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Abstract

Reliable image registration is a key problem within the three-dimensional
reconstruction of data obtained by two-dimensional image stacks. Here, a par-
allel implementation of the so-called elastic matching algorithm approach is
presented. This algorithm is based on a fixpointtype iteration, where in each
step a linear system of equations has to be solved. To compute the solution of
the linear systems fast fourier techniques are used. The algorithm as well as
some numerical examples are presented.

1 Introduction

Image registration is a basic problem within medical image processing. Especially, if

images arise from a series of sections through a part of the human body, e.g. CT (com-

puter tomography), MRI (magnetic resonance imaging), or PET (positron emission

tomography).

In our application, the images are high resolution flat bed scans of histological

sections originating from a male human brain. The sectioning process is necessary in

order to visualize finer structures of the brain, e.g. neurons and their locations. A

specially adapted light microscope is used for further visualization purposes.

Fig. 1 displays the arbitrarily chosen sections S3799 (Fig. 1a) and S3800 (Fig. 1b)

of a total of about 6000 frontal sections. The sectioning process destroys the three-

dimensional structure of the tissue. A tissue particle might be displayed at two
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(a) Section 3799 (b) Section 3800
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(c) affine-linear (d) non-linear
|T −R| ≈ 72% |T −R| ≈ 50%
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Figure 1: Arbitrarily chosen sections S3799 (a) and S3800 (b); difference images after
of linear (c) and after non-linear (d) registration.

different geometrical positions in the images S3799 and S3800. Thus, registration

techniques are required to recover the three-dimensional shape of the brain. Fig. 1

also shows the differences between the two registered images. For Fig. 1c we used an

optimal affine-linear registration, cf. e.g. [15], and for Fig. 1d we used a non-linear

registration based on an elasticity model.

A linear registration already reduces the geometrical distortion of the images con-

siderably. For the above example, the difference after linear registration is about 72%

of the one obtained by a human expert registration (100%). However, the reduction

is not sufficient for this application. Hence, an additional non-linear registration was

applied. Here the difference is about 50% of the expert registration and almost all

structural differences in the images have been corrected, cf. Fig. 1d.

For the non-linear registration we used the so-called elastic matching algorithm.
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This method is based on a linear elasticity model and is also used in other projects,

e.g. [1], [2], [5], [6], [18].

We present a parallel implementation of a FFT-based algorithm for the elastic

matching. Using an appropriate communication strategy and a high speed network

on a PC-Cluster, it is possible to end up with almost linear speed-up.

Thus, the designed algorithm provides a basis for the registration of large images

in a reasonable time.

The paper is organized as follows. A brief description of the underlying mathe-

matics is given in Section 2. Section 3 presents our parallel implementation. Some

numerical examples and the performance measurements are given in Section 4.

2 Mathematical background

Given two images T,R : Ω2 → R, where Ω := [0, 1]2, we are looking for an elastic

deformation U : R2 → R
2, U(x, y) = (u(x, y), v(x, y)), that simultaneously minimizes

the difference between the deformed template and the reference image R, which serves

as a model for the non-deformed template,

‖T ◦ U −R‖2

=

∫
Ω2

[T (u(x, y), v(x, y))−R(x, y)]2 d(x, y)

and the deformation energy

E(U) =

∫
Ω

λ

2

(
ux + vy

)2

+µ
(
u2
x + v2

y +
1

2
(uy + vx)

2
)
d(x, y),

where µ, λ are the so-called Lamé-constants, see e.g. [12]. This approach enforces

similarity of the two images as well as connectivity of the tissue.

Applying the calculus of Euler-Lagrange, a minimizer is characterized by the so-

called two-dimensional Navier-Lamé-equations, cf. e.g. [12],

AU :=

(
µ(uxx + uyy) + (λ+ µ)(uxx + vxy)
µ(vxx + vyy) + (λ+ µ)(uxy + vyy)

)
= F (U). (1)

Note,

F (U) =
(
T (x− u, y − v)−R(x, y)

)
· ∇T

(
x− u, y − v) (2)

(which might be viewed as a force field) depends non-linearly on the deformation

U = (u, v).
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An appropriate discretization of this equation finally leads to the following fix-

pointtype equation for the unknown discrete deformation field,

A · U (k+1) = F (U (k)), (3)

where U (k) =
(
u

(k)
i,j , v

(k)
i,j

)
and F (k) = F (U (k)) =

(
f

(k)
i,j , g

(k)
i,j

)
are the discretized values

of the deformation and force fields, respectively. Note, F (k) depends on U (k). An

algorithm is summarized in Tab. 1, for details we refer to [8].

The main computational work in each iteration is the solution of the linear sys-

tem (3). In [8] it has been shown that the matrix A can be factorized as A = FDF−1,

where F is essentially a Fourier-matrix and D is a 2 × 2 block-matrix with diago-

nal blocks Dp, p = 1, 2, 3, 4. Thus, the linear systems can be solved efficiently using

FFT techniques. The implementation details for this process are listed in Tab. 2, the

derivation is given in [8].

For the numerical examples presented in this paper we used the five-point stencils

given in [8, Eq. (6) and (7)]. With this particular choices and an m×n discretization

we have, cf. [8, Theorem 4],

D1
i,j := −2(3µ+ λ) + 2(2µ+ λ) cos( 2πi

m−1
)

+2µ cos( 2πj
n−1

),

D4
i,j := −2(3µ+ λ) + 2(2µ+ λ) cos( 2πj

n−1
)

+2µ cos( 2πj
m−1

),

D2
i,j := D3

i,j := −4(µ+ λ) sin( 2πi
m−1

) sin( 2πj
n−1

),(
D1,†
j,k D2,†

j,k

D2,†
j,k D4,†

j,k

)
:=

(
D1
j,k D2

j,k

D2
j,k D4

j,k

)†
,

where † denotes the Moore-Penrose pseudoinverse, cf. [10], and the numbers Dp,†
j,k are

used in the algorithm, cf. Tab. 2.

3 Parallel implementation

Although the techniques proposed in [8] provide an efficient tool for solving the lin-

ear systems within the elastic matching algorithm, the problem remains challenging

for today’s computers when applied to three-dimensional registration and/or high

resolution images:

1. the number of unknowns is 2mn, e.g. 2.097.152 unknowns when matching two

1024× 1024 images;

2. due to model restrictions the number of iterations needed might become large,

e.g. kmax ≈ 100 in our application;
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Table 1: Elastic-matching algorithm.

1. Choose initial discrete deformation, e.g. U (0) = 0.

2. For k = 0, 1, 2, . . . , kmax,

compute actual forces F (k) = F (U (k)), cf. Eq. 2,

solve the linear system A · U (k+1) = F (k).

Table 2: Algorithm for solving the linear system (3) (based on 2D-FFT).

Compute (f̃i,j) = fft2(fi,j), (g̃i,j) = fft2(gi,j).
For j = 2, . . . , n− 1, for i = 2, . . . ,m− 1 do

ũi,j = D1,†
i,j f̃i,j +D2,†

i,j g̃i,j,

ṽi,j = D3,†
i,j f̃i,j +D4,†

i,j g̃i,j.
End.
Compute (ui,j) = fft2−1(ũi,j), (vi,j) = fft2−1(ṽi,j).

3. the whole stack of images has to be matched, e.g about 6000 matches in our

application.

Thus, we propose a parallel implementation of the elastic-matching algorithm based

on the techniques summarized in Section 2.

3.1 The 2D-FFT

Let ωm := exp(−2πi/m) ∈ C be a root of unity and let Fm := 1√
m

(ωjkm )j,k=0,... ,m−1 ∈
C
m×m be a Fourier-matrix. The two dimensional discrete Fourier-transformation of a

matrix B ∈ Cm×n with m rows and n columns is given by

B̂ = Fm ·B · Fn.

The intermediate B′ := Fm · B can be computed in terms of one-dimensional FFTs

applied to the columns of B and the computation of B̂ = B′ ·Fn can be done in terms

of one-dimensional FFTs applied to the rows of B′. Based on this observation one

can deduce a fast two dimensional FFT (2D-FFT).

3.2 Parallelizing the 2D-FFT

Our implementation of the 2D-FFT essentially follows [7, §23.3.1]. However, modifi-

cations have been applied to the communication structure. The data, here an m× n
matrix, is distributed over P processes. For ease of presentation we assume m, n, and

P to be powers of two.

Assuming that the data is initially distributed as column blocks, each process can

perform the column FFTs on its data, since the data is complete for each process.
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For the row FFT however, data from every other process is needed. Thus, in a naive

implementation an all-to-all communication is unavoidable.

In our implementation these P 2 send operations are scheduled such that at P

different time-steps only P messages have to be sent. To this end, we introduce column

and row processes which compute the FFT of the columns and rows, respectively. We

distribute the data such that the row processes can receive portions of their data

while the column processes are still in a computing phase. At any time-step, every

column process sends to exactly one row process, and every row process receives from

exactly one column process. Thus, the communication and computation time overlap.

Moreover, the data sent from a column process can be received directly, no data is

left in the network.

3.3 Details of the algorithm

A standard FFT algorithm for x = (x`)
m−1
`=0 ∈ Cm, for m a power of two, is summarized

in Tab. 3. Note, for ease of presentation we used a naive way of computing the roots

of unity. In our implementation, these roots are precomputed and supplied to the

FFT algorithm, see also [21].

The first step in the generic case q > 1 is to split the input data x into u = (u`)
q−1
`=0

and v = (v`)
q−1
`=0 , where q = m/2, u` = x`+x`+q, and v` = ω`q(x`−x`+q). Next the FFT

is applied to u and v leading to û = Fqu and v̂ = Fqv. With û all even coefficients of

x̂ are known and with v̂ all odd coefficients of x̂ are known.

The key observation is that the computation order of the odd/even part in the

recurrence is arbitrary. Moreover, the data of the row processes can be organized

according to the odd/even decomposition.

Suppose we have P = 2 column processes CP0 and CP1 and row processes RP0

and RP1. In time-step 1 CP0 processes the even part of its data while CP1 processes

the odd part of its data. In time-step 2 CP0 sends the processed even part to RP0

and processes the odd part of its data while CP1 sends the processed odd part of its

data to RP1 and processes the even part of its data. The communication is splitted

over two time-steps and overloaded with computation time. Finally, CP0 sends the

processed odd part to RP1 while CP1 sends the processed even part to RP0. Now, RP0

and RP1 have the complete data for the row FFT. The row FFT can be computed

using the standard 1D-FFT, cf. Tab. 3.

This idea can easily be extended to more processes. In the j-th recursion of the

FFT the parts (x′`)`≡kmod 2j of x′ = Fm · x are computed, k = 0, . . . , 2j − 1. Although

the computation of these parts is sequential it can be performed in any order. In

particular, these parts can be computed in a different order on different processes.
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In our implementation the column process numbers are used to assign a unique

computation order σj,k for any column process j, where σj,k is a permutation of the

numbers 0, . . . , P−1 for any j and for any k. The technique described in the following

leads to an easy implementation of the parallel column FFT, see Tab. 4.

In the first time-step, the order odd/even in the j-th recurrence is determined by

the j-th last bit of the binary representation of the column process number. Thus, the

path followed initially can be viewed as a bit-reversal of the column process number.

Following the binary structure of the 1D-FFT, the ordering for the k-th time-step

can be obtained by an exclusive-or operation with the binary representation of the

initial path and k, k = 0, . . . , P − 1. If, e.g., the initial path is 010, the ordering is

010 = 010⊕ 000, 011 = 010⊕ 001, 000 = 010⊕ 010 etc. The destination row process

for the processed data is given by the path followed in the current time-step. Row

process RPk receives the data x′` with ` = kmodP , k = 0, . . . , P − 1.

Example: Suppose P = 4. From the binary representation 00, 01, 10, and 11 it

follows that CP0, CP1, CP2, and CP3 initially compute the 00, 10, 01, and 11 part,

respectively, of the data (0/1 is related to odd/even). The binary representation of the

computation order for CP0 is 00, 01, 10, and 11. RP0 receives successively from CP0,

CP2, CP1, and CP3. A complete ordering diagram for this case is shown in Fig. 2.

1

CP CP0 1 2 3CP CP

t

0

0

0

0

1

1

1

2

2

2

2

3

3

3

3

1

2

3

4t

t

t

Figure 2: Communication diagram for P = 4; the rows show the four time-steps
tj, j = 1, 2, 3, 4, the columns show the current recurrence path of the four column
processes (left/right: computation of the odd/even part in the recurrence); the pathes
define the destination row processes.

In our implementation this data-flow is controlled by the numbers rec_order (es-

sentially the j last bits of the column process number) and dest_proc (the number

of the destination row process), see Tab. 4.
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The data for the row process k contains the rows ρ ≡ kmodP instead of m/P

consecutive rows. Thus, finishing the log2(P )-th recurrence, the data for the row

processes is completed and a standard 1D-FFT can be used for computing the row

FFT.

The overall algorithm for the column FFT is summarized in Tab. 4, an extension to

multiple column input is straightforward. An initial call of this function by CPj is x̂ =

ColumnFFT(x, j, 0). This completes the description of our 2D-FFT implementation.

The parallelization of the point-wise multiplication in Tab. 2 is straightforward.

The inverse 2D-FFT can be derived from the 2D-FFT by replacing ωq by its complex

conjugate ω̄q.

4 Performance Measurements

In order to investigate the behavior of our parallel implementation we did performance

measurements on a PC-Cluster. We employed a special message passing interface to

enable access to high speed networks and to preserve portability. We ran experiments

with different image sizes (256× 256, 512× 512, and 1024× 1024 pixel images).

4.1 The Störtebeker PC-Cluster

The Störtebeker Cluster at the University of Lübeck is a tightly coupled PC-Cluster

with a high speed network interconnection. The cluster is built from 48 dual processor

PCs with Pentium II (333 MHz) and 128 MBytes or 256 MBytes memory per node,

respectively. All nodes are connected by Myrinet, cf. [3, 16], via four 8-port single

chip switches. Figure 3 shows the topology for this interconnection. Myrinet is a

proprietary product which uses parallel data transmission over 20 individually shielded

wires. The nominal bandwidth of Myrinet is 1.25 Gbit/s and it has a hardware latency

of 3 µs [17]. Recently, it has gained high popularity in cluster systems. Apart from

the good price-performance ratio this is caused by its flexible network access via a

dedicated communication processor.

For administrative purposes the nodes of the cluster are connected via Fast Eth-

ernet. Linux 2.2.10 is used as the operating system on all nodes.

4.2 Message Passing Environment

In order to enable efficient direct access without losing portability of the applications,

our lean message passing programming interface HPCC (High Performance Cluster

Communication) was employed [17]. It acts as a common abstraction layer for various

high speed network technologies.



Non-Linear Image Registration on PC-Clusters Using Parallel FFT Techniques 9

Table 3: Standard 1D-FFT implementation.

function x̂ = FFT(x)
q = length(x)/2; ωq = exp(−2πi/q);

if q > 1,

(u`)
q−1
`=0 := (x` + x`+q)

q−1
`=0 ;

(v`)
q−1
`=0 := ω`q · (x` − x`+q)

q−1
`=0 ;

û := FFT(u);

v̂ := FFT(v);

(x̂2`)
q−1
`=0 := (û`)

q−1
`=0 ;

(x̂2`+1)q−1
`=0 := (v̂`)

q−1
`=0 ;

else

x̂0 := x0 + x1; x̂1 := x0 − x1;

end.

Table 4: Parallel 1D-FFT implementation.

function x̂ = ColumnFFT(x, rec order, dest proc)
q = length(x)/2; ωq = exp(−2πi/q);

if q ≤ m/P ,

x̂ = FFT(x); send x̂ to dest proc;

else

(u`)
q−1
`=0 := (x` + x`+q)

q−1
`=0 ;

(v`)
q−1
`=0 := ω`q · (x` − x`+q)

q−1
`=0 ;

if rec order ≡ 0 mod 2,

ColumnFFT(u, rec order÷ 2, 2 · dest proc);

ColumnFFT(v, rec order÷ 2, 2 · dest proc + 1);

else

ColumnFFT(v, rec order÷ 2, 2 · dest proc + 1);

ColumnFFT(u, rec order÷ 2, 2 · dest proc);

end

end.

Currently, direct access to four high speed networks is supported: HIC (Hetero-

geneous Interconnect) [13]; SCI (Scalable Coherent Interface) [14, 20]; Myrinet [3];

and Gigabit Ethernet [17]. Furthermore, indirect access to IP (Internet Protocol)

based networks is provided, e.g., for developing applications on clusters without a
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Figure 3: Topology for Myrinet interconnection of “Störtebeker Cluster”.

high speed network. This variant uses PVM (Parallel Virtual Machine) [9] as the

underlying communication platform.

HPCC provides the basic functionality for communication (connection establish-

ment, send, receive) and dynamic process creation. In order to exploit the perfor-

mance of high speed devices, unbuffered send and receive operations with zero-copy

are offered besides the usual buffered, blocking send and receive operations. The

uniform access to different device technologies via HPCC allows comparative perfor-

mance measurements for all supported networks with the same, unmodified program.

More details of the HPCC implementation were described in previous work [17].

4.3 Measurements

We tested the performance of our parallel implementation by running experiments

using different numbers of processing nodes (2, 4, 8, 16, and 32) on our PC-Cluster.

To avoid limiting the number of processes per node we used IP based interconnections

with both Myrinet and Fast Ethernet (FE). We calculated the average iteration time

over 50 iterations. Each experiment was performed several times.

Figure 4 shows the average iteration time for different image sizes on a logarithmic

scale. Using the Myrinet network interconnection our parallel FFT-techniques scales

very well. By doubling the number of processing nodes the average iteration time is

nearly halved. This can be observed even for a large number of processing nodes. With

Fast Ethernet, the parallel algorithm also works quite well. However, as the number of

processing nodes increases beyond a certain point, the performance collapses for small

images. This is due to the fact that the Fast Ethernet network provides unsatisfactory

infrastructure for cluster computing. Fast Ethernet uses a shared medium, so a large

amount of communication results in traffic congestions because of many collisions.

This leads to high latency which handicaps the message passing environment. For an

image size of 256×256 and 32 nodes, so much bandwidth is lost through collisions that
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the running time actually increases compared to the experiment with 16 nodes. Our

application is particularly sensitive to these effects since it requires a lot of bandwidth

to exchange the data between the row and column processes.
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256x256 FE
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Figure 4: Average running time versus number of processing nodes (logarithmic scale).

5 Conclusions

We proposed a parallel implementation of the elastic-matching algorithm based on [8].

Using FFT type techniques, the numerical complexity for the solution of the linear

system can be reduced from O(N3) using standard techniques to O(N logN) where

N denotes the number of pixels.

Although the FFT is an outstanding method in a sequential architecture, its paral-

lelization on a distributed memory machine provides some severe difficulties. We over-

come these difficulties by introducing an appropriate communication strategy. With

this strategy, we end up with an almost linear speed-up in the Myrinet environment

and for a realistic number of nodes. The overall algorithm enables the registration of

large images and registration sequences of many images in a reasonable time.

Thus, we see this algorithm as a promising starting point for further investigation,

e.g. with respect to multiscale approaches, 3D registration, or multi-modal image

registration.
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[5] M. Bro-Nielsen, Medical Image Registration and Surgery Simulation, Ph.D. the-

sis, IMM, Technical University of Denmark (1996).

[6] G.E. Christensen, Deformable Shape Models for Anatomy, Ph.D. thesis, Sever

Institute of Technology, Washington University (1994).

[7] Chu, E. and A. George, Inside the FFT Black Box. CRC Press, 2000.

[8] Fischer, B. and J. Modersitzki, Fast inversion of matrices arising in image pro-

cessing. Numerical Algorithms, 22:1–11, 1999.

[9] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.

PVM: Parallel Virtual Machine – A Users’ Guide and Tutorial for Networked

Parallel Computing. The MIT Press, 1994.

[10] Golub G.H. and C.F. van Loan, Matrix Computations. John Hopkins University

Press, 1996.
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