
BML and related tools
?

Jacek Chrz¡szcz1, Marieke Huisman2, and Aleksy Schubert1

1 Institute of Informatics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw,
Poland

2 University of Twente, Faculty EEMCS, P.O. Box 217, 7500 AE Enschede,
The Netherlands

Abstract The Bytecode Modeling Language (BML) is a speci�cation
language for Java bytecode, that provides a high level of abstraction,
while not restricting the format of the bytecode. Notably, BML speci�ca-
tions can be stored in class �les, so that they can be shipped together with
the bytecode. This makes BML particularly suited as property speci-
�cation language in a proof-carrying code framework. Moreover, BML is
designed to be close to the source code level speci�cation language JML,
so that speci�cations (and proofs) developed at�the more intuitive�
source code level can be compiled into bytecode level.
This paper describes the BML language and its binary representation. It
also discusses the tool set that is available to support BML, containing
BMLLib, a library to inspect and edit BML speci�cations; Umbra, a BML
viewer and editor, integrated in Eclipse; JML2BML, a compiler from JML
to BML speci�cations; BML2BPL, a translator from BML to BoogiePL,
so that the BoogiePL veri�cation condition generator can be used; and
CCT, a tool to store proofs in class �les.

1 Introduction

Typically, if formal methods are used in the process of software development,
they are applied at source code level [18,24,6]. Modern programming languages
introduce a strict structure on the code and provide a layer of abstraction that
makes a program quite comprehensive for humans. The use of an appropriate
speci�cation language introduces another, even higher, level of abstraction into
the software development process. An advantage of this abstraction is that it
reduces the di�culty of program construction, in particular when it is supported
by tools.

However, sometimes severe restrictions are made on program execution time
or resource usage, and to satisfy these demands, code must be optimised. Because
of the strict code structure imposed by high-level programming languages, it is

? This work was partly supported by Polish government grant 177/6.PR UE/2006/7
and Information Society Technologies programme of the European Commission FET
project IST-2005-015905 MOBIUS. This paper re�ects only authors' views and the
Community is not liable for any use that may be made of the information contained
therein.

often better to �ne-tune programs at the lower level of executable code. But if
one does this, one still needs to understand why and how the code works. Here
a speci�cation language can be useful as well, because it can reintroduce the
abstraction that was eliminated by the compilation and optimisation process.
Thus, a good speci�cation language for executable code can provide a basis for
the development of reliable, highly optimised programs in low-level form.

Moreover, since low-level languages can be the target platform for several
di�erent source code languages, a speci�cation formalism for a low-level language
can serve as a common ground for understanding software from di�erent sources.

This led to the proposal of a program logic for Java bytecode [5] and, based on
this, a speci�cation language for bytecode�the Bytecode Modeling Language
(BML) [8]. BML is based on the principle of design-by-contract and it is strongly
inspired by the Java Modeling Language (JML) [14,17,18]. JML is the de facto

Java speci�cation language, supported by a wide range of tools [7].
One of the most promising applications of low-level speci�cation languages

such as BML is in the context of proof-carrying code (PCC). In this context, code
that is shipped from the code producer to the code consumer comes together
with a speci�cation and a correctness proof. Since BML can specify executable
code, it seems an appropriate speci�cation language for foundational PCC [2,1],
where a relatively small but expressive framework can capture the class of desir-
able properties of mobile code. Because of its expressiveness, BML speci�cations
can give hints to the prover (e.g., one can supply loop invariants and suggest
appropriate lemmas using assert statements), which can ease the automatic con-
struction of proofs. To be able to ship BML speci�cations together with the
code, a BML representation within Java class �les is de�ned.

To be able to use BML in a PCC context, and as a speci�cation language on
its own, it is designed with the following two goals in mind: (i) it should be easy
to transform speci�cations and proofs from the source code level to the bytecode
level, and (ii) speci�cations should be comprehensive.

When BML is used in a PCC context, we expect it be used as an intermediate
format. People will rather specify and verify their source code, and then trans-
late these into properties and proofs of the executable code. Since Java is our
privileged application language, we assume JML will be the source code speci-
�cation language. Therefore, translation from JML speci�cations and proofs to
BML should be as straightforward as possible. Realising a PCC platform for
Java to support this use of BML is one of the goals of the MOBIUS project3.

Since BML can also be used as a speci�cation language on its own (for exam-
ple, to ensure that a program optimisation is correct), the speci�cations should
be intelligible. To achieve this, the language reuses many constructs from JML.
Since JML is designed in such a way that it is intuitive and easily understand-
able for common Java programmers, we believe the same should apply to BML.
Therefore, we developed a textual representation of bytecode classes augmented
with BML that indicate clearly the relation between the speci�cation and the
di�erent pieces of the program.

3 See http://mobius.inria.fr for more information.

2

1 public class KeyPool {

private int[] keyIds;
//@ invariant keyIds != null;

5 /∗@ invariant (\forall int i, j ; 0 <= i && i < j && j < keyIds.length;
@ keyIds[i] >= keyIds[j]); @∗/

//@ ghost int lastPos;
9 //@ invariant 0 <= lastPos && lastPos < keyIds.length;

/∗@ invariant (\forall int i; lastPos < i && i < keyIds.length;
@ keyIds[i] == 0); @∗/

13 // ...other methods...

/∗@ requires keyId > 0 && lastPos < keyIds.length − 1;
@ ensures (\exists int i; 0 <= i && i < lastPos && keyIds[i] = keyId);

17 @∗/
public void insert(int keyId) {

int i ;
/∗@ loop_invariant −1 <= i &&

21 @ (\forall int k; i < k && k < keyIds.length; keyId > keyIds[k]);
@∗/

for (i = keyIds.length − 2; i >= 0 && keyId > keyIds[i]; i−−) {
keyIds[i+1] = keyIds[i];

25 }
keyIds[i+1] = keyId;
//@ set lastPos = lastPos + 1;

}
29 }

Figure 1. Source code and JML speci�cations for class KeyPool

A crucial element for the success of a speci�cation formalism is tool support.
Therefore, a set of prototype tools is developed for BML. This tool set contains
the following tools:

� BMLLib, a library to represent and manipulate speci�cations;
� Umbra, a BML editor within Eclipse IDE;
� JML2BML, a compiler from JML speci�cations to BML;
� BML2BPL, a translator of bytecode enhanced with BML to BoogiePL, a
language from which veri�cation conditions can be generated easily; and

� CCT, a tool to store proofs in class �les.

A precise description of the BML language is given in the BML Reference

Manual [10]. The current paper gives a brief overview of BML (Sect. 2) and its
two representations (Sect. 3). Then it discusses the tools in the BML tool set
(Sect. 4). We conclude the paper in Sect. 5.

Throughout the paper, fragments of a class KeyPool are used as example.
Figure 1 shows relevant parts of the Java source code and JML speci�cations

3

of this class. We expect the reader to be able to grasp the intention of this
speci�cation.

2 Overview of BML

As motivated above, the design of BML is very similar to its source-code-level
counterpart JML: each element of a class �le can be annotated with speci�ca-
tions. This section illustrates this by showing how the speci�cations in Fig. 1
are translated. Figure 2 shows the translation of the Java code, without the
speci�cations. The full de�nition of BML can be found in [10].

It is important to note that BML covers most of the so-called JML Level 0,
i.e., the essential part of JML that is supposed to be supported by all JML tools
[18, Sect. 2.9]. The missing features are informal descriptions and extended debug
statements. Informal descriptions are in fact a special kind of comments, which
are impossible to formalise. The JML debug statements can contain arbitrary
Java expressions, while BML debug statements allow only variable names, the
value of which is supposed to be printed out by tools that execute BML spec-
i�cations (e.g., a run-time checker). In addition, BML allows one to use pure
method calls in speci�cations (mandated by JML Level 1�describing features
to be supported by most tools). Also, the expression language contains a few
BML-speci�c constructs, to denote the size and elements of the operand stack
and the size of arrays. Constants and variables are also addressed di�erently in
BML: in the binary representation �elds are encoded as an index in the constant
pool (to the location where the FieldRef structure is stored), while local vari-
ables are referenced by a number that denotes their position in the local variable
table. This is the same as �elds and local variables are addressed in bytecode. For
the sake of readability, in the textual representation, those numerical references
are shown as appropriate identi�ers.

2.1 Class-level Speci�cations

Class-level speci�cations specify behaviour of all instances of a class. The most
prominent example of class-level speci�cations are invariants. An (instance) in-
variant speci�es a property that should hold for all instances of that class, after
completion of the constructor and before and after the execution of all methods
of the class. Figure 3 shows the BML speci�cation of the invariants and other
class-level speci�cation constructs for the class KeyPool. Notice that compared
to the JML speci�cation, the speci�cations are more rigid in format: the con-
structs are given in a �xed order and the receiver object is always mentioned
explicitly. In addition, a keyword \length is used to denote the length of an
array.

Another class-level speci�cation is the declaration of a so-called ghost �eld.
These are �elds that exist only at speci�cation level. To change their value,
BML has a special set instruction (see also Sect. 2.3). Ghost �elds can be used

4

package [default]
// ... Constant pool and Second constant pool omitted ...
public class KeyPool extends java.lang.Object
// ... class−level speci�cations omitted ...

// ... other methods omitted ...

// ... method speci�cation omitted ...
public void insert(int)
0: aload_0
1: get�eld KeyPool.keyIds [I (20)
4: arraylength
5: iconst_2
6: isub
7: istore_2
//@ loop_speci�cation ... speci�cation omitted ...
8: goto #28
11: aload_0
12: get�eld KeyPool.keyIds [I (20)
15: iload_2
16: iconst_1
17: iadd
18: aload_0
19: get�eld KeyPool.keyIds [I (20)
22: iload_2
23: iaload
24: iastore
25: iinc %2 −1
28: iload_2
29: i�t #42
32: iload_1
33: aload_0
34: get�eld KeyPool.keyIds [I (20)
37: iload_2
38: iaload
39: if_icmpgt #11
42: aload_0
43: get�eld KeyPool.keyIds [I (20)
46: iload_2
47: iconst_1
48: iadd
49: iload_1
50: iastore
//@ set ... speci�cation omitted ...
51: return

Figure 2. Bytecode for class KeyPool

5

/∗@ public ghost int lastPos @∗/
/∗@ invariant keyIds != null @∗/
/∗@ invariant 0 <= this.lastPos && this.lastPos < \length(this.keyIds) @∗/
/∗@ invariant \forall int i,j ; 0 <= i && i < j && j < \length(this.keyIds)
@ ==> this.keyIds[i] >= this.keyIds[j]
@∗/

/∗@ invariant \forall int i; this.lastPos < i && i < \length(this.keyIds)
@ ==> this.keyIds[i] == 0)
@∗/

Figure 3. BML class-level speci�cations for class KeyPool

to represent values that are implicit in the actual code, but must be mentioned
explicitly in speci�cations.

In our example, the lastPos ghost �eld represents the position of the last
key inserted in the table. The invariants constrain the possible values of the �eld
keyIds and the ghost �eld lastPos: keyIds cannot be null, lastPos should
be less than the length of the array, the values in the array should be sorted in
decreasing order, and all entries of the array to the right of lastPos should be 0.
The value of lastPos is updated by a set instruction, placed before instruction
label 51 in the bytecode (see Fig. 5).

Apart from invariants and ghost variable declarations, BML class-level spec-
i�cations can also be static invariants, i.e., invariant properties over static �elds;
history constraints, that express a relation between two states before and after
method calls; and model �eld declarations to abstract complex expressions (e.g.
the sum of all elements in a table).

2.2 Method-level Speci�cations

Method-level speci�cations describe the behaviour of a single method. The ba-
sic principle is the use of pre- and postconditions. Preconditions state what is
expected about parameters and the state of objects upon method invocation,
while postconditions state what the method guarantees upon termination. It is
possible to refer to the prestate of the method in the postcondition, using the
keyword \old. In addition, BML method-level speci�cations contain assignable,
signals and signals-only clauses. These specify which variables may be modi�ed
by a method, which exceptions may be thrown by a method, and under which
conditions. Assignable clauses are necessary for sound modular veri�cation. In
JML speci�cations, these clauses are often left implicit, using an appropriate de-
fault clause, but in BML they have to be speci�ed explicitly. In addition, BML
allows one to �ag a method as pure, meaning that it does not modify state, and
therefore can be used in speci�cations.

Figure 4 shows the BML speci�cation for method insert. The precondition
(keyword requires) speci�es that parameter keyId should be strictly positive
and ghost variable lastPos should be less than the length of the table minus 1,
i.e., there should be space for inserting another key. The postcondition (keyword

6

/∗@ requires keyId > 0 && this.lastPos < \length(this.keyIds) − 1
@ modi�es \everything
@ ensures (\exists int i; 0 <= i && i < lastPos && this.keyIds[i] == keyId)
@ signals (java/lang/Exception) true
@ signals_only \nothing
@∗/

Figure 4. BML method speci�cation for insert in class KeyPool

ensures) speci�es that after completion of the method, one of the elements of
the keyIds table is the newly inserted keyId. Notice that the implicit assignable,
signals and signals-only clauses from Fig. 1 are explicit in the BML speci�cation.

2.3 Code-level Speci�cations

The last group of BML speci�cations are those that refer to speci�c points of
the code inside a method body. Such speci�cations are typically there to help
automatic veri�cation procedures. A common code-level speci�cation construct
is a loop invariant, specifying a condition that is met every time control is at the
beginning of the loop. Loop invariants are necessary to prove partial correctness
of a loop.

Figure 5 shows the BML speci�cation of the loop invariant of method insert

in class KeyPool. The loop ranges from label 8 to 39. All instructions before
label 8 initialise the loop; the �rst eight instructions of the loop (labels 8�19)
check the loop condition; and the loop body is implemented by the instructions
labelled 22�35. The invariant is speci�ed just before the beginning of the loop,
i.e., before instruction 8. It states that the loop variable i never is less than -1,
and all keys that have been examined, i.e., between i and the length of keyIds,
are less than keyId.

Apart from the loop invariant, a BML loop speci�cation also contains a
loop variant, i.e., a non-negative integer expression that is supposed to strictly

7: istore_2
/∗@ loop_speci�cation
@ loop_inv −1 <= i && (\forall int k; i < k && k < \length(this.keyIds)
@ ==> keyId > this.keyIds[k])
@ decreases 1
@∗/

8: goto #28
// ... code omitted ...
50: iastore
/∗@ set this.lastPos = this.lastPos + 1 @∗/
51: return

Figure 5. BML code-level speci�cations for class KeyPool

7

decrease for each iteration of the loop. The variant is used to prove termination
of the loop. In our example it is a meaningless 1, since no variant is given at the
source code level. Thus, with this speci�cation, it will not be possible to prove
termination of this method.

Other BML code-level speci�cations include set instructions, used to change
the value of ghost variables (before label 51 in Fig. 5); assert and assume
annotations, to assert/assume facts about the program; and debug annotations,
to print out values of a variable in case the program is executed by a BML-aware
execution environment.

2.4 Veri�cation of BML Speci�cations

Work on BML and its semantics was initiated by Mariela Pavlova [25] within the
context of JACK (Java Applet Correctness Kit) [4]. Pavlova's work is based on
an operational semantics of Java bytecode which covers a representative set of 22
instructions. She gives a semantics for a representative subset of the speci�cation
language in the form of a weakest precondition calculus. An overview of the work
is presented in [9,8].

Development of the formal underpinning of BML continued in the context of
the MOBIUS project (see [22] for more details). The Bicolano speci�cation [26],
within the proof assistant Coq, formalises the operational semantics of a con-
siderable subset of bytecode instructions. On top of Bicolano a bytecode logic,
called the MOBIUS base logic, is developed and formalised in Coq, following the
principles of [5]. A translation from BML speci�cations into the MOBIUS base
logic is de�ned (where BML predicates are translated using an additional deep
embedding layer for assertions in Isabelle).

To make veri�cation of BML speci�cations more practical, a translation into
BoogiePL is necessary. BoogiePL is an intermediate language for program ver-
i�cation [12]. It has procedures and only 5 instructions (including assume and
assert). This makes it easy to de�ne a correct veri�cation condition generator for
it. The strength of BoogiePL lies in its non-determinism and its use of guards to
control the program �ow (similar to Dijkstra's guarded commands [13]). A pro-
gram and its speci�cation are translated into a BoogiePL program; veri�cation
conditions are generated from this BoogiePL program.

Lehner and Müller present a translation from bytecode instructions to Boo-

giePL [19]. Properties are speci�ed in �rst-order logic. Using a translation that
is similar to the one presented by Darvas and Müller for JML0 [11], BML speci-
�cations can be translated into �rst-order logic. In addition, Mallo [21] presents
a direct translation for a subset of BML into BoogiePL.

3 Representation of BML Speci�cations

The bytecode presented in Fig. 2 is of course only a textual representation of
the actual binary code. Various tools exist to produce such textual representa-
tions from class �les, e.g., javap and Umbra (see Sect. 4.3). BML also has two

8

representations: (i) a binary form, using non-standard attributes stored inside
class �les, and (ii) a textual representation, as shown in the previous section.
This textual representation is very similar to JML, but a bit more rigid, as it
must be in correspondence with the binary form. This section discusses the two
representations of BML.

3.1 Binary Representation of BML

Several possibilities exist to de�ne a binary format for BML.
A simple approach would be to use standard Java serialisation to dump

Java objects representing abstract syntax trees of speci�cations. However, this
choice would force BML tool builders to use Java and our abstract syntax tree
de�nition. Instead, we preferred to de�ne a precise speci�cation of a binary
format, that tool builders can freely manipulate.

As said above, BML speci�cations are stored inside a class �le. It would also
be possible to store speci�cations in a separate �le, but since speci�cations refer
to elements of the class �le, it is most natural to take advantage of the possibility
to add information to the class �le.

To store additional information in class �les, there are currently two di�erent
possibilities: attributes and annotations [15]. Attributes are more low-level, they
appear in the speci�cation of the Java Virtual Machine since its �rst version and
they are used by the compiler to store the di�erent optional elements of classes,
such as the method code, line number tables and local variable tables. Attributes
are also used in the initial tools that support BML, in the JACK environment [4].

Java annotations are introduced in Java 5.0 as a mechanism to describe
properties of Java methods and classes (metadata). They have become the o�cial
standard of annotating Java code with machine checkable information. Support
to compile and store them in special attributes inside a class �le is available,
as well as an API to inspect them at runtime. However, the main bene�t of
using annotations is at source code level. Inserting annotations in an already
compiled class �le is a bit contrary to the idea of annotations. Besides, Java
annotations cannot be placed inside code4, speci�cations would be necessary at
least for code-level speci�cations. In addition, Java annotations are not used
in JML, and adopting annotations would practically preclude specifying code
written in earlier versions of Java than 5.0.

Taking all these considerations into account, we decided to de�ne a precise
binary format for BML speci�cations, stored as non-standard JVM attributes
inside the class �le.

Encoding of BML Speci�cations. The structure of Java class �les is quite �exi-
ble. Some elements are obligatory, e.g., the magic number CAFEBABE5, header,
constant pool, �eld table and method table, but most elements are optional.

4 Even the ongoing development in JSR308 [16] to allow one to use annotations in
more places still does not support annotation of instructions.

5 See http://www.artima.com/insidejvm/whyCAFEBABE.html for more information.

9

Invariants_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 invariants_count;

{ u2 access_flags;

formula_info invariant;

} invariants[invariants_count];

}

Figure 6. Structure of the org.bmlspecs.Invariants attribute

All optional elements are stored in so-called attributes, which are just blocks
of bytes with a name (to distinguish them). Attributes can be stored in dif-
ferent �places� in the class �le structure: there are class attributes, �eld at-
tributes, method attributes, and code attributes. So, for example, the bytecode
of a method is stored in a method attribute named Code, and inside this Code
attribute there is also space for code-level attributes, such as LineNumberTable
and LocalVariableTable. Abstract methods simply do not have a Code at-
tribute.

BML speci�cations are stored in appropriately placed JVM attributes: class-
level speci�cations are stored in class attributes, method speci�cations in method
attributes and code-level speci�cations in code attributes. The names of all
BML-related attributes start with a common pre�x org.bmlspecs. An impor-
tant class-level attribute is the second constant pool. This structure is similar to
the standard constant pool, but it is used to stored all constants that are part
of the speci�cation only.

All class invariants are stored together in a single class-level attribute named
org.bmlspecs.Invariants, whose structure is given in Fig. 6. To specify the for-
mat of these attributes, we use a C-like structure notation, cf. [20], where each en-
try is preceded by a special identi�er, e.g., u1, u2 and u4, that describes the type
of the corresponding value. The �rst two �elds of the org.bmlspecs.Invariants
attribute are attribute_name_index and attribute_length. These are oblig-
atory for all attributes. They contain an index in the constant pool, where the
attribute name (here: org.bmlspecs.Invariants) is stored, and the length
in bytes of the whole attribute. The next two �elds, invariants_count and
invariants, describe the invariants table: the number of invariants and the table
containing the invariants themselves. Each entry of the table contains informa-
tion about an invariant, namely its access �ags (public, protected, private,
static) and its formula.

Formulae and expressions are stored as the pre�x traversal sequence of the ab-
stract syntax tree of a given expression, with binary representation of operands.
The names of variables and �elds are represented as indexes of appropriate string
constants in the constant pool (either the original constant pool or the second
speci�cation-only constant pool).

As another example, Fig. 7 speci�es the binary format for the code-level at-
tribute describing loop speci�cations. The �rst two mandatory �elds are as be-

10

LoopSpecificationTable_attribute {

u2 attribute_name_index;

u4 attribute_length;

u2 loops_count;

{ u2 point_pc;

u2 order;

formula_info invariant;

formula_info variant;

} loops[loops_count];

}

Figure 7. Structure of the org.bmlspecs.LoopSpecificationTable attribute.

fore; the attribute name is now org.bmlspecs.LoopSpecificationTable. The
last two �elds describe the length and contents of the loop speci�cation table.
Each loop speci�cation in the table is represented by the following elements:
point_pc, the label of the instruction to which the speci�cation is attached;
the order entry that speci�es the respective order in which code-level speci�ca-
tions should be considered if they are attached to the same instruction; and the
invariant and the variant formulae. The order �eld is necessary if for example
several set annotations are related to the same bytecode instruction: it ensures
that the assignments are properly ordered.

Other BML speci�cation constructs are encoded in a similar way. More details
can be found in the BML Reference Manual [10].

Representation of Certi�cates. To support proof-carrying code, besides the at-
tributes that contain speci�cations, one also needs attributes that can store a
proof that an implementation respects its speci�cation. A �exible, generic for-
mat in which di�erent kinds of PCC certi�cates can be encoded is proposed in
[23, Sect. 2.5]. In this proposal, the certi�cates can be divided into two groups:
class-level certi�cates and method-level certi�cates. The format of these certi�-
cates is presented in Fig. 8(a) and Fig. 8(b), respectively. This format allows
one to store certi�cates concerning various properties of bytecode, produced by
tools supporting di�erent technologies (e.g., �xpoints for abstract interpretation
or type derivations). Note that the actual certi�cation technology may choose
not to use both of the certi�cate levels and to store the complete certi�cate
information in the class-level attribute only or in the method-level attributes
only.

To use BML speci�cations in a PCC context, this generic certi�cate scheme
is instantiated to certi�cates that encode Coq proofs of the properties expressed
in BML. In this case, the type checking engine of Coq, combined with a tool to
generate a Coq representation of the program and its BML speci�cations, is the
�nal certi�cate checker.

At the client side, the class �le, BML speci�cations and the proofs that are
encoded in the certi�cates are expanded to Coq modules. At class-level these
modules include:

11

PCCClassCert {
u2 attribute_name_index;
u4 attribute_length;
u2 cert_type;
u1 major_version;
u1 minor_version;
u2 imported_certs_count;
u2 imported_certs[imported_certs_count];
u4 proofs_section_length;
u1 proofs_section[proofs_section_length];

}

(a)

PCCMethodCert {
u2 attribute_name_index;
u4 attribute_length;
u2 cert_type;
u1 cert_major_version;
u1 cert_minor_version;
u4 proofs_section_length;
u1 proofs_section[proofs_section_length];

}

(b)

Figure 8. Format of PCC certi�cates in class �les

� a Coq representation of the class structure (i.e., �elds, methods, code of
methods etc.) and the BML speci�cations;

� a representation of properties for each method that express that whenever
the method is called in a state in which the method's precondition is satis�ed
then the method's postcondition holds after the method returns; and

� proofs of the properties above.

The method de�nitions are generated based on the class �le method struc-
tures. The method properties combine the BML pre- and postconditions with
invariants. The certi�cates contain the necessary proofs.

In order to conceptually separate proofs of a class's interface properties (like
invariants, method speci�cations, etc.) from the proofs of implementation details
(like loop speci�cations, asserts etc.), the latter are included in separate Coq
modules that are constructed from method-level speci�cations and certi�cates.
These method-level Coq modules contain the following:

� a theorem that states that if the method is called in a state in which the pre-
condition holds then the postcondition holds after a return from the method;

� for each assert, a theorem that states that if the method is called in a state
in which the precondition holds then the assert holds in a related program
position;

� for each strong invariant (i.e., an invariant that must be maintained by all
program steps) and method a theorem that states that if the method is called
in a state in which the precondition holds then the invariant holds at each
instruction of the method;

� proofs of the theorems above.

3.2 Textual Representation of BML

Since we expect that programmers will read and edit speci�cations at bytecode
level (for example, if one wishes to develop correct code that is more optimal than
compilers can generate), we also de�ned a textual representation of bytecode �les
augmented with speci�cations. This ensures that programmers have a �le format
that is easy to read, exchange, and edit by common textual editors.

12

There is no standard for textual bytecode representation, but some popular
tools (e.g., Sun's javap, Apache's BCEL6, and ObjectWeb's ASM7) print out
class �les in a textual form to facilitate debugging and understanding of the
code. However, these tools do not support parsing of any textual representation
of class �les (and thus also no editing).

There are also tools such as Javaa8 and, more popular, Jasmin9 that allow one
to write classes and methods using Java bytecode mnemonics. However, they are
not tuned to program speci�cation and veri�cation, and they require the user
to supply much information that is not relevant for speci�cations. In addition,
their source code is only available under a non-standard license, which makes it
di�cult to integrate them in an open source project such as MOBIUS. Therefore,
we decided to develop our own bytecode viewer and editor, described in the next
section, that adheres to the textual representation standard of BML.

We assume that programmers work at the same time with class �les and tex-
tual �les. Therefore, we decided not to display certain values such as the bytecode
�le version number or the contents of foreign attributes. In this way, only the
relevant information is presented to the user. Roughly, the format displays in
sequence: the package name, the class header with the class name and infor-
mation about its location in the type hierarchy, the constant pools � including
the second constant pool, �elds, class-level speci�cations (such as invariants and
constraints) and methods augmented with their method-level speci�cations and
code-level speci�cations. All other information (e.g., the Line Number Table) is
stored in the class �le and not shown to the user.

4 Overview of the BML tools

Just as for a programming language, if a speci�cation language is to be used
successfully, it needs good tool support to read, write, and manipulate speci�ca-
tions. Moreover, one needs tools to check that a program respects the properties
stated in the speci�cations.

This section provides an overview of the tools that are developed to support
BML. We start with a brief description of JACK, the historical predecessor of
the currently existing tools. Then the tools which support the current version
of BML are presented: (i) BMLLib, a library to represent and manipulate spec-
i�cations; (ii) Umbra, an interactive BML editor integrated into Eclipse IDE;
(iii) JML2BML, a compiler from JML speci�cations to BML; (iv) BML2BPL, a
translator from BML and bytecode to BoogiePL; and (v) CCT, a tool to package
proofs in class �les. Figure 9 shows how the di�erent tools connect with each
other.

6 Byte Code Engineering Library, available from http://jakarta.apache.org/bcel/.
7 Available from http://asm.objectweb.org/.
8 Available from http://tinf2.vub.ac.be/~dvermeir/courses/compilers/javaa/

jasm.html.
9 Available from http://jasmin.sourceforge.net/.

13

Figure 9. BML tool set.
The tools that are developed especially for BML are written in bold. A dashed
line means that the tool is still under development

4.1 JACK

Overview and goals. JACK is a tool that integrates the veri�cation machinery
developed for JML with a programming environment, namely Eclipse. Program-
mers can manipulate Java source code and JML speci�cations, while the (tex-
tual) representation of bytecode speci�cations is hidden and can be viewed only
on demand by expanding the structure of bytecode attributes [9].

Design of the tool. The JACK tool is an Eclipse plugin. It takes JML annotated
source code and generates proof obligations expressed in an internal Java/JML
Proof Obligation Language. The proof obligations are generated by means of
a weakest precondition generator. Then one of the available provers (AtelierB,
Simplify, Coq, PVS) can be used to discharge the generated proof obligations. In
case the proof obligation cannot be discharged automatically, it can be viewed
in the IDE and proved interactively.

Availability. The �nal release of JACK, both in binary and source form, is avail-
able from http://www-sop.inria.fr/everest/soft/Jack/jack.html.

4.2 BMLLib: a Library to Manipulate BML Speci�cations

Overview and goals. The most basic tool support that is needed for BML is pars-
ing and pretty-printing of its textual representation as well as reading and storing
of speci�cations in class �les. This functionality is provided by the BMLLib li-
brary. In addition, this library provides a Java API to generate and manipulate
BML speci�cations. Most of the tools discussed below depend on BMLLib.

14

Design of the tool. BMLLib is developed at the University of Warsaw. It uses the
BCEL library as the basic library to manipulate class �les. BCEL is known to be
di�cult and non-intuitive in use, but it has the advantage that it is maintained
by the Jakarta project10, which gives con�dence in its future existence. BMLLib

allows one to store and read BML speci�cations represented in class �les. It
de�nes an abstract syntax tree to represent BML speci�cations. The classes
and methods augmented with speci�cations are implemented as delegate classes
which can either return the speci�cations or the BCEL representation of the
class or method, respectively. The parser of the speci�cations is written with
the ANTLR parser generator11, a highly reliable parser generator for Java. A
detailed description of the library is presented in [27].

Additionally, BMLLib provides a translation from the BCEL representation
into ASM representation used in BML2BPL (discussed below). This translation
is necessary to enable the translation into BoogiePL and subsequent generation
of proof obligations with FreeBoogie.

Availability. The alpha version of the library is available from http://www.

mimuw.edu.pl/~alx/umbra/. It is written in Java and tested primarily under
Linux and Windows.

4.3 Umbra: a BML Editor

Overview and goals. Most existing class �le editors are developed as a series of
windows that correspond to the layout of the attributes and other structures of
the class �le. This design leads to an environment which is not easy to navigate
for a programmer. Instead, we developed Umbra as an Eclipse plugin that allows
one to view, add, delete and edit BML speci�cations and bytecode in a textual
representation. Moreover, if available, the textual representation is associated
with the Java source code. This makes it possible to relate fragments of the
source code with fragments of the byte code and the other way round [27]; in
particular it allows one to see �eld and variable names, instead of indexes in the
constant pool and local variable table.

Furthermore, Umbra gives programmers the possibility to change not only
the speci�cations, but also the bytecode instructions.

The Umbra plugin also provides a user interface for several of the tools pre-
sented below; in particular it has buttons to run the JML2BML compiler, the
BML2BPL translator, and the FreeBoogie veri�cation back-end.

Design of the tool. Umbra is developed as an Eclipse plugin that extends the Java
editor plugin and adds its own functionality for editing class �les. Umbra relies
on the representation of class �les provided by the BCEL library. The internal
representation of BML speci�cations is provided by BMLLib. Fig. 10 shows the
code from Fig. 2 being edited in Umbra.

10 Available from http://jakarta.apache.org/
11 Available from http://www.antlr.org/

15

Figure 10. Bytecode for class KeyPool edited in Umbra

Availability. The alpha version of the editor is available from http://www.

mimuw.edu.pl/~alx/umbra/. It is written in Java and tested primarily under
Linux and Windows.

4.4 JML2BML: a Speci�cation Compiler from JML to BML

Overview and goals. The JACK tool contains a compiler of JML annotations to
BML. However, this compiler is highly integrated with the tool itself. Therefore,
the need for a standalone JML to BML compiler arose.

The JML2BML compiler takes as input a Java source �le with JML annota-
tions, together with the corresponding class �le and outputs the class �le with
proper BML annotations inserted. This allows the user to write the speci�ca-
tions at the more comprehensive source code level and then translate them into
the bytecode level representation. At bytecode level these speci�cations can then
be combined with speci�cations written by hand or with speci�cations coming
from other tools. Note that JML2BML does not erase any speci�cations that are
present in the class �le, it only adds the speci�cations translated from the JML
speci�cations.

16

Currently, the JML2BML compiler focuses on supporting JML Level 0, roughly
corresponding to the subset of JML covered by the BML language.

Design of the tool. The compiler uses an enhanced Abstract Syntax Tree (AST)
for the Java source code, taken from the OpenJML12 compiler (a Java compiler
with JML checker based upon OpenJDK). The result is stored in the class �le,
using the BMLLib library [27]. The compilation is described by a set of transfor-
mation rules that are one by one applied to the JML AST. This approach makes
the compiler easily extensible. It is enough to just write a new translation rule
to support additional features of the JML language. The JML2BML compiler is
intergrated in the Umbra editor as a push-button, but it can also be used as a
standalone tool.

Availability. The compiler is available from http://www.mimuw.edu.pl/~alx/

jml2bml/. It is written in Java and tested primarily under Linux and Windows.

4.5 BML2BPL: a Translation from BML speci�cations to BoogiePL

Overview and goals. BoogiePL is an intermediate language designed to alleviate
part of the burden of the transformation from the speci�ed source code to proof
obligations. The Boogie veri�er (which is originally developed to reason about
Spec# programs) has the ability to transform BoogiePL code into formulae for
various proving back-ends including Simplify, Z3, and HOL/Isabelle [3]. There
is also an open source alternative for the environment called FreeBoogie13.

Lehner and Müller [19] presented a translation from bytecode to BoogiePL.
On top of this, one of their students at ETH Zürich, Mallo, developed a tool
that transforms BML-annotated bytecode into BoogiePL. This translation is
only de�ned for a subset of the BML language as de�ned in the BML Reference
Manual [10].

Design of the tool. The tool allows one to read class �les with BML speci�cations,
and outputs a BoogiePL encoding of the annotated classes. However, BML2BPL

uses a non-standard way of representing the BML attributes in classes and it is
based on the ASM bytecode library which is di�erent from the one used in other
BML-related tools. Therefore a suitable translation is implemented in BMLLib,
that provides an interface between the standard representation and BML2BPL

(see also Sect. 4.2).

Availability. The translator is available from https://mobius.ucd.ie/trac/

browser/src/BML_BPL_Translator. It is written in Java and tested primarily
under Linux and Windows.

12 Available from http://sourceforge.net/projects/jmlspecs
13 Available from http://secure.ucd.ie/products/opensource/FreeBoogie/.

17

4.6 CCT: a Tool for Packaging Certi�cates

Overview and goals. The Class Certi�cate Transformer (CCT) is a modular tool
which is able to create and extract certi�cates from class �les [29]. These cer-
ti�cates can for example be typing derivations, information inferred by abstract
analysis, or proofs of BML speci�cations. In addition, CCT allows one to manip-
ulate certi�cates by adding or removing data. Finally, it also allows one to add
plugins which understand the internal structure of certi�cates and can generate
the code which performs the actual veri�cation. For example, one can add a
module which retrieves typing information from a certi�cate and then runs a
particular type checker on the program.

Design of the tool. CCT is built in a highly modular way. One can easily construct
plugins for the tool to de�ne the actual PCC certi�cate veri�cation process.
It also allows one to add di�erent libraries that support manipulation of the
class �le structure so that one is not restricted to using BCEL or ASM for the
veri�cation tool.

Availability. The translator is available (in source code format) from https:

//mobius.ucd.ie/trac/browser/src/CCT. It is written in Java and tested pri-
marily under Linux and Windows.

5 Conclusions and further work

This paper motivates the development of the speci�cation language BML and its
supporting tool set. BML is developed with the proof carrying code paradigm in
mind. This motivates part of the design choices: in particular BML is designed to
be closely related with the source code level speci�cation language JML, and a
binary representation to store BML in class �les is de�ned. However, BML is also
intended to be used as a speci�cation language on its own, for example to reason
directly about the correctness of low-level program optimisations. Therefore,
BML speci�cations are also designed to be readable and understandable.

An important merit of BML is that it is largely supported by a tool set.
The di�erent tools are described in this paper. Currently, the main e�orts are
focused on �lling in the remaining gaps to develop a complete platform for PCC.
In particular, we concentrate on the following topics:

� extending the existing veri�cation link through BoogiePL, since it is only
de�ned for a subset of the BML language;

� using the planned extension of FreeBoogie to generate proof obligations in
Coq; and

� development of the direct generation of proof obligations for Coq, using the
methods of the veri�cation condition generator described in [22, Sect. 5.1].

At the moment, the BML tool set has been tested on small examples only. In
the near future, we plan to work on a more realistic case study, that demonstrates

18

the usability of the tools for a non-trivial MIDP application. This case study
should demonstrate that the PCC infrastructure works in the environment of
the Java Virtual Machine.

In addition to these main goals, we work on a translation from an information-
�ow type system to BML, based upon the translation described in [28]. This
should enable the BML-based veri�cation system to incorporate a mechanism
to ensure non-interference.

References

1. A. W. Appel. Foundational proof-carrying code. In J. Halpern, editor, Logic in
Computer Science, page 247. IEEE Press, June 2001. Invited Talk.

2. A. W. Appel and A. P. Felty. A semantic model of types and machine instructions
for proof-carrying code. In Principles of Programming Languages. ACM Press,
2000.

3. M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boo-
gie: A modular reusable veri�er for object-oriented programs. In Formal Methods
for Components and Objects, volume 4111 of Lecture Notes in Computer Science.
Springer-Verlag, 2005.

4. G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet, M. Pavlova,
and A. Requet. JACK: A tool for validation of security and behaviour of Java
applications. In Formal Methods for Components and Objects: Revised Lectures
from the 5th International Symposium FMCO 2006, number 4709 in Lecture Notes
in Computer Science, pages 152�174. Springer-Verlag, 2007.

5. L. Beringer and M. Hofmann. A bytecode logic for JML and types. In Asian
Programming Languages and Systems Symposium, Lecture Notes in Computer Sci-
ence 4279, pages 389�405. Springer-Verlag, 2006.

6. D. Bjørner and C.B. Jones, editors. The Vienna Development Method: The Meta-
Language, number 61 in LNCS, London, UK, 1978. Springer-Verlag.

7. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J.R. Kiniry, G.T. Leavens, K.R.M. Leino,
and E. Poll. An overview of JML tools and applications. In Workshop on Formal
Methods for Industrial Critical Systems, volume 80 of Electronic Notes in Theoret-
ical Computer Science, pages 73�89. Elsevier, 2003.

8. L. Burdy, M. Huisman, and M. Pavlova. Preliminary design of BML: A behavioral
interface speci�cation language for Java bytecode. In Fundamental Approaches
to Software Engineering, volume 4422 of LNCS, pages 215�229. Springer-Verlag,
2007.

9. L. Burdy and M. Pavlova. Java bytecode speci�cation and veri�cation. In Sympo-
sium on Applied Computing, pages 1835�1839. ACM Press, 2006.

10. J. Chrz¡szcz, M. Huisman, A. Schubert, J. Kiniry, M. Pavlova, and E. Poll. BML
Reference Manual, December 2008. In Progress. INRIA and University of Warsaw.
Available from http://bml.mimuw.edu.pl.

11. Á. Darvas and P. Müller. Formal encoding of JML level 0 speci�cations in jive.
Technical report, ETH Zurich, 2007. Annual Report of the Chair of Software
Engineering.

12. R. DeLine and K. R. M. Leino. BoogiePL: A typed procedural language for check-
ing object-oriented programs. Technical Report MSR-TR-2005-70, Microsoft Re-
search, 2005.

19

13. E. W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM, 18(8):453�457, 1975.

14. B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Huss-
mann, editor, Fundamental Approaches to Software Engineering, volume 2029 of
Lecture Notes in Computer Science, pages 284�299. Springer-Verlag, 2001.

15. JSR 175 Expert Group. A metadata facility for the Java programming language.
Java Speci�cation Request 175, Java Community Process, September 2004. Final
release.

16. JSR 308 Expert Group. Annotations on Java types. Java Speci�cation Request
308, Java Community Process, 2007. In progress.

17. G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary design of JML: A behavioral
interface speci�cation language for Java. Technical Report TR 98-06y, Iowa State
University, 1998. (revised since then 2004).

18. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Müller,
J. Kiniry, P. Chalin, and D. Zimmerman. JML Reference Manual, February 2008.
Department of Computer Science, Iowa State University. Available from http:

//www.jmlspecs.org.
19. H. Lehner and P. Müller. Formal translation of bytecode into BoogiePL. In

M. Huisman and F. Spoto, editors, Bytecode Semantics, Veri�cation, Analysis and
Transformation, Electronic Notes in Theoretical Computer Science, 2007.

20. T. Lindholm and F. Yellin. The Java Virtual Machine Speci�cation. Addison-
Wesley, 1996.

21. O. J. Mallo. A translator from BML annotated Java bytecode to BoogiePL. Mas-
ter's thesis, Software Component Technology Group, ETH Zürich, 2007.

22. MOBIUS Consortium. Deliverable 3.1: Bytecode speci�cation language and pro-
gram logic, 2006. Available online from http://mobius.inria.fr.

23. MOBIUS Consortium. Deliverable 4.2: Certi�cates, 2007. Available online from
http://mobius.inria.fr.

24. Object Management Group. Object Constraint Language. OMG Available Speci�-
cation, Version 2.0, May 2006.

25. M. Pavlova. Java bytecode veri�cation and its applications. Thése de doctorat,
spécialité informatique, Université Nice Sophia Antipolis, France, January 2007.

26. D. Pichardie. Bicolano � Byte Code Language in Coq. http://mobius.inria.fr/
bicolano. Summary appears in [22], 2006.

27. A. Schubert, J. Chrz¡szcz, T. Batkiewicz, J. Paszek, and W. W¡s. Technical
aspects of class speci�cation in the byte code of Java language. In Bytecode'08,
Electronic Notes in Theoretical Computer Science. Elsevier, 2008. To appear.

28. A. Schubert and D. Walukiewicz-Chrz¡szcz. The non-interference protection in a
bytecode program logic, 2009. Submitted.

29. T. Sznuk. Introduction of the proof-carrying code technique to Java class. Master's
thesis, Institute of Informatics, The University of Warsaw, 2008. in Polish.

20

