics would be changed as described above,
one would better be suspicious of applications whose be-
haviour is affected by this change to the language semantics.
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