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1. INTRODUCTION

The goal of computational complexity theory is to classify computational problems accord-
ing to their intrinsic difficulty. While the analysis of algorithms is concerned with analyz-
ing, say, the running time of a particular algorithm, complexity theory rather analyses the
amount of resources that all algorithms need at least to solve a given problem.

Classical complexity classes, like P, reflect worst-case analysis of algorithms. A problem
is in P if there is an algorithm whose running time on all inputs of length n is bounded
by a polynomial in n. Worst-case analysis has been a success story: The bounds obtained
are valid for every input of a given size, and, thus, we do not have to think about typical
instances of our problem. If an algorithm has a good worst-case upper bound, then this is
a very strong statement, and, up to constants and lower order terms in the running-time,
the algorithm should also perform well in practice.

However, some algorithms work well in practice despite having a provably high worst-case
running time. The reason for this is that the worst-case running time can be dominated by
a few pathological instances that rarely or never occur in practice. An alternative to worst-
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case analysis is average-case analysis. Many of the algorithms with poor worst-case but good
practical performance have a good average running time. This means that the expected
running time with instances drawn according to some fixed probability distribution is low.

In complexity-theoretic terms, P is the class of all problems that can be solved with
polynomial worst-case running time. In the same way, the class Avg-P is the class of all
problems that have polynomial average-case running time. Average-case complexity theory
studies the structural properties of average-case running time. Bogdanov and Trevisan [2006]
give a comprehensive survey of average-case complexity.

While worst-case complexity has the drawback of being often pessimistic, the drawback of
average-case analysis is that random instances have often very special properties with high
probability. These properties of random instances distinguish them from typical instances.
Since a random and a typical instance is not the same, a good average-case running time
does not necessarily explain a good performance in practice. In order to get a more realistic
performance measure, (and, in particular, to explain the speed of the simplex method),
Spielman and Teng [2004] have proposed a new way to analyze algorithms called smoothed
analysis. In smoothed analysis, an adversary chooses an instance, and then this instance is
subjected to a slight random perturbation. We can think of this perturbation as modeling
measurement errors or random noise or the randomness introduced by taking, say, a random
poll. The perturbation is controlled by some parameter φ, called the perturbation parameter.
Spielman and Teng [2004] have proved that the simplex method has a running time that is
polynomial in the size of the instance and the perturbation parameter. (More precisely, for
any given instance, the expected running time on the perturbed instance is bounded by a
polynomial.) Since then, the framework of smoothed analysis has been applied successfully
to a variety of algorithms that have a good behavior in practice (and are therefore widely
used) but whose worst-case running time indicates poor performance [Arthur et al. 2011;
Banderier et al. 2003; Beier and Vöcking 2004; Bläser et al. 2013; Blum and Dunagan 2002;
Brunsch et al. 2013a; 2013b; Brunsch and Röglin 2015; Damerow et al. 2012; Englert et al.
2014; Fouz et al. 2012; Manthey and Reischuk 2007; Manthey and Röglin 2013; Manthey
and Veenstra 2013; Moitra and O’Donnell 2011; Spielman and Teng 2003; Vershynin 2009].
We refer to two surveys for a broader picture of smoothed analysis [Spielman and Teng
2009; Manthey and Röglin 2011].

However, with only few exceptions [Beier and Vöcking 2006; Röglin and Vöcking 2007],
smoothed analysis has only been applied yet to single algorithms or single problems. Fur-
thermore, with the exception of the complexity of finding Nash equilibria [Chen et al. 2009]
and integer programming [Beier and Vöcking 2006], there are very few hardness results. Up
to our knowledge, there is currently no attempt to formulate a smoothed complexity theory
and, thus, to embed smoothed analysis into computational complexity.

This paper is an attempt to define a smoothed complexity theory, including notions of
intractability, reducibility, and completeness. We define the class Smoothed-P (Section 2),
which corresponds to problems that can be solved smoothed efficiently, we provide a notion
of reducibility (Section 3), and define the class Dist-NPpara, which is a smoothed analogue of
NP, and prove that it contains complete problems (Section 4). We continue with some basic
observations (Section 5). We also add examples of problems in Smoothed-P (Sections 6 and 7)
and discuss the relationship of smoothed complexity to semi-random models (Section 8).
Finally, we conclude with a discussion of extension, shortcomings, and difficulties of our
definitions (Section 9).

2. SMOOTHED POLYNOMIAL TIME AND SMOOTHED-P

2.1. Basic Definitions

In the first application of smoothed analysis to the simplex method [Spielman and Teng
2004], the strength of the perturbation has been controlled in terms of the standard deviation
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σ of the Gaussian perturbation. While this makes sense for numerical problems, this model
cannot be used for general (discrete problems). A more general form of perturbation models
has been introduced by Beier and Vöcking [2004]: Instead of specifying an instance that is
afterwards perturbed (which can also be viewed as the adversary specifying the mean of the
probability distribution according to which the instances are drawn), the adversary specifies
the whole probability distribution. Now the role of the standard deviation σ is taken over
by the parameter φ, which is an upper bound for the maximum density of the probability
distributions. For Gaussian perturbation, we have σ = Θ(1/φ). Because we do not want to
restrict our theory to numerical problems, we have decided to use the latter model.

Let us now define our model formally.
For a family D = (Dn,x,φ), let

Sn,x =
{
y | Dn,x,φ(y) > 0 for some φ

}
,

and let Nn,x = |Sn,x|. In principle, Sn,x can be the set of all strings of length bounded by a
polynomial in n. However, for many problems, not all strings are meaningful encodings of
instances. In this case, Nn,x is the number of possible meaningful perturbations of x.

A perturbation model is a family D = (Dn,x,φ) of distributions that satisfies the following
properties for all n ∈ N, x ∈ {0, 1}∗, and φ ∈ [0, 1]:

(1) The length of x is n (we could omit the index n, but we keep it for clarity). Note that
length does not necessarily mean bit length, but depends on the problem. For instance,
it can be the number of vertices of the graph encoded by x.

(2) The support of Dn,x,φ is a subset of {0, 1}≤poly(n).
(3) For all n, x, φ, and y, we require Dn,x,φ(y) ≤ φ. This controls the strength of the

perturbation and restricts the adversary.
(4) We allow φ ∈ [1/Nn,x, 1]. Furthermore, the range of φ are discretized, so that they can

be described by at most poly(n) bits.

We call such families (Dn,x,φ)n,x,φ of probability distributions parameterized families of
distributions.

The case φ = 1 corresponds to the worst-case complexity; we can put all the mass on
one string. The case φ = 1/Nn,x models the standard average case; here we usually have to
put probability on an exponentially large set of strings. In general, the larger φ, the more
powerful the adversary.

Now we can specify what it means that an algorithm has smoothed polynomial running-
time. The following definition can also be viewed as a discretized version of Beier and
Vöcking’s definition [Beier and Vöcking 2006]. Note that we do not speak about expected
running-time, but about expected running-time to some power ε. This is because the no-
tion of expected running-time is not robust with respect to, e.g., quadratic slowdown. The
corresponding definition for average-case complexity is due to Levin [1986]. We refer to
Bogdanov and Trevisan [2006] for a thorough discussion of this issue.

Definition 2.1. An algorithm A has smoothed polynomial running time with respect to
the family D if there exists an ε > 0 such that, for all n, x, and φ, we have

Ey∼Dn,x,φ
(
tA(y;n, φ)ε

)
= O

(
n ·Nn,x · φ

)
.

This definition implies that (average-)polynomial time is only required if we have φ =
O(poly(n)/Nn,x). For the case φ = 1, an exponential running-time is allowed if Nn,x is
exponential, which it usually is. This seems to be quite generous at first glance, but it is
in accordance with, e.g., Spielman and Teng’s analysis of the simplex method [Spielman
and Teng 2004] or Beier and Vöcking’s analysis of integer programs [Beier and Vöcking
2006]. They achieve polynomial running time only if they perturb all but at most O(log n)
digits per coefficient: If we perturb a number with, say, a Gaussian of standard deviation
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σ = 1/ poly(n), then we expect that the O(log n) most significant bits remain untouched,
but the less significant bits are random. Of course, there remain roughly O(log n) bits
per coefficient untouched, while our perturbation models leaves in this case only roughly
O(log n) bits overall untouched. However, the former can only be achieved if we include,
e.g., the notion of coefficients in the input. For the purpose of generality, we decided against
including notions such as coefficients in the input. We also refer to Section 6.2 for a discussion
of this matter.

In average-case complexity, one considers not decision problems alone, but decision prob-
lems together with a probability distribution. The smoothed analogue of this is that we
consider tuples (L,D), where L ⊆ {0, 1}∗ is a decision problem and D is a parameter-
ized family of distributions. We call such problems parameterized distributional problems.
The notion of smoothed polynomial running-time (Definition 2.1) allows us to define what it
means for a parameterized distributional problem to have polynomial smoothed complexity.

Definition 2.2. Smoothed-P is the class of all (L,D) such that there is a deterministic
algorithm A with smoothed polynomial running time that decides L.

We start with an alternative characterization of smoothed polynomial time as it is known
for average case running time. It basically says that an algorithm has smoothed polyno-
mial running-time if and only if its running-time has polynomially decreasing tail bounds.
Though smoothed polynomial time is a generalization of average case polynomial time, the
characterization and the proof of equivalence are similar.

Theorem 2.3. An algorithm A has smoothed polynomial running time if and only if
there is an ε > 0 and a polynomial p such that for all n, x, φ, and t,

Pr
y∼Dn,x,φ

[tA(y;n, φ) ≥ t] ≤ p(n)

tε
·Nn,x · φ.

Proof. Let A be an algorithm whose running time tA fulfills

Ey∼Dn,x,φ
(
tA(y;n, φ)ε

)
= O (n ·Nn,xφ) .

The probability that the running time exceeds a certain value t can be bounded by Markov’s
inequality:

P(tA(y;n, φ) ≥ t) = P
(
tA(y;n, φ)ε ≥ tε

)
≤

Ey∼Dn,x,φ
(
tA(y;n, φ)ε

)
tε

= O
(
n ·Nn,xφ · t−ε

)
.

For the other direction, assume that

Pr
y∼Dn,x,φ

[tA(y;n, φ) ≥ t] ≤ nc

tε
·Nn,xφ

for some constants c and ε. Let ε′ = ε/(c+ 2). Then we have

Ey∼Dn,x,φ
(
tA(y;n, φ)ε

′)
=
∑
t

P(tA(y;n, φ)ε
′
≥ t)

≤ n+
∑
t≥n

P(tA(y;n, φ) ≥ t1/ε
′
)

≤ n+
∑
t≥n

t−2 ·Nn,xφ = n+O(Nn,xφ).
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2.2. Heuristic Schemes

A different way to think about efficiency in the smoothed setting is via so-called heuristic
schemes. This notion comes from average-case complexity [Bogdanov and Trevisan 2006],
but can be adapted to our smoothed setting. The notion of a heuristic scheme comes from the
observation that, in practice, we might only be able to run our algorithm for a polynomial
number of steps. If the algorithms does not succeed within this time bound, then it “fails”,
i.e., it does not solve the given instance. The failure probability decreases polynomially with
the running time that we allow. The following definition captures this.

Definition 2.4. Let (L,D) be a smoothed distributional problem. An algorithm A is an
errorless heuristic scheme for (L,D) if there is a polynomial q such that

(1) For every n, x, φ, δ > 0, and y ∈ suppDn,x,φ, we have A(y;n, φ, δ) outputs either L(y)
or ⊥.

(2) For n, x, φ, δ > 0, and y ∈ suppDn,x,φ, we have tA(y;n, δ) ≤ q(n,Nn,xφ, 1/δ).
(3) For n, x, φ, δ > 0, and y ∈ suppDn,x,φ, we have Pry∼Dn,x,φ [A(y;n, φ, δ) = ⊥] ≤ δ.

With the definition of a heuristic scheme, we can prove that heuristic schemes precisely
characterize Smoothed-P.

Theorem 2.5. (L,D) ∈ Smoothed-P if and only if (L,D) has an errorless heuristic
scheme.

Proof. Let A be an algorithm for (L,D). By Theorem 2.3, the probability that

P(tA(y;n, φ) ≥ t) = O
(
n ·Nn,xφ · t−ε

)
.

We get an errorless heuristic scheme B from A as follows: Simulate A for (n ·Nn,xφ/δ)1/ε

steps. If A stops within these number of steps, then output whatever A outputs. Otherwise,
output ⊥. By the choice of the parameters, the probability that B outputs ⊥ is bounded
by δ.

For the other direction, let A be an errorless heuristic scheme for (L,D). We get an
algorithm with smoothed polynomial running time by first running A with δ = 1/2, then
with δ = 1/4, and in the ith iteration with δ = 1/2i. Whenever A does not answer ⊥,
B gives the same answer and stops. B will eventually stop, when δ < Dn,x,φ(y). For i
iterations, B needs

i∑
j=1

q(n,Nn,xφ, 2
j) ≤ poly(n,Nn,xφ) · 2ci

for some constant c. B stops after i iterations for all but a 2−i fraction of the input. Thus
B has smoothed polynomial running time. (Choose ε < 1/c.)

2.3. Alternative Definition: Bounded Moments

At first glance, one might be tempted to use “expected running time” for the definition of
Avg-P and Smoothed-P. However, as mentioned above, simply using the expected running
time does not yield a robust measure. This is the reason why the expected value of the
running time raised to some (small) constant power is used. Röglin and Teng [2009, Theorem
6.2] have shown that for integer programming (more precisely, for binary integer programs
with a linear objective function), the expected value indeed provides a robust measure. They
have proved that a binary optimization problem can be solved in expected polynomial time
if and only if it can be solved in worst-case pseudo-polynomial time. The reason for this is
that all finite moments of the Pareto curve are polynomially bounded. Thus, a polynomial
slowdown does not cause the expected running time to jump from polynomial to exponential.
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As far as we are aware, this phenomenon, i.e., the case that all finite moments have to be
bounded by a polynomial, has not been studied yet in average-case complexity. Thus, for
completeness, we define the corresponding average-case and smoothed complexity classes
as an alternative to Avg-P and Smoothed-P.

Definition 2.6.

(1) An algorithm has robust smoothed polynomial running time with respect to D if, for all
fixed c > 0 and for every n, x, and φ, we have

Ey∼Dn,x,φ
(
tA(y;n, φ)c

)
= O

(
n ·Nn,x · φ

)
.

Smoothed-PBM is the class of all (L,D) for which there exists a deterministic algorithm
with robust smoothed polynomial running time. (The “PBM” stands for “polynomially
bounded moments”.)

(2) An algorithm A has robust average polynomial running time with respect to D if, for
all fixed c > 0 and for all n, we have Ey∼Dn

(
tA(y)c

)
= O(n). Avg-PBM contains all

(L,D) for which there exists a deterministic algorithm with robust smoothed polynomial
running time.

Instead of having multi-linear right-hand sides, we could choose any polynomial depen-
dence on the parameters since the bounds for the moments have to hold for all c.

From the definition, we immediately get Smoothed-PBM ⊆ Smoothed-P and Avg-PBM ⊆
Avg-P. Moreover, if L ∈ P, then L together with any family of distributions is also in
Smoothed-P and Avg-P and also in Smoothed-PBM and Avg-PBM. From Röglin and Teng’s
result [Röglin and Teng 2009], one might suspect Avg-P = Avg-PBM and Smoothed-P =
Smoothed-PBM, but this does not hold.

Theorem 2.7. Avg-PBM ( Avg-P and Smoothed-PBM ( Smoothed-P.

Proof. We only prove the theorem for average-case complexity. The proof for the
smoothed complexity case is almost identical.

By the time hierarchy theorem [Arora and Barak 2009], there is a language L′ ∈
DTime(2n) such that L′ /∈ DTime(2o(n)). Consider the following language L = {x0n | |x| =
n, x ∈ L′}. Let D′ = (D′n) be a hard probability distribution for L′, i.e., (L′,D′) is as hard
to solve as L′ in the worst case [Li and Vitányi 1992; Li and Vitányi 1993].

Let D = (Dn) be given as follows:

Dn(xy) =

{
2−n ·D′n(x) if |x| = n and y = 0n and

2−2n otherwise.

Since L′ ∈ DTime(2n), we have (L,D) ∈ Avg-P: L can be decided in expected time 2−n ·
2n +O(n) = O(n). Now we prove that (L,D) /∈ Avg-PBM. If (L,D) ∈ Avg-PBM were true,
then 2−n · Ex∼D′

n
(t(x)c) would be bounded by a polynomial for all fixed c. Here, t is the

time needed to solve the L′ instance x.
Our choice of D′, Jensen’s inequality, and the fact that L′ /∈ DTime(2o(n)) im-

ply that Ex∼D′
n
(t(x)c) ≥ Ex∼D′

n
(t(x))c = 2c·Ω(n). Thus, for some sufficiently large c,

2−n · Ex∼D′
n
(t(x)c) exceeds any polynomial.

A natural question to ask is: Does there exist a language L ∈ NP together with
some ensemble D such that (L,D) separates Avg-P from Avg-PBM and Smoothed-P from
Smoothed-PBM? Does there exist some L together with a computable ensemble D that
separates these classes?

We conjecture that, assuming the exponential time hypothesis (ETH) [Impagliazzo et al.
2001], such an L ∈ NP exists to separate Avg-P from Avg-PBM and Smoothed-P from
Smoothed-PBM. Given the ETH, 3SAT requires time 2Ω(n) in the worst case, thus also on
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average if we use the universal distribution. This holds even if we restrict 3SAT to O(n)
clauses. However, n is here the number of variables, not the bit length of the input, which
is roughly Θ(n log n). Thus, a direct application of the ETH seems to be impossible here,
as, with respect to bit length n, the ETH states only that satisfiability cannot be solved in
time 2o(n/ logn), which seems to be too weak.

3. DISJOINT SUPPORTS AND REDUCIBILITY

The same given input y can appear with very high and with very low probability at the
same time. What sounds like a contradiction has an easy explanation: Dn,x,φ(y) can be
large whereas Dn,x′,φ(y) for some x′ 6= x is small. But if we only see y, we do not know
whether x or x′ was perturbed. This may cause some problems when one wants to develop
a notion of reduction and completeness.

For a parameterized distributional problem (L,D), let

Lds = {〈x, y〉 | y ∈ L and |y| ≤ poly(|x|)}.

The length of |y| is bounded by the same polynomial that bounds the length of the strings in
any suppDn,x,φ. We will interpret a pair 〈x, y〉 as “y was drawn according to Dn,x,φ”. With
the notion of Lds, we can now define a reducibility between parameterized distributional
problems. We stress that, although the definition below involves Lds and L′ds, the reduction
is defined for pairs L and L′ and neither of the two is required to be a disjoint-support
language. This means that, for (L,D), the supports of Dn,x,φ for different x may intersect.
And the same is allowed for (L′,D′).

Definition 3.1. Let (L,D) and (L′,D′) be two parameterized distributional problems.
(L,D) reduces to (L′,D′) (denoted by “(L,D) ≤smoothed (L′,D′)”) if there is a polynomial
time computable function f such that for every n, x, φ and y ∈ suppDn,x,φ the following
holds:

(1) 〈x, y〉 ∈ Lds if and only if f(〈x, y〉;n, φ) ∈ L′ds.
(2) There exist polynomials p and m such that, for every n, x, φ, and every y′ ∈

suppD′m(n),f1(〈x,y〉;n,φ),φ, we have∑
y:f2(〈x,y〉;n,φ)=y′ Dn,x,φ(y) ≤ p(n)D′m(n),f1(〈x,y〉;n,φ),φ(y′),

where f(〈x, y〉;n, φ) = 〈f1(〈x, y〉;n, φ), f2(〈x, y〉;n, φ)〉.

Remark 3.2. We could also allow that φ on the right-hand side is polynomially trans-
formed. However, we currently do not see how to benefit from this.

It is easy to see that ≤smoothed is transitive. Ideally, Smoothed-P should be closed under
this type of reductions. However, we can only show this for the related class of problems
with disjoint support.

Definition 3.3. Smoothed-Pds is the set of all distributional problems with disjoint sup-
ports such that there is an algorithm A for Lds with smoothed polynomial running time.
(Here, the running time on 〈x, y〉 is defined in the same way as in Definition 2.1. Since
|y| ≤ poly(|x|) for a pair 〈x, y〉 ∈ Lds, we can as well measure the running time in |x|.)

Now, Smoothed-Pds is indeed closed under the above type of reductions.

Theorem 3.4. If (L,D) ≤smoothed (L′,D′) and (L′ds,D′) ∈ Smoothed-Pds, then
(Lds,D) ∈ Smoothed-Pds.

Proof. Let A′ be a an errorless heuristic scheme for (L′ds,D′). Let f be the reduction
from (L,D) to (L′,D′) and let p and m be the corresponding polynomials.
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We claim that A(〈x, y〉;n, φ, δ) = A′(f(〈x, y〉;n, φ);m(n), φ, δ/p(n)) is an errorless heuris-
tic scheme for (Lds,D). To prove this, let

B = {y′ ∈ suppD′m(n),f1(〈x,y〉;n,φ),φ | A
′(〈f(〈x, y〉;n, φ), y′〉;m(n), φ, δ/p(n)) = ⊥}

be the set of string on which A′ fails.
Because A′ is a heuristic scheme, we have D′m(n),f1(〈x,y〉;n,φ),φ(B) ≤ δ/p(n). Therefore,

Pr
y∼Dn,x,φ

(A(〈x, y〉;n, φ, δ) = ⊥) = Pr
y∼Dn,x,φ

(A′(f(〈x, y〉;n, φ);m(n), φ, δ/p(n) = ⊥)

=
∑

y:f2(〈x,y〉;n,φ)∈B

Dn,x,φ(y)

≤
∑
y′∈B

p(n)D′m(n);f1(〈x,y〉;n,φ);φ(y′)

= p(n)D′m(n);f1(〈x,y〉;n,φ);φ(B) ≤ δ.

Thus, (Lds,D) ∈ Smoothed-Pds.

With the definition of disjoint support problems, a begging question is how the complex-
ity of L and Lds are related. It is obvious that (L,D) ∈ Smoothed-P implies (Lds,D) ∈
Smoothed-Pds. However, the converse is not so obvious. The difference between L and Lds is
that for Lds, we get the x from which the input y was drawn. While this extra information
does not seem to be helpful at a first glance, we can potentially use it to extract randomness
from it. So this question is closely related to the problem of derandomization.

But there is an important subclass of problems in Smoothed-Pds whose counterparts are
in Smoothed-P, namely those which have an oblivious algorithm with smoothed polynomial
running time. We call an algorithm (or heuristic scheme) for some problem with disjoint
supports oblivious if the running time on 〈x, y〉 does not depend on x (up to constant

factors). Let Smoothed-Pobl
ds be the resulting subset of problems in Smoothed-Pds that have

such an oblivious algorithm with smoothed polynomial running time.

Proposition 3.5. For any parameterized problem (L,D), (L,D) ∈ Smoothed-P if and

only if (Lds,D) ∈ Smoothed-Pobl
ds .

Proof. Let A be an oblivious algorithm with smoothed polynomial running time for
Lds. Since A is oblivious, we get an algorithm for L with the same running time (up to
constant factors) by running A on 〈x0, y〉 on input y, where x0 is an arbitrary string of
length n.

Note that almost all algorithms, for which a smoothed analysis has been carried out, the
algorithm does not know the x from which y was drawn. This means that these algorithms
are oblivious. Still, this does not rule out the possibility that there is a problem (L,D) /∈
Smoothed-P with (Lds,D) ∈ Smoothed-Pds.

What could be a potential attempt to find such a problem? Note that in Lds, each y is
paired with every x, so there is no possibility to encode information by omitting some pairs.
This prohibits attempts for constructing such a problem like considering pairs 〈x, f(x)〉
where f is some one-way function. However, a pair 〈x, y〉 contains randomness that one
could extract. Therefore, such an attempt seems to be connected to derandomisation issues,
a notoriously hard problem in complexity theory. To avoid the derandomisation problem, we
could look at probabilistic or nonuniform smoothed classes: For the classes Smoothed-BPP or
Smoothed-P/poly, which can be defined in the obvious way, it seems plausible that knowing
x does not help; for these two classes, it should be possible to use the internal random bits
(or the advice) to find an x′ that is good enough.
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4. PARAMETERIZED DISTRIBUTIONAL NP

4.1. Dist-NPpara

In this section, we define the smoothed analogue of the worst-case class NP and the average-
case class DistNP [Levin 1986; Gurevich 1991]. First, we have to restrict ourself to “natural”
distributions. This rules out, for instance, probability distributions based on Kolmogorov
complexity that (the universal distribution), under which worst-case complexity equals
average-case complexity for all problems [Li and Vitányi 1992]. We transfer the notion
of computable ensembles to smoothed complexity.

Definition 4.1. A parameterized family of distributions is in PComppara if the cumulative
probability

FDn,x,φ =
∑
z≤x

Dn,x,φ

can be computed in polynomial time (given n, x and φ in binary). Here z ≤ x means that
|z| < |x| or |z| = |x| and z comes lexigraphically before x or z = x.

With this notion, we can define the smoothed analogue of NP and DistNP.

Definition 4.2. Dist-NPpara = {(L,D) | L ∈ NP and D ∈ PComppara}.

4.2. Dist-NPpara-Complete Problems

4.2.1. Bounded Halting. Having defined Dist-NPpara in the previous section, we now prove
that bounded halting – given a Turing machine, an input, and a running-time bound, does the
Turing machine halt on this input within the given time bound – is complete for Dist-NPpara.
Bounded halting is the canonical NP-complete language, and it has been the first problem
that has been shown to be Avg-P-complete [Levin 1986]. Formally, let

BH = {〈g, x, 1t〉 | the nondeterministic Turing machine with Gödel number g

accepts x within t steps}.

In order to show that BH is Dist-NPpara-complete, we need a “compression function” for
probability distributions [Bogdanov and Trevisan 2006]. This is the purpose of the following
lemma.

Lemma 4.3. Let D = (Dn,x,φ) ∈ PComppara be an ensemble. There exists a determin-
istic algorithm C such that the following holds:

(1 ) C(y;n, x, φ) runs in time polynomial in n and φ for all y ∈ suppDn,x,φ.
(2 ) For every y, y′ ∈ suppDn,x,φ, C(y;n, x, φ) = C(y′;n, x, φ) implies y = y′.

(3 ) If Dn,x,φ(y) < 2−|y|, then |C(y;n, x, φ)| = 1 + |y|. Else, |C(y;n, x, φ)| = log 1
Dn,x,φ(y) +

c · log n+ 1 for some constant c.

Proof. Consider any string y ∈ supp(Dn,x,φ). If Dn,x,φ(y) ≤ 2−|y|, then we let

C(y;n, x, φ) = 0y. If Dn,x,φ(y) > 2−|x|, then let y′ be the string that precedes y in lex-
icographic order, and let p = FDn,x,φ(y′). Then we set C(y;n, x, φ) = 1a, where a is the
longest common prefix of the binary representation of p and FDn,x,φ(y) = p + Dn,x,φ(y).
Since D ∈ PComppara, the string z can be computed in polynomial time. Thus, C can be
computed in polynomial time. (This also shows that |C(x, n)| is bounded by a polynomial
in |x|.)

We have Dn,x,φ(y) ≤ 2−|a|, since adding Dn,x,φ(y) leaves the first |a| bits of p unchanged.
Let z be another string, z′ its predecessor and b the longest common prefix of q =

FDn,x,φ(z′) and q + Dn,x,φ(z′). The intervals [p, p + Dn,x,φ(y)) and [q, q + Dn,x,φ(y)) are
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disjoint by construction. Therefore, a and b have to be different, because otherwise these
intervals would intersect.

Let c be such that |y| ≤ nc for all y ∈ supp(Dn,x,φ). We set

C(y;n, x, φ) = 1 bin(|a|)a0
log 1

Dn,x,φ(y)
−|a|

.

(Note that log 1
Dn,x,φ(y) ≥ |a|.) Here bin(|a|) is a fixed length binary encoding of a. We can

bound this length by c log n. The total length of C(y;n, x, φ) is

|C(y;n, x, φ)| = 1 + c log n+ log
1

Dn,x,φ(y)
.

It remains to be proved that C is injective. Let C(y;n, x, φ) = C(z;n, x, φ). If C(y;n, x, φ)
starts with a 0, then obviously y = z. If C(y;n, x, φ) starts with a 1, then the prefixes a
and b are the same. Therefore y = z by the consideration above.

The instances of BH are triples 〈g, x, 1t〉 of length 2 log |g|+2 log |x|+|x|+|g|+t+Θ(1) using
a standard pairing function for strings, where the 2 log |g| + 2 log |x| stems from encoding
the lengths of g and of x. Note that the instances of BH can be made prefix-free. Let

UBH
N,〈g,x,1t〉,φ(〈g′, x′, 1t

′
〉) =

{
cφ · 2−|x

′| if g = g′, N = |〈g′, x′, 1t′〉|, and |x′| ≥ log 1
φ ,

0 otherwise.

Above, cφ is an appropriate scaling factor. More precisely, cφ is the reciprocal of the number
of possible lengths for a string x′, i.e., it is of order 1

N−log φ . In particular, UBH
N,〈g,x,1t〉,φ(y) ≤ φ

for all y.
What is the intuition behind the definition of UBH: First we want that tuples with Gödel

number g should be perturbed to tuples with Gödel number g′ = g again. Second, the
length of the perturbed tuples should be the same as the length of the original tuple. And
third, the string x′ should not be too short, since the length of the string produced by the
compression function is not too short either.

Theorem 4.4. (BH, UBH) is Dist-NPpara-complete under polynomial-time smoothed re-
ductions.

Proof. Let (L,D) ∈ Dist-NPpara be arbitrary. Let p(n) be an upper bound for the length
of the strings in any supp(Dn,x,φ). Let M be a nondeterministic machine that accepts an
input a if and only if there is a string y ∈ L with C(y;n, x, φ) = a. Let q be an upper bound
on the running time of M . Let g be the Gödel number of M . Our reduction maps a string
y to

f(〈x, y〉;n, x, φ) =
〈
〈g, C(x;n, x, φ), 1t〉, 〈g, C(y;n, x, φ), 1t

′
〉
〉

where t and t′ chosen such that, first, both are larger than q(p(|x|)) and, second, that all
tuples have the same length N(n).

The Turing machine M gets a ”compressed” input a and behaves on it like on the ”un-
compressed” input y. Note that M can guess the uncompressed input y, since y is unique.
By construction, 〈x, y〉 ∈ Lds if and only if f(〈x, y〉;n, x, φ) ∈ BHds.

Domination remains to be verified. Since C is injective, at most one y is mapped to
〈g, a, 1t〉 given n, x, and φ. We have

UBH
N,〈g,C(x;n,x,φ),1t〉,φ(〈g, C(y;n, x, φ), 1t

′
〉) = cφ · 2−|C(y;n,x,φ)|.

If |C(y;n, x, φ)| ≤ log 1
Dn,x,φ(y) + c log n+ 1, then

UBH
N,〈g,C(x;n,x,φ),1t〉,φ(〈g, C(y;n, x, φ), 1t

′
〉) ≥ cφ ·

Dn,x,φ(x)

2nc
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and domination is fulfilled. If |C(y;n, x, φ)| = 1 + |y|, then

UBH
N,〈g,C(x;n,x,φ),1t〉,φ(〈g, C(y;n, x, φ), 1t

′
〉) = cφ · 2−|y|−1 ≥ 1

2
cφ ·Dn,x,φ(y).

This completes the hardness proof. The completeness follows since (BH, UBH) is indeed con-
tained in Dist-NPpara.

4.2.2. Tiling. The original DistNP-complete problem by Levin [1986] was Tiling (see also
Wang [1997]): An instance of the problem consists of a finite set T of square tiles, a positive
integer t, and a sequence s = (s1, . . . , sn) for some n ≤ t such that si ∈ T for all i ∈
{1, . . . , n} and si matches si+1 (the right side of si equals the left side of si+1). The question
is whether s can be extended to tile an n× n square using tiles from T . Here, all four sides
of a square tile are labeled, and tiles must not be rotated. Two tiles match horizontally if
the label on the right-hand side of the left tile matches the label on the left-hand side of
the right tile. Two tiles match vertically if the bottom label of the upper tile matches the
top label of the lower tile.

We use the following probability distribution for Tiling:

UTiling

N,〈T,s,1t〉,φ(〈T ′, s′, 1t
′
〉) =

{
cφ · a−|s

′| if T = T ′, N = |〈T ′, s′, 1t′〉|, |T ′| ≥ log 1
φ ,

0 otherwise.

Here, a is the number of possible choices in T for each initial tile si.

Theorem 4.5. (Tiling, UTiling) is Dist-NPpara-complete for some UTiling ∈ PComppara
under polynomial-time smoothed reductions.

Proof. By construction, we have (Tiling, UTiling) ∈ Dist-NPpara. For simplicity, we
assume that the set T of tiles always contains two tiles encoding the input bits “0” and “1”
and that these are the only possible tiles for the initial tiling (s1, . . . , sn). (The problem does
not become easier without this restriction, but the hardness proof becomes more technical.)

For the hardness, (BH, UBH) reduces to (Tiling, UTiling) because the Turing machine
computations can be encoded as tiling problems in a straightforward way [Wang 1997] (the
Gödel number g maps to some set T of tiles, and the input x maps to the initial tiling s).
Finally, Item 2 of the reduction (Definition 3.1) is fulfilled because of the similarity between
the two probability distributions.

5. BASIC RELATIONS TO WORST-CASE COMPLEXITY

In this section, we collect some simple facts about Smoothed-P and Dist-NPpara and their
relationship to their worst-case and average-case counterparts. First, Smoothed-P is sand-
wiched between P and Avg-P, which follows immediately from the definitions.

Theorem 5.1. If L ∈ P, then (L,D) ∈ Smoothed-P for any D. If (L,D) ∈ Smoothed-P
with D = (Dn,x,φ)n,x,φ, then (L, (Dn,xn,φ)n) ∈ Avg-P for φ = O(poly(n)/Nn,x) and every
sequence (xn)n of strings with |xn| ≤ poly(n).

Second, for unary languages, i.e., languages L ⊆ {1}∗, the classes Avg-P and P coincide.
The reason is that for unary languages, we have just one single instance 1n for each length
n, and this instance has a probability of 1. Also Smoothed-P coincides with Avg-P and P for
unary languages. Because the set of instances is just a singleton, the parameter φ is fixed to
1 in this case. The observation that Avg-P, P, and Smoothed-P coincide for unary languages
allows us to transfer the result that DistNP ⊆ Avg-P implies NE = E [Ben-David et al.
1992] to smoothed complexity. (The latter classes are defined as NE = NTime(2O(n)) and
E = DTime(2O(n)).) The transfer of their result to smoothed complexity is straightforward
and therefore omitted.
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Theorem 5.2. If Dist-NPpara ⊆ Smoothed-P, then NE = E.

This gives some evidence that Dist-NPpara is not a subset of Smoothed-P. (We cannot
have equality because Dist-NPpara is restricted to computable ensembles and problems in
NP, while Smoothed-P does not have these restrictions.)

6. TRACTABILITY 1: INTEGER PROGRAMMING

Now we deal with tractable – in the sense of smoothed complexity – optimization problems:
We show that if a binary integer linear program can be solved in pseudo-polynomial time,
then the corresponding decision problem belongs to Smoothed-P. This result is similar to
Beier and Vöckings characterization [Beier and Vöcking 2006]: Binary optimization prob-
lems have smoothed polynomial complexity (with respect to continuous distributions) if and
only if they can be solved in randomized pseudo-polynomial time. We follow their notation
and refer to their lemmas wherever appropriate.

6.1. Setup and Probabilistic Model.

A binary optimization problem is an optimization problem of the form

maximize cTx
subject to wTi x ≤ ti for i ∈ [k] and

x ∈ S ⊆ {0, 1}n.

Here, cTx =
∑n
j=1 cjxj is the linear objective function and wTi x =

∑n
j=1 wi,jxj ≤ ti are

linear constraints. Furthermore, we have the constraint that the binary vector x must be
contained in the set S. This set S should be viewed as containing the “structure” of the
problem. Examples are that S contains all binary vectors representing spanning trees of
a graph of n vertices or that S represents all paths connecting two given vertices or that
S contains all vectors corresponding to perfect matchings of a given graph. Maybe the
simplest case is k = 1 and S = {0, 1}n; then the binary program above represents the
knapsack problem.

We assume that S is adversarial (i.e., non-random). Since we deal with decision problems
in this paper rather than with optimization problems, we use the standard approach and
introduce a threshold for the objective function. This means that the optimization problem
becomes the question whether there is an x ∈ S that fulfills cTx ≥ b as well as wTi x ≤ ti for
all i ∈ {1, . . . , k}. In the following, we treat the budget constraint cTx ≥ b as an additional
linear constraint for simplicity. We call this type of problems binary decision problems.

For ease of presentation, we assume that we have just one linear constraint (whose coef-
ficients will be perturbed) and everything else is encoded in the set S. This means that the
binary decision problem that we want to solve is the following: Does there exist an x ∈ S
with wTx ≤ t?

The values w1, . . . , wn are n-bit binary numbers. Thus, wi ∈ {0, 1, . . . , 2n − 1}. While we
can of course vary their length, we choose to do it this way as it conveys all ideas while
avoiding another parameter.

Let us now describe the perturbation model. We do not make any assumption about the
probability distribution of any single coefficient. Instead, our result holds for any family of
probability distribution that fulfills the following properties:

—w1, . . . , wn are drawn according to independent distributions. The set S and the threshold

t are part of the input and not subject to randomness. Thus, Nn,(S,w,t) = 2n
2

for any
instance (S,w, t) of size n. We assume that S can be encoded by a polynomially long
string. (This is fulfilled for most natural optimization problems, like TSP, matching,
shortest path, or knapsack.)
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— The fact that w1, . . . , wn are drawn independently means that the probability for one
coefficient to assume a specific value is bounded from above by φ1/n.

Since Nn,(S,w) = 2n
2

, the perturbation parameter φ can vary between 2−n
2

(for the average
case) and 1 (for the worst case).

The idea is as follows: If we have a pseudo-polynomial algorithm, then we can solve
instances with O(log n) bits per coefficient efficiently. Our goal is thus to show that O(log n)

bits suffice with high probability. (This is for the average case, i.e., φ = 2−n
2

. For larger φ,
more but not too many bits are needed.) The proofs in the following are similar to proofs by
Beier and Vöcking [2006]. However, at various places it gets slightly more technical because
we have discrete rather than continuous probability distributions.

The following simple lemma bounds the probability that a certain coefficient assumes a
value in a given small interval.

Lemma 6.1. Let δ, z ∈ N. Let a be an n-bit coefficient drawn according to some discrete
probability distribution bounded from above by φ1/n. Then Pr(a ∈ [z, z + δ)) ≤ φ1/nδ.

Proof. There are exactly δ outcomes of a that lead to a ∈ [z, z + δ). Thus, Pr(a ∈
[z, z + δ)) ≤ φ1/nε.

Our goal is to show that O(log(nφ1/n2n)) bits for each coefficient suffice to determine

whether a solution exists. (For the average case, we have φ = 2−n
2

, thus O(log n) bits per
coefficient.) To do this, it is not sufficient for an x ∈ S to just satisfy wTx ≤ t: Because of the
rounding, we might find that x is feasible with respect to the rounded coefficients whereas
x is infeasible with respect to the true coefficients. Thus, what we need is that wTx is
sufficiently smaller than t. Then the rounding does not affect the feasibility. Unfortunately,
we cannot rule out the existence of solutions x ∈ S that are very close to the threshold (after
all, there can be an exponential number of solutions, and it is likely that some of them are
close to the threshold). But it is possible to prove the following: Assume that there is some
ranking among the solutions x ∈ S. Let the winner be the solution x? ∈ S that fulfills
wTx? ≤ t and is ranked highest among all such solutions. Then it is likely that t−wTx? is
not too small. Now, any solution that is ranked higher than x? must be infeasible because it
violates the linear constraint wTx ≤ t. Let x̂ be the solution that minimizes wTx− t among
all solutions ranked higher than x?. Then it is also unlikely that wT x̂− t extremely small,
i.e., that x̂ violates the linear constraint by only a small margin.

Remark 6.2. In Beier and Vöcking’s analysis [Beier and Vöcking 2006], the ranking was
given by the objective function. We do not have an objective function here because we deal
with decision problems. Thus, we have to introduce a ranking artificially. In the following,
we use the lexicographic ordering (if not mentioned otherwise), which satisfies the following
monotonicity property that simplifies the proofs: if x ∈ S is ranked higher than y ∈ S, then
there is an i with xi = 1 and yi = 0.

Now let x? be the winner (if it exists), i.e., the highest ranked (with respect to lexi-
cographic ordering) solution among all feasible solutions. Then we define the winner gap
as

Γ(t) =

{
t− wTx? if there exists a feasible solution and

⊥ otherwise.

The goal is to show that it is unlikely that Γ is small. In order to analyze Γ, it is useful
to define also the loser gap Λ. The loser x̂ ∈ S is a solution that is ranked higher than x?

but cut off by the constraint wTx ≤ t. It is the solution with minimal wTx − t among all
such solutions. (If there is a tie, which can happen because we have discrete probability
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distributions, then we take the highest-ranked solution as the loser.) We define

Λ(t) =

{
wT x̂− t if there exists a loser x̂ and

⊥ otherwise.

The probability that Λ or Γ is smaller than some value δ is bounded by δφ1/nn, which we
will prove in the following.

The following lemma states that it suffices to analyze Λ in order to get bounds for both Λ
and Γ. In fact, for the setting with just one linear constraint with non-negative coefficients,
we do not even need the winner gap. But the winner gap is needed for more general cases,
which we discuss in Section 6.2 but do not treat in detail for conciseness.

Lemma 6.3 (discrete version of [Beier and Vöcking 2006, Lemma 7]). For all
t and δ, we have Pr(Γ(t) < δ) = Pr(Λ(t− δ) ≤ δ).

Proof. A solution x ∈ S is called Pareto-optimal if there is no other solution x′ ∈ S such
that wTx′ ≤ wTx and x′ is ranked higher than x. Let us make two observations. First, we
observe that both winners and losers are Pareto-optimal. Second, for every Pareto-optimal
solution x, there exists a threshold t such that x is the loser for this particular threshold.
To see this, simply set t = wTx− 1.

Let P ⊆ S be the set of Pareto-optimal solutions. Then

Γ(t) = min{t− wTx | x ∈ P,wTx ≤ t} and

Λ(t) = min{wTx− t | x ∈ P,wTx > t} = min{wTx− t | x ∈ P,wTx ≥ t+ 1}.

Now Γ(t) < δ if and only if there is an x ∈ P with t−wTx ∈ {0, . . . , δ−1}. This is equivalent
to wTx− t ∈ {−δ + 1, . . . , 0} and to wTx− (t− δ) ∈ {1, . . . , δ}. In turn, this is equivalent
to Λ(t− δ) ≤ δ.

Now we analyze Λ(t). The following lemma makes this rigorous. It is a discrete counterpart
to Beier and Vöcking’s separating lemma [Beier and Vöcking 2006, Lemma 5]. We have to
assume that the all-zero vector is not contained in S. The reason for this is that its feasibility
does not depend on any randomness.

Lemma 6.4 (separating lemma). Suppose that (0, . . . , 0) /∈ S. For every δ, t ∈ N, we
have Pr(Γ(t) < δ) ≤ δφ1/nn and Pr(Λ(t) ≤ δ) ≤ δφ1/nn.

If we use a non-monotone ranking, then the bounds for the probabilities become δφ1/nn2.

Proof. Because of Lemma 6.3, it suffices to analyze the loser gap Λ. We only give
a proof sketch for monotone rankings as that emphasis the differences to the continuous
counterpart [Beier and Vöcking 2006, Lemma 5].

Let Si = {x ∈ S | xi = 1}, and let Si = S \ Si = {x ∈ S | xi = 0}. Let x?i ∈ Si be the
winner from Si: x

?i is ranked highest in Si and satisfies the linear constraint wTx?i ≤ t.
Let x̂i ∈ Si be the loser with respect to x?i, i.e., a solution that is ranked higher than x?i

and minimizes wT x̂i − t (if such a solution exists). Let

Λi =

{
wT x̂i − t if x̂i exists and

⊥ otherwise.

Note that x̂i can be feasible and, thus, Λi can be negative.
To analyze Λi, we assume that all wj with j 6= i are fixed by an adversary. The winner

x?i does not depend wi because all solutions x ∈ Si have xi = 0. Once x?i is fixed, also x̂i

is fixed. Because wj for j 6= i is fixed and x̂ii = 1, we can rewrite wT x̂i − t = z + wi. Now
Λi ∈ {1, . . . , δ} if wi assumes a value in some interval of length δ, which happens with a
probability of at most δφ1/n.
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Furthermore, if Λ 6= ⊥, then there exists an i with Λi = Λ [Beier and Vöcking 2006, Claim
B]. Thus, a union bound over all n possibilities for i yields Pr(Λ(t) ≤ δ) ≤ δφ1/nn.

For the probabilistic constraint wTx ≤ t, it is not sufficient for an x to satisfy it. Instead,
we want that only a few bits of each coefficient of w suffice to find an x that satisfies that
constraint. Here, “few” means roughly O(log(nφ1/n2n)). (Note that this is roughly O(log n)

if we are close to the average case, where φ ≈ 2−n
2

.) Different from Beier and Vöcking’s
continuous case (where the real-valued coefficients where revealed by an oracle), we have
the true coefficients at hand. Thus, we do not need their certificates that a solution is indeed
feasible, but we can simply test with the true coefficients. Clearly, this testing can be done
in polynomial time.

For an n-bit natural number a and b ∈ N, let bacb = be the number obtained from a by
only taking the b most significant bits. This means that bacb = 2n−b · ba/2n−bc.

In order to show that pseudo-polynomiality implies smoothed polynomial complexity, we
use a pseudo-polynomial algorithm as a black box in the following way: We run the pseudo-
polynomial algorithm with the highest O(log n) bits. (To do this, we scale the rounded
coefficients of w down. Furthermore, we also have to scale t down appropriately.) If we find
a solution, then we check it against the true coefficients of w. If it remains feasible, we
output “yes”. If it becomes unfeasible, then we take one more bit for each coefficient and
continue. The following lemma gives a tail bound for how long this can go on.

Lemma 6.5. Assume that we use b bits for each coefficient of w. Let x? be the winner
(with respect to the true w without rounding). The probability that solving the problem
with b bits for each coefficient yields a solution different from x? is bounded from above by
2n−bφ1/nn2.

Proof. We only get a solution different from x? if there is a solution x̂ ranked higher
than x? that is feasible with respect to the rounded coefficients. By rounding, we change
each coefficient by at most 2n−b. Thus, wT x̂− bwcTb x̂ ≤ 2n−bn.

We can conclude that we find x̂ instead of x? only if the loser gap Λ is at most 2n−bn,
which happens with a probability of at most 2n−bφ1/nn2 (or 2n−bφ1/nn3 if the ranking is
not monotone).

With this preparation, we can prove the main result of this section.

Theorem 6.6. If a binary decision problem can be solved in pseudo-polynomial time,
then it is in Smoothed-P.

Proof. We have to show that the running time of the algorithm sketched above, which
uses the pseudo-polynomial algorithm as a black box, fulfills Theorem 2.3.

If b bits for each coefficient are used, the running time of the pseudo-polynomial algorithm
is bounded from above by O((n2b)c) for some constant c. (Even the total running time
summed over all iterations up to b bits being revealed is bounded by O((n2b)c), because it
is dominated by the last iteration.)

The probability that more than time t = O((n2b)c) is needed is bounded from above by
2n−bφ1/nn2 according to Lemma 6.5. We can rewrite this as

2n−bφ1/nn2 = n22−b
(
2n

2

φ
)1/n

=
n3

O(t1/c)
·
(
2n

2

φ
)1/n ≤ n3

O(t1/c)
· 2n

2

φ.

The last inequality holds because φ ≥ 2−n
2

. The theorem is proved because this tail bound
for the running time is strong enough according to Theorem 2.3.

ACM Transactions on Computation Theory, Vol. YYYY, No. N, Article A, Publication date: January 2014.
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6.2. Examples and Discussion

Examples of problems in Smoothed-P are the decision problems associated with the following
NP-hard optimization problems:

— knapsack, where the goal is to find a subset of a given collection of items that maximizes
the profit while obeying a budget for its weight;

— constrained shortest path, where the goal is to find a path of minimum length that obeys
a certain a budget;

— constrained minimum-weight spanning tree.

These problems can be solved in pseudo-polynomial time using dynamic programming,
even if we insist on a lexicographically maximal solution (as we have to for Lemma 6.4).

Let us now discuss some extensions of the model. We have restricted ourselves to deter-
ministic pseudo-polynomial algorithms, which yield smoothed polynomial complexity. These
deterministic algorithms can be replaced without any complication by randomized errorless
algorithms that have expected pseudo-polynomial running time.

So far, we have not explicitly dealt with constraints of the form “wTx ≥ t”. But they
can be treated in the same way as “wTx ≤ t”, except that winner and loser gap change
their roles. Furthermore, we did not include the case that coefficients can be positive or
negative. This yields additional technical difficulties (we have to round more carefully and
take both winner and loser gap into account), but we decided to restrict ourselves to the
simpler form with non-negative coefficients for the sake of clarity. Moreover, we have not
considered the case of multiple linear constraints [Beier and Vöcking 2006, Section 2.3] for
the same reason. Finally, Röglin and Vöcking [2007] have extended the smoothed analysis
framework to integer programming. We believe that the same can be done for our discrete
setting.

The main open problem concerning Smoothed-P and integer optimization is the follow-
ing: Beier and Vöcking [2006] have proved that (randomized) pseudo-polynomiality and
smoothed polynomiality are equivalent. The reason why we do not get a similar result is as
follows: Our “joint density” for all coefficients is bounded by φ, and the density of a single
coefficient is bounded by φ1/n. In contrast, in the continuous version, the joint density is
bounded by φn while a single coefficient has a density bounded by φ.

However, our goal is to devise a general theory for arbitrary decision problems. This theory
should include integer optimization, but it should not be restricted to integer optimization.
The problem is that generalizing the concept of one distribution bounded by φ for each
coefficient to arbitrary problems involves knowledge about the instances and the structure
of the specific problems. This knowledge, however, is not available if we want to speak about
classes of decision problems as in classical complexity theory.

7. TRACTABILITY 2: GRAPHS AND FORMULAS

7.1. Graph Coloring and Smoothed Extension of Gn,p

The perturbation model that we choose is the smoothed extension of Gn,p [Spielman and
Teng 2009]: Given an adversarial graph G = (V,E) and an ε ∈ (0, 1/2], we obtain a
new graph G′ = (V,E′) on the same set of vertices by “flipping” each (non-)edge of G
independently with a probability of ε. This means the following: If e = {u, v} ∈ E, then e
is contained in E′ with a probability of 1− ε. If e = {u, v} /∈ E, then Pr(e ∈ E′) = ε.

Transferred to our framework, this means the following: We represent a graph G on n

vertices as a binary string of length
(
n
2

)
, and we have Nn,G = 2(n2). The flip probability ε

depends on φ: We choose ε ≤ 1/2 such that (1 − ε)(
n
2) = φ. (For φ = 2−(n2) = 1/Nn,G, we

have a fully random graph with edge probabilities of 1/2. For φ = 1, we have ε = 0, thus
the worst case.)
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We will not present an exhaustive list of graph problems in Smoothed-P, but we will focus
on graph coloring as a very simple example. k-Coloring is the decision problem whether
the vertices of a graph can be colored with k colors such that no pair of adjacent vertices
get the same color. k-Coloring is NP-complete for any k ≥ 3 [Garey and Johnson 1979,
GT 4].

Theorem 7.1. For any k ∈ N, k-Coloring ∈ Smoothed-P.

Proof. To show that k-Coloring ∈ Smoothed-P, we analyze the following simple algo-
rithm: First, we check whether the input graph contains a clique of size k + 1. This can be
done easily in polynomial time. If yes, we output no. If no, we perform exhaustive search.
The analysis is similar to Wilf’s analysis [Wilf 1985] of the coloring problem.

A graph is k-colorable only if it does not contain a clique of size k + 1. The probability

that a specific set of k+1 vertices form a k+1 clique is at least ε(
k+1
2 ). Thus, the probability

that a graph G on n vertices does not contain a k + 1 clique is at most
(

1− ε(
k+1
2 )
) n
k+1

.

We distinguish two cases: First, ε ≥ 0.1. In this case,
(

1− ε(
k+1
2 )
) n
k+1

can be bounded

from above by cn for some positive constant c < 1 that depends on k. Brute-force testing
whether a graph can be k-colored can be done in time poly(n) · kn. The probability that
we need brute force is at most cn. Thus, the expected running-time, raised to the power
logk(1/c), is bounded from above by a polynomial.

Second, ε < 0.1. Then we have φ = (1− ε)(
n
2) ≥ 0.9(n2). The allowed running-time (raised

to some constant power) is Nn,Gφn = 2(n2)φn ≥ 1.8(n2). Thus, we can afford exhaustive
search in every run.

Remark 7.2. Bohman et al. [2004] and Krivelevich et al. [2006] consider a slightly differ-
ent model for perturbing graphs: Given an adversarial graph, we add random edges to the
graph to obtain our actual instance. No edges are removed.

They analyze the probability that the random graph thus obtained is guaranteed to
contain a given subgraph H. By choosing H to be a clique of size k + 1 and using a proof
similar to Theorem 7.1’s, we obtain that k-Coloring ∈ Smoothed-P also with respect to
this perturbation model.

7.2. Unsatisfiability and Smoothed-RP

Besides the smoothed extension of Gn,p discussed above, there exist various other models for
obtaining graphs and also Boolean formulas that are neither fully random nor adversarial.

Feige [2007] and Coja-Oghlan et al. [2009] have considered the following model: We are
given a (relatively dense) adversarial Boolean k-CNF formula. Then we obtain our instance
by negating each literal with a small probability. It is proved that such smoothed formu-
las are likely to be unsatisfiable, and that their unsatisfiability can be proved efficiently.
However, their algorithms are randomized, thus we do not get a result that kUNSAT (this
means that unsatisfiability problem for k-CNF formulas) for dense instances belongs to
Smoothed-P. However, it shows that kUNSAT for dense instance belongs to Smoothed-RP,
where Smoothed-RP is the smoothed analogue of RP: A pair (L,D) is in Smoothed-RP if
there is a randomized polynomial algorithm A with the following properties:

(1) For all x /∈ L, A outputs “no”. (This property is independent of the perturbation.)
(2) For all x ∈ L, A outputs “yes” with a probability of at least 1/2. (This property is also

independent of the perturbation.)
(3) A has smoothed polynomial running time with respect to D. (This property is indepen-

dent of the internal randomness of A.)
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Note that we have two sources of randomness in Smoothed-RP: The instance is perturbed,
and the algorithm A is allowed to use randomness. Item 1 and 2 depend only on A’s own
randomness. Item 3 depends only on the perturbation D.

Now, let kUNSATβ be kUNSAT restricted to instances with at least βn clauses, where n
denotes the number of variables. Let ε be the probability that a particular literal is negated.
Feige [2007] has presented a polynomial-time algorithm with the following property: If
β = Ω(

√
n log log n/ε2) and the perturbed instance of kUNSATβ is unsatisfiable, which it

is with high probability, then his algorithm proves that the formula is unsatisfiable with a
probability of at least 1− 2Ω(−n). The following result is a straightforward consequence.

Theorem 7.3. kUNSATβ ∈ Smoothed-RP for β = Ω(
√
n log log n).

8. SMOOTHED ANALYSIS VS. SEMI-RANDOM MODELS

Semi-random models for graphs and formulas exist even longer than smoothed analysis and
can be considered as precursors to smoothed analysis. The basic concept is as follows: Some
instance is created randomly that possesses a particular property. This property can, for
instance, be that the graph is k-colorable. After that, the adversary is allowed to modify
the instance without destroying the property. For instance, the adversary can be allowed to
add arbitrary edges between the different color classes. Problems that have been considered
in this model or variants thereof are independent set [Feige and Kilian 2001], graph coloring
[Blum and Spencer 1995; Feige and Kilian 2001; Coja-Oghlan 2007a], or finding sparse
induced subgraphs [Coja-Oghlan 2007b]. However, we remark that these results do not easily
fit into a theory of smoothed analysis. The reason is that in these semi-random models, we
first have the random instance, which is then altered by the adversary. This is in contrast
to smoothed analysis in general and our smoothed complexity theory in particular, where
we the adversarial decisions come before the randomness is applied.

9. DISCUSSION

Our framework has many of the characteristics that one would expect. We have reductions
and complete problems and they work in the way one expects them to work. To define
reductions, we have to use the concept of disjoint supports. It seems to be essential that we
know the original instance x that the actual instance y was drawn from to obtain proper
domination. Although this is somewhat unconventional, we believe that this is the right
way to define reductions in the smoothed setting. The reason is that otherwise, we do not
know the probabilities of the instances, which we need in order to apply the compression
function. The compression function, in turn, seems to be crucial to prove hardness results.
Still, an open question is whether a notion of reducibility can be defined that circumvents
these problems. Moreover, many of the positive results from smoothed analysis can be cast
in our framework, like it is done in Sections 6 and 7.

One question that frequently arises is whether the original, unperturbed x should have
the highest probability in Dn,x,φ. While this is natural for perturbing real numbers, we think
that this just puts an extra technical restriction, which complicates the framework. And
for the general probabilistic input model introduced by Beier and Vöcking [2006], which we
have adapted, there is not even a natural notion of an “original instance” as the adversary
merely specifies density functions.

Many positive results in the literature state their bounds in the number of “entities” (like
number of nodes, number of coefficients) of the instance. However, in complexity theory, we
measure bounds in the length (number of symbols) of the input in order to get a theory for
arbitrary problems, not only for problems of a specific type. To state bounds in terms of
bit length makes things less tight, for instance the reverse direction of integer programming
does not work. But still, we think it is more reasonable to use the customary notion of input
length such that smoothed complexity fits with average-case and worst-case complexity.
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Finally, the results by Röglin and Teng [2009] show that, for binary optimization problems,
expected polynomial is indeed a robust measure. We have shown that this is in general not
the case. To do this, we have used a language in E. The obvious question is now whether
Avg-P and Avg-PBM as well as Smoothed-P and Smoothed-PBM coincide for problems in
NP.

We hope that the present work will stimulate further research in smoothed complexity
theory in order to get a deeper understanding of the theory behind smoothed analysis.
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Bodo Manthey and Rüdiger Reischuk. 2007. Smoothed Analysis of Binary Search Trees. Theoretical Com-
puter Science 378, 3 (2007), 292–315.
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Heiko Röglin and Shang-Hua Teng. 2009. Smoothed Analysis of Multiobjective Optimization. In Proc. of
the 50th Ann. IEEE Symp. on Foundations of Computer Science (FOCS). IEEE Computer Society,
Atlanta, GA, USA, 681–690.
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