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Abstract. Smoothed analysis is a method for analyzing the perfor-
mance of algorithms for which classical worst-case analysis fails to ex-
plain the performance observed in practice. Smoothed analysis has been
applied to explain the performance of a variety of algorithms in the last
years.
One particular class of algorithms where smoothed analysis has been used
successfully are local search algorithms. We give a survey of smoothed
analysis, in particular applied to local search algorithms.

1 Smoothed Analysis

1.1 Motivation

The goal of the analysis of algorithms is to provide measures for the performance
of algorithms. In this way, it helps to compare algorithms and to understand their
behavior. The most commonly used method for the performance of algorithms
is worst-case analysis. If an algorithm has a good worst-case performance, then
this is a very strong statement and, up to constants and lower order terms,
the algorithm should also perform well in practice. However, there are many
algorithms that work surprisingly well in practice although they have a very poor
worst-case performance. The reason for this is that the worst-case performance
can be dominated by a few pathological instances that hardly or never occur in
practice.

A frequently used alternative to worst-case analysis is average-case analysis.
In average-case analysis, the expected performance is measured with respect to
some fixed probability distribution. Many algorithms with poor worst-case but
good practical performance show a good average-case performance. However, the
drawback of average-case analysis is that random instances drawn according to
some fixed probability distribution often have very special properties with high
probability. These properties of random instances distinguish them from typical
instances. Thus, a good average-case running-time does not necessarily explain
a good practical performance.

In order to get a more realistic measure for the performance of algorithms
in cases where worst-case analysis is too pessimistic, Spielman and Teng [56]
proposed smoothed analysis as a new paradigm to analyze algorithms. The key
idea is that practical inputs are often not pathological, but are subject to a
small amount of random noise. This random noise can, for instance, stem from
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measurement errors. It can also come from numerical imprecision or other cir-
cumstances, where we have no reason to believe that these influences change the
input in a worst-case manner.

1.2 Definition

In smoothed analysis, we measure the maximum expected running-time, where
the maximum is taken over the (adversarial) choices of the adversary, and the
expected value is taken over the random perturbation of the input. The random
perturbation is controlled by some perturbation parameter.

In almost all cases, this perturbation parameter is either the standard devia-
tion σ of the perturbation or an upper bound φ on the density of the underlying
probability distributions. In the former case, larger σ means more randomness,
and the analysis approaches the worst-case analysis for very small σ. This model
is also called the two-step model of smoothed analysis. The most commonly used
type of perturbations are Gaussian distributions of standard deviation σ.

In the latter case, smaller φ means more randomness, and the analysis ap-
proaches the worst-case analysis for large φ. This model is also called the one-step
model of smoothed analysis.

We restrict ourselves here to the two-step model with Gaussian noise, and
we define this model in the following. We assume that our instances X =
{x1, . . . , xn} of size n consist of n points xi ∈ Rd (1 ≤ i ≤ n). We denote
by N (µ, σ2) a d-dimensional Gaussian distribution with mean µ ∈ Rd and vari-
ance σ2 (more precisely, its covariance matrix is a diagonal matrix with σ2 on
all diagonal entries).

Assume that we have a performance measure m that maps instances to, e.g.,
the number of iterations that the algorithm under consideration needs on an
instance X or the approximation ratio that the algorithm achieves on X. Then
the worst-case performance as a function of the input size is given as

Mworst(n) = max
X = {x1, . . . , xn}
⊆ [0, 1]d

(
m(X)

)
. (1)

The average-case performance is given by

Maverage(n) = E
Y = {y1, . . . , yn}
yi ∼ N (0, 1)

(
m(Y )

)
.

Here, the points yi (for 1 ≤ i ≤ n) are drawn according to independent d-
dimensional Gaussian distributions with mean 0 and standard deviation 1. An-
other probability distribution that is frequently used is drawing the points inde-
pendently and uniformly from the unit hypercube [0, 1]d.

The smoothed performance is a combination of both:

Msmoothed(n, σ) = max
X = {x1, . . . , xn}
⊆ [0, 1]d

E
Y = {y1, . . . , yn}
yi ∼ N (xi, σ

2)

(
m(Y )

)
. (2)
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An adversary specifies the instance X, and then Y is obtained by perturbing the
points in X.

Note that Msmoothed depends also on the perturbation parameter σ: For
very small σ, we have Y ≈ X and the smoothed performance approaches the
worst-case performance. For large σ, the influence of X is negligible compared
to the perturbation, and the smoothed performance approaches the average-case
performance.

Note further that we have restricted the choices of the adversary to points in
[0, 1]d. Assuming scale-invariance of the underlying problem, this is no restriction
and makes no difference for worst-case analysis. For smoothed analysis, however,
we would have to scale σ in the same way.

Moreover, we observe that the (adversarial) choice of X in (2) can be differ-
ent from the choice of X in (1). In worst-case analysis, the adversary picks an
instance with worst performance. In smoothed analysis, the adversary chooses
an instance X that maximizes the expected performance subject to the pertur-
bation.

Finally, we remark that we do not require that a feasible or optimal solution
for X remains a feasible or an optimal solution for Y , respectively. Roughly
speaking, we are interested in the distribution of difficult instances and if difficult
instances are isolated. This does not require that we can obtain a solution for X
from a solution for the instance Y obtained by perturbing X.

1.3 Overview of Results Besides Local Search

Since its invention, smoothed analysis has been applied to a variety of algorithms
and problems using a variety of perturbation models. We do not discuss the mod-
els here, but only give an overview to which algorithms and problems smoothed
analysis has been applied. We also refer to two surveys about smoothed analysis
that highlight different perspectives of smoothed analysis [46,57].

Linear programming and matrix problems. Smoothed analysis has originally
been applied to the simplex method [56]. This analysis has subsequently been
improved and simplified significantly [28, 59]. Besides this, smoothed analy-
sis has been applied to a variety of related algorithms and problems such as
the perceptron algorithm [13], interior point methods [55], and condition num-
bers [19,20,29,52,58].

Integer programming and multi-criteria optimization. Starting with a smoothed
analysis of the knapsack problem [7], a significant amount of research has been
dedicated to understanding the solvability of integer programming problems and
the size of Pareto curves in multi-criteria optimization problems [6, 8, 10, 16, 17,
49–51]. Beier and Vöcking’s characterization of integer programming problems
that can be solved in smoothed polynomial time [8] inspired an embedding of
smoothed analysis into the existing worst-case and average-case complexity the-
ory [11].
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Graphs and formulas. Smoothed analysis can also be applied to purely dis-
crete problems such as satisfiability of Boolean formulas [24, 34, 41] or graph
problems [35, 41, 44, 54]. However, it is much less obvious what a meaningful
perturbation model is than in problems involving numbers.

Sorting and searching. Smoothed analysis has been applied to analyze problems
based on permutations, most notably the quicksort algorithm [4,27,36,45].

Approximation ratios. Smoothed analysis has mostly been applied to analyze the
running-time of algorithms, but there are also a few analyses of approximation
ratios for Euclidean optimization problems [12,26] and packing problems [26,39].

Other applications. Other applications of smoothed analysis to concrete algo-
rithms include online algorithms [5,53], algorithms for computing minimum cost
flows [15, 25], computational geometry [9, 22], finding Nash equilibria [23], PAC
learning [38], computing the edit distance [1], minimizing concave functions [40],
balancing networks [37], and belief propagation for discrete optimization prob-
lems [14].

2 Local Search Algorithms

Local search algorithms are often very powerful tools to compute near-optimal
solutions for hard combinatorial optimization problems. Starting from an initial
solution, they iteratively try to improve the solution by small changes, until they
terminate in a local optimum. While often showing a surprisingly good perfor-
mance in practice, the theoretical performance of many local search heuristics is
poor.

Smoothed Analysis has successfully been used to bridge the gap between the
theoretical prediction of performance and the performance observed in practice
and to explain the practical performance of a couple of local search algorithms.
In most cases, the number of iterations until a local optimum is reached has
been analyzed. Examples of local search algorithms whose running-time has been
analyzed in the framework of smoothed analysis include the 2-opt heuristic for
the traveling salesman problem (TSP) [31, 48], the iterative closest point (ICP)
algorithm to match point clouds [3], the k-means method for clustering [2,3,47],
and the flip heuristic for the maximum cut problem [30,33].

Only a few results are known about the smoothed approximation ratio of
local search algorithms. Examples are the 2-opt heuristic for the TSP [31, 42]
and the jump and lex-jump heuristic in scheduling [18,32].

In the following, we briefly sketch the main ideas how these results have been
obtained.

2.1 Smoothed Analysis of the Running-Time

The key idea of all smoothed analyses of running-times of local search heuristics
is the following: we use the objective function to measure progress. Then we
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show that, after perturbation, the objective function decreases (in case of a min-
imization problem) significantly with high probability either in every iteration
or in every sequence of iterations.

More precisely: assume that the objective value of our initial solution is at
most I, and assume further that the objective value decreases by at least δ in
every iteration of the local search algorithm. Then (assuming that the objective
value cannot become negative) we must reach a local optimum within at most
I/δ iterations. An upper bound I for the initial solution is often relatively easy
to get, and usually one that holds with high probability suffices. Thus, the main
task is to analyze the minimal improvement δ.

The general outline to analyze δ is as follows: often, it is quite straightforward
to show that the probability that some fixed iteration yields a small improve-
ment is small. Then a simple union bound over all possible iterations yields a
first bound for the probability that δ is small. However, the number of possible
iterations can be quite large, which renders this bound useless. Thus, the goal
is to analyze similar iterations together to avoid the wasteful and naive union
bound. Hence, we want to come up with as few classes as possible such that for
every class, we can show that it is unlikely that it contains an iteration that
yields only a small improvement.

For the 2-opt heuristic for the TSP, one can get polynomial bounds for the
smoothed running-time by considering single iterations, although better bounds
can be obtained by considering pairs of iterations that share an edge [31].

For the k-means method for clustering, considering single iterations does not
seem to be sufficient. In the case that the clustering does not change much from
iteration to iteration, it seems to be possible that very small improvements occur.
However, it is unlikely that a short sequence of such iterations yields only very
small improvements [2]. Even more iterations have been considered together to
analyze the flip heuristic for the maximum cut problem [33].

2.2 Smoothed Analysis of the Approximation Ratio

Much less is known about the smoothed approximation ratios of local search
algorithms than about their smoothed running-time. This might be because the
approximation ratio depends heavily on the initialization, and the worst local
optima are often quite robust against slight perturbations. In light of this, the
running-time becomes crucial for the approximation performance: if the local
search heuristic terminates very quickly, we can afford to run it many times
with different initializations. Hopefully, at least one initialization yields a good
solution.

One way to get rid of the dependency of the initialization in the analysis is
to compare the worst local optimum to the global optimum [31, 42]. This keeps
the analysis tractable, but still often leads to results that are too pessimistic
to reflect the performance observed in practice. In the following, we denote by
WLO the objective value of the worst local optimum and by OPT the objective
value of a global optimum.
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A second technical difficulty is that WLO and OPT are not independent, and
we would like to analyze their ratio. The simplest approach to circumvent this
challenge is to replace WLO by a worst-case upper bound. While this again seems
too pessimistic, it simplifies the analysis a lot: we are only left with analyzing
E( 1

OPT ) instead of E(WLO
OPT ). This approach has in particular been used for the

2-opt heuristic for the TSP. For the 2-opt heuristic, it is known that WLO =

O(n
d−1
d ) for tours of n points in [0, 1]d [21]. This has been exploited by Englert

et al. [31] to prove a bound on the smoothed approximation ratio of the 2-opt
heuristic.

However, ignoring the dependency between global and local optimum has
significant limitations. What is bad for the approximation ratio is a large WLO
together with a small OPT. Intuitively, in terms of the TSP, we get a very short
optimal tour if the points are very close. But then also WLO should be small.
The other way around, if there is a locally optimal TSP tour that is very long,
then the points cannot be too close to each other. Hence, OPT cannot be too
small. This information has been exploited to prove that the 2-opt heuristic
achieves smoothed approximation ratio of O(log(1/σ)) [42].

Still, simple construction heuristics for the TSP achieve approximation ratios
of 2. Thus, the obvious open problem concerning smoothed approximation ratios
is to analyze hybrid heuristics consisting of a clever initialization together with lo-
cal search (see also Section 3). (It has been shown that using the nearest-neighbor
heuristic to initialize 2-opt does not yield a better bound than Ω(log n/ log log n)
for sufficiently small σ [42].)

3 Open Problems

To conclude, we list three open problems concerning smoothed analysis of local
search algorithms.

Lin-Kernighan heuristic for the TSP. The Lin-Kernighan heuristic [43] is an
extremely powerful heuristic for finding near-optimal TSP tours quickly in prac-
tice. Unfortunately, different to the 2-opt heuristic, it seems to be difficult to
describe iterations or sequences of iterations in a compact form in order to avoid
a too wasteful union bound.

Flip heuristic for Max-Cut. Etscheid and Röglin [33] have recently shown that
the smoothed number of iterations that the flip heuristic needs is bounded by a
polynomial in nlogn and the perturbation parameter φ, where n is the number
of nodes of the graph.

More general, we observe that the running-time of the flip heuristic is pseudo-
polynomial. For integer programming problems, it is known that every problem
that can be solved in pseudo-polynomial time can also be solved in smoothed
polynomial time [8]. It would be interesting to see if something similar holds
for local search heuristics, i.e., if every local search algorithm with pseudo-
polynomial running-time has also smoothed polynomial running-time.
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Approximation ratios with initialization. The existing results about smoothed
approximation ratios of local search algorithms compare the worst local optimum
to the global optimal solution [31,42]. However, the performance of local search
heuristics relies heavily on a good initialization. The 2-opt heuristic is no excep-
tion, and the smoothed guarantees for the approximation ratio are easily beaten
by choosing the initial tour with a constant-factor approximation algorithm.

Consequently, an obvious open problem is to take into account clever initial-
izations when analyzing the approximation ratios of local search algorithms.
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12. Bläser, M., Manthey, B., Rao, B.V.R.: Smoothed analysis of partitioning algo-
rithms for Euclidean functionals. Algorithmica 66(2), 397–418 (2013)

13. Blum, A.L., Dunagan, J.D.: Smoothed analysis of the perceptron algorithm for
linear programming. In: Proc. of the 13th Ann. ACM-SIAM Symp. on Discrete
Algorithms (SODA). pp. 905–914. SIAM (2002)

7



14. Brunsch, T., Cornelissen, K., Manthey, B., Röglin, H.: Smoothed analysis of belief
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42. Künnemann, M., Manthey, B.: Towards understanding the smoothed approxima-
tion ratio of the 2-opt heuristic. In: Proc. of the 42nd Int. Coll. on Automata, Lan-
guages and Programming (ICALP). Lecture Notes in Computer Science, Springer
(2015), to appear

43. Lin, S., Kernighan, B.W.: An effective heuristic for the traveling-salesman problem.
Operations Research 21(2), 498–516 (1973)

44. Manthey, B., Plociennik, K.: Approximating independent set in perturbed graphs.
Discrete Applied Mathematics 161(12), 1761–1768 (2013)

45. Manthey, B., Reischuk, R.: Smoothed analysis of binary search trees. Theoretical
Computer Science 378(3), 292–315 (2007)
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